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Summary: Damage detection in structural health monitoring is based on unsupervised learning. Training data consist of
multichannel vibration measurements of the undamaged structure under different environmental or operational conditions.
The excitation (input) and the environmental or operational variables are usually unknown, but noisy response is only
measured. In subsequent data analyses, the noisy measurements are replaced by Bayesian virtual sensors that are more
accurate than the corresponding hardware. Environmental or operational variability between measurements can be taken into
account using the minimum mean square error (MMSE) estimation. Damage detection is done in the time domain using
statistical analysis including residual generation, principal component analysis, and an extreme value statistics control chart.
A numerical experiment is performed for a bridge structure having a crack with different sizes. Virtual sensors outperformed
the raw measurements in damage detection and damage was correctly localized to the nearest sensor.
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1. Introduction

Large structures like bridges or other important
infrastructure can be monitored for an early detection
of faults. Structural health monitoring (SHM) can be
based on vibration measurements, which is attractive,
because it is global, i.e. damage can be detected
remotely from the sensor. However, in order to have
an early warning, the monitoring system must be
sensitive to small changes and insensitive to varying
environmental or operational conditions. A small
measurement error and statistical data analysis of
multivariate vibration records are therefore necessary.

If  a  sufficiently  large  sensor  array  is  installed  on
the structure, the system is redundant. This hardware
redundancy can be used to compensate for the
environmental or operational influences and reduce
measurement errors using virtual sensing techniques.

The paper is organized as follows. Bayesian
virtual sensing is introduced in Section 2 resulting in
virtual sensors that are more accurate than the
hardware. Section 3 is devoted to a damage detection
algorithm capable of eliminating environmental or
operational influences. Numerical simulations of a
bridge under random excitation, environmental
variability, and damage are performed in Section 4.
Damage detection is done using the actual
measurements or the virtual sensors. Finally,
concluding remarks are presented in Section 5.

2. Bayesian Virtual Sensing

Virtual  sensing  (VS)  gives  an  estimate  of  a
quantity of interest using the available measurements.
Empirical VS is a data-based approach, estimating a
physical sensor using hardware redundancy. In
structural vibrations of linear structures, the response
can be written as a contribution of natural modes:
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where x(t) is the displacement response, N is the
number of DOF in the finite element model, Nn <<
is the selected number of modes, F is the modal
matrix consisting of the mode shapes fi as columns,
and q(t) are the modal or generalized coordinates.
The last expression in (1) suggests that the response
can be expressed with sufficient accuracy by
including only the lowest n modes. In the case of
SHM, the excitation is due to wind, waves, traffic, or
micro-tremors having a narrow bandwidth. Therefore,
the n lowest  modes  are  usually  able  to  describe  the
vibration response of the structure. Consequently,
more than n sensors are needed to make the sensor
network redundant.

Virtual sensing techniques can be used to obtain
an estimate for each sensor, which is more accurate
than the corresponding hardware.

Consider a sensor network measuring p
simultaneously sampled variables y = y(t) at time t.
Each measurement y includes independent
measurement error w = w(t):
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where x = x(t) are the true values of the measured
degrees of freedom. The objective is to find an
estimate for the true values x utilizing the noisy
measurements y.

In a sensor array, a true reading for sensor u, xu,
can be estimated using the noisy measurements y by
conditioning on the remaining sensors v and applying
Bayes’ rule [1]. The partitioned variables are
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The measurement error w is  assumed  to  be  zero
mean, independent of x, with a known covariance
matrix
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where E(×) denotes the expectation operator. After
partitioning, all distributions are conditioned with yv.
Bayes’ rule becomes
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The distributions in (5) can be evaluated as shown
in the following.

2.1. Likelihood

Assuming Gaussian noise w, the likelihood is
obtained using Equation 2:
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2.2. Evidence

For simplicity but without loss of generality,
assume zero-mean variables y. The partitioned data
covariance matrix Sy is
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The precision matrix Gy is defined as the inverse
of the covariance matrix Sy and  is  also  written  in  a
partitioned form:
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A linear minimum mean square error (LMMSE)
estimate for vu yy |  is obtained by minimizing the
mean-square error (MSE) and can be computed either
using the covariance or precision matrix [2, 3]. If
each sensor signal is estimated in turn, the formulas
based on the precision matrix result in a more
efficient algorithm [2]. The expected value of the
estimated variable is:
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where uvyuuy ,
1
, ΓΓK --= , and the MSE is

1
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The evidence )|( vup yy  is also Gaussian with
the mean and covariance from Equations (9) and (10),
respectively:
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The evidence is merely a normalizing factor,
independent of xu. However, this conditional
probability is important in damage detection to
remove the environmental or operational effects,
which will be discussed in Section 3.

2.3. Prior

The prior distribution )|( vup yx  is obtained from
the measurement model (2) by partitioning and
conditioning. The prior mean is
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and the prior covariance is

uuwuuyuuwvu

vuuu

,
1
,,

prior,

)|cov(

)|cov(

ΣΓΣyy

yxΣ

-=-=

=
- (13)

The prior distribution is also Gaussian:
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2.4. Posterior

The posterior distribution (5) is obtained by some
manipulation, resulting in
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where c is a constant and the posterior covariance
uupost,Σ  is

1-1
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and the posterior mean is
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The expected value of the posterior probability
density function (PDF) is chosen for the virtual sensor
reading. The statistical data analysis proceeds as
usual, except that now the actual measurements are
replaced with the virtual sensors.

3. Damage Detection

A single vibration measurement period is
relatively short, and can be assumed to take place at
constant environmental conditions. Environmental or
operational variations occur between measurements.
Their effects can be taken into account by building a
covariance matrix using several measurements from
the undamaged structure under different
environmental or operational conditions.

Using the conditional probability p(xu|xv), each
virtual sensor under variable environmental
conditions can be estimated using the other virtual
sensors in the network. For actual sensors (raw data),
the corresponding conditional probability is p(yu|yv)
[4]. The mean of the conditional probability (9) is
often more accurate than the mean of the variable.
This is illustrated in Fig. 1 showing two variables,
both of which are influenced by a latent variable so
that their standard deviations are large (black PDFs).
The conditional PDFs p(y1|y2) and p(y2|y1) are shown
in red after a data point (red circle) is observed. Their
standard deviations are smaller. Consequently, the
environmental or operational influences can be
eliminated by replacing the variable means with the
conditional means.
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Fig. 1. An example of conditional probability distributions
(red). The red circle is an observed data point.

A residual vector is then generated:
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where y can be either the actual measurement or the
virtual sensor (17).

For a reliable statistical analysis, the
dimensionality is reduced using principal component
analysis (PCA). The damage-sensitive features are the
first principal component scores of the residuals, but
they  may  not  be  Gaussian.  Therefore,  extreme  value
statistics (EVS) distribution is estimated [5] to design
a control chart [6] for damage detection with
appropriate control limits.

4. Numerical experiment

A finite element model of a bridge deck was built
to simulate noisy vibration measurements from 28
accelerometers under variable environmental and
operational conditions (Fig. 2).

The length of the bridge was 30 m and the width
was 11 m. The deck was made of concrete with a
Young’s modulus of E = 40 GPa (at temperature T =
0°C), Poisson ratio of n = 0.15, density of r = 2500
kg/m3, and thickness of 250 mm. The stiffeners were
made  of  steel  (E =  207  GPa, n = 0.30, r = 7850
kg/m3). The longitudinal stiffeners had a web with a
thickness of t = 16 mm and a height of h = 1.4 m. The
bottom flange had a thickness of t = 50 mm and a
width of b = 700 mm. The lateral stiffeners were 1.4
m high and 30 mm thick plates.

The nodes of the bottom flanges were simply
supported at both ends of the bridge. Longitudinal
displacements  were  fixed  only  at  one  end  of  the
bridge. The corners of the concrete deck were
supported in the lateral and vertical directions.

The deck was affected by temperature variability.
The ends of the bridge were at random temperatures
between –20°C and +40°C, and the temperature
distribution was linear in the longitudinal direction
and constant in the lateral direction. The temperature
in each cross-section had some variation having a
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standard deviation of 0.2°C. The Young’s modulus of
concrete had a stepwise linear relationship with
temperature. Different realizations of the Young’s
modulus is shown in Fig. 3. The temperature or the
Young’s moduli were not measured.

Two independent random loads in the vertical
direction were applied at the nodes shown as green
dots in Fig. 2. A steady state response was assumed.

The response was computed with a modal
superposition algorithm using the first seven modes.
The analysis period was 20.48 s with a sampling
frequency  of  50  Hz.  One  measurement  period  then
included 1024 samples from each sensor.

Same amount  of  Gaussian  noise  was  added to  all
sensors. The average signal-to-noise ratio of the
sensor array was 40 dB. For the corresponding virtual
sensors, the average signal-to-noise ratio increased to
almost 48 dB.

Damage  was  a  crack  with  an  increasing  size  in  a
longitudinal steel girder. Six different crack
configurations were modelled with an increasing
severity by removing the contact between elements at
1–6 nodes. The nodes are shown in the detailed plot
in  Fig.  4  showing the  order  in  which  the  nodes  were
separated. Each damage scenario was monitored with
three measurements under random environmental and
operational conditions. As a result, the last 18
measurements were from a damaged structure.

50 measurements were acquired from the
undamaged structure under random environmental
conditions.  The  training  data  were  the  first  25
measurements. They were also used to design the
control charts. Test data were the last 43
measurements,  from which  the  last  18  were  from the
damaged structure.

Damage detection was visualized with an EVS
control chart, designed for the first principal
component scores of the residual vector with a
subgroup size of 100 samples. A generalized extreme
value distribution was identified, and the PDFs of the
minima and the negative maxima are plotted in Figs.
5 and 6 together with the corresponding histograms. It
can be seen that the probability distributions were
correctly identified. Damage detection using the
actual measurements and the virtual sensors are
shown in Figs. 7 and 8, respectively. With the raw
measurements, only the largest crack size could be
detected, whereas with the virtual sensors, the four
largest crack sizes were detected. There were no false
alarms when using the actual measurements (Fig. 7)
and one false alarm using the virtual sensors (Fig. 8).

Damage  was  assumed  to  locate  in  the  vicinity  of
the sensor u with the largest Mahalanobis distance [3]
of the residual (Eq. 11). The Mahalanobis distances of
the residuals for each sensor are plotted in Fig. 9.
Damage  was  localized  to  sensor  11  that  was  indeed
the nearest sensor from the crack (Fig. 2).

11

Fig. 2. Finite element model of the bridge deck. The sensor
network is shown with red dots. Excitation locations are the

two green dots, and the crack in a girder is plotted in red.
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Fig. 3. Eight realizations of the longitudinal distributions of
the Young’s modulus of the concrete.
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Fig. 4. A detail of the girder with damage. The crack is
shown with red lines and the numbers indicate the order in

which the connecting nodes separated to form an increasing
crack size.
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Fig. 5. Histogram and estimated PDF of the minima of the
first principal component scores of the residuals in the

training data.
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Fig. 6. Histogram and estimated PDF of the negative
maxima of the first principal component scores of the

residuals in the training data.
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Fig. 7. EVS control chart using raw measurements. The six
different damage levels are separated with the vertical lines

in the right. The training data are to the left of the first
vertical line.
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Fig. 8. EVS control chart using virtual sensors.
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Fig. 9. Damage localization using virtual sensors.

5. Conclusions

With an increasing number of sensors, the
measurement error can be reduced using Bayesian
virtual sensors replacing the actual measurements and
resulting in a better damage detection performance.
Noise reduction was made for each measurement
individually, while the environmental or operational
influences were removed using all training data.

It should be noted that the proposed method was
based solely on the response data, and no finite
element model was used. Because damage detection
was made in the time domain, no complex system
identification was needed. The excitation was random
and unknown. In addition, the environmental
variables were not available.
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