

INTEGRATING AND TRANSFERRING LEGACY

CODE TO .NET / MONO ENVIRONMENT

ON MULTIPLE PLATFORMS.

Kamil Wojciech Szarek

B;IｴWﾉﾗヴげゲ TｴWゲｷゲ

May 2011

Degree Programme in Information Technology

Software Engineering

 DESCRIPTION

Author(s)

SZAREK Kamil Wojciech

Type of publication

B;IｴWﾉﾗヴ╉ゲ TｴWゲｷゲ

Date

03.05.2011

Pages

47

Language

English

Confidential

() Until

Permission for web

publication

(X)

Title

INTEGRATING AND TRANSFERRING LEGACY CODE TO .NET / MONO ENVIRONMENT ON

MULTIPLE PLATFORMS.

Degree Programme

Information Technology

Tutor(s)

SALMIKANGAS, Esa

Assigned by

Upload Image Processing Oy

Abstract

Today it is very important that the applications are platform independent and

sufficient. It was and still is very common that whenever some operations take part on

server side they are created by a script language, like PHP, bash, or Ruby. This is a very

convenient approach because a code can be easy modified, and the whole application

does not require recompilation after that. What is more the results are immediately

visible. Sometimes, however, when such an application has to perform heavy

operations, those languages are not sufficient. At some point it might be very wise to

consider the IﾗSWげゲ ﾏｷｪヴ;デｷﾗﾐ デﾗ ゲﾗﾏe other environment or language that can be run

efficiently on almost every platform.

This B;IｴWﾉﾗヴげゲ デhesis shows the whole process of such a migration. The legacy PHP

script is refactored from Linux environment to C# language and cross-platform Mono

environment. The author presents all most important modifications and improvements,

and also focuses on the encountered problems and further changes that can be done in

the future.

Keywords

PHP, C#, .NET, mono project, image processing, FTP client, mail client

Miscellaneous

1

CONTENTS

FIGURES ... 2

ABBREVIATIONS .. 4

DEFINITIONS ... 5

1 INTRODUCTION .. 6

2 THEORETICAL BASICS ... 8

2.1 Overview of the technologies related to the script .. 8

2.2 .NET and Mono ... 10

2.3 MySQL and its .NET binding.. 12

2.4 Logger .. 14

2.5 FTP client .. 15

2.6 XML handling ... 16

2.7 Control version system .. 17

3 IMPLEMENTATION OF THE RESEARCH ... 18

3.1 Overview ... 18

3.2 Implementation .. 20

3.3 .NET .. 21

3.4 MySQL .. 24

3.5 File management.. 25

3.6 XML handling ... 26

3.7 Image processing ... 28

3.8 Mail client .. 32

3.9 Logger .. 34

3.10 FTP client .. 36

3.11 Diacritic characters .. 38

3.12 iSync Runner ... 40

2

4 CONCLUSIONS .. 42

4.1 Challenges ... 42

4.2 Improvements .. 44

4.3 Summary .. 45

REFERENCES ... 46

FIGURES

FIGURE 1. Technologies and techniques related to the script 8

FIGURE 2. Overview routine of the application ... 9

FIGURE 3. .NET Framework evolution (Nash, Accelerated C# 2010, 2010) 11

FIGURE 4. Logical model of a singleton pattern .. 15

FIGURE 5. Singleton pattern physical model from design patterns (Gamma, Helm,

Johnson, & Vlissides, 1994) ... 15

FIGURE 6. Data flow in the script ... 18

FIGURE 7. Data flow in main routine ... 19

FIGURE 8. View of XML configuration file fields ... 21

FIGURE 9. Manager class ... 22

FIGURE 10. Item class which represents fetched data from database. 23

FIGURE 11. Data base handler class ... 24

FIGURE 12. File manager class ... 25

FIGURE 13. UI of test application using FileManager class 26

FIGURE 14. XML file structure .. 27

FIGURE 15. UI of the test application which presents and process an XML file. It

wraps XMLCoordinatesReader class ... 27

file:///C:/Users/Kamil/Desktop/inzynierka/inż/repo/inz/praca/trunk/BachelorThesis_Body.docx%23_Toc292223846

3

FIGURE 16. XML handler class. ... 28

FIGURE 17. Image handler class ... 29

FIGURE 18. UI of the test application using the ImageHandler class 30

FIGURE 19. Console testing application run under Windows OS 31

FIGURE 20. Console testing application run under Linux OS 32

FIGURE 21. Mailer class ... 33

FIGURE 22. Simple UI of testing application which sends an email 34

FIGURE 23. Logger class .. 35

FIGURE 24. FTP client class ... 37

FIGURE 25. UI of test application using FTPClient class .. 38

FIGURE 26. Example of changing diacritics characters ... 39

FIGURE 27. Application to manage iSync app ... 41

FIGURE 28. iSync Runner options in the notification area ... 41

4

ABBREVIATIONS

API Application Programming Interface

APS Active Server Pages

ASCII American Standard Code for Information Interchange

CLI Common Intermediate Language

CLR Common Language Runtime

COM+ Component Object Model

CPU Central Processing Unit

FTP File Transfer Protocol

GPL GNU General Public License

GUI Graphical User Interface

JIT Just In Time

LGLP GNU Lesser General Public License

MSIL Microsoft Intermediate Language

OS Operating System

PID Process Identifier

SDK Software Development Kit

SMS Short Message Service

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

UI User Interface

WSDL Web Services Description Language

XML Extensible Markup Language

5

DEFINITIONS

iSync – name of the PHP legacy script which is the main subject in the thesis.

Application with the same name is created in .NET environment.

6

1 INTRODUCTION

For many years new businesses and companies have grown and the infrastructure has

grown according to the available supplies and existing demands on the market. Within

all these years with the very fast electronics development, the same has happened with

the software used by different companies. Nowadays it is very important to follow up

new technologies in the IT sector. Buying and using the latest hardware, however, is

very often not enough. What makes work easier is also the software, which within the

years may become inefficient or just too old and that is why it can be incompatible

with the modern hardware. In that case there are few solutions:

1. buying new software if there is an available one which meets all expectations

and needs of potential user

2. creating a completely new software

3. recreating an existing software, for example by implementing it in a new

environment.

Many companies, which own their own software do not want to buy or create a new

one because it can result in using the other’s company’s licenses, which they do not

want to do. In this case, the best solution is to adapt the old program to the current

needs and this is what Upload Image Processing company decided to do.

The author’s main task during a practical training was convert PHP script running on

the Linux environment to the C# cross-platform Mono environment. The heart of the

original script was a very long procedure that had to be split and re implemented in the

new environment. The base routine used many technologies like: file managing, file

transfer protocol, MySQL database connection, email client for sending notifications,

and image processing. The large variety of technologies described above caused that

the whole project work was divided into several stages according to the used

technologies to keep the code clear and to easily manage the process of

refactorization.

At the beginning the author had to familiarize himself with the whole old code, which

was kept in four files to separate at least some parts of the code from each other.

When the first stage was finished and the author was briefly introduced into the whole

script, integration had to be started. However, it was impossible and unwise just to

7

rewrite the whole PHP code to C# line by line; that is why that solution was not even

taken into consideration. Instead of that everything had to be done precisely, carefully

and almost from scratch based only on the functionality which PHP legacy code

provided. First of all the knowledge about certain issue related to the project had to be

collected. A very important phase was also creating documentation of the whole code

because the original source code was not very well commented. The aim was to create

software that would be compatible with the current hardware and would meet the

client’s expectations. What is equally important in the future is that then code would

be much easier to maintain and change by someone else. To reach this goal detailed

documentation was needed as well as many descriptions and explanations how and

why thing was done in that particular way.

This Bachelor’s Thesis shows the whole process of software migration between two

different IT environments. Its main goal is to show how the functionalities should be

properly separated and encapsulated into the components. The other very important

subject taken up into this document is very clear explanation of how all needed

information was gathered and how it was implemented.

The first part of this thesis is theoretical and is contains a short description of a routine

which was used to perform the script. It also introduces briefly some technologies that

are used by the original script, which are described more detailed later in each of the

separate subsections. It aims at familiarizing the reader with the basic technologies,

which allows further understanding of how the script works and how it is modified.

In the third chapter, the author discusses the whole process of implementation with

usage of the new application’s structures of classes for better illustration of the task he

has accomplished. Some of the classes were used in the simple test applications with

graphical interface, which is also presented in this part of the thesis.

The task of re-implementation can seem line straight forward, only it requires a great

deal of time and a workload, and most often there are many difficulties that each

developer needs to face in order to create a fully working application. That is why

chapter 4 presents exemplary problems that the author experienced when a script was

re-implemented and the ways he resolved them.

8

2 THEORETICAL BASICS

2.1 Overview of the technologies related to the script

The figure below shows most of the technologies, techniques and a system related to

the iSync script and they are described more detailed in the further chapters. What can

be noticed here is that iSync relies mostly on the open source free solutions.

FIGURE 1. Technologies and techniques related to the script

The script is run under Linux operating system which is at the same time a web server.

The FIGURE 2 below illustrates a routine of the script.

MySQL
databse

Image
processing

FTP client

Mail client

XML reader

Linux

File
management

php

Logging

9

FIGURE 2. Overview routine of the application

At the beginning MySQL database is used as a source of the information and a data

needed to further process. Whenever there are ready entries to work with them in the

database, the script fetches data from the FTP server or from a locally mounted

storage and then processes them. In most cases the script has to work with the images;

usually at least two of them, from which the first one is used as a background image

and the second one as a tagging image, which is placed on the background image

according to the coordinates stored in the XML file. After that the script creates a PHP

file containing proper data and later it is used by a web server. When the whole

procedure is finished, all required files are uploaded to the location specified in a

10

configuration file. Afterwards iSync sends an email with a notification to the email

address fetched from a database. At that point if there are no problems one taken job is

finished and the proper field in a database is changed.

Within all these activities the script writes previously defined information and errors’

descriptions to a log file. In case of any failure or obstacle this information helps the

developer or administrator of the server to solve a problem much quicker instead of

starting investigating what has gone wrong and when it has happened.

2.2 .NET and Mono

.NET initiative was announced by Microsoft in July 2000. .NET platform was a new

development framework with a new programming interface to the Windows services

and APIs, integrating a number of technologies that emerged from Microsoft during

late 90s. .NET, however, was not distributed alone but there were following elements

incorporated with it:

- COM+ component service

- ASP web development framework

- commitment to XML

- object – oriented design

- support for new web services protocol as SOAP, WSDL and UDDI.

The most important component of the .NET framework is CLR. At a high level CLR

activates objects, performs security, checks on the objects, lays them out in a memory,

executes them and garbage-collects them. Conceptually, the CLR is a runtime

infrastructure that abstracts underlying platform differences. CLR supports all

languages that can be represented in the Common Intermediate Language. (Thai &

Lam, 2002; Albabari & Albabari, 2010)

.NET, however, is also a collection of tools, utilities and components that aid

developers in building a console, GUI, and web applications, abstracting much of the

lower level detail involved in building high-performance software. In the sense of

environment the most important components of .NET are:

11

 The Microsoft .NET Framework, a collection of core classes and libraries to

perform common tasks

 The C# programming language, an object-oriented compiled language

 The Common Language Runtime (CLR), an MSIL interpreter and just-in-time

runtime that converts MSIL to native machine code

 ADO.NET, a data access library.

(Liberty & Xie, 2008)

FIGURE 3 shows the evolution of the .NET Framework from version 2.0 to version

4.0.

FIGURE 3. .NET Framework evolution (Nash, Accelerated C# 2010, 2010)

The application refactoring to a .NET environment, in case of this thesis, is strongly

related to a Linux environment. C# as a language does not have any support on the

4.0 (2010)

Parallel LINQ

Task Parallel
Lubrary

3.5 (2007)

LINQ

ADO.NET
Entity Framework

3.0 (2006)

WPF

WCF

WF

Card Space

.NET 2.0
Framework

(2005)

WinForms

ASP.NET

ADO.NET

Base Class Library

Common Language
Runtime

12

other operating systems than Windows. This is a very crucial issue, although there is

a way to use C# compiled code on the Linux OS. This is provided by Mono, which is

an open-source initiative that brings .NET technologies to operating systems other

than Microsoft Windows. (Mamone, 2006)

Mono provides the necessary software to develop and run .NET client and server

applications on Linux, Solaris, Mac OS X, Windows, and UNIX. The project’s

objective is to completely port the Microsoft .NET development platform to UNIX,

thereby allowing UNIX developers to build and deploy truly cross-platform .NET

applications regardless of the operating system and machine architecture. The project,

although sponsored by Novell, is open-source. The current version of Mono available

during application refactoring - Mono 2.4 - supports most of the common

functionality offered within the .NET environment. Mono contains the core

development libraries, as well as the development and deployment tools. At the time

of writing, Mono API coverage is limited to the. NET 3.0 API, with spotty support for

the version 3.5.

Mono contains the following components:

 A Common Language Infrastructure (CLI) virtual machine that contains a

class loader, a just-in-time compiler, and a garbage collector

 A class library that can work with any language which works on the CLR.

Both .NET compatible class libraries as well as Mono provided class libraries

are included

 A compiler for the C# language. Future work on other compilers that target the

Common Language Runtime is planned.

(Swaminathan, 2007; Schonig & Geschwinde, 2004)

2.3 MySQL and its .NET binding

MySQL is a relational database management system which acts as a server providing

multi user access to a number of databases. It is available as either a binary or a

source-code download. MySQL is covered under GPL and LGPL licenses.

13

MySQL is available on many different operating systems on variety of computer

architectures. Currently it has versions for Linux, Windows, Solaris, FreeBSD,

MacOS X, HP – UX, AIX, SCO, SCI, Irix, Dec OSF and BSDi. The Linux version of

MtSQL runs on a range of architectures. The availability of a cross – platform

versions has enhanced the popularity of MySQL. (Suehring, 2002)

Anyhow, .NET environment does not natively support MySQL database. Hence there

was a need to use external components to provide the missing functionality. Such a

library is available and provided by Sun Microsystem on MySQL webpage – it is

Connector/NET.

Connector/NET enables developers to easily create .NET applications that require

secure, high-performance data connectivity with MySQL. It implements the required

ADO.NET interfaces and integrates them into ADO.NET aware tools. Developers can

build applications using their choice of .NET languages. Connector/NET is a fully

managed ADO.NET driver written in 100% pure C#.

Connector/NET includes full support for:

 Features provided by MySQL Server up to and including MySQL Server

version 5.5

 Large-packet support for sending and receiving rows and BLOBs up to 2

gigabytes in size

 Protocol compression which enables compressing the data stream between the

client and server

 Support for connecting using TCP/IP sockets, named pipes, or shared memory

on Windows

 Support for connecting using TCP/IP sockets or Unix sockets on Unix

 Support for the Open Source Mono framework developed by Novell

 It is fully managed, and does not utilize the MySQL client library.

(MySQL :: MySQL 5.1 Reference Manula :: 20.2 MySQL Connector/NET, 2010)

14

2.4 Logger

Logging is a commonly used technique in software development, which allows to

check if expected behavior happened in proper moments while the program was

running. The most important benefit of this technique, however, is to track down a

problem using logged data. When some problem occurs during runtime it is written to

a log file with all associated descriptions.

The original iSync has written only the information about the progress. In practice it

means that whenever some error occurred it showed only the last valid entry in a log

file. There were no data saying what problem had occurred. This approach was very

problematic and caused extra work for the attendant and that is why it had to be

changed.

In the new implementation, the application writes three types of data to a log file:

- information

- warnings

- errors.

Information tells about normal operations done during a runtime. Warnings point that

part of necessary verifications in a code which fail whereas the errors indicate

unexpected behavior or exceptions.

With the help of superior of the project it was decided that logging class would be

reconstructed as a similar standalone class and it would implement the singleton

pattern.

The intent of a singleton pattern is to ensure that a class has only one instance and to

provide a global point to it. The model for a singleton is very straightforward. Usually

there is only one singleton instance and clients access a singleton through one well-

known access point. The client in this case is an object that needs access to an instance

of a singleton. The previously described relationship is showed in the FIGURE 4

below.

15

FIGURE 4. Logical model of a singleton pattern

(Exploring the Singleton Design Pattern, 2010)

Singleton

-static uniqueinstance : Singleton

-sindletonData

+ static Instance() : Singleton

+ SingletonOperation()

+ GetSingletonData()

FIGURE 5. Singleton pattern physical model from design patterns (Gamma,

Helm, Johnson, & Vlissides, 1994)

The physical model for the Singleton pattern is also very simple. The FIGURE 5

above shows a simple class diagram. There is a private static property of a singleton

object as well as a public method Instance() that returns this private property.

2.5 FTP client

The File Transfer Protocol is one of the oldest and most often used protocols in the

internet. FTP specifications state that by default, all data transfers should be done over

a single connection. An active open is done by the server, from its port 20 to the same

port on the client machine as was used for the control connection. The client does a

passive open. For better or worse, most current FTP clients do not behave this way. A

new connection is used for each transfer, to avoid exceeding TCP’s TIMEWAIT state,

each time a client picks a new port number and sends a PORT command announcing

that to the server. Nowadays FTP client uses two parallel connections. One connected

Client Singletonuses

16

to the server’s port 21 which is called control connection and it stays open for the

duration of the session, and the second one is a data connection opened by the server

from its port 20. (Bellovin & Laboratories, 1994)

The objectives of the FTP are:

 To promote files’ sharing (computer programs and/or data)

 To encourage indirect or implicit (via programs) usage of the remote

computers

 To shield a user from variations in the file storage systems among the hosts

 To transfer data reliably and efficiently.

(Postel & Reynolds, 1985)

2.6 XML handling

Extensive Markup Language, abbreviated XML, describes a class of the data objects

called XML documents and partially describes a behavior of the computer programs

which process them. XML is an application profile or a restricted form of SGML, the

Standard Deserialized Markup Language. By construction, XML documents are

conforming to SGML documents. XML documents are made up of storage units

called entries, which contain either parsed or unparsed data. XML provides a

mechanism to impose constraints on the storage layout and a logical structure.

The design goals for XML are:

 XML shall be straightforwardly usable over the Internet

 XML shall support a wide variety of applications

 XML shall be compatible with SGML

 It shall be easy to write programs which process XML documents

 The number of optional features in XML is to be kept to the absolute

minimum, ideally zero

 XML documents should be human-legible and reasonably clear

 The XML design should be prepared quickly

17

 The Design of XML shall be formal and concise

 XML documents shall be easy to create

 Terseness in XML markup is of minimal importance

(Extensive Markup Language (XML) 1.0 (Fifth Edition), 2008)

2.7 Control version system

System version control is used in the most of the software development projects to

maintain a source code and to easily follow all the changes that have been done during

the development process. Refactorization of the iSync PHP script was also kept in the

SVN to easily track all improvements. TortoiseSVN application, which is built against

Subversion was used for that purpose. This source control software enables easy

access to the project from Windows operating system. It integrates itself with

Windows shell, which allows to use it conveniently and intuitively.

(tortoisesvn.tigris.org, 2010)

The repository was created locally – there was no need to create a remote one. The

structure of its folders was as follows:

- testApps

- iSunc

o trunk

o branches

o tags

In the testApps location a small application was created, which used the developed

classes and tested them. After the class was well tested, it was enclosed to the final

project, which was placed in the iSync/trunk. The experimentally developed

alternatives were kept in the branched location, while fully working copies of trunk

branch containing certain functionality were stored in the tags.

18

3 IMPLEMENTATION OF THE RESEARCH

3.1 Overview

The main functionality of the original application is in operating with the images and

copying them to the FTP server when their processing is finished. The author tries to

explain all necessary information needed for understanding what happens in the heart

of the PHP script.

Starting from the beginning, the script is

run every second minute. It requests data

from MySQL database and if it receives

any data, it proceeds with them. The first

data are copied to the local temporary

folder from a mounted network space.

Afterwards a necessary checking part is

executed and if everything is valid a script

starts working with the images. When the

images’ processing is ready, the results

have to be copied to the FTP server and the

email notification is sent to a proper person.

FIGURE 6. Data flow in the script

19

FIGURE 7. Data flow in main routine

Before anything was coded it had to be checked if everything involved in script could

be easily moved to .NET environment and could be run fully compatible with the

Mono. The project was started by reading a documentation on the Mono webpage and

checking actual supported frameworks. It turned out that Mono have already

implemented .NET 3.0 and also with some part from version 3.5. It was enough to

handle all functionality in a new code. (Mono, 2004)

Afterwards the most important matter was to check the source code of a script.

Neither clear convention was used in a PHP code nor division between different parts

Data base

For each row

Checking

For each image

image processing

Copy to FTP

Send mail

STOP

20

of a code. The comments had to be made everywhere and the order in a code was

familiarized with by the author. One of the files containing logging functionality had a

suggestion that this should be done as a singleton pattern. At that point it was

understandable what the reason to do so is. When creating a log file it should be

opened and handled only by one instance of a class. That is not only safe from the

operation on files point of view but also it provides correct timestamps in a log file. It

was decided that this pattern would be applied to a new application.

When it was known how the script worked it had to be decided how to start converting

it. The approach that was taken based on creating classes providing proper

functionality related only to the one picked part of the program, for example: FTP

database, email client, XML handling, image processing. That approach also allowed

easier application testing part by part or segment by segment.

3.2 Implementation

As presented in the previous chapters iSync consists of pieces from different

technologies. To make the application flexible and easier to be modified, a

configuration file was created to keep all data that might be changed in the future

outside of the source code. A bad approach would be to use hard coded settings of

FTP client or mail sender. That would prevent developers from changes of those

properties without compilation, whereas PHP script allowed to do that freely and

verify them almost immediately. The configuration file has given the same quality to

binary, compiled application. The FIGURE 8 below illustrates the configuration

fields. The screenshot was made from Visual Studio 2008. The first four options and

options 9 and 10 are related to the FTP client object configuration while fields from 5

to 7 are for email sender object settings. Others, e.g. selected on blue

MySQLconnectionString is for DBHandler object, which contains all required data

like address of the server, database name and credentials. Fields 10, 11and 18 point to

the related folders’ destinations. The log mode field and the log file name can be seen

respectively in the fields 13 and 14. The 15
th

 row contains the administrator’s mail

address used in case of some unexpected actions. The next fields 16 and 17 contain

the mail’s body schemas and the last 19
th

. field specifies whether the results should be

copied into the path from row 18.

1

1

1

1

1

1

1

1

1

1

The pres

recompil

has. Mor

code and

3.3 .N

The FIG

The obje

instance

class, it c

showed i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

esented confi

piling sources

oreover, it cle

nd program it

FI

ET

IGURE 9 belo

ject of this cl

ce of this clas

it can be easil

d in the previ

nfiguration en

es. This bring

 clearly splits

 itself.

IGURE 8. V

elow shows a

 class is respo

ass is created

sily noticed th

vious chapter

enables custo

ings to the ne

ts and shows

View of XM

 all fields and

ponsible for a

ed in the final

 that some of

ter. Indeed the

tomization of

new applicatio

s these custo

ML configur

nd methods o

r and triggers

al application

of them match

these fields ar

 of the compo

tion the same

tomized varia

uration file f

s of the main c

rs all activitie

ion. While rev

tch fields from

 are filled wit

ponents witho

me quality as

riables from t

e fields

n class called

ities in iSync.

reviewing fiel

om the config

ith configura

21

thout

as PHP script

 the source

ed Manager.

c. Only one

ields of this

figuration

ration data

21

pt

.

22

provided in configuration file. The core method of the application is called Process. It

contains refactored routine from PHP script and within this function all important

operations occur.

FIGURE 9. Manager class

23

The Manager class contains also a function called CheckPIDfile. The application has

to mark somehow which item in a database is currently processed to avoid processing

the same item twice. iSync creates a PID file, which is in that case nothing more than

an empty file with a proper item’s name. The application uses CheckPIDfile function

to check whether an item, which it is interested in, is actually in a progress. If not it

proceeds with it, otherwise it simply skips this item.

FIGURE 10. Item class which represents fetched data from database.

One of the most important classes in the application is shown in FIGURE 10. It

encapsulates all needed data and provides a convenient way to access all class’s fields.

It also allows printing out information about an item by overloading a ToString

function. In the original PHP class the data received from a database were kept in the

separate variables without obvious connections. The object representation with proper

fields allows keeping related data in the one place and provides an easy access to

them. It is also very easy to store more items in any container.

24

3.4 MySQL

The FIGURE 11 below shows class responsible for connection, fetching data,

modification and updating fields in a database. Its function called FetchData acts as a

data input for an application. It fetches entries from a database and next parses them to

an object of Item class showed in the previous chapter. All valid entries from a

database are stored in the following container List<Item> _itemsList.

Nevertheless FetchData is not the only function which uses connection with a

database. The others are CheckIfWholePathExist, SetPath and SetStatusDownloaded.

The first function is responsible for checking if there is at least one cell containing

certain string value in a database, the second function takes care of setting a path to an

item with a specific id and the last itemized procedure sets fields of an item with a

specific id as downloaded and done.

The other functions in DBHandler class are also related to a database and they check

whether a connection to a database is active or if it was already closed.

FIGURE 11. Data base handler class

25

3.5 File management

The application operates with different types of data. Some of them are received from

a database and represent processes’ ids which iSync handles, the other are XML file

containing points’ coordinates or picture files. Software, however, not only processes

the content of all received files but it also manages the files themselves, for example it

moves or copies them between different locations. For that purpose a file manager is

used. At the beginning and the end of the application’s routine, the files are moved

here and back. Firstly, they are copied from a mounted network location to the

temporary folder and when the most of the processes are done, the results have to be

placed in a specified location as well.

FIGURE 12. File manager class

The FileManager class contains also the method responsible for creating and

removing folders. This is required for iSync since it processes data copied locally into

a temporary folder. After all processes are finished, it copies data to a destination

place. In case a destination path does not exist, it creates one and then processes with

26

data copying. iSync also deletes the content of a temporary folder which is created

whenever it is needed.

FIGURE 13. UI of test application using FileManager class

The figure above shows the graphical user interface of a test application. The

application wraps all functionality provided by FileManager class and provides an

easy way of testing it.

3.6 XML handling

FIGURE 14 below shows an exemplary XML file which is processed by the

application. The file always includes only one stage element which may contain from

zero to few level elements, whereas each level element contains at least one point

entry. This structure is very clearly visible in FIGURE 15.

27

FIGURE 14. XML file structure

FIGURE 15. UI of the test application which presents and process an XML file.

It wraps XMLCoordinatesReader class

FIGURE 16 below shows a structure of XMLCoordinatesReader class. The object of

this class is responsible for parsing the XML file showed in FIGURE 14. From the

mentioned FIGURE 14 can also be seen that the levels’ ids are not consecutive

numbers – there are levels with following ids: 0, 1, 4. That is why

XMLCoordinateReader class has a function CheckIsFloorExists, which checks if a

28

parsed XML file contains the floor id, which the application requests. The function

GetPointsOnSpecificFloor takes as an argument floor number and returns an array of

points corresponded to this number.

FIGURE 16. XML handler class.

When an application calls a ReadXMLFile function with a path to an XML file as a

parameter, an object reads this file and stores data in a dictionary Dictionary<int,

List<Point>>. It provides a convenient way of getting points from a specific level.

3.7 Image processing

The image processing is a very important part of the original PHP script. The

processed images with an associated PHP file, which is also created by an iSync, bring

required functionality to the web server which uses them. The operations that are

performed on each image are as following:

1. Reading points’ coordinates from XML file – presented in the chapter 3.6

2. Loading a background image and resizing it in the way that larger dimension

from height and width is 360 pixels and the second dimension is scaled

respectively

3. Calculating ratios for height and width of a background image

4. Applying the scales to the read coordinates from the 1. point

29

5. Creating a PHP file called id_level.php which contains predefined data

6. Placing the center of a tagging image on each read point on a loaded

background image

7. Saving a tagged image (background image combined with tagging images) by

overriding the old one.

FIGURE 17 shows a diagram of the ImageHandler class which provides all

functionality related to a data flow presented in the points above. The actions listed

previously can be easily linked to the function enclosed in the ImgeHandler class.

FIGURE 17. Image handler class

All fields of the above presented class are private ones. One of them – ImagePaths

provides get and set property, the other – XMLExists provides only a get property.

30

This is done in this way due to the fact that object of ImageHandler class may receive

and use information about the paths to the images, however, the existence of an XML

file is being determined by this object itself.

Most of the methods of the ImageHandler class are public, only the loading and

tagging images can be called internally by an object of this class.

FIGURE 18 shows the graphical user interface created for the testing purposes of the

ImageHandler class functionality. The functionality of this testing application can be

split into two parts.

The first one – mainly left part of the UI – tests tagging a predefined image, which is

presented as a white rectangle containing blue dots and red crosses. Whenever the left

mouse button is clicked within a rectangle the tagging operation is called and the

coordinates of a clicked point are showed below the border line. In addition, it allows

saving the showed figure to a file representation.

FIGURE 18. UI of the test application using the ImageHandler class

1 2

4 3

31

The second part of this testing application is a semi-automated process split into four

following steps:

1. Loading the images from a hardcoded path

2. Resizing the previously loaded images to a proper size

3. Tagging the images

4. Saving the images by overriding the old ones

The listing below buttons in FIGURE 18 contains the paths to the loaded images and

their sizes.

FIGURE 19 and FIGURE 20 show another testing application of the ImageHandler

class. This time it does not contain any graphical interface, it is a pure console

application. It was created in order to check the implemented different functionality of

images resizing in the different operating systems. In the first FIGURE 19 the output

comes from the Microsoft Windows operating system, the second printout comes from

the Linux operating system. The testing application was compiled on the Windows

that is why it can be run directly on this system, nevertheless to run it on the Linux

OS, it requires to use Mono. (Mono, 2004)

FIGURE 19. Console testing application run under Windows OS

32

FIGURE 20. Console testing application run under Linux OS

There is also one more very visible difference between running the application on

Windows and Linux OS. Due to the problem with interpolation while image resizing,

which occurred on the Linux OS, iSync has to use external application which in this

case is ImageMagic. (ImageMagick: Convert, Edit and Compose Images, 2009)

3.8 Mail client

As presented in chapter 2.4 iSync is intended for logging its activities to the log file.

This is enough, however only as long as everything goes without any unexpected

issues. When any exception occurs, the administrator of the application should be

notified about the issue, the legacy PHP script used to send a mail notification, which

was further connected with a text message notification. When an email server receives

a message from a particular sender – in that case an email sent by the script – it

forwards an SMS to the administrator via messaging service. This is a very convenient

33

and fast way to inform the responsible person to look into a script or / and a database

in case of any serious problem.

It was decided that a new C# iSync will also use an email notification. For that

purpose the Mailer class was created. It provides simple functionality and acts as an

email client only with sending messages option.

FIGURE 21. Mailer class

The object of Mailer, however, is used not only to notify an administrator that some

problem occurred, it is also used to send an email notification to the clients whose

email address was delivered from a database. The information about an email address

is kept in the Item object in one of its fields called _emailAddress. These kinds of

Mailer

Sealed Class

Fields

m_attachments

m_iPort

m_sBody

m_sFrom

m_sServerAddress

m_sSubject

m_sTo

Properties

Body

From

Port

ServerAddress

Subjet

To

Methods

AddAttachment

Clear

Mailer (+ 5 overloads)

Send

SendEmengencyMail

SendMailToAdmin

emails ar

available

FIGURE

Mailer c

F

3.9 Lo

The Logg

This mea

accessibl

Logger c

• s

c

• s

• it

• N

in

 are sent whe

ble for the clie

E 22 shows

class works

FIGURE 2

ogger

gger class w

eans that no

ible from eve

considering

single privat

create an ins

sealed synta

it contains p

Nested class

instance of L

hen an item h

lient. This ro

s a simple tes

s as expected

22. Simple U

 was created a

o other classe

very part of th

g its purpose

ate construct

instance of Lo

tax word used

 private Neste

ss contains st

Logger

 has been alre

routine is sho

testing applic

ed.

e UI of testin

d as a sealed c

sses can deriv

 the code. Th

se. Logger ha

ctors which in

Logger

sed in order to

sted class wh

 static variabl

lready copied

howed in FIG

lication which

ing applicati

d class implem

ive from it an

his is very a

has few chara

 in consequen

r to help JIT o

hich has acce

ble which hol

ed to the FTP

IGURE 7.

ich was used t

tion which s

lementing Sin

and it can hav

 convenient

aracteristic att

uence do not a

 optimizes th

ccess to the w

holds a referen

P server and

d to check wh

sends an em

ingleton desi

ave only one

nt way of des

attributes:

t allow other

 things more

whole Logge

rence to a sin

34

nd it is now

whether

mail

sign pattern.

ne instance

esigning

er classes to

ger class

ingle created

34

n.

d

35

• Instantiation is triggered by the first reference to the static member of the

nested class, which only occurs when the Instance property is called and this

means that implementation is fully lazy.

(Implementing the Singleton Pattern in C#, 2006)

FIGURE 23 shows the diagram of the Logger class. It presents that the main Logger

class has two constructors, although both are used only internally and are private.

FIGURE 23. Logger class

36

3.10 FTP client

The class presented in FIGURE 24 is the richest one. It contains the whole needed

functionality to become a base for a FTP client application. It was decided to do it in

that way as it was mostly beneficial for the company. In the future that class may be

easily contributed to other projects with the functionality it contains. The class has a

very similar purpose as the FileManager class presented in the chapter 3.5 with the

difference that the FTPClient class instance takes care of managing files and / or

folders in the network. Hence, it contains the necessary fields and properties which

allow software developers to configure it in the way they want.

37

FIGURE 24. FTP client class

38

Despite that it was created in the way to allow customization, some of the settings are

hardcoded. The main mechanism used in this class - FtpWebRequest - has two fields

set to predefined values. These fields are FtpWebRequest.sePassive which is set to

false and FtpWebRequest.KeepAlive which is also set to false. The first option says

that an application uses active data transfer process and the second option specifies

that after the request is completed the control connection to the FTP server is closed.

The figure below shows the graphical user interface for the test purposes of the

FTPClient class. It uses all functionality provided by a presented class and it is a very

simple FTP client application.

FIGURE 25. UI of test application using FTPClient class

3.11 Diacritic characters

In the Finnish and Scandinavian languages there are some special letters which are

diacritic characters. The data which is stored in a database is used for generating

39

URLs, therefore such characters cannot be used in any part of the URL. To avoid

keeping such letters in any string a special function was introduced to convert

diacritics characters to US-ASCII encoding. This function also takes care of two other

characters which are dangerous to put to an URL, namely: ‘ ‘(the space) and ‘/’ (the

slash). The pace separates words in one a sentence but in the URL it is replaced by

‘%20’. On the other hand the slash separates different parts of the URL. If an

application adds an entry from a database which contains the slash to an address it

separates the URL in the place where it stands, which is not desired. It was decided

that these two characters are replaced by underscore which is represented in the URL

by itself - ‘_’ meaning underscore.

FIGURE 26 illustrates an example of how the function described in this chapter

works. (Uniform Resource Locators (URL), 1994; Universal Resource Identifiers in

WWW, 1994; Uniform Resource Identifiers (URI): Generic Syntax, 1998)

FIGURE 26. Example of changing diacritics characters

40

3.12 iSync Runner

All the legacy code was changed and tested in the new .NET environment. It provides

the same functionality as the previous PHP script but in a new systematized form.

The old script was run by another shell script from a command line. It caused that

iSync was run every two minutes regardless if there were or were not any ready to

proceed items in a database. That behavior was changed in a new application. For the

purpose of managing iSync and running it, the application iSync Runner was

introduced. It contains several advantages comparing to the previous solution:

- Checking database before running iSync – if there are no valid entries in a

database iSync is not run

- Opening iSync log files

- Allowing to run iSync manually at any time

- Showing balloon tips when any actions is taken

- Allowing to create schedules – a frequency of a database checking varies and

hence running iSync may differ on each day.

iSync Runner also contains the previously utilized functionality, namely automated

periodic execution of iSync. This option, however, may be disabled. FIGURE 27

shows the main graphical user interface available to manage the script and monitor

database.

41

FIGURE 27. Application to manage iSync app

iSync Runner comprises an additional feature which is icons in the notification area.

This allows minimizing it to a notification area and even from there controls iSync.

FIGURE 28 shows the menus of iSync Runner available to the user from the

notification area.

FIGURE 28. iSync Runner options in the notification area

42

4 CONCLUSIONS

4.1 Challenges

After familiarizing with the legacy PHP script and planning all stages of the code

reimplementation, the process of transforming old code to the new environment has

looked really promising. The work was planned for the whole practical training

period, that is three months, and it included heavy application testing.

Code division

The old code was divided into three files, however, they did not group any certain

functionalities. Because of that the code was not easily readable, flexible and easy to

be modified. To avoid similar problems in the new code it was decided to group

specific functionalities to certain classes and the Main function included only the

following lines of code:

Manager _iSyncManager = new Manager();

_iSyncManager.MakeTemporatyDirectory();

_iSyncManager.GetDataFromMySqlDB();

_iSyncManager.CheckIfExit();

_iSyncManager.Process();

_iSyncManager.ClearTemporaryFolder();

_iSyncManager.RemoveTemporaryDirectory();

The other advantage of a new code is that it is self-explanatory as can be noticed from

the fragment above.

Database connection

Building the new application has started from creating the necessary classes, which

are used as tools while the application is run. These classes include: DBHandler,

FileManager and FTPClient. The first of them is a data entry point of the application

and it manages a connection with a MySQL database. This fetched data from database

determines what type of activities will be executed by iSync. In the .NET

documentation there is no information about its cooperation with MySQL databases.

Lack of compatibility with MySQL databases caused that additional research in

finding a proper solution was needed. It turned out that MySQL’s owner provides the

necessary library connecting .NET framework with MySQL database. After applying

43

MySQLConnector library no other major problems were encountered during further

database handing implementation process. (MySQL::Download Connector/Net, 2010)

File management

Developing of the classes managing files and folders both locally by FileManager

class and remotely in the network by FTPClient class was not problematic; it was

rather time consuming. These both classes are versatile because they provide a full

functionality and thus they can be used by a company also in the other projects. It

required, however, creating full documentation containing all information about

FileManager and FTPClient classes.

Images processing

One of the next stages was image processing, which also caused some problems.

Image processing in iSync starts from image’s resizing, more concretely downscaling.

The application uses the following interpolation method:

System.Drawing.Drawing2D.InterpolationMode.HighQualityBilinear, which

provides one of the most accurate functionalities thanks to which the images lose

neither on their quality nor their granularity. Everything worked correctly on

Windows operating system, however, when the testing application presented in

FIGURE 20 was run using Mono on Linux OS some problems with the quality of the

images were noticed. Further investigation showed that using such a good

interpolation method did not bring the expected results. What is more the images’

quality from Linux OS did not change when changing interpolation mode and it was

comparable with the images’ quality from Windows OS only when using

System.Drawing.Drawing2D.InterpolationMode.Low interpolation mode on

Windows side. It was a major issue considering the images’ role which was using

them on the web pages as a part of the presentation. To solve this problem an external

console tool – ImageMagic - was used. This is one of the dependencies and a

requirement that has to be fulfilled if the application is to be used on Linux OS.

44

4.2 Improvements

In the practical part of the thesis the testing applications were presented. This

approach of testing allowed an easy and convenient but a manual way of checking the

functionality of the classes. Nevertheless, it would be much better to create separate

solution in Visual Studio containing unit tests. It has a lot of benefits, most of all the

whole functionality would be tested automatically at once. It would require much

more effort; however, the final balance would have much more profits than losses, for

example, any changes in the function’s body would be immediately verified.

When telling about the other things that could be modified or improved the following

issues cannot be omitted:

• FileManager class

• Manager class

• the other classes using configuration file.

The FileManager class does not contain any fields but only methods. It operates only

on files and folders without loading or modifying their content. Hence this class could

be a static one since then no objects of this class would have to be created in order to

operate on filed or folders.

The Manager class is created only once in the Main function and it manages all

operations done by iSync. Due to the fact that only one instance of this class has to be

created it could also implement singleton design pattern as Logger class presented in

the chapters 2.4 and 3.9 does.

Loading setting from the configuration file is another thing that could be modified.

The classes like DBHandler or Logger should be the ones that could be enclosed by

the other projects using their functionalities. The way of initializing some of their

fields, however, prevents from using them by the other projects without former

modifications. For example a field _SelectCommand in DBHandler class contains a

hardcoded query to the MySQL database, which has read-only and private attributes,

hence they are not supposed to be changed. It could be better, however, if MySQL

query was customized by constructor’s parameter or property.

45

The Logger class depends even more on iSync application itself. It contains static

fields, two of which, namely _FILENAME and _logMode, are filled based on data

from the configuration file. It should be definitely changed to allow integration into

the other projects.

4.3 Summary

The refactorization of the legacy PHP script did not rely only on rewriting it into the

new environment - .NET, but also introducing new order into the previously very

chaotic code. Currently the functionalities related to the common areas are divided

into separate classes, they were all tested using testing applications and the whole

documentation is also created. The code of the present iSync is much more readable

and it can be easily modified in the future if needed. Retrospectively it can be clearly

visible that there could be some changes done already at the last stage of the

application just to improve its functionality in the current project. Unfortunately the

short period of the practical training and the complexity of the iSync did not allow the

author to introduce any additional improvements. The main goal of the development,

however, was achieved. The application uses many technologies and hence the author

was able to broaden his knowledge from different areas. What is more he has created

the new application, which has the same functionality as a legacy code and can be

easily extended or enriched by the other developers.

46

REFERENCES

.NET Design Pattern and Architectural in C# and VB. (2010). Retrieved from

http://www.dofactory.com/Default.aspx

Albabari, J., & Albabari, B. (2010). C# 4.0 in a Nutshell. O`Reilly Media.

Bellovin, S., & Laboratories, A. B. (1994, February). RFC 1579 - Firewall - Friendly

FTP. Retrieved January 19, 2010, from IETF Documents:

http://tools.ietf.org/html/rfc1579

Exploring the Singleton Design Pattern. (2010). Retrieved Septemer 16, 2009, from

MSDN Library: http://msdn.microsoft.com/en-us/library/ee817670.aspx

Extensive Markup Language (XML) 1.0 (Fifth Edition). (2008, November 26).

Retrieved January 23, 2010, from All Standarfs and Drafts:

http://www.w3.org/TR/REC-xml/

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements

of Reusable Object-Oriented Software. Boston: Addison-Wesley.

Gilmore, J. W. (2008). Begininning PHP and MySQL. New York: Springer-Verlag

New York.

ImageMagick: Convert, Edit and Compose Images. (2009). Retrieved from

ImageMagick: http://www.imagemagick.org/script/index.php

Implementing the Singleton Pattern in C#. (2006, January 7). Retrieved from

http://www.yoda.arachsys.com/csharp/singleton.html

Krishna Rao, R. B. (2007). Programming with C#: Concepts and Practice. Delhi:

Asoke K. Ghost.

Liberty, J., & Xie, D. (2008). Programming C# 3.0 (Fifth Edition ed.). O`Reily

Media.

Mamone, M. (2006). Practical Mono. New York: Springer-Verlag.

Mono. (2004, June). Retrieved Fabruary 18, 2011, from http://www.mono-

project.com/Main_Page

47

MySQL :: MySQL 5.1 Reference Manula :: 20.2 MySQL Connector/NET. (2010).

Retrieved December 09, 2010, from MySQL :: Developer Zone:

http://dev.mysql.com/doc/refman/5.1/en/connector-net.html

MySQL::Download Connector/Net. (2010). Retrieved from

http://www.mysql.com/downloads/connector/net/

Nash, T. (2007). Accelerated C# 2008. New York: Springer-Verlag.

Nash, T. (2010). Accelerated C# 2010. New York: Springer-Verlag.

Postel, J., & Reynolds, J. (1985, October). RFC 959 File Transfer Protocol. Retrieved

January 21, 2010, from IETF Documents: http://tools.ietf.org/html/rfc959#appendix-I

Schonig, H. J., & Geschwinde, E. (2004). Mono Kick Start. Sams Publishing.

Singleton Design Pattern in C# and VB.NET. (2010). Retrieved September 16, 2009,

from .NET Design Patterns and Architectures in C# and VB, .NET training,

DoFactory: http://www.dofactory.com/Patterns/PatternSingleton.aspx

Suehring, S. (2002). MySQL Bible. New York: Wiley Publishing, Inc.

Swaminathan, R. K. (2007). Cross-Platform Application Development using .NET and

Mono. Waterloo: University of Waterloo.

Thai, T., & Lam, H. (2002). .NET Framework Essentials (2nd ed.). Gravenstein

Highway North: O'Reilly.

tortoisesvn.tigris.org. (2010). Retrieved February 20, 2010, from

http://tortoisesvn.tigris.org/

Uniform Resource Identifiers (URI): Generic Syntax. (1998, August). Retrieved 11 20,

2010, from Web Naming and Addressing Overview:

http://www.ietf.org/rfc/rfc2396.txt

Uniform Resource Locators (URL). (1994, December). Retrieved September 20, 2010,

from RFC-Editor Webpage: http://www.rfc-editor.org/rfc/rfc1738.txt

Universal Resource Identifiers in WWW. (1994, June). Retrieved 11 20, 2010, from

Web Naming and Addressing Overview: http://www.w3.org/Addressing/rfc1630.txt

