

SMARTPHONE CROSS-PLATFORM
FRAMEWORKS

A case study

Timo Paananen

Bachelor’s Thesis
April 2011

 Degree Programme in Media Engineering
School of Technology

 DESCRIPTION

Author(s)
PAANANEN, Timo

Type of publication
Bachelor´s Thesis

Date
27.04.2011

Pages
108

Language
English

Confidential

() Until

Permission for web
publication
(X)

Title
SMARTPHONE CROSS-PLATFORM FRAMEWORKS – A CASE STUDY

Degree Programme
Media Engineering

Tutor(s)
MANNINEN, Pasi

Assigned by
AHOLA, Janne, Eagle Mediavision Oy

Abstract

The objective of the Bachelor’s thesis was to introduce and compare cross-platform mobile
programming frameworks for smartphones, and to find the most optimal framework solution or
solutions for the needs of Eagle Mediavision Oy.

The thesis reviewed history of mobile communication, defined the major mobile device categories,
and introduced the major smartphone platforms of 2011.

The research focus was on cross-platform native frameworks. A cross-platform native framework is
software that allows a common development approach across platforms but builds to an application
indistinguishable by a user from one that is built with native code. The thesis introduced
Appcelerator Titanium, PhoneGap, Rhodes Rhomobile, Adobe AIR for Mobile Devices, Adobe Flex
SDK “Hero” with Adobe Flash Builder “Burrito” and OpenPlug Elips Studio frameworks. The
frameworks were introduced theoretically, and tested practically by programming a demo
application for each framework.

Features of the frameworks were compared and analyzed. The cross-platform mobile frameworks
were compared to native mobile frameworks and evaluated critically. The result of the comparison
was that Appcelerator Titanium and PhoneGap were the best frameworks for the mobile
development needs of Eagle Mediavision Oy. The result of this thesis was also that the cross-
platform native frameworks were at an early stage of their evolution in 2011, and the native mobile
programming still had its advantages. However, the future of the cross-platform mobile
programming seems to have a great number of possibilities, especially in the area of the mobile web,
but also in the cross-platform mobile programming.
Keywords
mobile programming, smartphones, JavaScript, HTML, CSS

Miscellaneous

 OPINNÄYTETYÖN
 KUVAILULEHTI

Tekijä(t)
PAANANEN, Timo

Julkaisun laji
Opinnäytetyö

Päivämäärä
27.04.2011

Sivumäärä
108

Julkaisun kieli
Englanti

Luottamuksellisuus

() saakka

Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
SMARTPHONE CROSS-PLATFORM FRAMEWORKS – A CASE STUDY

Koulutusohjelma
Mediatekniikan koulutusohjelma

Työn ohjaaja(t)
MANNINEN, Pasi

Toimeksiantaja(t)
AHOLA, Janne, Eagle Mediavision Oy

Tiivistelmä

Opinnäytetyön tarkoituksena oli esitellä ja vertailla useiden älypuhelinalustojen
mobiiliohjelmointiympäristöjä ja löytää parhaat mobiiliohjelmointityökalut Eagle Mediavision Oy:n
tarpeisiin.

Opinnäytetyössä tarkasteltiin matkaviestinnän historiaa, määriteltiin keskeiset matkapuhelimien
kategoriat ja esiteltiin pääasialliset vuoden 2011 älypuhelinalustat.

Tutkimuksen pääpainopiste oli useiden alustojen mobiiliohjelmointiympäristöissä, joilla voidaan tuottaa
natiiveja mobiilisovelluksia alustalle. Tällaisen ohjelmointiympäristön voi määritellä ympäristöksi, jolla
voidaan tuottaa yhdellä kehitysympäristöllä ja ohjelmointikielellä mobiilisovelluksia, jotka eivät käyttäjän
näkökulmasta eroa natiivilla ohjelmointikielellä tuotetuista mobiilisovelluksista. Opinnäytetyö tutki
seuraavia ohjelmointiympäristöjä: Appcelerator Titanium, PhoneGap, Rhodes Rhomobile, Adobe AIR for
Mobile Devices, Adobe Flex SDK “Hero” ja Adobe Flash Builder “Burrito” ja OpenPlug Elips Studio.
Alustoja esiteltiin teoriatiedon pohjalta, ja testattiin käytännössä ohjelmoimalla demosovellus jokaisessa
esitellyssä ohjelmointiympäristössä.

Ohjelmointiympäristöjen ominaisuuksia vertailtiin ja analysoitiin. Usean alustan ohjelmointiympäristöjä
verrattiin natiiveihin mobiiliohjelmointialustoihin ja arvioitiin kriittisesti. Appcelerator Titanium ja
PhoneGap olivat vertailun perusteella parhaiten Eagle Mediavision Oy:n tarpeisiin soveltuvat
ohjelmointiympäristöt. Opinnäytetyön tulospäätelmä oli myös, että useiden alustojen
mobiiliohjelmointiympäristöt olivat vuonna 2011 varhaisen kehityksen vaiheessa, ja natiivilla
mobiiliohjelmoinnilla on etunsa. Kuitenkin useiden alustojen mobiiliohjelmointiympäristöjen tulevaisuus
vaikuttaa vahvalta, erityisesti mobiiliwebin kehityksen myötä, mutta myös ohjelmointiympäristöissä.

Avainsanat (asiasanat)

mobiiliohjelmointi, älypuhelimet, JavaScript, HTML, CSS

Muut tiedot

1

CONTENTS

1 INTRODUCTION ... 6

1.1 Thesis Background ... 6

1.2 Eagle Mediavision Oy .. 7

1.3 Research objective .. 7

1.4 Methodology ... 8

2 THE MAJOR SMARTPHONE PLATFORMS ... 9

2.1 A brief history of mobile communication .. 9

2.2 Mobile device categories... 10

2.3 Definition of a smartphone ... 12

2.4 Smartphone market share ... 13

2.5 Apple iPhone ... 15

2.6 Google Android ... 16

2.7 RIM Blackberry .. 17

2.8 Microsoft Windows Phone 7 ... 17

2.9 Palm webOS .. 18

2.10 Symbian ... 19

2.11 Meego ... 20

2.12 Tablets ... 21

2

3 CROSS-PLATFORM NATIVE FRAMEWORKS .. 22

3.1 Definition of the cross-platform native frameworks 22

3.2 Titanium Mobile .. 22

3.2.1 Getting started .. 24

3.2.2 Example Project: Contacts ... 24

3.2.3 Building for Device .. 29

3.3 PhoneGap .. 30

3.3.1 Getting started .. 31

3.3.2 Example Project: Contacts ... 34

3.3.3 PhoneGap Build .. 37

3.4 Rhodes... 38

3.4.1 Development Architecture .. 39

3.4.2 Getting started .. 40

3.4.3 Example Project: Contacts ... 40

3.4.4 RhoHub ... 45

3.5 Adobe AIR for Mobile Devices ... 46

3.5.1 Adobe Flex SDK “Hero” framework ... 46

3.5.2 Flash Builder “Burrito” development environment.......................... 47

3.5.3 Getting started for Android ... 47

3.5.4 Getting started for iOS .. 48

3.5.5 Example Project: Google Maps API with Geolocation 48

3.6 OpenPlug Elips Studio ... 53

3

3.6.1 Getting Started.. 54

3.6.2 Example Project: Contacts ... 55

3.7 Summary ... 61

3.7.1 Corona .. 61

3.7.2 MoSync ... 62

4 COMPARISON OF THE CROSS-PLATFORM NATIVE FRAMEWORKS 63

4.1 Smartphone platform support .. 64

4.2 Device APIs comparison .. 65

4.3 Other features ... 68

4.4 Subjective comparison .. 69

4.5 Results of the cross-platform native frameworks comparison 72

5 CRITICAL ANALYSIS OF CROSS-PLATFORM MOBILE PROGRAMMING 74

5.1 Disadvantages of the cross-platform mobile programming 74

5.2 Cross-platform versus native applications – a comparison 77

6 RESULTS AND ANALYSIS .. 78

6.1 Choosing the framework ... 78

6.2 Future of the cross-platform mobile programming 80

REFERENCES .. 83

APPENDICES .. 90

Appendix 1. Code listing: Contacts application: Titanium 90

Appendix 2. Code listing: Contacts application: PhoneGap 92

4

Appendix 3. Code listing: Contacts application, Rhodes 94

Appendix 4. Code listing: Google Maps with Geolocation, Adobe Flash Builder
“Burrito” ... 99

Appendix 5. Code listing: Contacts application, Elips Studio 102

FIGURES

FIGURE 1. North America smartphone OS market share, Q3 2010 14

FIGURE 2. Titanium Platform .. 23

FIGURE 3. New Project window in Titanium Developer .. 25

FIGURE 4. New Project preferences.. 26

FIGURE 5. The Titanium Mobile Project directory structure...................................... 27

FIGURE 6. Contacts application running on iOS device (left) and Android (right) 29

FIGURE 7. New PhoneGap-based application (iOS) ... 32

FIGURE 8. New PhoneGap Android application .. 33

FIGURE 9. PhoneGap Contacts application running on iOS device (left) and Android

(right) ... 37

FIGURE 10. RhoSync and Rhodes application (RhoSync Features) 39

FIGURE 11. Rhodes project directory structure .. 41

FIGURE 12. Rhodes Contacts, all Contacts list (iOS) .. 44

FIGURE 13. Rhodes Contacts, single contact view (iOS left, Android right) 45

FIGURE 14. New Flex Mobile Project 1 / 2 (Android) .. 49

FIGURE 15. New Flex Mobile Project 2 / 2 (Android) .. 50

FIGURE 16. Flex Mobile Project structure ... 50

FIGURE 17. The Google Maps Flex Mobile Project running on Android device 53

5

FIGURE 18. New Elips Project (Adobe Flash Builder 4) .. 56

FIGURE 19. Elips Project Structure (Adobe Flash Builder 4) 57

FIGURE 20. Elips filtered contacts list (Android).. 59

FIGURE 21. Elips Contacts, a single contact view (Android left, iPhone simulator

right) .. 60

TABLES

TABLE 1. Worldwide Mobile Communications Device Open OS Sales to End Users by

OS (Thousands of Units) ... 13

TABLE 2. Comparison: Smartphone platform support .. 64

TABLE 3. Comparison: Device APIs support .. 65

TABLE 4. Comparison: Other features .. 68

TABLE 5. Results of the cross-platform native frameworks comparison 72

TABLE 6. Cross-platform versus native applications - a comparison 77

6

1 INTRODUCTION

1.1 Thesis Background

The smartphone is the new personal computer, the most personal device a person

owns. Today’s mobile phones are being used as computers for multipurpose

functions. The number of mobile Internet users is growing rapidly and may overcome

the desktop Internet users by 2013-2014 (Devitt, Meeker & Wu 2010, 8).

The mobile market is growing; however, at the same time the market of the mobile

platforms is fragmented, as there are many mobile operating systems and

programming languages. This has led to situation where mobile developers need to

use platform specific tools and APIs in order to write mobile applications in different

programming languages on different platforms (Allen, Graupera & Lundrigan 2011,

xv). Reprogramming basically the same application into multiple mobile platforms

means an increase in development costs and longer development times or decrease

in the number of supported mobile platforms and a transfer of focus only on specific

devices.

The demand for shorter mobile application development process has driven the need

for cross-platform solutions. The idea of cross-platform mobile programming is that

with the same codebase with little or no modifications a mobile application could be

published into multiple mobile phone platforms.

If the mobile application could be basically programmed once and published on

multiple platforms, it would cut down the development costs and time dramatically.

And if the mobile applications could be programmed using the well-known Web-

technologies, such as HTML, CSS, JavaScript and AJAX-technologies, the developers

would not need to master multiple native mobile programming languages, such as

Java, Objective C and C++. With some extra studies of the cross-platform frameworks

7

also web developers would be able to do mobile programming as well as native

mobile developers.

On the other hand, the native mobile programming frameworks have their

advantages, such as usually better debugging, documentation, supported hardware

features and API. This thesis also makes critical research and comparison of different

mobile phone programming methods, platforms, frameworks and tools.

1.2 Eagle Mediavision Oy

This thesis was assigned by Eagle Mediavision Oy (later “Client”).

Eagle Mediavision Oy was founded in fall 2010 and is located in Jyväskylä, Finland.

The company’s main business areas are in mobile and web development, video

productions and printed media productions (book publishing and layout).

Early 2011 Eagle Mediavision Oy was starting its mobile business, and this thesis was

assigned to find the optimal solution to the mobile development needs of the

company.

1.3 Research objective

The objective of the study was to introduce and compare different cross-platform

mobile programming frameworks, and to find the most optimal solution for Cross-

Platform mobile application development.

For The Client “the optimal solution” means meeting the following criteria:

 Widest range of mobile platforms supported with at least

iPhone and Android -platforms supported

8

 Possibility to publish native, installable mobile applications that can be

distributed via mobile application stores such as Apple’s App Store and

Android Market

 Phone API, an access to phone features like geolocation, phone, camera etc.

 Web-based programming language as a development language (not critical)

 The quality of framework documentation

 Fast development

 Development status (i.e. is under active development by firm business)

 Active developer community

 Open source or low license fees.

There can be many optimal solutions if founded reasonable.

The solutions were tested theoretically and practically: theoretically by studying all

the features of the frameworks and practically by programming a demo application

for each platform.

This thesis also made an analysis of cross-platform mobile development versus native

mobile application development, i.e. which pros and cons there are when developing

with the native frameworks or with the cross-platform frameworks.

1.4 Methodology

The research consists of following parts:

1. Introduction of different smartphone platforms. Defines a smartphone and

presents the main smartphone platforms of spring 2011.

2. Presentation of cross-platform native frameworks. Frameworks that are able

to produce native, installable applications which can be downloaded from the

mobile distribution platforms (i.e. Apple’s App Store).

9

3. Theoretical comparison of different cross-platform mobile frameworks based

on client’s criteria. The theoretical comparison was made based on source

material of different frameworks.

4. Analyzing the results and choosing the best framework for development.

Possibility to have multiple framework decisions if found reasonable, for

example possibility to develop to multiple platforms or usability to different

kind of applications.

2 THE MAJOR SMARTPHONE PLATFORMS

2.1 A brief history of mobile communication

Commercially thinking, the history of mobile communication is brief. First real mobile

phones in 1980s were heavy and large as they required enormous batteries to reach

the nearest cellular network site. As late as in the 1990s cellular technologies were

made financially feasible (Peltomäki 2010a, 16). Mobile phones evolved to be

smaller, lighter and cheaper devices that would fit into everyone’s budgets and

pockets. One of the main reasons that made this evolution possible was the

increased density of cellular sites. (Fling 2009, 5.)

These 2nd generation (or 2G) GSM mobile phones were mostly used for making voice

calls and sending SMS messages. They did not have web browsers, and did not have

any software installation possibilities (Firtman 2010, 6). All the software was factory

installed.

In the early 2000s the use of the Internet was introduced to the mobile phones, as

well as multimedia features such as listening to music and taking photos (Fling 2009,

7). GSM network providers added GPRS, which is a packet oriented data service, and

10

these two together are often described as 2.5G as it is a technology between the 2nd

and 3rd generations (Peltomäki 2010b, 8).

Web reached the mobile phones; however, using the World Wide Web by mobile

browsers was not a success because of the many limitations of the devices of that

time and because of high prices. Network operator portals sold installable

applications and downloadable ringtones and wallpapers. (Fling 2009, 8.)

When 3rd generation (3G) mobile networking became widespread, starting from

2002 and continuing to the end of the decade, the foundation was laid for

smartphone’s penetration to the market (Peltomäki 2010b, 10). The high speed

Internet of the 3G made user experience of web browsing better and this made it

possible to offer new services like streaming video or VoIP-calls. Mobile devices

learned from desktop computing and became smarter; one could say “personal

computers”. (Fling 2009, 10.)

2.2 Mobile device categories

Before defining a smartphone other mobile device types that are on the market

today need to be defined. According to Firtman (2010), there are following types of

mobile devices:

Mobile phones

Mobile phones are phones with call and SMS support, but without web browsers,

connectivity or software installation possibilities. One example phone of the category

is Nokia 1100, that is, according to Firtman (2010), “the most widely distributed

device in the world, with over 200 million sold since its launch on 2003.” (Op. cit. p.

6.)

11

The problem with this type of very low-end mobile phones is that it is not possible

for everyone to develop applications or web content for it. However, the situation is

changing as even cheaper mobile devices have inbuilt browser support. (Op. cit. p. 6.)

Low-end mobile devices

Low-end mobile devices have web support, basic camera and a music player, but

there is no touch support and the memory is limited. Price is an advantage for mobile

devices of this class. People who buy this kind of phones are usually not heavy

Internet users. (Op. cit. p. 6.)

Mid-end mobile devices

Mid-end devices usually offer a “medium-sized screen, basic HTML-browser support,

sometimes 3G, a decent camera, a music player, games, and application support”

(Op. cit. p. 7). Firtman (2009) states that one of the key features of mid-end devices

is that they do not have a well-known operating system, as High-end and

smartphones do. Usually even with the mid-end devices native applications are not

available publicly; instead custom applications are run through a runtime, like JAVA

ME. (Op. cit. p. 7.)

High-end mobile devices

High-end devices are near the smartphone category, but according to Firtman (2009,

7) the differences are that high-end devices are generally non-multi-touch. Still they

have many advanced features, as smartphones do, like accelerometer, camera,

Bluetooth and a good web support. The major difference is still the worse user

experience. (Op. cit. p. 7).

12

2.3 Definition of a smartphone

It is difficult to define a smartphone, since the definition of “smart” changes all the

time as the mobile devices evolve. The mobile device that was considered as “smart”

five years ago probably would not be in a smartphone category today. A typical

smartphone today seems to be a top high-level phone in terms of price and features.

According to Firtman (2009, 8), a smartphone “has a multitasking operating system, a

full desktop browser, Wireless LAN (WLAN, also known as Wi-Fi) and 3G connections,

a music player…” Firtman (2009, 8) also mentions that a smartphone has several of

the following features:

 GPS or A-GPS

 Digital compass

 Video-capable camera

 TV out

 Bluetooth

 Touch support

 3D video acceleration

 Accelerometer.

Peltomäki (2010a, 5) adds a multitasking capable operating system to Firtman’s

(2009, 8) definition. The PC Magazine Encyclopedia of IT Terms defines a smartphone

similarly like mentioned sources, adding a smartphone’s ability to “run myriad

applications, turning the once single-minded cell phone into a mobile computer.”

(Definition of smartphone.)

In conclusion, in this thesis a smartphone means an advanced mobile phone with a

modern day mobile operating system and advanced hardware features. It is possible

to install 3rd party mobile applications to a smartphone and it has an advanced

13

browser and an advanced user interface with a touch screen. The thesis emphasizes

the Google’s Android and Apple’s iOS over other smartphone platforms because of

the dominant market position of the aforementioned vendors in Europe and the

Nordic Countries.

2.4 Smartphone market share

There are many smartphone manufacturers on the market, with many mobile

operating systems. If the maximum audience for our mobile applications were to be

reached, it would be wise to focus on some main Operating Systems to reach the

largest audience.

According to Gartner research (TABLE 1), Symbian, Android and Research In Motion

are the three most sold operating systems for mobile devices in 2010. Remarkable

notice in the Gartner research is that the Symbian market share is dropping while the

Android market share is increasing rapidly. Gartner predicts that by the end of the

year 2011 “Android will move to become the most popular operating system (OS)

worldwide and will build on its strength to account for 49 percent of the smartphone

market by 2012.” (Pettey & Stevens 2011.)

TABLE 1. Worldwide Mobile Communications Device Open OS Sales to End Users by
OS (Thousands of Units) (Pettey & Stevens 2011)

OS 2010 2011 2012 2015
Symbian 111,577 89,930 32,666 661
Market Share (%) 37.6 19.2 5.2 0.1
Android 67,225 179,873 310,088 539,318
Market Share (%) 22.7 38.5 49.2 48.8
Research In Motion 47,452 62,600 79,335 122,864
Market Share (%) 16.0 13.4 12.6 11.1
iOS 46,598 90,560 118,848 189,924
Market Share (%) 15.7 19.4 18.9 17.2
Microsoft 12,378 26,346 68,156 215,998

14

Market Share (%) 4.2 5.6 10.8 19.5
Other Operating Systems 11,417.4 18,392.3 21,383.7 36,133.9
Market Share (%) 3.8 3.9 3.4 3.3
Total Market 296,647 467,701 630,476 1,104,898
Source: Gartner (April 2011)

A research in North America reinforces the idea of which mobile operating systems

are the most successful today and which are gaining more market share and which

ones are losing their share. The North American smartphone OS market share of the

3rd quarter of 2010 (Butler 2011, 5) shows that in North America Android has become

a market leader (FIGURE 1). On the other hand, North America is only one market in

the world and it has its own differences from other markets and Gartner’s research

(Pettey et al. 2011) shows that Symbian still had a stronger market position

worldwide in 2010. Still it shows the fact that modern smartphone operating

systems, Android in particular, are growing fast.

FIGURE 1. North America smartphone OS market share, Q3 2010 (Butler 2011, 5)

Based on the market share Android and iOS platforms are the platforms where the

developing focus and effort should be put, according to Gartner’s prediction of

smartphones market share in the years to come. In particular, Android’s market

share is growing rapidly, while iOS will hold its positions. Symbian and Research in

15

Motion are losing their market share, therefore when thinking commercially these

platforms may be ignored. Microsoft’s mobile market share is growing; therefore the

Windows Phone 7 should be taken seriously in the years to come. (Pettey et al.

2011.)

2.5 Apple iPhone

As Apple introduced the first iPhone in 2007 it started the new era in the smartphone

market (Fling 2009, 10). By the end of the fourth fiscal quarter of 2010, Apple had

sold over 70 million iPhones (Kumparak 2010).

In addition to the right business model and successful marketing, Apple had some

factors that contributed to the success of the iPhone. According to a study by John

Laugesen and Yufei Yuan (Laugesen & Yuan 2010), iPhone had a “rich mobile Internet

browsing experience” and a broad range of installable applications, in particular

entertainment applications, “clearly meeting the needs of their consumers” (Op. cit.

p. 96).

Developing

IPhone’s operating system is called iOS (formerly iPhone OS) that is based on Mac OS

X. Application development for the iPhone can be done on two platforms: using

mobile web technologies, or using the native Cocoa Touch framework built on

Objective-C. (Firtman 2010.)

In order to develop for the iPhone, an Intel-based Macintosh computer running a

Snow Leopard version of the Mac OS X is required. The iPhone SDK available from

the Apple Developers site includes the Xcode IDE, iPhone simulator and additional

tools. It is also possible to develop for iPod Touch and iPad with the same tools. The

16

programs are built using the Apple’s Xcode IDE and written in Objective-C language.

(Allen, Graupera & Lundrigan 2010, 17.)

2.6 Google Android

In 2005 Google started the development of the Android platform. In 2007 industry

leaders such as Google, Motorola, Samsung, Sony Ericsson and Intel formed the

Open Handset Alliance and its first key outcome was the Android Platform. Same

year the first release of the Android SDK was released. (Hashimi, Komatineni &

MacLean 2010, 3.) The first Android phone was released in 2008, and now there are

hundreds of Android mobile devices, both phones and tablets, from several vendors.

(Allen et al. 2010, 35.)

The Android mobile operating system supports several features, such as 2D and 3D

graphics, common media formats, animated transitions and multi-touch input. The

Android’s web browser is the WebKit based and includes Google Chrome’s JavaScript

runtime. (Op. cit. p. 35.)

Developing

The native Android applications are written in Java. Android offers its own virtual

machine called the Dalvik VM. All the Java classes are recompiled into Dalvik and run

on a Dalvik virtual machine. (Op. cit. p. 36.)

To start developing native applications for Android, the Java SE Development Kit

(JDK), the Android SDK, and a development environment (IDE) are required. In order

to make developing more comfortable, it is recommended to use Eclipse as an IDE

and the Android Development Tools (ADT) Eclipse plug-in to compile and to run the

Android emulator. (Hashimi et al. 2010, 25.)

17

2.7 RIM Blackberry

BlackBerry is a product of Research In Motion (RIM). The first BlackBerry smartphone

was released in 2002. According to Allen et al., “the BlackBerry has the second

largest market share of the smartphones in the US”. (Allen et al. 2010, 51.)

Worldwide, the Research in Motion (RIM) was the third most sold mobile operating

system in the world in 2010 (Pettey et al. 2011). The BlackBerry is specialized into the

enterprise market, and should be taken into account when developing applications

for enterprise markets especially in the US (Allen et al. 2010, 51).

Developing

The applications for BlackBerry can be developed using the BlackBerry Web

Development or Java Application Development. The Web Development is for

developing BlackBerry widgets, which are small web applications, built using HTML,

CSS and JavaScript.

The Java Application Development requires installing the Sun JDK, the Eclipse IDE for

Java Developers with the BlackBerry plug-in and the BlackBerry JDEs (Op. cit. p. 52-

53).

2.8 Microsoft Windows Phone 7

The original Windows Mobile was introduced at the millennium as an operating

system for Pocket PCs. The last version of the Windows Mobile was released in 2009.

(Udell 2009, 211.) In 2010, the market share of the Windows Mobile was 4.2 percent

but in 2011 is growing to 5.6 percent as a result of the release of Windows Phone 7

(Pettey et al. 2011).

18

According to the eWeek.com article (Kolakowski 2011), Microsoft has sold 1.5 million

Windows Phone 7 handsets in six weeks after the release. In the first quarter of

2011, some new features are expected to the Windows Phone 7 platform, including

“multitasking support, copy-and-paste and increased hardware support for

augmented reality applications such as business card scanning.” (Op. cit.)

In February 2011, Nokia and Microsoft announced new partnership plans. The new

strategy includes Windows Phone serving as Nokia's primary smartphone platform,

and it will likely raise the Windows Phone 7’s market share. (Nokia outlines new

strategy, introduces new leadership, operational structure, 2011.)

Developing

Microsoft has adapted its existing frameworks into Windows Phone 7 development.

The applications are programmed using C# language with .NET framework. There are

two major frameworks on top of the .NET framework core: Silverlight and XNA.

Silverlight is for business applications and 2D graphics and it uses the Extensible

Application Markup Language (XAML) while the XNA is for 3D graphics and games.

(Lee & Chuvyrov 2010, 7.)

Developing for the Windows Phone 7 requires installing Windows Phone Developer

Tools, which include “Visual Studio 2010 Express, the Windows Phone Emulator, XNA

Game Studio 4.0, Microsoft Expression Blend for Windows Phone, Silverlight, and

.NET Framework 4” (App Hub 2011).

2.9 Palm webOS

Palm has been a pioneer already in 1995 launching PDA devices, which were

successful in the 90s. Palm continued using its Palm OS (later Garnet OS), until in

2005 Palm started to manufacture devices with Windows Mobile. The Palm devices

19

did not do so well in the market; therefore Palm introduced in 2009 a new, web-

orientated platform for its devices, the webOS. In 2010, HP, who said to continue the

development of webOS, acquired Palm. It is expected that HP will announce devices

with webOS in the following years. (Firtman 2010, 28-29.) On February 2011, HP

announced three webOS products: a tablet, and two smartphones running webOS

(Gupta 2011).

Developing

The native applications for the webOS are created using web technologies (HTML,

CSS and JavaScript), and the operating system and all the device applications are

web-based. Plug-ins for the applications can be programmed using C and C++. (Op.

cit. p. 418.)

The native webOS application is called a Mojo application, which is a JavaScript UI

library. For developing the webOS applications, the SDK, the PDK (Plug-in

Development Kit) and the Eclipse plug-in are available from the Palm developer site.

(Op. cit. p. 418.)

2.10 Symbian

The historical background of Symbian is in the EPOC operating system for the Psion

family of PDAs. From the commercial point of view, Symbian is strongly linked to

Nokia, which used the Symbian OS for the majority of its smartphones. (Udell 2009,

245.)

Originally the Symbian Company was formed by a group of manufacturers including

Nokia, Ericsson and Motorola. Later Samsung and Sony Ericsson joined the Symbian

Company. In 2008 Nokia bought Symbian Ltd. and created the Symbian Foundation

to migrate the Symbian operating system to open source. (Firtman 2010, 20.)

20

In February 2011, Nokia and Microsoft announced new partnership plans. The new

strategy includes Windows Phone serving as Nokia's primary smartphone platform.

According to the press release (2011), Symbian will be a “franchise platform”. Nokia

also expects to sell 150 million Symbian devices in years to come. (Nokia outlines

new strategy, introduces new leadership, operational structure, 2011.)

According to Gartner research, Symbian was still the most sold platform of 2010 with

its 37.6 percent market share. However, because Symbian was the primary platform

of Nokia and will be changed to the Windows Phone 7, the market share of the

Symbian is expected to drop to almost zero by 2015 as it is not actively developed

anymore. (Pettey et al. 2011.)

Developing

Developing for the Symbian Foundation’s operating system can be done using the

native C++ framework, Java ME, Adobe Flash, web applications, widgets using web

technologies, Python, and with Qt, a free C-based framework owned by Nokia. Qt is

the recommended framework for creating native applications for Symbian and

Meego. (Firtman 2010, 30.)

2.11 Meego

The background of the Meego OS is in Nokia’s Maemo and Intel’s Moblin OS. Maemo

was a Linux-based operating system for small netbooks and devices with full web

browsing support. Example of the Maemo-powered device is Nokia N900. (Firtman

2010, 22.)

In February 2010, Nokia and Intel set plans to merge their Maemo and Moblin

operating systems in order to create a unified and completely open source Linux-

based platform that will “run on multiple hardware platforms across a wide range of

21

computing devices...and significantly increase opportunities for developers”

(Grabham 2010).

However, according to Nokia’s press release (2011), Meego becomes an open-

source, mobile operating system project. Nokia has plans to ship a Meego-related

product in 2011. (Nokia outlines new strategy, introduces new leadership,

operational structure, 2011.)

2.12 Tablets

Although this thesis is focused on smartphones, it is reasoned to mention tablets,

since the explosive growth of tablets and as they are expected to change media

strategy, consumption and advertising "more than any new technology yet" (Look

Ahead 2011).

The tablet can be defined as a mobile device with bigger screen than a smartphone

has (at least five inches), a slate-style design, a touchscreen display, a Wi-Fi

connectivity and internal components that include a CPU, RAM, and either on-board

or MicroSD-based user storage (Strohmeyer & Perenson 2011, 78).

The major tablet operating systems are almost all the same like in the smartphone

market; Apple’s iOS and Google’s Android in particular, but also HP’s WebOS tablet

Windows-based tablets and RIM’s BlackBerry PlayBook (Op. cit. p. 76). Because the

operating system is usually the same with smartphones, it is relatively simple to start

developing also for the tablets. The major difference in developing for the

smartphones versus tablets is not the code, but the layout that need to be re-

designed.

22

3 CROSS-PLATFORM NATIVE FRAMEWORKS

3.1 Definition of the cross-platform native frameworks

A cross-platform native framework is software that “allows a common development

approach across platforms but that build to an application that is indistinguishable by

a user from one built with native code” (Allen et al. 2010, xvi). Cross-platform native

frameworks let a developer to create a native, installable and mobile application

distribution platform capable (i.e. App Store and Android Market) mobile software

for multiple platforms using cross-platform APIs and usually HTML/CSS/JavaScript

frameworks (Op. cit. p. 10).

However, building applications using native frameworks still requires the vendor

SDKs installed and using the vendor-specific techniques for code signing and

distributions (Op. cit. p. xvi). The layout and some API functions are also platform

specific, so there will be some code modification for different platforms.

3.2 Titanium Mobile

Titanium Mobile is a commercially supported, open source framework for creating

native cross-platform applications using web technologies. Appcelerator Inc.

introduced the framework in December 2008. (Allen et al. 2010, 153.)

The Titanium Platform is divided into two main products: Titanium Desktop and

Titanium Mobile (see FIGURE 2). Titanium Mobile SDK provides the necessary tools,

compilers and APIs for building for the target platform, and a visual environment tool

called Titanium Developer for creating, running and packaging Titanium applications.

(Allen et al. 2010, 153.)

23

FIGURE 2. Titanium Platform (Getting started with Appcelerator 2011)

However, the Titanium Platform does not contain an IDE or a text editor, but this is

subject to change as Appcelerator acquired IDE provider Aptana on January 2011.

The new Appcelerator solution will bring features like debugging, code completion,

integrated document, and editing tools. (Haynie 2011.)

On April 4, 2011, Appcelerator released the first preview version of Titanium Studio,

an integrated IDE with Titanium SDK. It is built on top of Aptana Studio 3.0, and it

includes new features such as debugging and code completion among older Titanium

Developer features, such as possibility to run and deploy applications. (Muschenetz

2011.)

Titanium Mobile SDK

The Titanium SDK allows creating, running and packaging native mobile applications

for iOS, Android and BlackBerry (beta) devices using cross-platform JavaScript API.

The applications are run against a standalone JavaScript engine that invokes native

APIs. The Titanium Mobile SDK uses the native platform’s SDK to combine the

JavaScript source code via a JavaScript interpreter, and static assets of the

application into an application binary. (Getting started with Appcelerator 2011.)

24

Titanium Mobile API uses native UI and platform APIs to access native UI

components including navigation bars, menus, dialog boxes, alerts, and native device

functionality including the file system, sound, network, and local database. (Allen et

al. 2010; Getting started with Appcelerator 2011.)

Titanium Developer

Titanium Developer is a desktop application for creating, running, managing and

packaging Titanium Mobile or Desktop application projects. It also keeps Mobile and

Desktop SDKs up to date. (Getting started with Appcelerator 2011.)

3.2.1 Getting started

The Titanium Platform (Titanium Developer and the SDKs) is available for Mac OS X

Snow Leopard (iPhone and Android), Windows 7 and XP (Android only) and Ubuntu

9.10 (Android Only). Android and iOS SDKs (if one is running Mac OS X, otherwise

only Android SDKs) need to be installed before installing the Titanium Platform.

Detailed instructions for installing the Android and iPhone SDKS can be found in the

Getting started guide from the Appcelerator website. (Op. cit. 2011.)

If the iPhone and Android SDKs are installed, the Titanium Developer can be

downloaded and installed from the Appcelerator website at www.appcelerator.com.

After installing and launching the Titanium Developer, the program will automatically

download the most current version of the Mobile and Desktop SDKs for the Titanium.

(Op. cit. 2011.) It is also required to sign up for a free account on the Appcelerator

Developer Center (Allen et al. 2010, 154).

3.2.2 Example Project: Contacts

In this chapter an example projects is created to demonstrate functionality of the

framework and its API access to smartphone features. All smartphones have a built-

25

in PIM (Personal Information Management) Contacts application to store phone

numbers and addresses. Smartphone platforms usually allow applications to access

those contacts through APIs. (Allen et al. 2010, 103.) For this reason a simple

example project is a Contacts application to show native PIM contacts using Titanium

APIs.

In Titanium Developer, choosing the New Project from the top navigation opens a

new project screen (FIGURE 3). The Project type needs to be Mobile for creating

iPhone and Android project. In the new project window the application name,

application id, project directory, company URL and Titanium SDK version used are

also defined.

FIGURE 3. New Project window in Titanium Developer

In the next screen more additional information for the project is asked, such as

application version control, description of the project, publisher’s name and

publisher’s URL. It is also possible to change the default application icon for the

project from the project preferences (FIGURE 4). After saving the changes the new

project is ready and all the project files are generated to the directory specified.

26

FIGURE 4. New Project preferences

As the Titanium Platform does not provide a text editor in version 1.6.0, the project

files can be opened with any text editor that a developer is familiar with. A good

choice is Aptana, as Appcelerator acquired it on January 2011, and will be obviously

used in future released of Appcelerator Titanium (Haynie 2011). Aptana is based on

Eclipse; therefore the user interface is familiar to many developers.

All projects have similar directory structure: (FIGURE 5)

 A Build directory. Phone-specific native project files and resources. Titanium

SDK build scripts dynamically generate this directory.

 A Resources directory. Contains all application source code in JavaScript and

other files such as HTML and image files. In the Resources directory, app.js

serves as the application’s entry point, and the root execution context. All the

coding starts from the app.js.

 A Tiapp.xml file for static configuration of the application.

 Other files include a change log file to keep a track of version changes, a

License file to specify the application’s license and optional i18n directory for

creating localization resources.

27

(The Application Project Structure 2011.)

FIGURE 5. The Titanium Mobile Project directory structure

Programming the Contacts application begins with editing app.js as in all applications

made with Titanium. Since the application is meant to be a simple contact picker

application that has access to smartphone’s contacts, app.js contains only basic UI

settings and a window creation that points to external JavaScript file, contacts.js,

where the actual application functionality is.

Titanium.UI.setBackgroundColor('#fff');

var win = Titanium.UI.createWindow({
 title:'Contacts',
 exitOnClose: true,
 url:'contacts.js'
});
win.open();

It is reasonable to put views, windows or application logic into separate JavaScript

files for easier project control. For this reason the contacts.js file is created to hold

the contacts picker functionality. If the application should be extended later, it will be

easier to create application navigation to app.js and have the contacts picker

functionality as one of the application’s views.

28

Full code listing of the contacts application is in APPENDIX 1. The application code

explained:

1. Create a button that opens a native contacts picker application (PIM).

2. Attach a click event listener function to listen when user taps the button and

show the native contacts picker to the user.

3. When user selects a contact, return to the application and show some basic

information of the selected contact such as picture, name, phone number and

address information.

The Titanium function to show the contacts picker is

Titanium.Contacts.showContacts() that takes a selectedPerson as an argument and

runs a function defined after user selects a person. Returned user data is an object of

Titanium.Contacts.Person that can be accessed in this case with event.

The example sets to the contact info label text to show the selected person’s full

name. Some information in contacts can be multi-value, for example a person can

have more than one phone number. If all phone numbers of the person would need

to be retrieved, looping through all the data could do it:

for (var label in e.person.phone) {
 var phones = e.person.phone[label];
 for (var i = 0; i < phones.length; i++) {
 contactinfoLabel.text += label+': '+ phones[i] + '\n';
 }
}

This example adds phone label text, for example “work” or “home”, and the actual

phone number to the contact info label to the application. After all data from the

contact is fetched, the application shows the contact info (see FIGURE 6).

29

FIGURE 6. Contacts application running on iOS device (left) and Android (right)

3.2.3 Building for Device

Testing a Titanium application on an Android device is a straightforward process, if

the Android SDK is already installed: turn on USB debugging on the Android Device,

connect the device to the computer with an USB cable and from the Test&Package

section of the Titanium Developer, choose Run on Device and then Android. The

application will be installed to the device. It is required to install device drivers for

the USB connection of the Android phone if using Windows or Linux (Using Hardware

Devices 2011).

To test an application on an iOS device it is needed to complete series of steps

required by Apple, for example to sign-up for iOS Developer Program, Register an

iPhone with Apple, obtain developer certificate etc. (Testing your Applications 2011).

The iOS Developer Program fee is 99 US dollars per year (iOS Developer 2011).

30

3.3 PhoneGap

PhoneGap is an open source framework for building native mobile applications using

HTML, CSS and JavaScript. Nitobi Software introduced PhoneGap in 2008, and is free

to use under an MIT license.

With PhoneGap it is possible to develop applications for iPhone, Android, BlackBerry,

webOS and Symbian WRT (Allen et al. 2010, 131). Support for Windows Phone 7 is

planned (Get Started 2011). PhoneGap is at its best for transforming a mobile web

application into native application. It advantages particularly web developers since all

the application code can be HTML, CSS and JavaScript. (Allen et al. 2010, 131.)

The principle of PhoneGap is that it provides a client-side JavaScript APIs with a

method for hosting a web application within a native mobile application that an end

user may install. Basically a PhoneGap application is native application with a full-

screen browser (Firtman 2010, 417). As a native application, there are some

capabilities that are not available from a web application, such as access to contacts

data, geolocation, camera, and accelerometer using PhoneGap’s JavaScript API (Op.

cit. p. 131).

Developing with PhoneGap starts by writing a mobile web application using HTML,

CSS and JavaScript. The content of the application does not have to be in any

particular structure, developer has much choice how to form the mobile web

application layout and structure. PhoneGap is as its best on platforms that include

the WebKit browser with the advanced JavaScript and CSS of HTML5, such as iPhone

and Android. (Op. cit. p. 132.)

PhoneGap’s goal is to use advanced features of HTML 5 and to implement standards

such as W3C Device API Group (http://www.w3.org/2009/dap/) that defines

standards for JavaScript APIs for mobile phone features, such as contacts and

31

camera. Since the W3C Device API standards are not fully developed, PhoneGap

contains APIs that diverge from the standard in order to build real, native

applications. (Op. cit. p. 132.)

Like any other cross-platform frameworks that use the browser for UI, PhoneGap is

not well suited for applications that require intense math calculations, 3D animations

or data-driven applications, like most enterprise applications that must work offline

and synchronize local data. There is no support for database on PhoneGap, instead it

relies on HTML5 database APIs that is unavailable for some devices. (Op. cit. p. 132.)

3.3.1 Getting started

PhoneGap supports iOS, Android, Blackberry, webOS and Symbian WRT. Support for

Windows Phone 7 is planned. Since the Client’s mobile application strategy will be

focused on iOS and Android devices, the Getting Started section is focused on them.

The first step to get started with PhoneGap is to download the latest copy of

PhoneGap from the PhoneGap website and extract its contents (Get Started 2011).

The zipped file includes all necessary files for all supported platforms.

iOS

The iOS development tools are available only for Mac OS X computers. The

prerequisite for iOS developing is to install the iOS SDK and Xcode, which includes

the Xcode IDE, iOS Simulator, and a suite of additional tools for developing apps for

iPhone, iPad, and iPod touch (iOS Dev Center 2011). Downloading the tools requires

registering as an Apple Developer, which is free of charge. The free developer

account allows testing applications in iOS simulator, but submitting apps to the App

Store or testing apps on iOS devices requires enrollment in an iPhone developer

program. (Stark 2010.)

32

Under the iOS directory of the PhoneGap there is an installer file to install the

PhoneGap template for Xcode. After installing, there is a new option under Xcode’s

New Project window to create a new PhoneGap-based application (FIGURE 7). (Get

Started 2011.) Choosing a new PhoneGap-based application creates a new, empty

PhoneGap project. After choosing the base SDK version of the iOS and setting the

application to run in Debug mode in Simulator, the PhoneGap application is ready to

run.

FIGURE 7. New PhoneGap-based application (iOS)

Android

Prerequisites for Android developing are downloading and installing Android SDK,

Eclipse, and ADT Plug-in for Eclipse. The tools are available for Windows, Mac and

Linux. After installing the tools, a new PhoneGap project can be created in Eclipse by

creating a new Android project with information as in the FIGURE 8.

33

FIGURE 8. New PhoneGap Android application

The created project is a default Android project and therefore needs some

customization for the PhoneGap. Details of the customization steps can be found at

PhoneGap’s Get Started guide for Android (Get Started 2011).

Blackberry

Blackberry development tools are available for Windows XP or Windows 7. For

developing PhoneGap applications with Blackberry, it is required to install Sun’s JAVA

JDK, Apache ANT, Blackberry Widget SDK and the latest copy of PhoneGap. More

detailed instructions can be found from Get Started guide for Blackberry. (Get

Started 2011.)

34

webOS

HP’s webOS developing can be done from Mac OS X, Windows or Linux since webOS

SDK runs on top of an open source virtual machine, Virtual Box. On Mac and Linux

webOS developing does not require other components than Virtual Box, webOS SDK

and PhoneGap installed. Windows requires an additional component cygwin. When

all required components are installed, a Palm Emulator can be run and an example

project installed to the emulator by typing “make” in PhoneGap’s webOS directory in

Terminal / Cygwin. (Get Started 2011.)

Symbian WRT

Developing for Symbian WRT can be done from Windows, OS X or Linux. PhoneGap

installation files include an example project for Symbian WRT that can be generated

to a Nokia Web Runtime Widget by typing “make” in Symbian subdirectory under

PhoneGap installation directory. (Get Started 2011.)

Any text editor can be used for developing WRT Widgets, but there are free tools by

Nokia for Nokia Web Runtime Widget developing and deploying to a simulator. With

Nokia WRT Plug-in for Aptana Studio it is possible to create Nokia WRT Widget

projects and to run them on browser-based Nokia simulator. If running Windows,

there is the Nokia S60 SDK available that includes the S60 Emulator. (Op. cit.)

3.3.2 Example Project: Contacts

This example project uses W3C (World Wide Web Consortium) Contacts API

specification to provide access to the device contacts database. The latest W3C

Contacts API can be seen at http://www.w3.org/TR/contacts-api/. The Contacts

application is only for Android and iPhone, since the Client will aim at these

platforms.

35

The example differs from Titanium contacts example described in chapter 3.2.2 since

in PhoneGap API it does not seem to be possible to show the native smartphone’s

contacts picker application to pick a contact data to the application. Instead, a text

search field is used to filter content to the application. If there are multiple results

with a contact search string, the first contact result will be viewed to the user.

Programming begins with creating a new PhoneGap project. Project creation is

introduced in previous chapter. The first thing is to form the layout of the project. It

is basically normal HTML and CSS layout markup, the only difference in this step is

define a viewport for different mobile devices and resolutions for the layout to be

almost the same in all devices:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no,
width=device-width" />

The mobile application layout contains HTML and CSS formatted elements, such as

title bar, content area for contact data, text input field for searching content and

buttons for starting the contact search and clearing previous results. These elements

are defined in index.html file that is located in the www folder of the PhoneGap

project:

<div id="title_bar">Contacts app</div>

<div id="contactPicked" style="display:none"></div>

<div id="searchdiv" class="view">
 <div id="searcboxdiv">
 <input type="text" value="" id="contact_search"/>
 </div>
 <div class="app_button" id="contacts_button">Search Contact
 </div>
 <div class="app_button" id="clear_button">Clear</div>
</div>

The application logic begins with adding the mandatory reference to PhoneGap’s

JavaScript file that works as a bridge to the PhoneGap’s API access to native features,

36

in this case the Contacts API. The actual application logic is in a separate JavaScript

file, app.js. In addition, a XUI JavaScript library, a tiny DOM library for mobile web

applications similar to jQuery, is added to make the JavaScript programming more

straightforward. These libraries are added by adding two <script> tags to the

index.html:

<script src="phonegap.0.9.4.min.js" type="text/javascript"
charset="utf-8"></script>

<script src="js/app.js" type="text/javascript" charset="utf-
8"></script>

<script src="js/xui-2.0.0.min.js" type="text/javascript"
charset="utf-8"></script>

In app.js, the “search contact” button waits for user tap and after that event

happens, the contents of the input field will be sent to the function that accesses the

Contacts API and receives the input field text as a filter to the contact search.

function getContacts(selectedstring) {
navigator.service.contacts.find(['photos', 'name',
'addresses.streetAddress', 'addresses.postalCode',
'addresses.locality', 'phoneNumbers', 'emails'],

successContactFindCallback,
generalErrorCB,

 {filter: selectedstring}
);
}

The navigator.service.contacts.find function is the W3C Contacts API function to

access the device contacts. A successful contact search triggers the callback function

where the returned contact data can be formatted to the PhoneGap application with

HTML DOM. For example, to output a contact’s photo and full name to the

application view:

for (var j in contacts[0].photos) {
x$('#contactPicked').html('before', '<p><img
src="'+contacts[0].photos[j].value+'" id="contactpic" alt="No
picture" /></p>');

}

37

var namevar = contacts[0].name;
x$('#contactPicked').html('before','<p>'+namevar.givenName + ' ' +
namevar.familyName+'
');

When all eligible data is printed, the application is ready to run. The application’s

final state can be seen in FIGURE 9. The full source code of the application is in

APPENDIX 2.

FIGURE 9. PhoneGap Contacts application running on iOS device (left) and Android

(right)

3.3.3 PhoneGap Build

PhoneGap Build is a service that lets developers compile or build their PhoneGap

based apps in the cloud service. The service’s goal is to eliminate the need to

download and configure mobile platform SDKs required to build native/installable

applications. (Charland 2010.)

The principle is to write the application in HTML, CSS and JavaScript and upload it to

the PhoneGap build service and get back app-store ready application binaries for

38

Apple iOS, Google Android, Palm, Symbian, BlackBerry, and later for Windows Phone

7, Meego and Bada (Introducing PhoneGap Build).

In March 2011, the service was in closed beta, and according to Nitobi, it will remain

free for open source projects. When the service will get closer to public launch, the

pricing will be announced for commercial applications. (PhoneGap Build FAQ.)

3.4 Rhodes

Rhodes is a commercially supported open source cross-platform smartphone

application framework by Rhomobile. It was released in December 2008. (Allen et al.

2010, 83.) Rhodes is available for BlackBerry, Windows Mobile (up to 6.1), Android

and iOS platforms (Rhodes Introduction). The Rhodes applications are created using

HTML, CSS, JavaScript and Ruby programming languages. The Rhomobile tools and

frameworks can be used across Mac, Windows and Linux, and require the target

platforms SDKs to be installed. (Allen et al. 2010, 83.)

Rhodes is targeted at enterprise applications and is the most suitable for applications

that present a series of screens that include standard UI widgets, including common

phone UIs. Rhodes leverages Model-View-Controller (MVC) approach in application

framework. (Op. cit. p. 83.)

Rhodes includes an ORM (Object Relational Mapper) called Rhom (RhoSync

Features). It provides database-abstraction functionality to make the local database

easier to program to (Allen et al. 2010, 86). Rhodes also includes an optional sync

server called RhoSync, which is a standalone mobile sync server to keep enterprise

application data current and available on users’ smartphones (FIGURE 10). The

information is stored locally on a user’s device and is available when disconnected.

Using RhoSync to commercial projects requires a commercial license that can be

purchased from Rhomobile. (RhoSync App Integration Server.)

39

FIGURE 10. RhoSync and Rhodes application (RhoSync Features)

3.4.1 Development Architecture

Rhodes follows the Model-View-Controller (MVC) pattern. In controller, methods

that define actions that map to HTTP requests are implemented. Controller action

will fetch data from model that is implemented in the Rhodes ORM Layer, Rhom, and

will render a view, which is implemented in HTML ERB. (Allen et al. 2010, 84.)

In view the user interface of the application is defined in HTML and CSS. At runtime

the HTML and CSS is rendered in a native browser UI control that is embedded in the

application by the Rhodes framework. JavaScript may be used for some interaction

control, but using embedded Ruby (ERB) application logic can be added to views. ERB

is similar to PHP, in that sense that in the both code can be mixed with markup to

create dynamic HTML. (Op. cit. p. 84.)

Rhodes files are compiled into a native executable that can be run on the device or in

a desktop simulator using command line tools or the web interface on rhohub.com.

Rhodes applications are compiled into Ruby byte code, except on BlackBerry where

the applications are cross-compiled into Java byte code. Rhodes includes a Ruby

executor that runs the byte code on the device. The native mobile applications can

40

be then submitted and distributed through the application stores such as iTunes App

Store. (Op. cit. p. 85.)

3.4.2 Getting started

Rhodes requires Ruby, Ruby’s library packaging system, RubyGems, and GNU make

installed. The device SDKs for the desired target platforms also need to be installed.

If running Windows, all the required tools and Rhodes can be installed with Rhodes

installer executable. On other platforms, if the required components are installed,

Rhodes can be installed by typing:

 gem install rhodes

After the installation script is finished, Rhodes can be configured by typing “rhodes-

setup” in command line. The Rhodes setup script is for configuring paths for mobile

platform SDKs. (Op. cit. p. 88, 89.)

3.4.3 Example Project: Contacts

The contacts example project in Rhodes allows showing, editing and deleting native

PIM contacts using Rhodes APIs on both the iPhone and Android.

Using the rhogen app command creates the initial skeleton for the application: a

starting directory with support files. Rhodes applications are organized in a fixed

directory structure. (Allen et al. 2010, 89.) In this case the command for creating

Contacts application named rhodescontacts is:

 rhogen app rhodescontacts

The created directory structure can be seen in FIGURE 11:

41

FIGURE 11. Rhodes project directory structure

In the created project, the app folder contains models, device settings, default

landing page, and an application layout page. Inside the app folder, the

application.rb contains application specific setup and configuration, the index.erb is a

default-landing page for the application that has links to the controllers for data

models. The public folder includes static files accessible by the application, such as

CSS, images and JavaScript libraries. The build.yml file is for application specific build

information such as the name of the application and the SDK information for

different platforms. The rhoconfig.txt file contains application specific options and

configurations such as the start_path, logging, and the optional URL for sync server.

The actual application logic is implemented to the Model-View-Controller (MVC)

pattern, similar to the Ruby on Rails. Rhodes includes a script to generate a MVC

pattern that will implement common actions to display a list of items, show an

individual item’s details, create, update and delete. (Allen et al. 2010, 95.)

42

Because the example application implements the native Rhodes Contacts API, a

simple person model is created with just a name attribute.

 rhogen model person name

This command creates a subdirectory named Person under the /app folder. The

created model files include the views for the default controller actions, the

configuration file for the model, and the controller. (Op. cit. p. 96.)

The person_controller.rb implements the controller for the model. In the model

there are also many .erb files for all the views associated with the model. Finally,

there is a person.rb file that sets the properties on the model. Each Rhodes controller

implements actions to perform basic CRUD (create, read, update, and delete)

operations on the generated objects by default. (Op. cit. p. 96.)

To set the application default-landing page directly to the generated Person model,

the start path definition in rhoconfig.txt is changed to:

start_path = '/app/Person'

Programming the application logic starts with editing the person_controller.rb file.

The first step is to require Rhodes PIM contacts API by adding the line:

 require 'rho/rhocontact'

The device’s full contact list is rendered to the default landing-page, index.erb, of the

application. It is programmed to the controller by adding some Ruby code to the

corresponding part:

#GET /Person
def index

43

 @people = Rho::RhoContact.find(:all)
 @people = @people.to_a.sort! { |x,y| x[1]['first_name'] <=>
y[1]['first_name'] } if @people

end

The Rho::RhoContact.find(:all) method returns all the contacts on the device. The

next line sorts the contacts array by person’s first name. The array needs to be

rendered to the view. For that some Ruby code is added to the index.erb view:

<div class="content">

 <% @people.each do |person| %>

<a href="<%= url_for :action => :show, :id =>
person[1]['id'] %>">

 <%= person[1]['first_name'] %>
 <%= person[1]['last_name'] %>

 <% end %>

</div>

The array of contacts is iterated through and each one is output in a list. The default

generated HTML and CSS classed define the output to look like a native table in each

platform (FIGURE 12).

44

FIGURE 12. Rhodes Contacts, all Contacts list (iOS)

When user selects a contact from previously generated contact list, a single contact

is viewed. To implement that feature, the RhoContact.find needs to be implemented

to the controller:

GET /Person/{1}
def show
 @person = Rho::RhoContact.find(@params['id'])
 if @person
 render :action => :show
 else
 redirect :action => :index
 end
end

In the show.erb view, the contact data is printed to the view. According to Rhodes

API, the PIM Contacts support following fields on all devices:

“id”,“first_name”,“last_name”,“mobile_number”,“home_number”,
“business_number”,“email_address”,“company_name”

(Device Capabilities.)

Some contact fields are available only on iOS, such as street address field. For this

reason some contact fields are empty on Android, but are in use with iOS device

(FIGURE 13).

45

FIGURE 13. Rhodes Contacts, single contact view running on iOS (left) and Android

(right)

The same functionality as in other frameworks’ contacts examples is achieved with

the code described in this chapter. In addition, it is easy to implement more

functionality to the Contacts application with Rhodes: possibilities to add a new

contact, edit a contact, update a contact and delete a contact. Code listings for these

functions can be seen in the APPENDIX 3.

3.4.4 RhoHub

RhoHub is a cloud service hosted by Rhomobile that offers a build service for all

supported smartphones, hosted data synchronization and automatic source control

(RhoHub: Hosted Development for Mobile Apps 2011). It is free for open source

applications and has pricing for private applications (Allen et al. 2010, 122).

The idea of RhoHub is to simplify the development and deployment experience. The

idea could be achieved with the build service, which eliminates the need to install

smartphone SDKs , by integrated hosted data synchronization server, RhoSync, and

by GitHub based source code control. (RhoHub: Hosted Development for Mobile

Apps 2011.)

46

3.5 Adobe AIR for Mobile Devices

Adobe Integrated Runtime (AIR) is a cross-operating system runtime that enables to

use ActionScript or HTML/JavaScript development skills and tools to build web

applications that run as standalone client applications. In AIR version 2.6, support for

Android (2.2), BlackBerry Tablet OS, and iOS mobile operating systems is available.

(Adobe AIR 2011.) The Adobe AIR client runtime is a combination of Flash Player, an

embedded SQLite database engine, and the WebKit browser engine (Introducing the

Flash Platform 2011).

Adobe AIR runs on Windows, Mac OS X and Linux. AIR software can be developed

with multiple tools, such as Adobe Dreamweaver CS5, Flash Builder 4, Flash Catalyst

CS5, Flash Professional CS5, Aptana Studio with AIR plug-in installed or any text

editor with AIR SDK. Development can be done using alternatively ActionScript 3 with

Adobe Flash, ActionScript 3 and MXML markup for presentation logic with Flash

Builder, or HTML, JavaScript and AJAX with any text editor. (Adobe AIR 2011.) For the

mobile AIR applications only ActionScript or Flex development is possible, while for

desktop it is also possible to use HTML, JavaScript and CSS (Corlan 2011).

Adobe’s development tools are commercial products, but Adobe AIR SDK is free and

includes the tools necessary to build and deploy Adobe AIR applications (Op. cit.).

Adobe Flex SDK is also open source, but Flash Builder is not. Adobe Flex SDK can also

be used with an open source IDE, such as Eclipse, instead of Flash Builder.

(Introducing the Flash Platform 2011.)

3.5.1 Adobe Flex SDK “Hero” framework

The Flex SDK “Hero” builds on top of the core runtime APIs provided by Flash Player

and AIR. It provides a framework for building application UI and connecting to server-

side data. Flex includes a set of built-in UI components, data access components and

47

data binding, declarative UI creation through MXML, dynamic layout and an

extensible component architecture. (Jaramillo 2011.)

The Flex SDK “Hero” is a preview release, and it introduces support for mobile Flex

application development, including support for Android with BlackBerry and iOS

support planned. Furthermore, the framework expands and refines Flex Spark

components. (Adobe Flex SDK "Hero" 2011.)

3.5.2 Flash Builder “Burrito” development environment

The "Burrito" codenamed preview release of the Flash Builder IDE brings a

design/build/debug workflow to mobile development. It extends the existing

ActionScript and Flex development workflows to mobile development, from project

creation through packaging the final application. (Jaramillo 2011.)

“Burrito” provides two mobile project types: ActionScript Mobile Project and Flex

Mobile Project. ActionScript Mobile Project gives a clean slate on which to write an

application in ActionScript. Creating a Flex Mobile Project gives an access to the Flex

framework, as well as the Flex-related features of Flash Builder, such as Design mode

and the data connectivity features introduced in Flash Builder 4. (Op. cit.)

The Flash Builder “Burrito” and the Flex SDK “Hero” are preview releases, the final

releases of Flash Builder 4.5 and Flex 4.5 SDK will be available for download in May

2011 (Subramaniam 2011).

3.5.3 Getting started for Android

Adobe AIR for Android devices is available for Android 2.2 (“Froyo”) devices or

higher. Developing Android applications begins with downloading Flash Builder

“Burrito” and the Flex “Hero” framework. (Corlan 2011.)

48

Once Flash Builder “Burrito” is installed, it is possible to create Android applications

either using ActionScript or Flex. In addition, development can be done using Flash

Professional CS5. Applications can be tested on a computer using an emulator,

deployed to an Android device using the USB cable, and be submitted to Android

Market using Flash Builder Export Release feature to build the APK file. (Op. cit.)

AIR applications use the AIR runtime installed on Android device. If the end user of

the application does not have the AIR runtime installed, the application automatically

prompts the user to install the runtime. (Op. cit.)

3.5.4 Getting started for iOS

Adobe released the Packager for iPhone in 2010 as part of the Adobe Creative Suite 5

launch in 2009 (Corlan 2011). Later on, Adobe stopped development on AIR for iOS

due to a change in Apple's developer program license and focused on Android

instead. The result of the work was AIR 2.5. When Apple removed restrictions, the

iOS and Android versions of AIR were out of sync. (Cantrell 2011.)

Adobe released AIR 2.6 in March 23, 2011. The new version brings the Android and

iOS releases into alignment by bringing new features and APIs for iOS devices, such

as Microphone, Camera and Multi-tasking support. (Op. cit.)

At the time of writing, Adobe has not yet released an updated version of Flash

Builder in order to create iOS applications with Flash Builder. Until then, the

development for iOS is done with the Packager for iPhone and Flash Professional CS5

(Corlan 2011).

3.5.5 Example Project: Google Maps API with Geolocation

Since there is currently no API support for device Contacts API in Adobe AIR or Flex

mobile, an example project in this case is Google Maps API with geolocation feature.

49

The application shows the user’s current location on the Google Maps. The

application is programmed only for Android since there is no Flex support for iOS yet.

From Flash Builder “Burrito”, choosing a New Flex Mobile Project creates a template

for new Android mobile project. In the example application, the project features are

following: (FIGURES 14 and 15).

FIGURE 14. New Flex Mobile Project 1 / 2 (Android)

50

FIGURE 15. New Flex Mobile Project 2 / 2 (Android)

The project is ready to be created after these two steps, since in this project no

server side data is needed and the default build paths are fine. The created project

structure is following: (FIGURE 16).

FIGURE 16. Flex Mobile Project structure

The project consists of src folder, which has the main application mxml file in the

default package and all the views in the views folder. In this case there is only one

view, but a Flex mobile application could have multiple views. One way to build a

51

navigation between views would be by using a <s:TabbedMobileApplication>, which

creates a tabbed navigation to the application, in main application file instead of

<s:MobileApplication>.

In the src folder there is also an xml file that specifies parameters for identifying,

installing, and launching AIR applications. It also specifies the Android application

permissions. It has Internet usage permission as default, but in order to use location

based services, the following permissions need to be added to the Android manifest

section of the xml file.

<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />

Since there is no navigation in the application, the application MXML file can point

directly to the view file by setting the firstView attribute in <s:MobileApplication> to

the following:

 firstView="views.GoogleMapsExampleHome"

Using the Google Maps API requires signing up for a Google Maps API key, and

downloading and installing the Google Maps API for Flash SDK. Instructions for

obtaining a Google Maps API key and downloading the Google Maps API for Flash

SDK can be found at Google Maps API for Flash website. The downloaded file

contains a .swc file for Flex. Copying it to the project’s libs folder adds it to the build

path and adds support for Google Maps APIs in Flash Builder.

The application logic can be programmed directly to the

GoogleMapsExampleHome.mxml. The application uses flash.sensors.Geolocation

object to access device’s location data, and Google Maps API to render the map on

52

screen based on latitude and longitude coordinates received from the Geolocation

object. To hold the latitude and longitude data temporarily in the application, a

custom class GPSData is created and used in the application as object.

The core of the Geolocation function in the application is made with following code:

g = new Geolocation();
g.setRequestedUpdateInterval(100);
g.addEventListener(GeolocationEvent.UPDATE,geoLocation_UpdateHandler,
false,0,true);

protected function
geoLocation_UpdateHandler(event:GeolocationEvent):void {
 gpsdata.setLatitude(event.latitude);
 gpsdata.setLongitude(event.longitude);
}

It sets the Geolocation object, adds an event listener for Geolocation data to be

updated (in interval of 100 milliseconds) and in the update the handler function sets

the latitude and longitude data of the custom gpsdata object.

The core to set the Google Maps is following code:

gMap = new Map();
gMap.key = "(google maps key here)";
gMap.url = "http://www.eaglemediavision.com"
gMap.sensor = "true"
gMap.width = 480;
gMap.height = 682;
gMap.addEventListener(MapEvent.MAP_READY, mapReadyHandler);
mapContainer.addChild(gMap);

private function mapReadyHandler(e:MapEvent):void {
 gMap.setCenter(new
LatLng(gpsdata.getLatitude(),gpsdata.getLongitude()), 15,
MapType.NORMAL_MAP_TYPE);
 gMap.setSize(new Point(mapContainer.width,
mapContainer.height));

 var latlng:LatLng = new
LatLng(gpsdata.getLatitude(),gpsdata.getLongitude());
 var marker:Marker= new Marker(latlng);
 gMap.addOverlay(marker);
}

53

And in the MXML, a Flex component to render the Google Maps to:

 <mx:UIComponent id="mapContainer" width="100%" height="100%"/>

The application can be run in a simulator, where it is possible to simulate multiple

Android devices. The application can also be installed to Android device for

debugging (FIGURE 17). With Flash Builder it is also possible to submit an application

to the Android Market with custom icons and startup screen images.

The full source code of the example is in the APPENDIX 4.

FIGURE 17. The Google Maps Flex Mobile Project running on Android device

3.6 OpenPlug Elips Studio

Elips Studio is a cross-platform mobile application development toolset by Alcatel-

Lucent (former OpenPlug). The framework was originally introduced in 2009. It

allows developing native mobile applications and deploying them on Android, iOS,

Windows Mobile and Symbian platforms. (ELIPS Studio: cross-platform native mobile

application development.)

54

Elips Studio is available as a plug-in for Adobe Flash Builder versions 3 or 4 or as a

stand-alone Eclipse based IDE. Mobile applications are developed using ActionScript,

the application UI and visual elements using MXML. In addition, the SDK supports

web services, network APIs, and device APIs such as GPS, Photos and SMS. (Op. cit.)

The product offers native UI controls mapped directly from each device's OS into

code, including lists and screen transitions. It is also possible to manage graphical

assets and UI styles through CSS for each variant of an app on each class of device

platform and form-factor. The Elips compiler cross-compiles the application code into

C++ code, which allows direct access to native APIs. Finally, an application is

packaged into native, installable mobile application. (Op. cit.)

Elips Studio is not open source. It is free for evaluation only for corporations, for

individual developers the framework is free, but ad-supported, which means that an

advertisement banner is automatically added to all applications. A developer

receives 60% of the banner ad revenue. (ELIPS Studio FAQ.)

3.6.1 Getting Started

There is an installation package available on the Elips Studio developer website. The

installation package is available for Windows and Mac OS X. The tools can be

installed as a plug-in for Adobe Flex Builder 3 or Flash Builder 4, or as a stand-alone

IDE. In this case the framework is installed as a plug-in for Adobe Flash Builder 4 on

Mac OS X.

Installation package creates an executable, in this case Elips FB4, since Adobe Flash

Builder 4 is chosen as the IDE. The executable launches the Adobe Flash Builder 4

with Elips plug-in. At the first run Elips Studio asks to set the workspace (base

directory on hard drive) for Elips Studio projects. Elips developer login details are also

asked. The developer account is free, but mandatory. After setting the account and

restarting the Adobe Flash Builder, the Elips Studio is ready for development.

55

3.6.2 Example Project: Contacts

Elips Studio offers a Contacts API access to the device’s native address book. The

contact list can be retrieved either from SIM or Phone memory. In this example

project the contacts are retrieved from Phone’s memory, listed and when a contact is

tapped, single contact is viewed on different screen view. Additionally, there is a

search filter functionality to filter the contact list to find the contact by name. The

source code of this example application extends some features to an Elips sample

application called Elips Contacts Manager Sample, made by Nicolas Sauvage,

OpenPlug developer. The original sample project can be downloaded from

http://developer.openplug.com/forum/download/file.php?id=95.

A new Elips project can be created in Adobe Flash Builder 4 either by selecting

File New Other Elips Project or by clicking the “Create a new Elips Project”

button in Elips toolbar. A new project window appears (FIGURE 18). Noteworthy is

that the Application type is set to Screen Based Application, which creates a

<mob:ScreenStackApplication> that supports multiple screens, or views. Other option

is a “Standard Application”, which creates template based on

<mx:WindowedApplication> container that is to be used for single screen

applications or custom application such as games. (Tutorial: [Hello World] Using new

project templates.)

56

FIGURE 18. New Elips Project (Adobe Flash Builder 4)

The created project structure is quite similar to Adobe Flash Builder (FIGURE 19).

However, there are some differences; Elips has elips_styles folder for setting the CSS

styles for elements (although CSS styles can be set in the MXML files also),

capabilities.xml file for targeted platform specific settings, extensions folder for

compiler settings file, locales for localization files, output for generated executable

for targeted platforms, and resources for platform specific resource files, for example

images.

57

FIGURE 19. Elips Project Structure (Adobe Flash Builder 4)

After the project has been created, it is needed to choose the devices wanted to

target the application with. The Elips targeted devices can be chosen from

Project Properties Elips Targeted devices. Multiple devices can be selected to the

project, such as iPhone, Generic Android devices with multiple screen resolutions,

S60 Devices of different editions, Windows Mobile devices, and Symbian^3.

Programming the Contact application begins by editing the basic UI and screens of

the ContactsElips.mxml main application file. By default, a ScreenStackApplication

template has one screen with two tab based navigation views. In this case, two

different screens are wanted, and the navigation between them occurs when the

user taps a contact in the contact list screen (the main view), and the single contact

details are rendered to another screen. Two screens are defined:

<mob:ScreenView id="allContactsScreen">
</mob:ScreenView>
<mob:ScreenView id="singleContactScreen">
</mob:ScreenView>

The UI and the layout of the screens are defined with Flex UI components and

containers, such as VBox, HBox, Label, Button, and Text. However, Elips Studio does

not implement the full namespace of Flex. Generic UI component classes contained

in the <mx> namespace are common Flex UI component redesigned to fit mobile

58

phones. It includes basic controls like buttons, images or containers that have the

same rendering whatever the underlying platform. Moreover, native UI components

classes contained in the <openplug.elips> namespace are UI components that may

have a native implementation specific to each platform (or a generic one if not

available). That is the case of the HTML class that will be rendered as the native

UIWebView on iPhone and as a native Android WebView on Android devices. (Niclot

2010.)

In the business logic of the application, the first step is to get the Address book.

There are two Address books available: internal (in Phone’s memory) and a SIM

address book. In this case internal one is used. The command used is:

 _addressBook = _contactManager.getAddressBooks()[0] as AddressBook;

To list the contacts to the application, the sample application uses the

FindContactsResult class that implements the native ContactArraySuccessCallback

class. The class filters the Address Book data if an optional search filter is set, iterates

the Contacts (openplug.elips.services.Contact) list, saves the data to an

ArrayCollection and returns the data to the main program.

Successfully returned contacts provide the contacts ArrayCollection data as a

dataProvider to the <mob:list> component that lists the contacts to the first screen

of the application.

<mob:List id="listContacts"
 width="100%"
 height="90%"
 rowHeight="80"
 backgroundColor="white"
 itemRenderer="itemRenderers.ListItemRenderer"
 itemTouchTap="openContact(event)"
 />

59

When a single contact is tapped, a new screen is opened and a contact details are

viewed. It is done by adding a tap listener function to the <mob:List> component that

contains all the contacts, or if the user has filtered the contact list with search

function, a filtered list (FIGURE 20).

FIGURE 20. Elips filtered contacts list (Android)

The openContact function receives a clicked item as ItemTouchTapEvent. From the

event item a new ContactExt (extended Contact class in the sample) object is created

and then a contact data can be printed to the single contact screen. Some data is

returned as Array, because there can be multiple values, for example a contact can

have multiple phone numbers. The arrays are iterated when details of a single

contact are printed.

public function openContact(evt:ItemTouchTapEvent):void {
 var contact:ContactExt = evt.item;
 var contacttext:String;
 var contactAddresses:Array = contact.addresses;
 var contactPhones:Array = contact.phoneNumbers.number;
 var contactEmails:Array = contact.emails;
 contacttext = "";

 contacttext += contact.name + "\n";

 if (contact.phoneNumbers != null) {
 var i:int;
 for (i=0; i<contact.phoneNumbers.length; i++) {

var phoneNum:ContactPhoneNumber=

60

contact.phoneNumbers[i];
contacttext+=phoneNum.type+": "+phoneNum.number+
"\n";

 }
 }

 if (contact.emails != null) {
 for (i=0; i<contact.emails.length; i++) {
 var email:ContactEmail = contact.emails[i];
 contacttext+=email.type + ": "+ email.email + "\n";
 }
 }

 if (contact.addresses != null) {
 for (i=0; i<contact.addresses.length; i++) {
 var address:ContactAddress = contact.addresses[i];

contacttext+=address.street+" "+address.postalCode+"
"+ address.city + "\n";

 }
 }

 singleContactText.text = contacttext;
 goToScreen("singleContactScreen");
}

The full code listing is in APPENDIX 5. Screenshots of a single contact view running on

Android and iPhone (simulator) are illustrated in FIGURE 21.

FIGURE 21. Elips Contacts, a single contact view (Android left, iPhone simulator right)

61

3.7 Summary

In this chapter the most common cross-platform native frameworks today are

introduced. The chapter creates the basis for comparison of the cross-platform

frameworks in the next chapter. The unifying factor for all introduced cross-platform

frameworks is that they let a developer create a native, installable and mobile

application distribution platform capable mobile software for more than one

platform with the same codebase. Nevertheless, there are differences in the areas of

API capabilities supported, in the (native) UI capabilities, and in the overall ease of

use and user experience. It is clear that some of the introduced frameworks fit to the

Client’s needs better than others. The next chapter compares the features of the

cross-platform native frameworks in order to find the most appropriate frameworks

for the Client.

However, some cross-platform native frameworks were ignored from a more

detailed presentation for several reasons. Some frameworks were ignored since they

were not actual cross-platform tools by supporting only one platform. With some

others it was not possible to build installable applications.

In the next subchapters, there are short introductions of frameworks that would be

suitable in the future needs of the Client’s mobile application strategy.

3.7.1 Corona

Corona SDK is a mobile development framework for creating applications and games

for the iPhone, iPad, and Android. The developing language is a scripting language

called Lua. With the framework it is possible to create native, installable and

distributable applications on the iTunes App Store and Android Market. (Corona

FAQ.)

62

The Corona SDK is graphics and game oriented framework, and it offers an integrated

game engine and support for the graphics acceleration hardware of the device

(OpenGL/ES) (Op. cit.).

The framework is not open source: the subscription for one year is 199 $ / platform

or 349 $ / year for iOS and Android (Op. cit.).

Since the framework is game oriented and a closed source, it is not applicable to the

Client’s needs. However, the framework is introduced here, since the mobile

application needs may be changing in the future, and an advanced mobile graphics

performance may be needed even in some enterprise mobile applications.

3.7.2 MoSync

MoSync is a SDK that allows development of applications for all major mobile

platforms using a single environment and C/C++ code base on Windows or OS X.

MoSync produces real native applications, packaged and ready for distribution in

each platform’s native installation format. In MoSync API there is support for most of

the device features such as location and contacts. The framework supports also

OpenGL. (What is MoSync.)

The developing is done using standard C/C++ in an Eclipse-based environment

preconfigured with a set of MoSync-specific plugins. Since MoSync uses standard

C/C++, many libraries are readily available to developers. Examples of libraries used

with MoSync are SDL, yajl, STLPort and SQLite. (Op. cit.)

MoSync supports the iOS, Android, Windows Mobile, Symbian, JavaME and Moblin

platforms. Blackberry and Windows Phone 7 support is coming later. MoSync is dual

licensed: open source GPL v2 for open source projects and a commercial license for

closed source applications. (Op. cit.)

63

MoSync is a product of the MoSync AB, Sweden. One of the financiers for the

MoSync is Michael “Monty” Widenius, better known as a “father of the MySQL”. He

hopes that there would be one day a “write once, run anywhere” environment,

which is a target for MoSync. (Ahokas 2011.)

MoSync is an ideal cross-platform framework for enterprise and customer

applications. However, the framework was excluded from a more detailed study,

since the development language is C++ and the client does not have enough know-

how for the C++ at the moment. If the situation changes in the future, by recruitment

or by other means, MoSync is a seriously considered option for the cross-platform

development.

4 COMPARISON OF THE CROSS-PLATFORM NATIVE

FRAMEWORKS

In this chapter the cross-platform native frameworks introduced in Chapter 3 are

compared against each other. The comparison is based on the Research Objective in

Chapter 1.3. The objective is to find for the Client “the optimal solution”, or

solutions, that meets the criteria described in Chapter 1.3.

The comparison method is done by tables with simple true / false comparison of

each property. By counting the number of “true” properties, an indicative score can

be calculated. Since there are many properties to compare, the chapter is organized

into subchapters, which contains tables of each subject, for example a comparison

table of supported API features. The indicative total score can be calculated from the

subchapter tables and used for guidance when selecting the cross-platform

frameworks for the Client.

64

4.1 Smartphone platform support

Many frameworks include support for Windows Mobile 6.x versions, but since

Microsoft released a Windows Phone 7, it is no longer worthwhile to put developing

efforts on old Windows Mobile versions. For this reason only Windows Phone 7 is

taken into account in this comparison.

Adobe Flash Builder “Burrito” includes support for BlackBerry Playbook tablet OS.

That was excluded from the table, since the thesis focuses on smartphones.

When counting the supported devices at the moment of writing, PhoneGap has the

widest support for smartphone platforms with its five supported platforms (see

TABLE 2).

TABLE 2. Comparison: Smartphone platform support (Lukasavage 2011a; Getting
Started with Appcelerator 2011; Get Started 2011; Rhodes Introduction; Jaramillo
2011; Supported Platforms and App Stores)

Appcelerator

Titanium PhoneGap Rhodes
AIR for
Mobile
Devices

OpenPlug
Elips

Studio
Notes

Android

iOS
(iPhone,
iPod, iPad)

Adobe: Not
yet

implemented
in Flash
Builder

“Burrito”

BlackBerry
Phone

Titanium:
support in

closed beta

Symbian

Rhodes:
Symbian not

actively
maintained

65

Palm

Windows
Phone 7

PhoneGap:
WP7 is
coming

TOTAL
(platforms
supported)

2 5 3 1 3

4.2 Device APIs comparison

The property was set “true”, if a feature was supported on Android and iOS, since

these platforms are in the Client’s priority.

On the Adobe AIR for Mobile Devices the source of information was Adobe Flash

Builder “Burrito” and Flex SDK “Hero” preview versions. Since the product is not

officially published, the device API is not complete and therefore not such

comparable.

The main reference was API documentations of each framework. However, the

documentation of API was outdated in some cases or was lacking information. In

some cases, the information is based on framework’s developer discussion forums or

sample code found from the framework’s developer site. If the information of the

specific feature was missing from all known sources of information, the assumption

was that the feature is not supported and the feature was set to “false”.

In addition, some of the features are not built-in to the frameworks and instead are

extensible modules. These cases were ignored in order to maintain the comparability

and only built-in features were approved. Because of some assumptions made, and

the incompleteness of the compared frameworks, the result is indicative. However,

by the result, Rhodes has the best device API support and Titanium is at the same

66

level of the API support, if the Android-only Calendar feature would be counted (see

TABLE 3).

TABLE 3. Comparison: Device APIs support (Lukasavage 2011a; Titanium Mobile API
Reference; Appcelerator Community Questions & Answers; Rhodes Device
Capabilities; Jaramillo 2011; Tour de Mobile Flex; Beta ActionScript 3.0 Reference;
ELIPS Studio API Reference; OpenPlug Support Forum)

Appcelerator

Titanium PhoneGap Rhodes
AIR for
Mobile
Devices

OpenPlug
Elips

Studio
Notes

Accelerometer

Barcode

Titanium:
available as

an extension
module

(commercial)

Bluetooth

Calendar

Titanium:
Android only

OpenPlug:
not

implemented
on Android /

iPhone

Camera

Contacts

Compass

Copy / Paste

Email

File System

67

Gestures /
Multitouch

Rhodes: no
information

found
Elips: No

MultiTouch

Geolocation

Local and
Remote Data

Native Maps

Orientation

Photo Gallery

Proximity
Detector

Ringtones

SMS

Titanium:
iPhone only,
commercial
extension
module

Sounds

Sound
recording

Vibration

Video Capture

TOTAL 18 12 19 14 10

68

4.3 Other features

Native UI support, Native Code support, Development language (if JavaScript) and

License were counted to the Total score. The reason for this is that the Native UI

makes UI developing easier, Native Code support allows extending the capabilities of

the framework with native code, the Client has already the most expertise in

JavaScript (Development language), and the Open Source license helps cut down the

development costs.

When comparing the frameworks by these features, Appcelerator Titanium and

Rhodes have the best score. However, there are some advantages with non-native UI

support, such as Adobe AIR for Mobile Devices haves, for example the UI is exactly

the same across platforms (see TABLE 4).

TABLE 4. Comparison: Other features (Lukasavage 2011a; Getting Started with
Appcelerator 2011; Rhodes Introduction; Titanium Mobile Programming Guides;
Extending the Rhodes Framework; ELIPS Studio: cross-platform native mobile
application development; Tutorial: Implementing a native extension for iPhone &
Android)

Appcelerator

Titanium PhoneGap Rhodes
AIR for
Mobile
Devices

OpenPlug
Elips

Studio
Notes

Native UI
support

PhoneGap,
AIR: 3rd
party

libraries
required

Native code
support [1]

Development
language

JavaScript
(HTML, CSS)

JavaScript,
HTML, CSS

Ruby
(HTML,

CSS,
JavaScript)

ActionScript3
(MXML)

ActionScript3
(MXML)

69

Interpreting
JavaScript
mapped to
native code

Rendered in
WebView

control

Runs a
Ruby

bytecode
through
bundled
RubyVM

interpreter

Adobe Air
Runtime

AS3
compiled to
C++, which
compiled to
standalone

native
application

installer

License Open Source:
Apache 2.0

Open
Source: MIT

Dual
License:

Open
Source:

MIT;
Closed

source for
commercial

projects

Closed
source, Flex
SDK mostly

Open Source

Closed
source, free

for
individuals

(ad-
supported)

TOTAL 4 3 3 0 1

[1] Native code support is a feature that allows extending the built-in functionality by

writing extension modules/libraries in the platform’s native programming language

and using the module with the framework’s non-native code.

4.4 Subjective comparison

All the features described in Chapter 1.3 (Research objective) are not objectively

measurable. The subjective features in the Research objective are:

 The quality of framework documentation

 Fast development

 Development status (i.e. is under active development by firm business).

70

The quality of framework documentation

Titanium Developer and Rhodes have reasonably good documentation. In addition to

API documentations, they both offer code samples and tutorials. However, both

suffer from some out-of-date documentation or non-documented features.

PhoneGap API documentation seems to be insufficient and partly out of date, since

some of the existing API features were not found in the official documentation. One

reason for that might be that PhoneGap is a Nitobi sponsored project, not a product

by Nitobi, and mostly developed by an open source developers’ community.

Adobe Flash Builder “Burrito” and the Flex SDK “Hero” have a considerable amount

of documentation. The problem is that the documentation is fragmented around

numerous different Adobe websites and is difficult to find, which may be caused by

the fact that the product is still in beta-phase. The API documentation is centralized

to one website, and it is comprehensive with possibilities to filter the content by

runtimes and products.

OpenPlug Elips Studio API documentation is organized. However, it is not always easy

to locate specific classes and methods, since the package name may not hint of the

content classes of the package. Overall the API is the least extensive of the compared

frameworks.

Fast development

The definition of “fast development” is relative, since the experience of the

frameworks always accelerates the development. Rather the question is: how do the

framework and its tools help to construct code quickly? For example: how much

code is needed to build a Tab Bar navigation system with multiple views to a mobile

application?

71

With the compared frameworks, there is much variation how the views are created

and handled. Rhodes has its strengths in this area, since it implements the Model-

View-Controller architecture, which is a practical way to separate the business logic

from views. Titanium has a large set of built-in native UI classes; therefore it is

relatively easy to build navigation, views and native UI quickly by setting some

variables.

Adobe Flex “Hero” and OpenPlug Elips Studio both are missing some core

components of the native UI, which makes a standard mobile application

development more difficult. On the other hand, Adobe’s systems are at their best

when the native look and feel with the UI is not even the objective. The mobile

applications built with Adobe Flex or OpenPlug Elips Studio should be concerned as

applications that have a custom UI and the functionality that differs from other

frameworks and the native mobile applications.

Development status

All the compared cross-platform native frameworks are comparatively young: the

frameworks are introduced between 2008 and 2011. Therefore the development of

the cross-platform frameworks is still at an early stage, and the pace of development

is fast in all frameworks.

The Titanium Mobile is developed by Appcelerator Inc., which acquired Aptana and

will release an updated version with an integrated IDE. It seems that the company

will continue the active development of the framework, and focus on selling more

support services and commercial extension modules to the framework. The

development may lead to commercial proprietary software framework, as the

framework grows with an IDE and other extensions.

72

According to PhoneGap the PhoneGap framework “will always remain free and open

source under an MIT license” (PhoneGap FAQ). Since the PhoneGap is developed by

an Open Source developer company, and sponsored by Nitobi Company, the

development will surely continue. However, the changes may happen slowly, since

the PhoneGap’s goal is to implement standards of developing W3C Device API Group

and HTML5.

Rhodes, Adobe Flash Builder / Flex SDK, and OpenPlug Elips Studio are commercial

products of companies behind them, and the development status seems to be firm.

In particular, Adobe has massive resources for its framework development. OpenPlug

competes in the same market with Adobe, since the OpenPlug’s Elips Studio is a plug-

in for Adobe Flash Builder, and Adobe has also the same goal to extend the mobile

application development functionality to its products. Because of the resources

Adobe has, and the fact that Adobe Flash Builder is a commercial product by Adobe,

OpenPlug Elips Studio may not have so bright future as the other compared

frameworks.

4.5 Results of the cross-platform native frameworks comparison

In TABLE 5, the result scores of the different comparison areas are summarized. The

underlined numbers present the best framework on each category.

73

TABLE 5. Results of the cross-platform native frameworks comparison

 Appcelerator
Titanium PhoneGap Rhodes

AIR for
Mobile
Devices

OpenPlug
Elips

Studio

Smartphone
platform support 2 5 3 1 3

Device APIs 18 12 19 14 10

Other features 4 3 3 0 1

TOTAL 24 20 25 15 14

When comparing the number of supported smartphone platforms, PhoneGap has

the widest support. PhoneGap seems to be the best framework choice if it is planned

to develop a lightweight web based mobile application, and to release it to as many

platforms as possible in order to reach the maximum audience for the application.

The situation will be even better for PhoneGap if the Windows Phone 7 support will

come to the framework.

If the application needs an advanced device API support, Rhodes and Titanium are

frameworks that most likely have support for the required features, since their

Device API support is widest.

In other areas, such as the expandability of the framework and the native UI support,

Titanium has the best support. But if a native look and feel is not desired, other

frameworks also have their advantages.

By the comparison numbers, Rhodes and Titanium seem to have the best support for

the Client’s needs. And if those two are compared, Titanium has some advantages

more, such as JavaScript as a development language, since the Client does not have

Ruby knowledge at the moment.

74

However, the final decision and discussion of the appropriate cross-platform native

frameworks is done in Chapter 6, after some comparison to the native mobile

application frameworks and some critical point of view to the cross-platform

frameworks.

5 CRITICAL ANALYSIS OF CROSS-PLATFORM MOBILE

PROGRAMMING

The cross-platform mobile programming is such a new phenomenon that it has

achieved almost a hype-status. Therefore there has not been much criticism in the

used sources. An objective discussion has been difficult to maintain, since the main

sources of information have been official websites of the frameworks, which have

been mostly written with extravagant advertising language.

Because the idea of cross-platform mobile programming is new, there is not either

much literature sources available. Those few sources have been written between

2008 and 2010, and they do not provide sufficient in-depth analysis of the cross-

platform frameworks in order to be critical. The lack of criticism in the literature

sources may also be due to the novelty of cross-platform mobile programming; the

frameworks were even less developed at the time of writing.

5.1 Disadvantages of the cross-platform mobile programming

The cross-platform native frameworks are marketing their frameworks with the idea

of “code once, run everywhere”. Only practical testing of each framework on

multiple platforms with some demo applications, as in the example projects of

Chapter 3, raise the omissions, failures and problems of the framework to be seen.

Some evidence of the frameworks’ problems can also be seen in the developers’

75

discussion forums of the framework. If there are many bug reports and questions

about the basic functionalities of the framework, the quality of the product can be

questioned.

The advertised “code once, run everywhere” idea is not the entire case, as some

customizations are always needed for each targeted platform. In some cases only

some minor changes to the UI are enough, in some cases some API features are not

implemented for all platforms, or are functioning differently.

PhoneGap has one of the best “code once, run everywhere” implementations, since

only minor UI changes were needed across platforms in the demo application

programming in Chapter 3.3.2. The advantage for PhoneGap UI is that it does not try

to implement native UI elements and instead relies on HTML/CSS user interfaces that

are similar on each platform. Titanium has much of platform-specific classes and

functions, even with the UI creation, that leads to using of conditional clauses in

programming (i.e. if platform is Android, then do something). However, Titanium

relies on native UI on each platform, while PhoneGap offers a uniform UI experience

across platforms. Eventually the decision needs to be made: is the native or uniform

UI wanted? If the answer is native, platform-specific customizations are more easily

done than rewriting an entire application for each platform in its native programming

language.

A larger problem is that all the cross-platform frameworks are still in their infancy.

They still have lot of bugs, undocumented features, and constant changes to the

framework, which may drop the backward compatibility of the developed application

and cause rewriting applications to the new versions of the SDKs. They are unstable,

and usually have very limited memory management and debugging possibilities. They

usually do not have multitasking or threading capabilities.

76

Many of the listed problems will probably be fixed as the frameworks evolve, but

unfortunately it seems that under hard competition cross-platform framework

developers are more interested in adding new features to their frameworks than

developing frameworks’ stability (Lukasavage 2011b).

An unstable framework with limited debugging is a dangerous combination, since it

can lead to programming by trial and error. As a developer cannot be sure if a bug is

in the application code or in the framework, the bug is difficult to debug and can lead

to delayed timelines of projects and worsened quality.

Since the cross-platform frameworks are an “extra layer” in a programming stack, it

naturally affects the application performance, which is weaker with cross-platform

frameworks than with native frameworks. Usually the performance is not a problem

in lightweight applications that do not use large amounts of data, memory or

processor, and are graphically simple. Therefore the cross-platform frameworks are

usually not intended for games or other heavyweight mobile applications, but are at

their best with applications that are web-based and use web-based data to present

simple text and image based data to the user.

A risk particularly for the cross-platform iOS based developing is that Apple has

changed their policies for applications generated with third party tools several times.

Some tools, for example iOS applications made with Adobe Flash, have been banned

from Apple’s App Store. Today Apple allows third party tools for their applications,

but is not guaranteed that this would not change in the future. If Apple restricts third

party tools, it is possible that some cross-platform frameworks will become useless

or less useful.

All the cross-platform frameworks introduced in this thesis have weaknesses. Many

of them are result of incompleteness of the frameworks. In the years to come, the

cross-platform frameworks will evolve, but at the moment using cross-platform

77

frameworks for mobile programming should be seriously considered. The

frameworks may save time and costs, but may weaken the quality of the end

product.

5.2 Cross-platform versus native applications – a comparison

In TABLE 6, Cross-platform frameworks are compared against native frameworks by

analyzing advantages and disadvantages of each mobile programming method. With

the comparison it is possible to analyze which choice is the best choice for different

programming needs.

TABLE 6. Cross-platform versus native applications – a comparison (Douangboupha
2009, 5)

 Native Cross-Platform

Advantages Library updates

 Stable

 Performance

 Code size

 App store
compatibility

 Native UI

 Full native API

 One programming language for
all platforms

 Common programming
language (e.g. JavaScript)

 Common UI design across
platforms

 Fast development

 Multi-platform development

Disadvantages Different programming
languages, SDKs and tools
for each platform

 Different UI design

 Slow development

 Not all are Open Source

 Unstable

 Code size

 Performance

 Lack of multitasking

 Debugging

 Limited API features

 Bugs

 Quality

 Documentation

 UI design in some frameworks

78

Summarizing TABLE 6, native application programming is the best choice for

applications that require stability (enterprise applications, branded applications),

performance (games), full API features (applications that use device APIs not found

from the cross-platform frameworks), and native look and feel for the application. It

may also be concluded that native mobile application development is worthwhile if

the developer has enough financial and time resources available, and the

programming skills for the targeted platforms.

Cross-platform development is a good choice, if a developer has no native

programming skills, the schedule is tight and there is not a great amount of financial

resources available for the development. Cross-platform is also a good choice if the

application uses much web-based data or shares resources with a website, or it is a

quite lightweight application that does not require much of the smartphone’s

hardware resources.

6 RESULTS AND ANALYSIS

6.1 Choosing the framework

The thesis introduced multiple cross-platform native frameworks that would fit as a

part of Client’s mobile application strategy. By the results of the comparison in

Chapter 4, the “optimal solution” for the cross-platform mobile programming for the

Client is Appcelerator Titanium in the Client’s current situation.

The reasons for the choice are Titanium’s advanced API support, Native UI, JavaScript

as development language, and the possibility to publish native applications. In

particular, the development status of Titanium seems promising, and as they

acquired Aptana and released a first preview version of Titanium Studio, an

integrated IDE with Titanium SDK, the development of the framework is going to the

79

right direction as the code completion makes programming easier and the debugging

possibilities have significantly increased.

However, there are also risks that must be taken into account when using Titanium in

productive use for the Client’s mobile projects. The most significant risk is the

incompleteness of the framework. The framework is under constant changes, since

there are frequently major updates to the framework. The result of the framework’s

current development situation is instability and bugs in the framework. The risks can

be managed by sufficiently long delivery times for mobile projects made with

Titanium, and by using native frameworks for time-critical or large scale mobile

projects. In addition, buying Titanium official support services is an option to be

considered.

The supporting framework in the Client’s current situation is PhoneGap. In particular,

PhoneGap has the widest platform support and will have a support for the Windows

Phone 7 in the future. To have a possibility to develop applications for iOS, Android

and Windows Phone 7 would be an advantage to the Client. PhoneGap would also fit

to applications that do not require native look and feel, such as applications that

have more “branded” UI and therefore custom UI.

PhoneGap has almost similar disadvantages and risks in productive use as Titanium.

The development pace of the framework does not seem to be as fast as it is with

Titanium and instead, PhoneGap seems to be more stable. However, since PhoneGap

does not have such comprehensive API coverage as Titanium, PhoneGap fits better

to more lightweight web-based applications with custom UI. The risks can be

managed by using PhoneGap only for lightweight applications, and in large-scale

applications, buying PhoneGap official support services.

In the future, when the Client’s mobile business evolves, there can be multiple

framework choices. If the mobile businesses of the Client evolved quickly, and there

80

would be enough resources for the large-scale mobile development, the native

development would be the most recommended choice, since the cross-platform

frameworks still have their limitations, as analyzed in Chapter 5.

However, if the cross-platform frameworks evolve, as they likely will, good choices

for the cross-platform developing from today’s perspective would also be Rhodes,

and Adobe AIR/Flex frameworks for mobile devices.

Rhodes has an advanced Model-View-Controller architecture and a support for

synchronized offline data. If the Client had Ruby knowledge or developers with

experience from Ruby-on-rails, the Rhodes framework would be a good solution

particularly for enterprise mobile application development.

The Adobe’s AIR and Flex framework for mobile is probably the newest player on the

market. The framework still has much to be developed, but Adobe’s mobile solutions

would be a good solution for the Client’s mobile application strategy in the future, in

particular for the multimedia-driven applications such as games and applications that

contain rich media (video, audio, pictures).

6.2 Future of the cross-platform mobile programming

It is said: “if you want to understand today, you have to search yesterday” (Quote by

Pearl Buck). The history has seen a cross-platform evolution before, in the 1990s in

desktop computing. Microsoft Windows and Apple Macintosh provided GUI

platforms for desktop computers, and software vendors needed to create

applications for both platforms. Cross-platform desktop frameworks abstracted the

differences, making it easier to develop applications that ran across platforms. (Allen

et al. 2010, 9.)

81

However, the Cross-platform desktop applications, such as popular Java applications,

were never a breakthrough. In the 2000s more applications moved to the Web and

cross-platform libraries and web based cross-platform libraries and frameworks were

created, such as jQuery (Op. cit. p. 9). The Web became a winner with the rise of

cloud computing and RIAs (Rich Internet Applications) and other web applications.

If history repeats itself, the cross-platform native frameworks will be just a staging

post in the evolution of cross-platform mobile programming, as the Web based

applications will eventually conquer the mobile landscape as well. From that

perspective the evolution of the Web and HTML5 in particular should be taken

seriously.

With the ongoing evolution of the Web, smartphones and tablets, the traditional

desktop computing is moving towards mobility. Software development will shift

towards mobile development and the software industry will be more mobilized (Op.

cit. p. 1). With mobile devices, such as smartphones and tablets, it is easier and faster

to do most of the tasks that are done with desktop computers today such as social

media, emails, communication, web browsing, graphics and even word processing.

Totally new kind of applications will evolve, as even people who rarely use computer

and Internet today will use a variety of services through mobile devices. Only

imagination is the limit, since technological possibilities are enormous. Mobile

devices would also have very advanced useful applications alongside entertainment

applications. For example, in elderly care there would be applications for

telemedicine and monitoring. People could have video calls with doctors, and send

them wirelessly medical data, such as blood pressure data from a blood pressure

monitor attached to the mobile device.

The evolution of mobile devices is so convincing that there will certainly be a huge

demand for mobile solutions and companies that offer them. Therefore, this thesis

82

raises a need for further research: how will the mobile web landscape and the cross-

platform mobile programming evolve in the future? How to be a part of the rapidly

evolving mobile landscape? What kind of innovations would there be in the mobile

programming? It seems to be clear that this thesis was written in the beginning of

major changes of what we have used to consider as mobile and desktop computing.

83

REFERENCES

Adobe AIR. 2011. Product page on Adobe website. Accessed on 22 March 2011.
Http://www.adobe.com/products/air/.

Adobe AIR Developer Center. 2011. Adobe website. Accessed on 23 March 2011.
Http://www.adobe.com/devnet/air.html.

Adobe Flex SDK "Hero". 2011. Adobe Labs / Technologies website. Accessed on 23
March 2011. Http://labs.adobe.com/technologies/flexsdk_hero/.

Ahokas, K. 2011. Yritä jotain uutta. Article on Tietoviikko magazine, number 5, March
18, 2011.

Allen, S., Graupera, V. & Lundrigan, L. 2010. Pro Smartphone Cross-Platform
Development: iPhone, Blackberry, Windows Mobile and Android Development and
Distribution. 1st Ed. New York: Apress.

Appcelerator Community Questions&Answers. n.d. A community forum on
Appcelerator Developer Center website. Accessed on 30 March 2011.
Http://developer.appcelerator.com/questions/.

App Hub. 2011. How it works. The Windows Phone developer site. Accessed on 9
February 2011. Http://create.msdn.com/en-us/home/about/how_it_works.

Beta ActionScript 3.0 Reference. 2011. API documentation on Adobe Help website.
Accessed on 31 March 2011.
Http://help.adobe.com/en_US/FlashPlatform/beta/reference/actionscript/3/class-
summary.html.

Butler, M. 2011. "Android: Changing the Mobile Landscape," Pervasive Computing,
IEEE , vol.10, no.1, pp.4-7, Jan.-March 2011. doi: 10.1109/MPRV.2011.1. Accessed on
21 January 2011. Http://www.jamk.fi/library, Nelli-portal, IEEE Xplore - IEEE/IEE
Electronic Library.

Cantrell, C. 2011. iOS features in Adobe AIR 2.6. Article on Adobe Developer
Connection website. Accessed on 23 March 2011.
Http://www.adobe.com/devnet/air/articles/ios_features_in_air26.html.

84

Charland, A. 2010. Blog on Nitobi Website. Accessed on 5 March 2011.
Http://blogs.nitobi.com/andre/index.php/2010/11/09/build-phonegap-com-private-
beta-opening/.

Corlan, M. 2011. Developing for mobile devices with the Adobe Flash Platform.
Article on Adobe Developer Connection website. Accessed on 23 March 2011.
Http://www.adobe.com/devnet/devices/articles/mobile-development-flash-
platform.html.

Corona FAQ. n. d. Frequently Asked Questions on Ansca Mobile website. Accessed on
28 March 2011. Http://www.anscamobile.com/corona/faq/.

Definition of smartphone. n.d. Encyclopedia. PC Magazine website. Accessed on 21
January.
Http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp.

Device Capabilities. n.d. Rhomobile API Documentation. Accessed on 20 March 2011.
Http://docs.rhomobile.com/rhodes/device-caps.

Devitt, S., Meeker, M. & Wu, L. 2010. Internet Trends. Morgan Stanley Research.
Accessed on 9 January 2011.
Http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_0
41210.pdf.

Douangboupha, P. 2009. Smart Phone Platform Comparison. A Comparative Analysis.
Presentation. Accessed on 4 April 2011.
Http://www.r2integrated.com/Portals/21/PDFs/SmartPhoneComparison.pdf.

ELIPS Studio API Reference. n.d. Documentation of ELIPS Studio mobile Flex
framework. OpenPlug Developer Zone website. Accessed on 30 March 2011.
Http://developer.openplug.com/code/api.

ELIPS Studio: cross-platform native mobile application development. n. d. OpenPlug
Developer Website. Accessed on 21 March 2011.
Http://developer.openplug.com/product/overview.

ELIPS Studio FAQ. n. d. Frequently Asked Questions about ELIPS Studio on OpenPlug
Developer website. Accessed on 24 March 2011.
Http://developer.openplug.com/product/faq.

Extending the Rhodes Framework. n.d. Article on Rhomobile Documentation.
Accessed on 30 March 2011. Http://docs.rhomobile.com/rhodes/extensions.

85

Firtman, M. 2010. Programming the Mobile Web. O’Reilly Media, Inc. Sebastopol, CA.

Fling, B. 2009. Mobile Design and Development. O’Reilly Media, Inc. Sebastopol, CA.

Getting Started with Appcelerator. 2011. Documentation on Appcelerator website.
Accessed on 20 February 2011.
Http://wiki.appcelerator.org/display/guides/Getting+Started+with+Titanium.

Get Started. 2011. PhoneGap Getting Started tutorial. Accessed on 27 February 2011.
Http://www.phonegap.com/start.

Grabham, D. 2010. Intel and Nokia merge Moblin and Maemo to form MeeGo. Arti-
cle on TechRadar. Accessed on 16 February 2011.
Http://www.techradar.com/news/phone-and-communications/mobile-phones/intel-
and-nokia-merge-moblin-and-maemo-to-form-meego-670302.

Gupta, P. 2011. HP announced three webOS products: a tablet PC TouchPad [first
webOS tablet PC of HP], and two smartphones Pre 3, and Veer. Article on Gadget
Reviews. Accessed on 20 February 2011. Http://www.gadgetsnreviews.com/hp-
announced-three-webos-products-touchpad-tablet-pc-first-webos-running-tablet-pc-
and-pre-3-and-veer-smartphones/7321.html.

Hashimi, S., Komatineni, S. & MacLean, D. 2010. Pro Android 2. New York: Apress.

Haynie, J. 2011. Appcelerator Acquires Leading IDE Aptana. Appcelerator blog.
Accessed on 20 February 2011. Http://www.appcelerant.com/appcelerator-acquires-
ide-aptana.html.

Introducing PhoneGap Build. n.d. PhoneGap Build official website. Accessed on 5
March 2011. Https://build.phonegap.com/.

Introducing the Adobe Flash Platform. 2011. Article on Adobe Developer Connection
website. Accessed on 23 March 2011.
Http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html.

iOS Developer Program. 2011. Apple Developer Website. Accessed on 27 February
2011. Http://developer.apple.com/programs/ios/.

iOS Dev Center. 2011. Apple Developer Website. Accessed on 3 March 2011.
Http://developer.apple.com/devcenter/ios/index.action.

86

Jaramillo, N. 2011. Mobile development using Adobe Flex SDK "Hero" and Flash
Builder "Burrito". Article on Adobe Developer Connection website. Accessed on 23
March 2011.
Http://www.adobe.com/devnet/flex/articles/mobile_development_hero_burrito.ht
ml.

KitchenSink. 2011. Demo application for Titanium Mobile. Source code. Accessed on
27 February 2011. Https://github.com/appcelerator/KitchenSink.

Kolakowski, N. 2011. Windows Phone 7 Has Chance of 2011 Success: Analyst. Article
on eWeek.com. Accessed on 9 February 2011. Http://www.eweek.com/c/a/Mobile-
and-Wireless/Windows-Phone-7-Has-Chance-of-2011-Success-Analyst-166874/.

Kumparak, G. 2010. Apple sold 14.1 million iPhones last quarter, over 70 million since
launch. Article on MobileCrunch. Accessed on 4 February 2011.
Http://www.mobilecrunch.com/2010/10/18/apple-sold-14-1-million-iphones-last-
quarter-over-70-million-since-launch/.

Laugesen, J. & Yuan, Y. 2010. "What Factors Contributed to the Success of Apple's
iPhone?," Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR),
2010 Ninth International Conference on, vol., no., pp.91-99, 13-15 June. Accessed on
4 February 2011. Http://www.jamk.fi/library, Nelli-portal, IEEE Xplore - IEEE/IEE
Electronic Library.

Lee, H. & Chuvyrov, E. 2010. Beginning Windows Phone 7 Development. 1st Ed. New
York: Apress.

Look Ahead 2011. 2011. Advertising Age, 82, 2, pp. 4-21, Business Source Elite,
EBSCOhost. Accessed on 20 February 2011. Http://www.jamk.fi/library, Nelli-portal,
EBSCO Business Source Elite.

Lukasavage, T. 2011. Appcelerator vs. PhoneGap vs. Adobe Air. Comparison article on
Savagelook.com. Accessed on 30 March 2011.
Http://savagelook.com/blog/portfolio/appcelerator-vs-phonegap-vs-adobe-air.

Lukasavage, T. 2011. Are You Actually Saving Time With Mobile Frameworks? Blog
article. Accessed on 1 April 2011. Http://savagelook.com/blog/portfolio/are-you-
actually-saving-time-with-mobile-frameworks.

Muschenetz, I. 2011. Titanium Studio 1.0 Preview with Titanium Mobile Debugging.
Article on Appcelerator Developer Blog. Accessed on 8 March 2011.

87

Http://developer.appcelerator.com/blog/2011/04/titanium-studio-1-0-preview-with-
titanium-mobile-debugging.html.

Niclot, E. 2010. About UICatalog sample and platform variant management.
OpenPlug developer zone blog. Accessed on 27 March 2011.
Http://developer.openplug.com/about/blog/193-about-uicatalog-sample-and-
platform-variant-management-.

Nokia outlines new strategy, introduces new leadership, operational structure. 2011.
Nokia Press Releases. Accessed on 16 February 2011.
Http://www.nokia.com/press/press-releases/showpressrelease?newsid=1488004.

Nourie, D. 2005. Getting Started with an Integrated Development Environment (IDE).
Article on Sun Developer Network (SDN). Accessed on 4 February 2011.
Http://java.sun.com/developer/technicalArticles/tools/intro.html.

OpenPlug Support Forum. n.d. Developer forum on OpenPlug Developer Zone
website. Accessed on 30 March 2011. Http://developer.openplug.com/forum/.

Peltomäki, J. 2010. Introduction to mobile computing. Material for the cross-platform
mobile programming course on Fall 2010.

Peltomäki, J. 2010. Mobile networking and location based systems. Material for the
cross-platform mobile programming course on Fall 2010.

Pettey, C. & Stevens, H. 2011. Gartner Says Android to Command Nearly Half of
Worldwide Smartphone Operating System Market by Year-End 2012. Gartner Press
Releases website. Accessed on 10 April 2011.
Http://www.gartner.com/it/page.jsp?id=1622614.

PhoneGap API Reference. n.d. PhoneGap Documentation website. Accessed on 5
March 2011. Http://docs.phonegap.com/.

PhoneGap Build FAQ. n.d. PhoneGap Build Frequently Asked Questions article on
PhoneGap Build website. Accessed on 5 March 2011.
Https://build.phonegap.com/docs/faq.

PhoneGap FAQ. n.d. PhoneGap Frequently Asked Questions on PhoneGap website.
Accessed on 31 March 2011. Http://www.phonegap.com/faq.

Rhodes Device Capabilities. n.d. Rhodes Developer Reference. Accessed on 30 March
2011. Http://docs.rhomobile.com/rhodes/device-caps.

88

Rhodes Introduction. n.d. Rhodes Developer Reference. Accessed on 10 March 2011.
Http://docs.rhomobile.com/rhodes/introduction.

RhoHub: Hosted Development for Mobile Apps. 2011. RhoHub official website.
Accessed on 11 March 2011. Http://rhohub.com/.

RhoSync App Integration Server. n.d. Rhomobile website. Accessed on 10 March
2011. Http://rhomobile.com/products/rhosync/.

RhoSync Features. n.d. Rhomobile website. Accessed on 10 March 2011.
Http://rhomobile.com/mobile-solutions/.

Stark, J. 2010. Building iPhone Apps with HTML, CSS and JavaScript. 1st Edition.
Sebastopol: O’Reilly Media, Inc.

Strohmeyer, R. & Perenson, M. 2011. 'WHY YOUR NEXT PC WILL BE A TABLET'. PC
World, 29, 1, pp. 73-80, Business Source Elite, EBSCOhost. Accessed on 20 February
2011. Http://www.jamk.fi/library, Nelli-portal, EBSCO Business Source Elite.

Subramaniam, D. 2011. Introducing Adobe Flex 4.5 SDK. Article on Adobe Developer
Connection website. Accessed on April 11, 2011.
Http://www.adobe.com/devnet/flex/articles/introducing-flex45sdk.html.

Supported Platforms and App Stores. n.d. List of platforms that ELIPS Studio
supports. Article on OpenPlug Developer Zone website. Accessed on 30 March 2011.
Http://developer.openplug.com/learn/platforms.

Testing your Applications. 2011. Documentation on Appcelerator website. Accessed
on 27 February 2011. Http://guides.appcelerator.com/en/testing.html.

The Application Project Structure. 2011. Documentation on Appcelerator website.
Accessed on 27 February 2011.
Http://guides.appcelerator.com/en/app_structure.html.

Titanium Mobile API Reference. n. d. Titanium Mobile API reference for Titanium
Mobile 1.6.1. Appcelerator Developer Center website. Accessed on 30 March 2011.
Https://developer.appcelerator.com/apidoc/mobile/latest.

Titanium Mobile Programming Guides. n.d. Article on Appcelerator Developer Center
website. Accessed on 30 March 2011.
Http://developer.appcelerator.com/doc/mobile/guides, Module Development.

89

Tour de Mobile Flex. n.d. An Android application for exploring the new Flex mobile
capabilities. Adobe Flex website. Accessed on 30 March 2011.
Http://flex.org/tourmobile.

Tutorial: [Hello World] Using new project templates. n.d. Article on OpenPlug
developer zone website. Accessed on 27 March 2011.
Http://developer.openplug.com/index.php/learn/tutorials/?videoid=35.

Tutorial: Implementing a native extension for iPhone & Android. n.d. Article on
OpenPlug Developer zone website. Accessed on 31 March 2011.
Http://developer.openplug.com/learn/tutorials/?videoid=27.

Udell, S. 2009. Pro Web Gadgets Across iPhone, Android, Windows, Mac, iGoogle and
More. New York: Apress.

Using Hardware Devices. 2011. Android developers guide. Accessed on 27 February
2011. Http://developer.android.com/guide/developing/device.html.

What is MoSync. n. d. Article on MoSync website. Accessed on 28 March 2011.
Http://www.mosync.com/what-is-mosync.

Whinnery, K. 2011a. Titanium For New Developers. Presentation on Appcelerator
website. Accessed on 27 February 2011.
Http://developer.appcelerator.com/blog/2011/01/titanium-for-new-
developers.html.

Whinnery, K. 2011b. What’s New In Titanium Mobile 1.5. Presentation on
Appcelerator website. Accessed on 27 February 2011.
Http://developer.appcelerator.com/blog/2011/01/whats-new-in-titanium-1-5.html.

90

APPENDICES

Appendix 1. Code listing: Contacts application: Titanium

var win = Ti.UI.currentWindow;

var imageDisplay = null;

var contactinfoLabel = Ti.UI.createLabel({
 top:120,
 width:'auto',
 height:'auto',
 color: '#000'
});

var btn_contactSelect = Ti.UI.createButton({
 title:'Select Contact',
 bottom:20,
 width:200,
 height:40
});

btn_contactSelect.addEventListener('click', function() {
 Titanium.Contacts.showContacts({
 selectedPerson: function(e) {

 var image = e.person.image;
 if (imageDisplay != null) {
 imageDisplay.image = null;
 }

 contactinfoLabel.text = e.person.fullName + '\n';

 contactinfoLabel.text += '\n Phone:\n'

 for (var label in e.person.phone) {
 var phones = e.person.phone[label];
 for (var i = 0; i < phones.length; i++) {

contactinfoLabel.text += label+': '+ phones[i] +
'\n';

 }
 }

 contactinfoLabel.text += '\n Address:\n'

 for (var label in e.person.address) {
 var addrs = e.person.address[label];
 for (var i = 0; i < addrs.length; i++) {
 if (Titanium.Platform.name == 'android') {

contactinfoLabel.text += label + ': ' +
addrs[i].Street + '\n';

 }
 else {

contactinfoLabel.text += label + ': ' +
addrs[i].Street + '\n' + addrs[i].ZIP + ' ' +
addrs[i].City + '\n';

 }

91

 }
 }

 if (imageDisplay == null) {
 imageDisplay = Ti.UI.createImageView({
 image:image,
 width:100,
 height:100,
 top:20
 });
 win.add(imageDisplay);
 }
 else {
 imageDisplay.image = image;
 }
 }
 });
});

win.add(contactinfoLabel);
win.add(btn_contactSelect);

92

Appendix 2. Code listing: Contacts application: PhoneGap

Index.html

<!doctype html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no,
width=device-width" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Contacts</title>
<link rel="stylesheet" href="css/master.css" type="text/css" media="screen"
/>

<script src="phonegap.0.9.4.js" type="text/javascript" charset="utf-
8"></script>

<script src="js/xui-2.0.0.min.js" type="text/javascript" charset="utf-
8"></script>

<script src="js/app.js" type="text/javascript" charset="utf-8"></script>

</head>
<body>
 <div id="title_bar">Contacts app</div>

 <div id="contactPicked" style="display:none"></div>

 <div id="searchdiv" class="view">

<div id="searcboxdiv"><input type="text" value=""
id="contact_search"/> </div>

 <div class="app_button" id="contacts_button">Search Contact</div>
 <div class="app_button" id="clear_button">Clear</div>
 </div>

</body>
</html>

app.js

x$(window).load(function(e) {
 x$('#contacts_button').on('touchstart', function () {

var selectedstring =
document.getElementById("contact_search").value;

 getContacts(selectedstring);
 });

 x$('#clear_button').on('touchstart', function () {
 window.location.reload();
 });

 function successContactFindCallback(contacts) {

93

 x$('#contactPicked').setStyle('display', 'block');

 for (var j in contacts[0].photos) {

x$('#contactPicked').html('before', '<p><img
src="'+contacts[0].photos[j].value+'" alt="No picture"
/></p>');

 }

 var namevar = contacts[0].name;

x$('#contactPicked').html('before','<p>'+namevar.givenName
+ ' ' + namevar.familyName+'
');

 for (var j in contacts[0].phoneNumbers) {

x$('#contactPicked').html('before',
contacts[0].phoneNumbers[j].value+'
');

 }

 for (var j in contacts[0].emails) {

x$('#contactPicked').html('before',
contacts[0].emails[j].value+'
');

 }

 for (var j in contacts[0].addresses) {

x$('#contactPicked').html('before',
contacts[0].addresses[j].streetAddress +'
' +
contacts[0].addresses[j].postalCode+' ' +
contacts[0].addresses[j].locality+'
');

 }

 x$('#contactPicked').html('before', '</p>');

 }

 function getContacts(selectedstring) {

navigator.service.contacts.find(['photos', 'name',
'addresses.streetAddress', 'addresses.postalCode',
'addresses.locality', 'phoneNumbers', 'emails'],

 successContactFindCallback,
 generalErrorCB,
 {filter: selectedstring}
);
 }

 function generalErrorCB(error) {
 alert(error.code);
 }

});

94

Appendix 3. Code listing: Contacts application, Rhodes

person_controller.rb:

require 'rho/rhocontroller'
require 'rho/rhocontact'
require 'helpers/browser_helper'

class PersonController < Rho::RhoController
 include BrowserHelper

 #GET /Person
 def index
 @people = Rho::RhoContact.find(:all)

@people = @people.to_a.sort! { |x,y| x[1]['first_name'] <=>
y[1]['first_name'] } if @people

 end

 # GET /Person/{1}
 def show
 @person = Rho::RhoContact.find(@params['id'])
 if @person
 render :action => :show
 else
 redirect :action => :index
 end
 end

 # GET /Person/new
 def new
 render :action => :new
 end

 # GET /Person/{1}/edit
 def edit
 @person = Rho::RhoContact.find(@params['id'])
 if @person
 render :action => :edit
 else
 redirect :action => :index
 end
 end

 # POST /Person/create
 def create
 @person = Rho::RhoContact.create!(@params['person'])
 redirect :action => :index
 end

 # POST /Person/{1}/update
 def update
 Rho::RhoContact.update_attributes(@params['person'])
 redirect :action => :index
 end

 # POST /Person/{1}/delete
 def delete
 Rho::RhoContact.destroy(@params['id'])
 redirect :action => :index

95

 end
end

index.erb

<div class="pageTitle">
 <h1>Contacts</h1>
</div>

<div class="toolbar">
 <div class="leftItem regularButton">
 <a href="<%= Rho::RhoConfig.start_path %>">Home
 </div>
 <div class="rightItem regularButton">
 <a class="button" href="<%= url_for :action => :new %>">New
 </div>
</div>

<div class="content">

 <% @people.each do |person| %>

 <a href="<%= url_for :action => :show, :id => person[1]['id'] %>">
 <%= person[1]['first_name'] %> <%=
person[1]['last_name'] %>

 <% end %>

</div>

show.erb

<div class="pageTitle">
 <h1><%= @person['first_name'] %></h1>
</div>

<div class="toolbar">
 <div class="leftItem backButton">
 <a href="<%= url_for :action => :index %>">Back
 </div>
 <div class="rightItem regularButton">
 <a href="<%= url_for :action => :edit, :id => @person['id'] %>">Edit
 </div>
</div>

<div class="content">

 <div class="itemLabel">First Name</div>
 <div class="itemValue"><%= @person['first_name'] %></div>

96

 <div class="itemLabel">Last Name</div>
 <div class="itemValue"><%= @person['last_name'] %></div>

 <div class="itemLabel">Mobile Number</div>
 <div class="itemValue"><%= @person['mobile_number'] %></div>

 <div class="itemLabel">Home Number</div>
 <div class="itemValue"><%= @person['home_number'] %></div>

 <div class="itemLabel">Business Number</div>
 <div class="itemValue"><%= @person['business_number'] %></div>

 <div class="itemLabel">Email</div>
 <div class="itemValue"><%= @person['email_address'] %></div>

 <div class="itemLabel">Home Email</div>
 <div class="itemValue"><%= @person['home_email_address'] %></div>

 <div class="itemLabel">Street Address</div>
 <div class="itemValue"><%= @person['street_address_1'] %></div>

 <div class="itemLabel">Postal Code and City</div>

<div class="itemValue"><%= @person['zip_1'] %> <%=
@person['city_1'] %></div>

</div>

edit.erb

<div class="pageTitle">
 <h1>Edit <%= @person['first_name'] %></h1>
</div>

<div class="toolbar">
 <div class="leftItem backButton">

<a href="<%= url_for :action => :show, :id => @person['id']
%>">Cancel

 </div>
 <div class="rightItem regularButton">
 <a class="button" href="<%= url_for :action => :delete, :id =>
 @person['id'] %>">Delete

97

 </div>
</div>

<div class="content">
 <form method="POST" action="<%= url_for :action => :update %>">
 <input type="hidden" name="person[id]" value="<%= @person['id'] %>"/>

<label for="person[first_name]" class="fieldLabel">First
Name</label>
<input type="text" name="person[first_name]" value="<%=
@person['first_name'] %>" <%= placeholder("First Name") %> />

 <label for="person[last_name]" class="fieldLabel">Last
Name</label>
<input type="text" name="person[last_name]" value="<%=
@person['last_name'] %>" <%= placeholder("Last Name") %> />

<label for="person[mobile_number]"
class="fieldLabel">Mobile</label>
<input type="text" name="person[mobile_number]" value="<%=
@person['mobile_number'] %>" <%= placeholder("Mobile") %> />

 <input type="submit" class="standardButton" value="Update"/>
 </form>
</div>

new.erb

<div class="pageTitle">
 <h1>New Contact</h1>
</div>

<div class="toolbar">
 <div class="leftItem backButton">
 <a class="cancel" href="<%= url_for :action => :index %>">Cancel
 </div>
</div>

<div class="content">
 <form method="POST" action="<%= url_for :action => :create %>">

<label for="person[first_name]" class="fieldLabel">First
Name</label>

 <input type="text" name="person[first_name]" <%=
 placeholder("First Name") %> />

 <label for="person[last_name]" class="fieldLabel">Last

98

 Name</label>
 <input type="text" name="person[last_name]" <%=
 placeholder("Last Name") %> />

<label for="person[mobile_number]"
class="fieldLabel">Mobile</label>

 <input type="text" name="person[mobile_number]" <%=
 placeholder("Mobile") %> />

 <input type="submit" class="standardButton" value="Create"/>
 </form>
</div>

99

Appendix 4. Code listing: Google Maps with Geolocation, Adobe Flash

Builder “Burrito”

GoogleMapsExampleHome.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark" title="Google Maps example"
creationComplete="view1_creationCompleteHandler(event)"
xmlns:mx="library://ns.adobe.com/flex/mx">

<fx:Script>

<![CDATA[
 import com.eaglemediavision.gpsdata.GPSData;

 import com.google.maps.LatLng;
 import com.google.maps.Map;
 import com.google.maps.MapEvent;
 import com.google.maps.MapType;
 import com.google.maps.overlays.Marker;
 import flash.sensors.Geolocation;

 import mx.events.FlexEvent;

 private var gMap:Map;
 private var g:Geolocation;
 private var gpsdata:GPSData;

protected function
view1_creationCompleteHandler(event:FlexEvent):void {

 if (Geolocation.isSupported) {

 gpsdata = new GPSData();

 gMap = new Map();
 gMap.key = "";
 gMap.url = "http://www.eaglemediavision.com"
 gMap.sensor = "true"
 gMap.width = 480;
 gMap.height = 682;
 gMap.addEventListener(MapEvent.MAP_READY, mapReadyHandler);

 mapContainer.addChild(gMap);

 g = new Geolocation();
 g.setRequestedUpdateInterval(100);

 g.addEventListener(GeolocationEvent.UPDATE,geoLocation_UpdateHan
dler, false,0,true);

 }
 }

protected function

100

geoLocation_UpdateHandler(event:GeolocationEvent):void {
 gpsdata.setLatitude(event.latitude);
 gpsdata.setLongitude(event.longitude);
 }

 private function mapReadyHandler(e:MapEvent):void {

gMap.setCenter(new
LatLng(gpsdata.getLatitude(),gpsdata.getLongitude()), 15,
MapType.NORMAL_MAP_TYPE);

 gMap.setSize(new Point(mapContainer.width,
mapContainer.height));

var latlng:LatLng = new
LatLng(gpsdata.getLatitude(),gpsdata.getLongitude());

 var marker:Marker= new Marker(latlng);
 gMap.addOverlay(marker);
 }

]]>

</fx:Script>

<mx:UIComponent id="mapContainer" width="100%" height="100%"/>

</s:View>

GPSData.as

package com.eaglemediavision.gpsdata
{
 public class GPSData
 {
 private var latitude:Number;
 private var longitude:Number;
 private var altitude:Number;

 public function GPSData() { }

 public function setLatitude(latitude:Number):void {
 this.latitude = latitude;
 }

 public function setLongitude(longitude:Number):void {
 this.longitude = longitude;
 }

 public function setAltitude(altitude:Number):void {
 this.altitude = altitude;
 }

 public function getLatitude():Number {
 return this.latitude;
 }

 public function getLongitude():Number {
 return this.longitude;

101

 }

 public function getAltitude():Number {
 return this.altitude;
 }

 }
}

102

Appendix 5. Code listing: Contacts application, Elips Studio

ContactsElips.mxml

<?xml version="1.0" encoding="utf-8"?>
<mob:ScreenStackApplication xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
xmlns:mob="openplug.elips.controls.*"
xmlns:screen="openplug.elips.controls.screenClasses.*"
xmlns:components="components.*"
creationComplete="onCreationComplete()">

<mx:Script> <![CDATA[
 import itemRenderers.ListItemRenderer;

 import models.ContactExt;
 import models.FindContactsResult;

 import openplug.elips.events.ItemTouchTapEvent;
 import openplug.elips.services.AddressBook;
 import openplug.elips.services.Contact;
 import openplug.elips.services.ContactAddress;
 import openplug.elips.services.ContactEmail;
 import openplug.elips.services.ContactManager;
 import openplug.elips.services.ContactPhoneNumber;

 private var _contactManager:ContactManager;
 private var _addressBook:AddressBook;
 private var _loadContactsResult:FindContactsResult;

 //**
 // INIT
 //**

 private function onCreationComplete():void {
 var delayedLoadContacts:Timer = new Timer(5000, 1);

delayedLoadContacts.addEventListener(TimerEvent.TIMER,
loadContacts);

 delayedLoadContacts.start();
 goSearch.enabled = false;
 titleBar.titleTextSub = "Please wait while loading contacts...";
 }

 public function loadContacts(e:TimerEvent):void {
 _contactManager = new ContactManager();

 _addressBook = _contactManager.getAddressBooks()[0] as
AddressBook; // get the first one (=internal one, not sim)

 _loadContactsResult = new FindContactsResult();
 _loadContactsResult.onSuccessFunction = loadContactsSuccess;

 _addressBook.findContacts(_loadContactsResult,
loadContactsError, null);

 }

 public function loadContactsSuccess():void {

titleBar.titleTextSub = "(Addressbook1 contains " +
_loadContactsResult.arrcolContacts.length + " contacts)";

 listContacts.dataProvider = _loadContactsResult.arrcolContacts;

103

 loadCont.stop();
 loadCont.visible = false;
 goSearch.enabled = true;
 }

 public function loadContactsError():void {

titleBar.titleTextSub = "Error occured when searching for
contacts!";

 loadCont.stop();
 loadCont.visible = false;
 }

 //***
 // FILTER CONTACTS
 //***

 private function filterContacts():void {
 _loadContactsResult.filterByName(textName.text);
 listContacts.dataProvider = _loadContactsResult.arrcolContacts;
 }

 public function openContact(evt:ItemTouchTapEvent):void {
 var contact:ContactExt = evt.item;
 var contacttext:String;

 var contactAddresses:Array = contact.addresses;
 var contactPhones:Array = contact.phoneNumbers.number;
 var contactEmails:Array = contact.emails;

 contacttext = "";

 contacttext += contact.name + "\n";

 if (contact.phoneNumbers != null) {
 var i:int;
 for (i=0; i<contact.phoneNumbers.length; i++) {

var phoneNum:ContactPhoneNumber =
contact.phoneNumbers[i];
contacttext += phoneNum.type + ": " + phoneNum.number
+ "\n";

 }
 }

 if (contact.emails != null) {
 for (i=0; i<contact.emails.length; i++) {
 var email:ContactEmail = contact.emails[i];
 contacttext += email.type + ": " + email.email +"\n";
 }
 }

 if (contact.addresses != null) {
 for (i=0; i<contact.addresses.length; i++) {
 var address:ContactAddress = contact.addresses[i];

contacttext += address.street + " " +
address.postalCode + " " + address.city + "\n";

 }
 }

 singleContactText.text = contacttext;
 goToScreen("singleContactScreen");

104

 }

]]>
</mx:Script>

<!-- Screen definition, you can have several screens in a screen stack -->
<mob:ScreenView id="allContactsScreen">

 <mx:VBox width="100%" height="100%">

<components:TitleBar id="titleBar" titleTextMain="Contact
Manager" />

 <mx:VBox
 width="100%"
 paddingLeft="10"
 paddingRight="10"
 verticalGap="0"
 >

 <mx:Label
 width="100%"
 fontSize="10"
 text="Filter by Namepart (empty = show all):"
 />

 <mx:HBox
 width="100%"
 horizontalAlign="center"
 >
 <mob:TextInput id="textName"
 width="100%"
 height="40"
 fontSize="18"
 />

 <mx:Button
 height="40"
 label="Go"
 id="goSearch"
 fontSize="20"
 touchTap="filterContacts()"
 />
 </mx:HBox>
 </mx:VBox>

 <mob:List id="listContacts"
 width="100%"
 height="90%"
 rowHeight="80"
 backgroundColor="white"
 itemRenderer="itemRenderers.ListItemRenderer"
 itemTouchTap="openContact(event)"
 />

 <mob:ActivityIndicator x="{width/2}" y="{height/2}"
width="25" height="25" id="loadCont" autoStart="false"/>

 </mx:VBox>

</mob:ScreenView>

 <mob:ScreenView id="singleContactScreen">

105

 <mx:VBox
 width="100%"
 height="100%"
 >

 <components:TitleBar id="singleContactBar"
 titleTextMain="Contact"
 />

 <mx:VBox
 width="100%"
 paddingLeft="10"
 paddingRight="10"
 verticalGap="0"
 >

 <mx:Button
 height="40"
 label="Back"
 id="goback"
 fontSize="20"
 touchTap="goBack()"
 />
 </mx:VBox>

 <mx:Text
 width="100%"
 id="singleContactText"
 text=""
 textAlign="center"
 fontSize="20"
 color="white"
 />

 </mx:VBox>

 </mob:ScreenView>

</mob:ScreenStackApplication>

FindContactResult.as

package models
{
 import mx.collections.ArrayCollection;

 import openplug.elips.services.Contact;
 import openplug.elips.services.ContactArraySuccessCallback;
 import openplug.elips.services.ContactPhoneNumber;

 public class FindContactsResult implements
ContactArraySuccessCallback
 {
 private var _contacts:Array;
 private var _contactsFiltered:Array;

106

 public function FindContactsResult()
 {
 }

 //**
 // GET CONTACTS FROM THE ADDRESSBOOK
 //**
 public function onSuccess(contacts:Array):void
 {
 var isAlternateColor:Boolean = true;
 _contacts = new Array();
 for each (var contact:Contact in contacts)
 {
 // Ensure the contact has a name
 if (contact.name != null)
 {
 var c:ContactExt = new ContactExt();
 c.id = contact.id;
 c.addresses = contact.addresses;
 c.emails = contact.emails;
 c.name = contact.name;
 c.nickNames = contact.nickNames;
 c.photo = contact.photo;
 c.phoneNumbers = contact.phoneNumbers;

 // If the contact has at least one phone number,

// init firstPhoneNumber with the 1st number in
// the list + its type

 if (c.phoneNumbers != null)
 {

var phoneNum:ContactPhoneNumber =
c.phoneNumbers[0];
c.firstPhoneNumber = phoneNum.number + "
" + phoneNum.type;

 }

 // alternate color flag handling
 c.alternateColorFlag = isAlternateColor;
 isAlternateColor = !isAlternateColor;

 // save the contact
 _contacts.push(c);
 }
 }
 arrcolContacts = new ArrayCollection(_contacts);

 // call the success function, if any...
 if (onSuccessFunction != null)
 {
 onSuccessFunction();
 }
 }

 //***
 // FILTERING CONTACTS
 //**
 private var _searchPattern:String;
 public function filterByName(searchPattern:String):void {
 var isAlternateColor:Boolean;
 var c:ContactExt;
 if (searchPattern.length > 0)
 {
 // filter

107

 _searchPattern = searchPattern.toLowerCase();
_contactsFiltered =
_contacts.filter(doesNameContainSearchPattern, null);

 // set alternate color flag
 isAlternateColor = true;
 for each (c in _contactsFiltered)
 {
 c.alternateColorFlag = isAlternateColor;
 isAlternateColor = !isAlternateColor;
 }

 // create the array collection

arrcolContacts = new
ArrayCollection(_contactsFiltered);

 }
 else
 {
 // set alternate color flag
 isAlternateColor = true;
 for each (c in _contacts)
 {
 c.alternateColorFlag = isAlternateColor;
 isAlternateColor = !isAlternateColor;
 }

 // create the array collection

 arrcolContacts = new ArrayCollection(_contacts);
 }

 }

private function
doesNameContainSearchPattern(element:ContactExt, index:int,
arr:Array):Boolean

 {
 if (element.name != null)
 {
 var s:String = element.name.toLowerCase();
 return (s.search(_searchPattern) == -1 ? false : true);
 }
 else
 {
 return false;
 }
 }

 //***
 // PUBLIC PROPERTIES
 //***

 private var _onSuccessFunction:Function;
 public function get onSuccessFunction():Function
 {
 return _onSuccessFunction;
 }
 public function set onSuccessFunction(value:Function):void
 {
 _onSuccessFunction = value;
 }

private var _arrcolContacts:ArrayCollection = new

108

ArrayCollection();
 public function get arrcolContacts():ArrayCollection
 {
 return _arrcolContacts;
 }

 [Bindable] public function set
arrcolContacts(value:ArrayCollection):void

 {
 _arrcolContacts = value;
 }
 }
}

