WWW.JAMK.FI

INTEGRATING AND TRANSFERRING LEGACY
CODE TO .NET / MONO ENVIRONMENT
ON MULTIPLE PLATFORMS.

Kamil Wojciech Szarek

Bachelor’s Thesis
May 2011

Degree Programme in Information Technology
Software Engineering

LN . "
((I&\\ JYVASKYLAN AMMATTIKORKEAKOULU
-

4) JAMK UNIVERSITY OF APPLIED SCIENCES

;n\ " " DESCRIPTION
Friiw JYVASKYLAN AMMATTIKORKEAKOULU
\§ 4’ JAMK UNIVERSITY OF APPLIED SCIENCES

Author(s) Type of publication Date
SZAREK Kamil Wojciech Bachelor’s Thesis 03.05.2011
Pages Language
47 English
Confidential Permission for web
publication
() Until (X)
Title

INTEGRATING AND TRANSFERRING LEGACY CODE TO .NET / MONO ENVIRONMENT ON
MULTIPLE PLATFORMS.

Degree Programme
Information Technology

Tutor(s)
SALMIKANGAS, Esa

Assigned by
Upload Image Processing Oy

Abstract

Today it is very important that the applications are platform independent and
sufficient. It was and still is very common that whenever some operations take part on
server side they are created by a script language, like PHP, bash, or Ruby. This is a very
convenient approach because a code can be easy modified, and the whole application
does not require recompilation after that. What is more the results are immediately
visible. Sometimes, however, when such an application has to perform heavy
operations, those languages are not sufficient. At some point it might be very wise to
consider the code’s migration to some other environment or language that can be run
efficiently on almost every platform.

This Bachelor’s thesis shows the whole process of such a migration. The legacy PHP
script is refactored from Linux environment to C# language and cross-platform Mono
environment. The author presents all most important modifications and improvements,
and also focuses on the encountered problems and further changes that can be done in
the future.

Keywords
PHP, C#, .NET, mono project, image processing, FTP client, mail client

Miscellaneous

CONTENTS
FIGURESottt r e e e e e ne e s nn e e sneesnneea 2
ABBREVIATIONS.....cce ettt sttt s ne e s an e nne e sane e 4
DEFINITIONSttt ettt st nae e st e et esaeeebe e s e e e nneesaneen 5
1 INTRODUGCTION. ...ttt sae e e sbe e s s sae e sneeesaeesaneen 6
2 THEORETICAL BASICS ...ttt s 8
2.1 Overview of thetechnologiesrelated to the SCriptccocveveveeeienenese e, 8
2.2 INET @1 MONOooiiiiiieiiiiieieee e 10
2.3 MySQL and itsS .NET DINAING.......ccireririeriieieieiesesie e 12
A W0 (o = SRR 14
25 FTPCHENE oottt nre s 15
2.6 XML NandliNgccoeeiiieiie e 16
2.7 CONtrol VErSION SYSLEMcccuviiecieciie ettt nas 17
3 IMPLEMENTATION OF THE RESEARCHoooiieeeeee e 18
Sl OVEIVIBW .ottt e e bttt b e 18
3.2 IMPIEMENLALION.c..iiiiecie e aeesreesnneen 20
G 0 N N | USSR 21
I R V 1Y@ | OO 24
35 Flemanagement..........oi e 25
36 XML NANAIING ..o 26
3.7 IMAYE PrOCESSINGeveverieriieieeiesiesie sttt sttt e et bbbt e e s sbesaesbe e 28
38 Mal ClHENM..ceeicce e 32
G N 0 (o = S 34
310 FTP CHENE .o 36
3. 11 DIBCITIC CNAIBCIENS....c..eiveciicieeeeeete et 38
G0t N 1Y o (U T PR 40

4 CONCLUSIONS.....cieee ettt s ae e r e s e e e ne e s nneeneas 42
4.1 CREIIENGESoceeiiiieieee e 42
N 111010 o)V < 01 1 KSR 44
T S U1 1011 0= Y SRRSO 45

REFERENGCES....... ..ottt 46

FIGURES

FIGURE 1. Technologies and techniques related to the SCriptcccceceieieneneniennne 8

FIGURE 2. Overview routine of the appliCationccccoerereneneninieeeee e 9

FIGURE 3. .NET Framework evolution (Nash, Accelerated C# 2010, 2010) 11

FIGURE 4. Logical model of asingleton patternccccoeceeveeieceevieccie e 15

FIGURE 5. Singleton pattern physical model from design patterns (Gamma, Helm,

Johnson, & VIISSIAES, 1994).......cuiieeece ettt sne s 15
FIGURE 6. Dataflow inthe SCript.........cooveiiiieiice e 18
FIGURE 7. Dataflow in Main FOULINE............couiiriiieerieneeese e 19
FIGURE 8. View of XML configuration file fields..........ccccceiveiiieieciiceceee 21
FIGURE 9. Manager ClaSScoouiiiieiiecee ettt 22
FIGURE 10. Item class which represents fetched data from database. 23
FIGURE 11. Database handler Class..........coviiieniriiieeeesese s 24
FIGURE 12. File Manager ClaSs........ccoceiiirieriirieriisieieee ettt 25
FIGURE 13. Ul of test application using FileManager Class..........ccccevevenenencrienne. 26
FIGURE 14. XML fll@ SITUCLUIEc.eeueieiiceeestetcees e 27

FIGURE 15. Ul of the test application which presents and process an XML file. It
wraps XMLCoordinateSREAdEr ClaSS........cccvvieeieiie e 27

file:///C:/Users/Kamil/Desktop/inzynierka/inż/repo/inz/praca/trunk/BachelorThesis_Body.docx%23_Toc292223846

3

FIGURE 16. XML handler ClasS........cccceoeiiiiriieiisieeeeeese s 28
FIGURE 17. Image handler Class...........coeoiiiiinenineeeeeeee e 29
FIGURE 18. Ul of the test application using the ImageHandler class........................ 30
FIGURE 19. Console testing application run under Windows OS.............cccoceevernenne 31
FIGURE 20. Console testing application run under Linux OS...........cccooovveenerienneene 32
FIGURE 21. MaAIEF ClaSS.....c.ciiiiiiiiiieieieie et 33
FIGURE 22. Simple Ul of testing application which sendsan email 34
FIGURE 23. LOQQEN ClESS......uiiuiiiiicie ettt sttt s ne s 35
FIGURE 24. FTP ClI@Nt ClaSS....c..iiiiieieieiesiesie et 37
FIGURE 25. Ul of test application using FTPClient Classcccccoeveeieeveeieccie s, 38
FIGURE 26. Example of changing diacritics CharaCters...........ccoccvveeveeieneesenien s 39
FIGURE 27. Application t0 Manage iSYNC 8PP «...c.ueeeeerreeriereriesiesiesieeeesee e seeseesnes 41
FIGURE 28. iSync Runner optionsin the notification area.............ccocevevevvenenencneene. 41

ABBREVIATIONS

API Application Programming Interface
APS Active Server Pages

ASCII American Standard Code for Information Interchange
CLI Common Intermediate Language

CLR Common Language Runtime

COM + Component Object Model

CPU Central Processing Unit

FTP File Transfer Protocol

GPL GNU General Public License

GUI Graphical User Interface

JIT Just In Time

LGLP GNU Lesser General Public License
MSIL Microsoft Intermediate Language
OS Operating System

PID Process ldentifier

SDK Software Development Kit

SM S Short Message Service

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration
Ul User Interface

WSDL Web Services Description Language

XML Extensible Markup Language

DEFINITIONS

iSync — name of the PHP legacy script which is the main subject in the thesis.

Application with the same name is created in .NET environment.

1 INTRODUCTION

For many years new businesses and companies have grown and the infrastructure has
grown according to the available supplies and existing demands on the market. Within
all these years with the very fast electronics devel opment, the same has happened with
the software used by different companies. Nowadaysiit is very important to follow up
new technologiesin the IT sector. Buying and using the latest hardware, however, is
very often not enough. What makes work easier is also the software, which within the
years may become inefficient or just too old and that is why it can be incompatible

with the modern hardware. In that case there are few solutions:

1. buying new software if there is an available one which meets all expectations
and needs of potential user

2. creating acompletely new software

3. recreating an existing software, for example by implementing it in a new

environment.

Many companies, which own their own software do not want to buy or create a new
one because it can result in using the other’s company’s licenses, which they do not
want to do. In this case, the best solution is to adapt the old program to the current

needs and thisis what Upload Image Processing company decided to do.

The author’s main task during a practical training was convert PHP script running on
the Linux environment to the C# cross-platform Mono environment. The heart of the
original script was avery long procedure that had to be split and re implemented in the
new environment. The base routine used many technologies like: file managing, file
transfer protocol, MySQL database connection, email client for sending notifications,
and image processing. The large variety of technologies described above caused that
the whole project work was divided into several stages according to the used
technologies to keep the code clear and to easily manage the process of

refactorization.

At the beginning the author had to familiarize himself with the whole old code, which
was kept in four files to separate at |east some parts of the code from each other.
When the first stage was finished and the author was briefly introduced into the whole

script, integration had to be started. However, it was impossible and unwise just to

rewrite the whole PHP code to C# line by line; that is why that solution was not even
taken into consideration. Instead of that everything had to be done precisely, carefully
and almost from scratch based only on the functionality which PHP legacy code
provided. First of al the knowledge about certain issue related to the project had to be
collected. A very important phase was a so creating documentation of the whole code
because the original source code was not very well commented. The aim was to create
software that would be compatible with the current hardware and would meet the
client’s expectations. What is equally important in the future is that then code would
be much easier to maintain and change by someone else. To reach this goa detailed
documentation was needed as well as many descriptions and explanations how and

why thing was done in that particular way.

This Bachelor’s Thesis shows the whole process of software migration between two
different IT environments. Its main goal isto show how the functionalities should be
properly separated and encapsulated into the components. The other very important
subject taken up into this document is very clear explanation of how all needed

information was gathered and how it was implemented.

Thefirst part of thisthesisistheoretical and is contains a short description of aroutine
which was used to perform the script. It also introduces briefly some technologies that
are used by the original script, which are described more detailed later in each of the
separate subsections. It aims at familiarizing the reader with the basic technologies,

which allows further understanding of how the script works and how it is modified.

In the third chapter, the author discusses the whole process of implementation with
usage of the new application’s structures of classes for better illustration of the task he
has accomplished. Some of the classes were used in the simple test applications with

graphical interface, which is also presented in this part of the thesis.

Thetask of re-implementation can seem line straight forward, only it requires a great
deal of time and aworkload, and most often there are many difficulties that each
developer needs to face in order to create afully working application. That iswhy
chapter 4 presents exemplary problems that the author experienced when a script was

re-implemented and the ways he resolved them.

2 THEORETICAL BASICS

2.1 Overview of thetechnologiesrelated to the script

The figure below shows most of the technologies, techniques and a system related to
the iSync script and they are described more detailed in the further chapters. What can

be noticed here is that iSync relies mostly on the open source free solutions.

MySQL
databse

Image
processing

File ‘ :
XML reader R R Logging

FIGURE 1. Technologies and techniquesrelated to the script

The script is run under Linux operating system which is at the same time a web server.
The FIGURE 2 below illustrates a routine of the script.

START

Data base /

Notification

: - ' Fetch data
via email \ ! /

Upload \ Image
ready files L processing

php file
generation

FIGURE 2. Overview routine of the application

At the beginning MySQL database is used as a source of the information and a data
needed to further process. Whenever there are ready entries to work with them in the
database, the script fetches data from the FTP server or from alocally mounted
storage and then processes them. In most cases the script has to work with the images;
usually at least two of them, from which the first oneis used as a background image
and the second one as a tagging image, which is placed on the background image
according to the coordinates stored in the XML file. After that the script creates a PHP
file containing proper data and later it is used by aweb server. When the whole
procedure isfinished, al required files are uploaded to the location specified in a

10

configuration file. Afterwards iSync sends an email with a notification to the email
address fetched from a database. At that point if there are no problems one taken job is
finished and the proper field in a database is changed.

Within al these activities the script writes previously defined information and errors’
descriptionsto alog file. In case of any failure or obstacle thisinformation helps the
developer or administrator of the server to solve a problem much quicker instead of
starting investigating what has gone wrong and when it has happened.

2.2 .NET and Mono

NET initiative was announced by Microsoft in July 2000. .NET platform was a new
development framework with a new programming interface to the Windows services
and APIs, integrating a number of technologies that emerged from Microsoft during
late 90s. .NET, however, was not distributed alone but there were following elements
incorporated with it:

- COM+ component service

- ASP web development framework

- commitment to XML

- Object — oriented design

- support for new web services protocol as SOAP, WSDL and UDDI.

The most important component of the .NET framework is CLR. At ahigh level CLR
activates objects, performs security, checks on the objects, lays them out in amemory,
executes them and garbage-collects them. Conceptually, the CLR is aruntime
infrastructure that abstracts underlying platform differences. CLR supports all
languages that can be represented in the Common Intermediate Language. (Thai &
Lam, 2002; Albabari & Albabari, 2010)

.NET, however, isaso acollection of tools, utilities and components that aid
developersin building a console, GUI, and web applications, abstracting much of the
lower level detail involved in building high-performance software. In the sense of
environment the most important components of .NET are:

11

e TheMicrosoft .NET Framework, a collection of core classes and librariesto
perform common tasks
e The C# programming language, an object-oriented compiled language
e The Common Language Runtime (CLR), an MSIL interpreter and just-in-time
runtime that converts MSIL to native machine code
e ADO.NET, adata access library.
(Liberty & Xie, 2008)

FIGURE 3 shows the evolution of the .NET Framework from version 2.0 to version

4.0.

.NET 2.0

4.0 (2010) 3.5(2007) 3.0(200) Framework
(2005)

WinForms

Parallel LINQ
ASP.NET

ADO.NET

Base Class Library
Task Parallel ADO.NET
Lubrary Entity Framework

Common Language
Runtime

Card Space

FIGURE 3. .NET Framework evolution (Nash, Accelerated C# 2010, 2010)

The application refactoring to a.NET environment, in case of thisthesis, is strongly
related to a Linux environment. C# as alanguage does not have any support on the

12

other operating systems than Windows. Thisisavery crucia issue, although thereis
away to use C# compiled code on the Linux OS. Thisis provided by Mono, which is
an open-source initiative that brings .NET technol ogies to operating systems other
than Microsoft Windows. (Mamone, 2006)

Mono provides the necessary software to develop and run .NET client and server
applications on Linux, Solaris, Mac OS X, Windows, and UNIX. The project’s
objective isto completely port the Microsoft .NET development platform to UNIX,
thereby alowing UNIX developers to build and deploy truly cross-platform .NET
applications regardless of the operating system and machine architecture. The project,
although sponsored by Novell, is open-source. The current version of Mono available
during application refactoring - Mono 2.4 - supports most of the common
functionality offered within the .NET environment. Mono contains the core
development libraries, as well as the development and deployment tools. At the time
of writing, Mono API coverageislimited to the. NET 3.0 API, with spotty support for
the version 3.5.

Mono contains the following components:

e A Common Language Infrastructure (CLI) virtual machine that contains a
class loader, ajust-in-time compiler, and a garbage collector

e A classlibrary that can work with any language which works on the CLR.
Both .NET compatible class libraries as well as Mono provided class libraries
areincluded

e A compiler for the C# language. Future work on other compilers that target the
Common Language Runtime is planned.

(Swaminathan, 2007; Schonig & Geschwinde, 2004)

2.3 MySQL and its .NET binding

MySQL isarelational database management system which acts as a server providing
multi user access to a number of databases. It is available as either abinary or a
source-code download. MySQL is covered under GPL and LGPL licenses.

13

MySQL is available on many different operating systems on variety of computer
architectures. Currently it has versions for Linux, Windows, Solaris, FreeBSD,
MacOS X, HP— UX, AlX, SCO, SCI, Irix, Dec OSF and BSDi. The Linux version of
MtSQL runs on arange of architectures. The availability of a cross— platform
versions has enhanced the popularity of MySQL. (Suehring, 2002)

Anyhow, .NET environment does not natively support MySQL database. Hence there
was a need to use external components to provide the missing functionality. Such a
library is available and provided by Sun Microsystem on MySQL webpage — it is
Connector/NET.

Connector/NET enables developersto easily create .NET applications that require
secure, high-performance data connectivity with MySQL. It implements the required
ADO.NET interfaces and integrates them into ADO.NET aware tools. Devel opers can
build applications using their choice of .NET languages. Connector/NET isafully
managed ADO.NET driver written in 100% pure C#.

Connector/NET includes full support for:

e Features provided by MySQL Server up to and including MySQL Server
version 5.5

e Large-packet support for sending and receiving rows and BLOBs up to 2
gigabytesin size

e Protocol compression which enables compressing the data stream between the
client and server

e Support for connecting using TCP/IP sockets, named pipes, or shared memory
on Windows

e Support for connecting using TCP/IP sockets or Unix sockets on Unix

e Support for the Open Source Mono framework developed by Novell

e Itisfully managed, and does not utilize the MySQL client library.

(MySQL :: MySQL 5.1 Reference Manula:: 20.2 MySQL Connector/NET, 2010)

14

2.4 Logger

Logging is acommonly used technique in software development, which alowsto
check if expected behavior happened in proper moments while the program was
running. The most important benefit of this technique, however, isto track down a
problem using logged data. When some problem occurs during runtime it is written to

alog file with al associated descriptions.

The original iSync has written only the information about the progress. In practice it
means that whenever some error occurred it showed only the last valid entry in alog
file. There were no data saying what problem had occurred. This approach was very
problematic and caused extrawork for the attendant and that is why it had to be
changed.

In the new implementation, the application writes three types of datato alog file:

- information
- warnings

- errors.

Information tells about normal operations done during a runtime. Warnings point that
part of necessary verifications in a code which fail whereas the errors indicate

unexpected behavior or exceptions.

With the help of superior of the project it was decided that logging class would be
reconstructed as a similar standalone class and it would implement the singleton

pattern.

Theintent of asingleton pattern isto ensure that a class has only one instance and to
provide aglobal point to it. The model for asingleton is very straightforward. Usually
there is only one singleton instance and clients access a singleton through one well-
known access point. The client in this case is an object that needs access to an instance
of asingleton. The previously described relationship is showed in the FIGURE 4
below.

15

Client ses | Singleton

FIGURE 4. Logical model of a singleton pattern

(Exploring the Singleton Design Pattern, 2010)

Singleton

-static uniqueinstance : Singleton
-sindletonData
+ static Instance() : Singleton

+ SingletonOperation()
+ GetSingletonData()
FIGURE 5. Singleton pattern physical model from design patterns (Gamma,

Helm, Johnson, & Vlissides, 1994)

The physical model for the Singleton pattern is also very ssimple. The FIGURE 5
above shows asimple class diagram. There is a private static property of asingleton
object as well as a public method Instance() that returns this private property.

2.5 FTP client

The File Transfer Protocol is one of the oldest and most often used protocolsin the
internet. FTP specifications state that by default, all data transfers should be done over
asingle connection. An active open is done by the server, from its port 20 to the same
port on the client machine as was used for the control connection. The client does a
passive open. For better or worse, most current FTP clients do not behave thisway. A
new connection is used for each transfer, to avoid exceeding TCP’s TIMEWAIT state,
each time a client picks a new port number and sends a PORT command announcing

that to the server. Nowadays FTP client uses two parallel connections. One connected

16

to the server’s port 21 which is called control connection and it stays open for the
duration of the session, and the second one is a data connection opened by the server
from its port 20. (Bellovin & Laboratories, 1994)

The objectives of the FTP are:

e To promote files’ sharing (computer programs and/or data)

e To encourageindirect or implicit (via programs) usage of the remote
computers

e Toshield auser from variations in the file storage systems among the hosts

e Totransfer datareliably and efficiently.

(Postel & Reynolds, 1985)

2.6 XML handling

Extensive Markup Language, abbreviated XML, describes a class of the data objects
called XML documents and partially describes a behavior of the computer programs
which process them. XML is an application profile or arestricted form of SGML, the
Standard Deserialized Markup Language. By construction, XML documents are
conforming to SGML documents. XML documents are made up of storage units
called entries, which contain either parsed or unparsed data. XML provides a
mechanism to impose constraints on the storage layout and a logical structure.

The design goalsfor XML are:

e XML shall be straightforwardly usable over the Internet

e XML shall support awide variety of applications

e XML shall be compatible with SGML

e |t shall be easy to write programs which process XML documents

e The number of optional featuresin XML isto be kept to the absolute
minimum, ideally zero

e XML documents should be human-legible and reasonably clear

e The XML design should be prepared quickly

e TheDesign of XML shall be formal and concise
e XML documents shall be easy to create

e Tersenessin XML markup is of minimal importance

(Extensive Markup Language (XML) 1.0 (Fifth Edition), 2008)

2.7 Control version system

System version control is used in the most of the software development projectsto

maintain a source code and to easily follow all the changes that have been done during

the development process. Refactorization of the iSync PHP script was also kept in the

SVN to easily track all improvements. TortoiseSVN application, which is built against

Subversion was used for that purpose. This source control software enables easy
access to the project from Windows operating system. It integrates itself with
Windows shell, which allows to use it conveniently and intuitively.

(tortoisesvn.tigris.org, 2010)

The repository was created locally — there was no need to create aremote one. The

structure of its folders was as follows:

- testApps
- iSunc
o trunk

o branches

o tags

In the testApps location a small application was created, which used the developed
classes and tested them. After the class was well tested, it was enclosed to the final
project, which was placed in the iSync/trunk. The experimentally developed
aternatives were kept in the branched location, while fully working copies of trunk

branch containing certain functionality were stored in the tags.

18

3 IMPLEMENTATION OF THE RESEARCH

3.1 Oveview

The main functionality of the original application isin operating with the images and
copying them to the FTP server when their processing is finished. The author tries to
explain all necessary information needed for understanding what happens in the heart
of the PHP script.

Starting from the beginning, the script is

run every second minute. It requests data

from MySQL database and if it receives Q

any data, it proceeds with them. The first /‘ e & >

. . email

data are copied to the local temporary b

folder from a mounted network space. s /{«/ | .
. upload

Afterwards a necessary checking part is _ /

executed and if everything isvalid a script

starts working with theimages. Whenthe | GURE 6. Data flow in the script
images’ processing is ready, the results

have to be copied to the FTP server and the

email notification is sent to a proper person.

19

"

For each row

"

Checking

"

N 4

Y
4
Y

STOP

FIGURE 7. Data flow in main routine

Before anything was coded it had to be checked if everything involved in script could
be easily moved to .NET environment and could be run fully compatible with the
Mono. The project was started by reading a documentation on the Mono webpage and
checking actual supported frameworks. It turned out that Mono have aready
implemented .NET 3.0 and also with some part from version 3.5. It was enough to
handle al functionality in anew code. (Mono, 2004)

Afterwards the most important matter was to check the source code of a script.
Neither clear convention was used in a PHP code nor division between different parts

20

of a code. The comments had to be made everywhere and the order in a code was
familiarized with by the author. One of the files containing logging functionality had a
suggestion that this should be done as a singleton pattern. At that point it was
understandable what the reason to do so is. When creating a log file it should be
opened and handled only by one instance of a class. That is not only safe from the
operation on files point of view but also it provides correct timestamps in a log file. It

was decided that this pattern would be applied to a new application.

When it was known how the script worked it had to be decided how to start converting
it. The approach that was taken based on creating classes providing proper
functionality related only to the one picked part of the program, for example: FTP
database, email client, XML handling, image processing. That approach also allowed

easier application testing part by part or segment by segment.

3.2 Implementation

As presented in the previous chapters iSync consists of pieces from different
technologies. To make the application flexible and easier to be modified, a
configuration file was created to keep all data that might be changed in the future
outside of the source code. A bad approach would be to use hard coded settings of
FTP client or mail sender. That would prevent developers from changes of those
properties without compilation, whereas PHP script allowed to do that freely and
verify them almost immediately. The configuration file has given the same quality to
binary, compiled application. The FIGURE 8 below illustrates the configuration
fields. The screenshot was made from Visual Studio 2008. The first four options and
options 9 and 10 are related to the FTP client object configuration while fields from 5
to 7 are for email sender object settings. Others, e.g. selected on blue
MySQLconnectionString 1s for DBHandler object, which contains all required data
like address of the server, database name and credentials. Fields 10, 11and 18 point to
the related folders’ destinations. The log mode field and the log file name can be seen
respectively in the fields 13 and 14. The 15" row contains the administrator’s mail
address used in case of some unexpected actions. The next fields 16 and 17 contain
the mail’s body schemas and the last 19" field specifies whether the results should be

copied into the path from row 18.

21

The presented configuration enables customization of the components without

recompiling sources. This brings to the new application the same quality as PHP script

has. Moreover, it clearly splits and shows these customized variables from the source

code and program itself.

Name Type Scope Value
1 |FTPaddress string User v | ftp://
2 |FTPuser string User >
3 |FTPpassword string User -
4 |FTPport int User v |21
5 |MAlLsender string User -
6 |MAILsmptServer |string User >
7 |MAlLport int User -
8 QLco (Connectio... Application
9 |FTPbuffer_size int User v 1024
10 [FullPath string User h -E:\ _
11 |SourceFolder string User w [Z\ .I
12 |FTPCurrentFold... |string User v/
13 |LogFile rstring User v | testLogFile.log
14 |LogMode bool User v | True
15 |[AdminMailAdd... |string User v
16 |MailMessagel |string User w | mailil.tet
I7 IMailMessage2 |string User v | maili2.txt
18 |HTML folder string User - ﬁublic_html/
19 |PublicModeOn... |bool User v |False

FIGURE 8. View of XML configuration file fields
3.3 .NET

The FIGURE 9 below shows all fields and methods of the main class called Manager.

The object of this class is responsible for and triggers all activities in iSync. Only one

instance of this class is created in the final application. While reviewing fields of this

class, it can be easily noticed that some of them match fields from the configuration

showed in the previous chapter. Indeed these fields are filled with configuration data

22

provided in configuration file. The core method of the application is called Process. It

contains refactored routine from PHP script and within this function all important

operations occur.

Ve

Manager
Class

=l Fields

_buttonDir
_checkFilesBeforehand
_dbHandler
_fileManager
_FTPClient
_fullPath
_imageTag
_itemsList
_logger

_maill

_mail2

_mailer
_publicFolder
_publicOnFTP
_publicOnLocal
_rgrdFiles
_srcFolder

TeereRrer e e R

_tempFolder

= Methods

% CheckIfExit

2" CheckPIDfile
ClearTemporaryFolder
' GetDataFromMySqlDB
27 Init

“ MakeTemporatyDirectory

L

% Manager

2" Message

“ Process

" ReadBody

% RemoveTemporaryDirectory
=" ReplaceDiacriticsAndOther

FIGURE 9. Manager class

23

The Manager class contains also a function called CheckPIDfile. The application has
to mark somehow which item in a database is currently processed to avoid processing
the same item twice. iSync creates a PID file, which is in that case nothing more than
an empty file with a proper item’s name. The application uses CheckPIDfile function
to check whether an item, which it is interested in, is actually in a progress. If not it

proceeds with it, otherwise it simply skips this item.

" ~
Item

Class

"

= Fields
#* _business
_emailAddress
_id
##¥ _representation
o® _targetNumber

= Properties

Business
EmailAddress
Id
Representation

L L i g g

TargetNumber
=l Methods

% Item (+ 1 overload)

“ ToString
- /

FIGURE 10. Item class which represents fetched data from database.

One of the most important classes in the application is shown in FIGURE 10. It
encapsulates all needed data and provides a convenient way to access all class’s fields.
It also allows printing out information about an item by overloading a ToString
function. In the original PHP class the data received from a database were kept in the
separate variables without obvious connections. The object representation with proper
fields allows keeping related data in the one place and provides an easy access to

them. It is also very easy to store more items in any container.

24

3.4 MySQL

The FIGURE 11 below shows class responsible for connection, fetching data,
modification and updating fields in a database. Its function called FetchData acts as a
data input for an application. It fetches entries from a database and next parses them to
an object of Item class showed in the previous chapter. All valid entries from a

database are stored in the following container List</tem> _itemsList.

Nevertheless FetchData is not the only function which uses connection with a
database. The others are ChecklfWholePathEXxist, SetPath and SetStatusDownloaded.
The first function is responsible for checking if there is at least one cell containing
certain string value in a database, the second function takes care of setting a path to an
item with a specific id and the last itemized procedure sets fields of an item with a

specific id as downloaded and done.

The other functions in DBHandler class are also related to a database and they check

whether a connection to a database is active or if it was already closed.

bed

-
DBHandler
Class

= Fields

#* _connectionString
@*® _itemsList
#¥ _MySglConnection
#? _SelectCommand
=l Properties
' Items
= Methods

% CheckIfWholePathExists
CloseConnection
DBHandler (+ 1 overload)
FetchData

IsOpen

OpenConnection

SetPath
SetStatusDownloaded

Lo Sl SR S SR 2B

FIGURE 11. Data base handler class

25

3.5 File management

The application operates with different types of data. Some of them are received from
a database and represent processes’ ids which iSync handles, the other are XML file
containing points’ coordinates or picture files. Software, however, not only processes
the content of all received files but it also manages the files themselves, for example it
moves or copies them between different locations. For that purpose a file manager is
used. At the beginning and the end of the application’s routine, the files are moved
here and back. Firstly, they are copied from a mounted network location to the
temporary folder and when the most of the processes are done, the results have to be

placed in a specified location as well.

bl

FileManager
Class

= Methods

ClearFolder

<

CopyEntireFolder

CopyFile
CopyFilesFromFolder
CreateFolder (+ 1 overload)
DeleteFile

DeleteFiles
GetFilesAccordingMask
GetFilesExceptMask
MoveFile

MoveFolder

LolE S S R S SR SR SN SR S ¢

RemoveFolder
- /

FIGURE 12. File manager class

The FileManager class contains also the method responsible for creating and
removing folders. This is required for iSync since it processes data copied locally into
a temporary folder. After all processes are finished, it copies data to a destination

place. In case a destination path does not exist, it creates one and then processes with

26

data copying. iSync also deletes the content of a temporary folder which is created

whenever it is needed.

-
Copy files b [LM

From: E:\ [Browse dirs } 1 Browse files]
To: E\

Folders Files o

(Compentroioder | [Copropechictie | puc -

Remove folder { Copy evernything J [exclude
from folder
Remove S —
eventhinginfolder | | Deletefie |
[Movefoder | [Movefie |

FIGURE 13. UI of test application using FileManager class

The figure above shows the graphical user interface of a test application. The
application wraps all functionality provided by FileManager class and provides an

easy way of testing it.

3.6 XML handling

FIGURE 14 below shows an exemplary XML file which is processed by the
application. The file always includes only one stage element which may contain from
zero to few level elements, whereas each level element contains at least one point

entry. This structure is very clearly visible in FIGURE 15.

[¥R S B

<stage>
= <lewel id

<?xml wverszion="1.0" encoding="UTF-8"72>

4 "one

5 <point ®x = "436" v = "B51"»></point>

& <point x = "273" y = "531"»</point>

T B <flevel>

g K <level id "1

L <point x = "730" y = "1017"></point>
10 B <flevel>

11 [H <level id g

12 <point ®x = "1061" v = "274">»</point>
13 <point x = "491" y = "4D08"></pointc>
14 <point x = "1038" y = "T52"»</point>
15 <point x = "439" y = "796"»</point>
16 B <flevel>

17 -« /stage>

FIGURE 14. XML file structure

- -y
xml reader I. = e

m

{X=436r=851}
#%=273.Y=531}

| Read XML | | Get points |

(o] 0

0. floor exists.

e

27

FIGURE 15. UI of the test application which presents and process an XML file.

It wraps XMLCoordinatesReader class

FIGURE 16 below shows a structure of XMLCoordinatesReader class. The object of

this class is responsible for parsing the XML file showed in FIGURE 14. From the

mentioned FIGURE 14 can also be seen that the levels’ ids are not consecutive

numbers — there are levels with following ids: 0, 1, 4. That is why

XMLCoordinateReader class has a function ChecklsFloorExists, which checks if a

28

parsed XML file contains the floor id, which the application requests. The function
GetPointsOnSpecificFloor takes as an argument floor number and returns an array of

points corresponded to this number.

P
XMLCoordinatesReader £
Class

= Fields
#* _floorsContainer
=l Methods
ChecklIsFloorExists
GetPointsOnSpecificFloor

ReadXMLFile

XMLCoordinatesReader
N J

<

< 4 4

FIGURE 16. XML handler class.

When an application calls a ReadXMLFile function with a path to an XML file as a
parameter, an object reads this file and stores data in a dictionary Dictionary<int,

List<Point>>. It provides a convenient way of getting points from a specific level.

3.7 Image processing

The image processing is a very important part of the original PHP script. The
processed images with an associated PHP file, which is also created by an iSync, bring
required functionality to the web server which uses them. The operations that are

performed on each image are as following:

1. Reading points’ coordinates from XML file — presented in the chapter 3.6

2. Loading a background image and resizing it in the way that larger dimension
from height and width is 360 pixels and the second dimension is scaled
respectively

3. Calculating ratios for height and width of a background image

4. Applying the scales to the read coordinates from the 1. point

29

5. Creating a PHP file called id_level.php which contains predefined data

6. Placing the center of a tagging image on each read point on a loaded
background image

7. Saving a tagged image (background image combined with tagging images) by

overriding the old one.

FIGURE 17 shows a diagram of the ImageHandler class which provides all
functionality related to a data flow presented in the points above. The actions listed

previously can be easily linked to the function enclosed in the ImgeHandler class.

bed

-
ImageHandler
Class

= Fields
47 _coordReader
47 _images
_imagesPath
,_a.'-"" _ratios
#7 _tagimage
47 _XMLExists
Properties
e ImagesPaths
2 XMLExists
= Methods

2% ActualTag

% CalculateRatios

L

ImageHandler (+ 1 overload)
Initialize

€«

2" LoadlmagesFromPaths
Resizelmages
ResizeImagesLINUX
ResizelmagesWIN
SaveDataToPHP

Savelmages

L OB SO SO SO S

TagImages
. y,

FIGURE 17. Image handler class

All fields of the above presented class are private ones. One of them — ImagePaths

provides get and set property, the other — XMLExists provides only a get property.

30

This is done in this way due to the fact that object of ImageHandler class may receive
and use information about the paths to the images, however, the existence of an XML

file is being determined by this object itself.

Most of the methods of the ImageHandler class are public, only the loading and

tagging images can be called internally by an object of this class.

FIGURE 18 shows the graphical user interface created for the testing purposes of the
ImageHandler class functionality. The functionality of this testing application can be

split into two parts.

The first one — mainly left part of the UI — tests tagging a predefined image, which is
presented as a white rectangle containing blue dots and red crosses. Whenever the left
mouse button is clicked within a rectangle the tagging operation is called and the
coordinates of a clicked point are showed below the border line. In addition, it allows

saving the showed figure to a file representation.

7 ™
Images handler = | i G

Image ope@ @
. " [Load imagﬁ [Resize images\T
L]
. o x | Save imag;\k| Taa images/lI
. = resources‘-.@.pg sue:@
. . resounces’, 1) s jpg size;

resources'J_kemos jpg size: 105KE
resources'd_kemos jpg size:85KB

coordingtes: 7.7 Save image

Floors have been loaded.

FIGURE 18. UI of the test application using the ImageHandler class

31

The second part of this testing application is a semi-automated process split into four

following steps:

1. Loading the images from a hardcoded path

2. Resizing the previously loaded images to a proper size
3. Tagging the images
4.

Saving the images by overriding the old ones

The listing below buttons in FIGURE 18 contains the paths to the loaded images and

their sizes.

FIGURE 19 and FIGURE 20 show another testing application of the ImageHandler
class. This time it does not contain any graphical interface, it is a pure console
application. It was created in order to check the implemented different functionality of
images resizing in the different operating systems. In the first FIGURE 19 the output
comes from the Microsoft Windows operating system, the second printout comes from
the Linux operating system. The testing application was compiled on the Windows
that is why it can be run directly on this system, nevertheless to run it on the Linux

OS, it requires to use Mono. (Mono, 2004)

ip

ve been resized.

ve been tagged.
0K gged pictures | een saved.
Microsoft Windows NT 6.1.7 0

FIGURE 19. Console testing application run under Windows OS

32

* kamil@kamil-desktop: ~/Desktop/imageProcessing

File Edit View Terminal Help
kamil@kamil-desktop:~/Desktop/imageProcessing$ mono ImageProcessLinux.exe
resources/@ kerros.jpg size:9KB
resources/1 kerros.jpg size:11KB
resources/3 kerros.jpg size:13KB
resources/4 kerros.jpg size:12KB
ratio = {¥=1, Y=1}
ratio = {¥=1, Y=1}
ratio {¥=1, ¥Y=1}
ratio = {¥=1, Y=1}
OK Pictures have been resized.
{X=417.5, Y=832.5}
{X=254.5, Y=512.5}
{X=711.5, Y=998.5}
{X=1042.5, Y=255.5}
{X=472.5, Y¥=389.5}
{¥X=18208.5, Y=733.5}
{X=4208.5, Y=7177.5}
Pictures have been tagged.
Tagged pictures have been saved.
Unix 2.6.32.25

FIGURE 20. Console testing application run under Linux OS

There is also one more very visible difference between running the application on
Windows and Linux OS. Due to the problem with interpolation while image resizing,
which occurred on the Linux OS, iSync has to use external application which in this

case is ImageMagic. (ImageMagick: Convert, Edit and Compose Images, 2009)

3.8 Mail client

As presented in chapter 2.4 iSync is intended for logging its activities to the log file.
This is enough, however only as long as everything goes without any unexpected
issues. When any exception occurs, the administrator of the application should be
notified about the issue, the legacy PHP script used to send a mail notification, which
was further connected with a text message notification. When an email server receives
a message from a particular sender — in that case an email sent by the script — it

forwards an SMS to the administrator via messaging service. This is a very convenient

33

and fast way to inform the responsible person to look into a script or / and a database

in case of any serious problem.

It was decided that a new C# iSync will also use an email notification. For that
purpose the Mailer class was created. It provides simple functionality and acts as an

email client only with sending messages option.

r
Mailer
Sealed Class

=l Fields

m_attachments
m_iPort

m_sBody
m_sFrom
m_sServerAddress
m_sSubject

TR NS

m_sTo

=l properties

Body

From

Port
ServerAddress
Subjet

To

ethods
AddAttachment
Clear

ligy i i i i ig

=

<

Mailer (+ 5 overloads)
Send
SendEmengencyMail
SendMailToAdmin

{{{{b‘{{

FIGURE 21. Mailer class

The object of Mailer, however, is used not only to notify an administrator that some
problem occurred, it is also used to send an email notification to the clients whose
email address was delivered from a database. The information about an email address

is kept in the Item object in one of its fields called _emailAddress. These kinds of

34

emails are sent when an item has been already copied to the FTP server and it is now

available for the client. This routine is showed in FIGURE 7.

FIGURE 22 shows a simple testing application which was used to check whether

Mailer class works as expected.

- I — 7
og Mail Sender GUI E=ET)

From:

To: kamil@upload fi
Subject: Some subject.

Body: Hello.
Some description of problem

Best regards.
Upload Image Proccessing Oy

This mail was send automatically!!

Atachment: -

FIGURE 22. Simple UI of testing application which sends an email

3.9 Logger

The Logger class was created as a sealed class implementing Singleton design pattern.
This means that no other classes can derive from it and it can have only one instance
accessible from every part of the code. This is very a convenient way of designing

Logger considering its purpose. Logger has few characteristic attributes:

® single private constructors which in consequence do not allow other classes to
create an instance of Logger

e sealed syntax word used in order to help JIT optimizes things more

e it contains private Nested class which has access to the whole Logger class

e Nested class contains static variable which holds a reference to a single created

instance of Logger

35

¢ Instantiation is triggered by the first reference to the static member of the
nested class, which only occurs when the Instance property is called and this

means that implementation is fully lazy.

(Implementing the Singleton Pattern in C#, 2006)

FIGURE 23 shows the diagram of the Logger class. It presents that the main Logger

class has two constructors, although both are used only internally and are private.

-
Logger (#)

Sealed Class

=l Fields

;,4" _date
4% _FILENAME
_logFileName
By _logFileStream
#* _logMode
4# _separator
= Properties
' Instance
= Methods
% AddLine (+ 1 overload)
2% Logger (+ 1 overload)

=/ Nested Types

s S
Nested eS|

Class

=l Fields
_F."' _instance
=l Methods

47 Nested
N J

\. J

FIGURE 23. Logger class

36

3.10 FTP client

The class presented in FIGURE 24 is the richest one. It contains the whole needed
functionality to become a base for a FTP client application. It was decided to do it in
that way as it was mostly beneficial for the company. In the future that class may be
easily contributed to other projects with the functionality it contains. The class has a
very similar purpose as the FileManager class presented in the chapter 3.5 with the
difference that the FTPClient class instance takes care of managing files and / or
folders in the network. Hence, it contains the necessary fields and properties which

allow software developers to configure it in the way they want.

e
FTPClient
Class

=l Fields

_iPort
_iTimeoutSecond
_sAddress
_sCurrentFolder
_sPassword
_sUserID
BUFFER_SIZE

= Properties
Address

Buffer
CurrentFolder

TR

L

(

I

n
1

1 L

Passsword
Port
Timeout

n
|
1

F

{
i
o

User
=

5 U

ethods

CD
CheckCurrentFolderName
CheckRights
CheckRightsOfSpecific
CheckServerName

W €

F (53

A

i

DeleteFile

DownloadFile
DownloadFolder
DownloadSpecificFile
DownloadSpecificFolder

LA S O ¢

Exists

ExistsInFolder

FTPClient (+ 4 overloads)
GetDateTimestamp
GetDirectories

LS S S

GetDirectoriesFromFolder
GetFiles
GetFilesFromFolder
GetFileSize

ListCurrentDir
ListDirectory
ListDirectoryDetails
MakeDirectory

<4

i

€ 4

MakeDirectoryInSpecificFolder
RemoveDirectory
RemoveEmptyDirectory
Rename

UploadFile (+ 1 overload)
UploadFilesFromFolder
UploadFileToSpecificFolder
UploadFolder
UploadFolderToSpecificFolder

LR S S o S K G

<4

i

/

FIGURE 24. FTP client class

37

38

Despite that it was created in the way to allow customization, some of the settings are
hardcoded. The main mechanism used in this class - FtpiiebRequest - has two fields
set to predefined values. These fields are 7+ pwebrequest . sePassive which is set to
false and Ftpwebrequest .KeepAlive which is also set to false. The first option says
that an application uses active data transfer process and the second option specifies

that after the request is completed the control connection to the FTP server is closed.

The figure below shows the graphical user interface for the test purposes of the
FTPClient class. It uses all functionality provided by a presented class and it is a very

simple FTP client application.

rFT:E Handler Ll li—;?-l-‘
FTP -fip
/
Folders Files functions Check ff exists
Getist | [Showdetais | [[Upload | |EEEEEE INEEEEN (DR Chacal -
Folders functions A7 {_| l_] Check access |
| Makedr Removedr <7 | Check |
Y
Local
use passive
|
iReady:. B B
A

FIGURE 25. UI of test application using FTPClient class

3.11 Diacritic characters

In the Finnish and Scandinavian languages there are some special letters which are

diacritic characters. The data which is stored in a database is used for generating

39

URLs, therefore such characters cannot be used in any part of the URL. To avoid
keeping such letters in any string a special function was introduced to convert
diacritics characters to US-ASCII encoding. This function also takes care of two other
characters which are dangerous to put to an URL, namely: ‘(the space) and ‘/* (the
slash). The pace separates words in one a sentence but in the URL it is replaced by
‘%2(0’. On the other hand the slash separates different parts of the URL. If an
application adds an entry from a database which contains the slash to an address it
separates the URL in the place where it stands, which is not desired. It was decided
that these two characters are replaced by underscore which is represented in the URL

by itself - °_’ meaning underscore.

FIGURE 26 illustrates an example of how the function described in this chapter
works. (Uniform Resource Locators (URL), 1994; Universal Resource Identifiers in

WWW, 1994; Uniform Resource Identifiers (URI): Generic Syntax, 1998)

1,0,a,¢,2,2,n,0,e
y0,a,c,2,Z,n,0,e

FIGURE 26. Example of changing diacritics characters

40

3.12 iSync Runner

All the legacy code was changed and tested in the new .NET environment. It provides

the same functionality as the previous PHP script but in a new systematized form.

The old script was run by another shell script from a command line. It caused that
iSync was run every two minutes regardless if there were or were not any ready to
proceed items in a database. That behavior was changed in a new application. For the
purpose of managing iSync and running it, the application iSync Runner was

introduced. It contains several advantages comparing to the previous solution:

- Checking database before running iSync — if there are no valid entries in a
database iSync is not run

- Opening iSync log files

- Allowing to run iSync manually at any time

- Showing balloon tips when any actions is taken

- Allowing to create schedules — a frequency of a database checking varies and

hence running iSync may differ on each day.

iSync Runner also contains the previously utilized functionality, namely automated
periodic execution of iSync. This option, however, may be disabled. FIGURE 27
shows the main graphical user interface available to manage the script and monitor

database.

41

B iSync runner - iSyne VSF M =)

Actions Logfie Options - refesh time

iSme Options
(NN | Funismc | Neme: testlogfiekg Il Sscintionty

[lnnmmzed [Openioghe | [Cossloghe| [l AmiSmeitheramiobs gty overy 120 mintes.

open log after iSync

- O e e e

Ready. | iSyncStatus | EAiSync.exe

FIGURE 27. Application to manage iSync app

iSync Runner comprises an additional feature which is icons in the notification area.
This allows minimizing it to a notification area and even from there controls iSync.
FIGURE 28 shows the menus of iSync Runner available to the user from the

notification area.

Restore Restore

Hide Hide

Connect Connect

Get data Get data

Run iSync | Refreshdata J Run iSync

Log file 3 iSync after refresh | Logfile > Open |
Schedule 3 Open log after iSync Schedule » Close

Bt 4 Exit

0 [L) [

FIGURE 28. iSync Runner options in the notification area

42

4 CONCLUSIONS

4.1 Challenges

After familiarizing with the legacy PHP script and planning all stages of the code
reimplementation, the process of transforming old code to the new environment has
looked really promising. The work was planned for the whole practical training

period, that is three months, and it included heavy application testing.
Code division

The old code was divided into three files, however, they did not group any certain
functionalities. Because of that the code was not easily readable, flexible and easy to
be modified. To avoid similar problems in the new code it was decided to group
specific functionalities to certain classes and the Main function included only the

following lines of code:

Manager _iSyncManager = new Manager ();

_iSyncManager .MakeTemporatyDirectory () ;
_iSyncManager.GetDataFromMySglDB () ;

_iSyncManager.CheckIfExit ();

_iSyncManager.Process();

_iSyncManager.ClearTemporaryFolder () ;

_iSyncManager .RemoveTemporaryDirectory () ;

The other advantage of a new code is that it is self-explanatory as can be noticed from

the fragment above.
Database connection

Building the new application has started from creating the necessary classes, which
are used as tools while the application is run. These classes include: DBHandler,
FileManager and FTPClient. The first of them is a data entry point of the application
and it manages a connection with a MySQL database. This fetched data from database
determines what type of activities will be executed by iSync. In the .NET
documentation there is no information about its cooperation with MySQL databases.
Lack of compatibility with MySQL databases caused that additional research in
finding a proper solution was needed. It turned out that MySQL’s owner provides the

necessary library connecting .NET framework with MySQL database. After applying

43

MySQLConnector library no other major problems were encountered during further

database handing implementation process. (MySQL::Download Connector/Net, 2010)

File management

Developing of the classes managing files and folders both locally by FileManager
class and remotely in the network by FTPClient class was not problematic; it was
rather time consuming. These both classes are versatile because they provide a full
functionality and thus they can be used by a company also in the other projects. It
required, however, creating full documentation containing all information about

FileManager and FTPClient classes.
Images processing

One of the next stages was image processing, which also caused some problems.
Image processing in iSync starts from image’s resizing, more concretely downscaling.
The application uses the following interpolation method:
System.Drawing.Drawing2D.InterpolationMode.HighQualityBilinear, which
provides one of the most accurate functionalities thanks to which the images lose
neither on their quality nor their granularity. Everything worked correctly on
Windows operating system, however, when the testing application presented in
FIGURE 20 was run using Mono on Linux OS some problems with the quality of the
images were noticed. Further investigation showed that using such a good
interpolation method did not bring the expected results. What is more the images’
quality from Linux OS did not change when changing interpolation mode and it was
comparable with the images’ quality from Windows OS only when using
System.Drawing.Drawing2D.InterpolationMode.Low interpolation mode on
Windows side. It was a major issue considering the images’ role which was using
them on the web pages as a part of the presentation. To solve this problem an external
console tool — ImageMagic - was used. This is one of the dependencies and a

requirement that has to be fulfilled if the application is to be used on Linux OS.

44

4.2 Improvements

In the practical part of the thesis the testing applications were presented. This
approach of testing allowed an easy and convenient but a manual way of checking the
functionality of the classes. Nevertheless, it would be much better to create separate
solution in Visual Studio containing unit tests. It has a lot of benefits, most of all the
whole functionality would be tested automatically at once. It would require much
more effort; however, the final balance would have much more profits than losses, for

example, any changes in the function’s body would be immediately verified.

When telling about the other things that could be modified or improved the following

1ssues cannot be omitted:

o FileManager class
® Manager class

¢ the other classes using configuration file.

The FileManager class does not contain any fields but only methods. It operates only
on files and folders without loading or modifying their content. Hence this class could
be a static one since then no objects of this class would have to be created in order to

operate on filed or folders.

The Manager class is created only once in the Main function and it manages all
operations done by iSync. Due to the fact that only one instance of this class has to be
created it could also implement singleton design pattern as Logger class presented in

the chapters 2.4 and 3.9 does.

Loading setting from the configuration file is another thing that could be modified.
The classes like DBHandler or Logger should be the ones that could be enclosed by
the other projects using their functionalities. The way of initializing some of their
fields, however, prevents from using them by the other projects without former
modifications. For example a field _SelectCommand in DBHandler class contains a
hardcoded query to the MySQL database, which has read-only and private attributes,
hence they are not supposed to be changed. It could be better, however, if MySQL

query was customized by constructor’s parameter or property.

45

The Logger class depends even more on iSync application itself. It contains static
fields, two of which, namely _ FILENAME and _logMode, are filled based on data
from the configuration file. It should be definitely changed to allow integration into

the other projects.

4.3 Summary

The refactorization of the legacy PHP script did not rely only on rewriting it into the
new environment - .NET, but also introducing new order into the previously very
chaotic code. Currently the functionalities related to the common areas are divided
into separate classes, they were all tested using testing applications and the whole
documentation is also created. The code of the present iSync is much more readable
and it can be easily modified in the future if needed. Retrospectively it can be clearly
visible that there could be some changes done already at the last stage of the
application just to improve its functionality in the current project. Unfortunately the
short period of the practical training and the complexity of the iSync did not allow the
author to introduce any additional improvements. The main goal of the development,
however, was achieved. The application uses many technologies and hence the author
was able to broaden his knowledge from different areas. What is more he has created
the new application, which has the same functionality as a legacy code and can be

easily extended or enriched by the other developers.

46

REFERENCES

.NET Design Pattern and Architectural in C# and VB. (2010). Retrieved from
http://www.dofactory.com/Default.aspx

Albabari, J., & Albabari, B. (2010). C# 4.0 in a Nutshell. O"Reilly Media.

Bellovin, S., & Laboratories, A. B. (1994, February). RFC 1579 - Firewall - Friendly
FTP. Retrieved January 19, 2010, from IETF Documents:
http://tools.ietf.org/html/rfc1579

Exploring the Singleton Design Pattern. (2010). Retrieved Septemer 16, 2009, from
MSDN Library: http://msdn.microsoft.com/en-us/library/ee817670.aspx

Extensive Markup Language (XML) 1.0 (Fifth Edition). (2008, November 26).
Retrieved January 23, 2010, from All Standarfs and Drafts:
http://www.w3.org/TR/REC-xml/

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Boston: Addison-Wesley.

Gilmore, J. W. (2008). Begininning PHP and MySQL. New York: Springer-Verlag
New York.

ImageMagick: Convert, Edit and Compose Images. (2009). Retrieved from
ImageMagick: http://www.imagemagick.org/script/index.php

Implementing the Singleton Pattern in C#. (2006, January 7). Retrieved from

http://www.yoda.arachsys.com/csharp/singleton.html

Krishna Rao, R. B. (2007). Programming with C#: Concepts and Practice. Delhi:
Asoke K. Ghost.

Liberty, J., & Xie, D. (2008). Programming C# 3.0 (Fifth Edition ed.). O"Reily
Media.

Mamone, M. (2006). Practical Mono. New York: Springer-Verlag.

Mono. (2004, June). Retrieved Fabruary 18, 2011, from http://www.mono-
project.com/Main_Page

47

MySQL :: MySQL 5.1 Reference Manula :: 20.2 MySQL Connector/NET. (2010).
Retrieved December 09, 2010, from MySQL :: Developer Zone:
http://dev.mysql.com/doc/refman/5.1/en/connector-net.html

MySQL::Download Connector/Net. (2010). Retrieved from

http://www.mysqgl.com/downloads/connector/net/
Nash, T. (2007). Accelerated C# 2008. New York: Springer-Verlag.
Nash, T. (2010). Accelerated C# 2010. New York: Springer-Verlag.

Postel, J., & Reynolds, J. (1985, October). RFC 959 File Transfer Protocol. Retrieved
January 21, 2010, from IETF Documents: http://tools.ietf.org/html/rfc959#appendix-I

Schonig, H. J., & Geschwinde, E. (2004). Mono Kick Start. Sams Publishing.

Singleton Design Pattern in C# and VB.NET. (2010). Retrieved September 16, 2009,
from .NET Design Patterns and Architectures in C# and VB, .NET training,

DoFactory: http://www.dofactory.com/Patterns/PatternSingleton.aspx
Suehring, S. (2002). MySQL Bible. New York: Wiley Publishing, Inc.

Swaminathan, R. K. (2007). Cross-Platform Application Development using .NET and

Mono. Waterloo: University of Waterloo.

Thai, T., & Lam, H. (2002). .NET Framework Essentials (2nd ed.). Gravenstein
Highway North: O'Reilly.

tortoisesvn.tigris.org. (2010). Retrieved February 20, 2010, from
http://tortoisesvn.tigris.org/

Uniform Resource ldentifiers (URI): Generic Syntax. (1998, August). Retrieved 11 20,
2010, from Web Naming and Addressing Overview:
http://www.ietf.org/rfc/rfc2396.txt

Uniform Resource Locators (URL). (1994, December). Retrieved September 20, 2010,
from RFC-Editor Webpage: http://www.rfc-editor.org/rfc/rfc1738.txt

Universal Resource Identifiers in WWW. (1994, June). Retrieved 11 20, 2010, from
Web Naming and Addressing Overview: http://www.w3.org/Addressing/rfc1630.txt

