VFD SG Solution

Ett system för variabelt varvtal vid axelgenerator drift.

Anders Byman

Examensarbete för ingenjör (YH)-examen
Utbildningsprogrammet för sjöfart
Inriktningsalternativet för ingenjörsutbildning inom sjöfart
Åbo, 2010
EXAMENSAARBETE

Författare: Anders Byman
Utbildningsprogram och ort: Utbildningsprogrammet för sjöfart, Åbo
Inriktning/Fördjupning: Ingenjör YH
Handledare: Kari Taivaloja

Titel: VFD SG Solution – Ett system för variabelt varvtal vid axelgenerator drift.

__
Datum: 19.4.2011 Sidantal 26 Bilagor -

Sammanfattning

Detta examensarbete handlar om hur man kan använda variabelt varvtal vid axelgenerator drift med en medelhastighets dieselmotor som normalt använder konstant varvtal. Ro-ro fartyget m/s Miranda har fungerat som case för arbetet. Jag har som mål att på ett enkelt och förståeligt sätt, utreda hur Variable Frequency Drive Shaft Generator Solution fungerar och hur man tillämpar det i praktiken.

Arbetet inleds med en kort redogörelse om rederiet som beställt detta arbete. Efter det följer en teoretisk utredning om vad VFD är och hur en VFD fungerar, har det funnits tidigare eller är det något helt nytt. Vad är skillnaden mellan konventionellt system och Variabel Frekvens Enhett Axelgenerator lösning.

Därefter följer en förklaring om hur man använder variabelt varvtal vid axelgeneratordrift på m/s Miranda och vad som syftet är med VFD SG Solution. Omändringar som gjordes i elnätets huvudtavla och vad är viktigt vid dimensionering av anläggningen.

Vidare beskriver jag de problem som installationen medförde och hur problemen blev lösta.

Arbetet avslutas med en jämförelse mellan VFD vs. konstant varvtal, över vad den estimerade besparingar är i bränsle och i pengar.

__
Språk: Svenska Nyckelord: VFD SG Solution

Förvaras: Examensarbetet finns tillgängligt antingen i webbiblioteket Theseus.fi eller i Novias bibliotek.
Summary

This thesis is about how to use variable speed in shaft generator operation with a medium speed diesel engine, which normally uses constant speed. Ro-ro ship m/s Miranda has been used as a case study for the thesis. My aim is to investigate and explain how Variable Frequency Drive Shaft Generator Solution works and how to apply it in practice.

This thesis begins with a short description about the company which commissioned the thesis. After that follows a theoretical description of what VFD SG Solution is and how it works, have it been used earlier or it is something completely new. What is the difference between conventional system and VFD SG Solution. Next I describe how to use variable speed in shaft generator operation on m/s Miranda and what is the purpose of VFD SG Solution. Changes which were done in main switch board and what is important for dimensioning criteria. Further I present problems that occurred under installation and how the problems were solved. The thesis ends with a comparison between VFD vs. constant speed and what is the estimated saving in fuel and money.

Interviews are the main used method and information search from internet. Investigations of ship documents have been made onboard the ship. Information about fuel consumption and distances are taken from ships travel reports.
Innehållsförteckning

1 Inledning ... 1
 1.1 Målsättning ... 2
 1.2 Problemformulering ... 2
 1.3 Avgränsning ... 2
 1.4 Metodval och undersökning ... 3

2 Bakgrund .. 3
 2.1 Reederiet .. 4
 2.2 Godby Shipping Ab .. 4
 2.3 m/s Miranda ... 5
 2.4 VFD teori ... 6
 2.5 Tillstånd ... 6
 2.6 Hur fungerar en VFD ... 7
 2.7 Konventionellt system på m/s Miranda .. 7
 2.8 VFD SG Solution .. 8

3 Hur kan man använda variabelt varvtal vid axelgenerator drift. 9
 3.1 Introduktion av VFD SG Solution ... 10
 3.2 Strävan är bränslebesparing .. 10
 3.3 MSB före och efter .. 12
 3.4 Dimensionering och kriterier .. 13
 3.5 Belastningstabell .. 14
 3.6 VFD enhet .. 15
 3.7 Effekt hanterings system, PMS .. 18

4 Problem ... 20
 4.1 Projektet ... 20
 4.2 Problem med neutralpunkten ... 21
 4.3 Lösning på problemen .. 21

5 VFD SG vs. Konstant varvtal ... 22
5.1 Resor med Miranda .. 22
5.2 Bränsleförbrukning.. 23
5.3 Besparing.. 24

6 Sammanfattning av arbetet ... 25

7 Slutsatser och utvärdering ... 26

Källförteckning.. 27
Definitioner

<table>
<thead>
<tr>
<th>AC</th>
<th>Alternate Current, växelström</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Direct Current, likström</td>
</tr>
<tr>
<td>DG</td>
<td>Diesel generator, hjälpmotor</td>
</tr>
<tr>
<td>EMG</td>
<td>Emergency generator, nödgenerator</td>
</tr>
<tr>
<td>GRID</td>
<td>Elnätet</td>
</tr>
<tr>
<td>MCH</td>
<td>Machine Chief Engineer, maskinchef</td>
</tr>
<tr>
<td>ME</td>
<td>Main engine, huvudmotor</td>
</tr>
<tr>
<td>MSB</td>
<td>Main switch board, elnätets huvudtavla</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute, varv per minut</td>
</tr>
<tr>
<td>SG</td>
<td>Shaft Generator, axelgenerator (AG)</td>
</tr>
<tr>
<td>UPM</td>
<td>United Paper Mill</td>
</tr>
<tr>
<td>PTO</td>
<td>Power Take Out, kraftuttag</td>
</tr>
<tr>
<td>VFD</td>
<td>Variable Frequency Drive, variabel frekvens enhet</td>
</tr>
<tr>
<td>VAC</td>
<td>Volt Alternate Current, Volt växelström</td>
</tr>
</tbody>
</table>
1 Inledning

Detta examensarbete handlar om hur man kan använda variabelt varvtal på en medelhastighets huvudmotor som använder en axelgenerator under drift för att förse fartyget med elektricitet. Ro-ro fartyget m/s Miranda som ägs av Trailer-link (Godby Shipping Ab) fungerar som mitt undersökningsfartyg. Miranda är registrerat i Finström, Åland och hon trafikerar rutten Raumo - El Ferrol - Santander - Kotka - Raumo.

Utvecklingen i världen går hela tiden mot att kunna spara på miljön och att alla måste tänka på hur man själv kan bidra med att tänka miljövänligt. Oljeresurserna minskar dag för dag och förbrukningen och priset av fossila bränslen har en tendens att öka. Fartygen är en ganska stor förbrukare av fossila bränslen och är därför ett attraktivt mål för hurdana möjligheter det finns att göra någonting inom detta område.

Godby Shipping som har beställt detta arbete har en långsiktig miljöpolitik och prövar därför fram olika metoder som kan bidra till att spara på miljön.

I mitt arbete som maskinmästare kommer jag dagligen i beröring vid ämnet bränsleekonomi. Det har gjort mig nyfiken på att själv fundera över olika alternativ som har med bränslebesparing att göra.

Därför har jag valt att skriva om VFD\(^1\) SG Solution – ett system för variabelt varvtal vid axelgenerator drift.

\(^1\) VFD, En Variable Frequency Drive eller på svenska Variabel Frekvens Enhett är en enhet som reglerar varvtalet på en växelströms elmotor. (Joliet Technologies 2010)
1.1 **Målsättning**

Målsättningen med detta examensarbete är att kunna på ett enkel och tydligt sätt förklara hur VFD SG Solution fungerar, vad skillnaden är mellan det konventionella systemet och VFD, och hur fungerar det i praktiken på m/s Miranda.

1.2 **Problemformulering**

I detta examensarbete vill jag utreda följande frågor:

- Hur kan man använda variabelt varvtal vid axelgenerator drift?
- Vad är och hur fungerar VFD SG solution?
- Hur lyckades installation av VFD SG solution?

1.3 **Avgränsning**

Examensarbetet avgränsas till funktionsprincip, installation och användning av VFD SG solution enheten ombord på fartyget m/s Miranda. Kostnader för projektet är utelämnat.

På systerfartyget m/s Mistral har man installerat samma system, men Miranda är den första av fartygen och har kommit lite längre med provkörning mm.
1.4 **Metodval och undersökning**

I examensarbetet har jag använt mig av kvalitativa undersökningsmetoder som baserar sig på observationer vid studiebesök ombord. Har varit på fartygsbesök ombord på Miranda i flera tillfällen för att dokumentera och intervjua maskinpersonalen.

Som intervjukällor har jag använt mig av tekniska inspektören John Lundqvist från Godby Shipping Ab, maskinchef Jarmo Tasa från m/s Miranda och Mårten Storbacka från WE Tech Solutions Oy och svaren har plockats in i examensarbete, där jag har behövt information. Varför jag just har valt dessa personer beror på deras sakkunnande och involvering i detta projekt.

De fakta jag fått fram baserar sig på undersökning av fartygsdokument, projektritningar, intervjuer och informationssökning på internet.

Mina testresultat och bunkerförbrukning baserar sig på information jag fått från fartyget som har samlats in under driften, för att få fram den verkliga besparingen.

Det finns mycket lite om VFD SG Solution i litteraturform. Största delen av litteraturmaterialet jag har använt, har jag fått från verkställande direktör Mårten Storbacka från WE Tech Solutions Oy. Honom räknar jag som expertis inom detta område, eftersom företaget sålts och installerat anläggningen i fråga och är en föregångare inom denna bransch.

Jag har fått tillstånd av ovan nämnda personerna att publicera deras namn i examensarbetet.

2 **Bakgrund**

Här kommer att jag att berätta om rederiet och fartyget. Vidare behandlas VFD och skillnaden mellan konventionellt system och VFD SG Solution.
2.1 Rederiet

Godby Shipping Ab består av två delägare. Trailer-link som är registrerat i Finström och Minicarriers som är registrerat på Brändö. Trailer-link äger fartygen Misana, Miranda och Link Star. Misida, Mistral, Mimer och Midas ägs av Minicarriers. (Godby Shipping Ab 2010a)

2.2 Godby Shipping Ab

Rederiet strävar efter att driva en modern och konkurrenskraftig fartygsflotta under finländsk flagg. Flottan består för tillfället av sju fartyg.

Rederiets kontor och fartyg är certifierade av Lloyd's Register och Sjöfartsverket i Finland enligt IMO:s så kallade ISM-kod. I tillägg till detta har Lloyd's Register godkänt rederiets och fartygens rutiner i enlighet med den internationella miljöstandarden ISO 14001.

Godby Shippings kontor ligger på Södragatan 13 i centrala Mariehamn. Totalt är cirka 180 personer anställda i kontoret och på fartygen.

(Godby Shipping Ab 2010b)
2.3 *m/s Miranda*

Figur 1. Miranda. (Fakta om fartyg, 2010)

Teknisk data:

Finsk flagg, byggd av J.J. Sietas KG Schiffswerft GmbH u. Co., Tyskland 1999

Germanischer Lloyd +100 A5 E4 ”Ro-Ro-Ship” ”Utrustad för transport av kontainers ”SOLAS II-2, Reg. 19” MC E4 Aut.

Finsk/Svensk is klass 1A Super, Call sign OJIY, IMO no. 9183790

Ägare, Trailer Link, Finström Åland

Längd: 153,45 m
Bredd: 20,60 m
Djupgående: 7,00 m
DWT vid 7,00 m djupgående: 7 440 ton

Maskineri: Huvudmotor Wärtsilä 12V46C, 12 600 kW

Fart och bränsleförbrukning/dygn: Service fart ca 20 knop, ca 48 ton IFO-380

Lasten består främst av pappersindustrins produkter.

(Godby Shipping Ab 2010c)
2.4 VFD teori

VFD SG är en förkortning på engelska av Variable Frequency Drive Shaft Generator, översatt till svenska är det Variabel Frekvens Enhet Axel Generator. Det finns mycket lite material om VFD för fartyg, fast det har redan på 1970-80 talet använts tillsammans med långsamtgående fartygsmotorer² (tvärstyckare). I det här fallet är det fråga om en medelhastighets motor på 500 varv/minut.

Funktionsprincipen för VFD, variabel frekvens enhet har inte förändrats under de senaste 50 åren, trots att utvecklingen har gått framåt för microprocessorer och halvledarkomponenter.

Med en VFD reglerar man rotationshastigheten för en växelströms elmotor, genom att omvandla den ingående sinusspänningen till likspänning och därefter återskapa sinusvågen med en önskad frekvens till växelspänning. Små VFD enheter är mycket vanliga för att reglera hastigheten på bl.a. fläktar i ventilationssystemet. De används även för pumpar, hissar, transportband m.m. (ABB, 2011)

2.5 Tillstånd

För att kunna förverkliga ett ombyggnadsprojekt i denna skala av ett befintligt fartyg, krävs det tillstånd. Detta modifieringsprojekt kräver en konstruktionsändring och därför behövs det tillstånd av finska sjöfartsmyndigheten Trafi (Finnish Transport Safety Agency) och klassificeringssällskapet GL (Germanischer Lloyd) där hon är klassificerad i.

En liten del av lastutrymmet på huvuddäck försvinner (2100 x 4700mm), för att kunna placera den stora frekvensomvandlarenheten på en strategiskt bra plats.

² Långsamtgående fartygsmotor eller också kallad "tvärstyckare", har ett varvtal mellan 75 – drygt 100 rpm/min. (Svensk sjöfartstidning 2009)
2.6 Hur fungerar en VFD

En VFD fungerar som en frekvensomriktare. Växelströmmen matas från axelgeneratorn via ett LCL-filter in till DC kretsen, där växelströmmen ”hackas” upp i mindre delar och blir likström. Därefter övergår strömmen till AC kretsen där den återgår till sinusformad växelström och via ett LCL-filter ut till elnätet steglöst.

![VFD diagram](image)

Figur 2. VFD enhet med 2 x AFE enheter (Nät konverter) (Storbacka M. 2010a)

2.7 Konventionellt system på m/s Miranda

På m/s Miranda används axelgeneratorn för att producera elektricitet till fartyget då huvudmotorn är i drift till sjöss och då behöver inte hjälpmotorerna vara i användning. I hamnen är det hjälpmotorerna med egna generatorer som producerar elektriciteten. Axelgeneratorn behövs även för att förse styrpropellrarna med ström. De används vid manöver t.ex. vid ankomst/avgång från kaj.

3 En frekvensomriktare är en kraftelektronikenhet som används för steglös varvtalsreglering. För att omvandla en växelspänning av en frekvens, till en växelspänning av en annan frekvens. (Vacon 2011)

4 Ett LCL filter dämpar och utjämnar strömmen. LCL står för spole kondensator spole. (Storbacka 2011)

Figur 3. Konventionellt system m/s Miranda (Anders Byman. 2011)

2.8 VFD SG Solution

Med VFD SG enheten låter man rotationshastigheten, spänningen och frekvensen på axelgeneratorn variera tillsammans med huvudmotorn, medan elnätets spänning och frekvens är konstant med hjälp av en frekvensomriktare.

\(^5\) Ett kraftuttag på reduceringsväxeln som via kuggdrev får en passande rotationshastighet för axelgeneratorn.
Enheten tillåter upp till 30 % variation mellan axelgeneratorns frekvens/spänning och elnätets nominella spänning/frekvens. VFD SG enhetens kapacitet är mindre än 50 % av axelgeneratorns totala effekt. Varför kapaciteten är så låg, beror på att man håller dimensioneringen av anläggningen på en rimlig nivå. Stora förbrukare såsom bogpropeller (bow thruster) och akterstyrpropeller (stern thruster) är blockerade från användning under VFD SG drift.

Systemet är uppbyggt så att det finns möjlighet att använda det parallellt med hjälpmotorerna. VFD enheten är skyddad mot överbelastning genom att mindre viktiga förbrukare trippar6, om enhetens kapacitet överstiger 95 %.

Startblockeringen aktiveras om belastningen överskrida 90 % av VFD enhetens kapacitet, även om bog/akterstyr propeller är inkopplad eller om enhetens nödstopp är aktiverad.

Med VFD SG Solution kan det sparas upp till 5 – 15 % i bunker, beroende på fartygets befraktningsprofil. Det går i efterhand att modifiera ett befintligt fartyg för VFD SG Solution som retrofit7 på bl.a. följande fartygstyper: Ro-Ro, Ro-Pax, Färja, Bulk, Kontainer, Produkt tankers, Offshore supply fartyg m.m. samt på nybyggda fartyg. (Storbacka M. 2011a)

3 Hur kan man använda variabelt varvtal vid axelgenerator drift.

Här kommer jag att förklara hur man kan använda variabelt varvtal på m/s Miranda, som har en kombination bestående av huvudmotor och axelgeneratorn för att producera 400 volt och 50 Hz till fartygets elnät.

Vidare framkommer det varför man byggt ett sådant system, funktionsprincip och dimensionering av enheten.

6 Med trippar menas att anläggningen stängs av (säkringen slår bort).

7 Retrofit, då ett befintligt fartyg modifieras i efterhand.
3.1 *Introduktion av VFD SG Solution*

Miranda har en huvudmotor (ME) av modell Wärtsilä 12 V 46 C som är kopplad via en reduktionsväxel till en propelleraxel med vridbara propellerblad. Reduktionsväxeln har ett sekundärt kraftuttag (PTO) där axelgenerator (SG) är inkopplad, för att förse fartyget med ström då huvudmotor är i drift. Den här typen av framdrivningsmaskineri är ett allmänt förekommande system för fartyg, där det kräver bra manöverförmåga i hamnar eller trånga passage.

Med konstant varvtal på huvudmotorn begränsas den optimala regleringen av fartygets hastighet vid lägre farter. I praktiken betyder det att konstant varvtal fungerar bäst då man uppnår fartygets planerade marschfart.

Med VFD SG Solution reglerar man hastigheten enligt kombinatordrift. Vid kombinatordrift regleras huvudmotorns varvtal enligt kombinatorkurvan. Denna kurva är uträknad och testad för fartyget, där förhållandet mellan propellerbladens stigning och huvudmotorn varvtalet är optimalt, m.a.o. när varvtalet ändrar på huvudmotorn ändrar även stigningen på propellerbladen, men frekvensen hålls konstant oberoende av varvtalsvariationen.

Orsaken till varför det förekommer vibrationerna och kavitering från propellern när stigningen minskas men propellervarvtalet hålls konstant, är att det uppstår tryckimpulser som bryts mot fartygets botten istället för akter om fartygets skrov. Skrovets vibrationer är en produkt av dessa energipulser som genereras av propellern och det medverkar att huvudmotorn även förbrukar mera bränsle. (Storbacka M 2010c)

3.2 *Strävan är bränsle besparing*

Strävan är att sänka bränsleförbrukningen på huvudmotorn, då tidtabellen är sådan att fartyget inte behöver köra med full hastighet. Med detta uppnår man inte enbart bränslebesparing, utan även reducerade utsläpp.
För att effektivast spara bränsle vid reducerad fart, behöver man sänka både motorns varvtal och stigningen på propellerbladen. Med att enbart ändra stigningen på propellerbladen, uppstår det kavitation som bryts mot skrovet och praktiskt taget sker det ingen bränslebesparing.

Man kan på två olika sätt använda huvudmotorn med kombinatordrift, som betyder att huvudmotorvarvtalet är variabelt.

Det första är att inte utnyttja axelgeneratorn, utan låter hjälpmotorn sköta elproduktionen till fartyget. Detta innebär mera drifttimmar på hjälpmotorn.

Det andra alternativet är att utnyttja Variable Frequency Drive Shaft Generator Solution, som håller elnätets spänning och frekvens konstant, men låter axelgenerator spänningen och frekvensen variera tillsammans med huvudmotor varvtalet.

I det första alternativet blir det ingen besparing, eftersom hjälpmotorn förbrukar bränsle och drifttimmarna ökar. Det genererar i ofta förekommande service och förhöjda reservdelskostnader. Det andra alternativet är VFD SG Solution, som är mera ekonomiskt, för axelgeneratorn roterar oberoende om den är inkopplad eller inte när huvudmotorn är i drift. (Storbacka M. 2010d)
3.3 MSB8 före och efter

För att sänka huvudmotorns varvtal enligt det mera ekonomiska alternativet, behövs en Variable Frequency Drive SG solution enhet.

Installering av VFD SG enheten i efterhand på Miranda, är att koppla in den parallellt med det befintliga systemet, m.a.o. parallellt med SG-brytaren. Detta möjliggör att befintliga systemet eller VFD SG enheten kan användas, helt enligt behov.

Figur 4. MSB utan VFD. (Mårten Storbacka. 2010b)

8 MSB, Main Switch Board. Är huvud eltavlan därifrån eldistributionen styrs på Miranda. Är placerad i maskinkontrollrummet.
Figur 5. MSB med VFD. (Märten Storbacka 2010c)

3.4 Dimensionering och kriterier

Elförbrukningen från huvudtavlan (MSB) ute till sjöss (SAILING MODE) är normalt under 500 KVA, vilket motsvarar 400 kW (effektfaktorn 0,8 * 500 KVA). Detta betyder att thrusters, ballast pumpar etc. inte är i drift under denna mode.

Strävan för VFD SG Solution är att enbart utnyttja Sailing mode för att hålla dimensioneringen av anläggningen på en resonlig nivå (kostnader, utrymmen m.m.). Då VFD SG-enheten installeras parallellt med det befintliga, möjliggör detta att vid behov kunna använda 100 % effekt. (Storbacka M. 2010e)

9 Sailing Mode är då axelgeneratorn försörjer fartyget med elektricitet och hjälpmotorerna inte är i drift.
När ett VFD SG solution projekt planeras för ett fartyg, måste säkerhetsfunktioner för existerande förbrukare (consumers) kartlagda. Detta gör man för att säkra sig om att dimensioneringen av VFD enheten är tillräklig.

Dimensioneringskriterier för VFD enheten beror på två saker: elektriska belastningen och nätets selektivitet\(^{10}\). (Storbacka M. 2010h)

3.5 Belastningstabell

Tabell 1. Belastningstabell (Mårten Storbacka, 2010a)

<table>
<thead>
<tr>
<th>Förbrukare</th>
<th>Sea mode VFD kW</th>
<th>Sea mode Ballast pumpar kW</th>
<th>Manövrering kW</th>
<th>I hamn Lastning kW</th>
<th>I hamn Resterande kW</th>
<th>Nödgen. kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hjälp utrustning för maskineriet</td>
<td>80</td>
<td>80</td>
<td>110</td>
<td>95</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>Hjälp utrustning för fartyget</td>
<td>80</td>
<td>168</td>
<td>80</td>
<td>115</td>
<td>890</td>
<td>50</td>
</tr>
<tr>
<td>Däcksutrustning</td>
<td>15</td>
<td>15</td>
<td>100</td>
<td>180</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Ventilation och AC-kompr.</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Proviant kompressorer</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Kök och inredning</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Belysning</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Navigation</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Styr propellers</td>
<td>0</td>
<td>0</td>
<td>1100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total (kW)</td>
<td>300</td>
<td>388</td>
<td>1515</td>
<td>535</td>
<td>1210</td>
<td>285</td>
</tr>
</tbody>
</table>

\(^{10}\) Selektivitet är nätets förmåga att klara av störningar som bl.a. kortslutning.
3.6 VFD enhet

VFD SG solution baserar sig på frekvensomriktare. Vacon NXC är en modul som innehåller 2 st. AFE11 (Active Front End) luftkylda enheter. Generatorsidans AFE + generator sidans LCL-filter överför växelströmmen från axelgeneratorn (AC input) till mellanliggande likströms krets (DC). Nät sidans AFE + LCL-filtret anpassar strömmen från mellanliggande DC-kretsen, åter till sinusformad växelström (AC). (Storbacka M. 2010f)

Figur 6. Frekvensomriktarenheten (Eget arkiv, 2010a)

11 AFE är till för att kontrollera den regenerativa strömmen. (Siemens 2011)
Figur 7. NXC1300 standard modul + Nät sidans LCL. IP54. (Mårten Storbacka, 2010d)

VACON NXC 1300:

- I_n, Beräknad ström: 1095 A
- I_s, Kortslutnings ström: 2070 A
- I_{60} sek., 50 % Överbelastnings ström i 60 sek.: 1525 A
- S_{cont}, Märkbar effekt: 759 KVA
- P_{cont}, Aktiv effekt, 759 KVA * 0,8: 607 kW
- Inkluderar 5 % interna förluster i AFE

Mått:

- 2 x AFE + GEN. Sidans LCL-filter: 2,206 x 2,445 x 0,605 m.
- Nätets (Grid) sidan: 1,006 x 2,275 x 0,600 m.
- Vikt: ca 2800 kg
Figur 8. Transformator. (Eget arkiv, 2010b)

Transformator, TRAFOTEK 400/400 V

- U, Spänning: 400 V
- I, Ström: 909 A
- P, Effekt: 630 KVA
- U_k, Spänningsförluster: 5.53 %
- Vikt: 2150 kg
3.7 **Effekt hanterings system, PMS**

Här kommer en förklaring på hur övergången från konstant varvtal till VFD-mode går till.

Övergång från konstant varvtal till VFD-mode:

- Belastningen måste vara mindre än 400 kW (0,8 * 500 KVA = 400 kW)
- Thrusters i OFF-läge
- Axelgeneratort inkopplad och frekvensen ca 50 Hz (Sailing Mode)

1. Aktivera VFD genom att välja läge 5 på kopplingsbrytaren.

Figur 9. Kopplingsbrytaren. (Eget arkiv, 2010c)

12 Power Management System, sköter infasning av axelgenerator, hjälpmotorer och thrusters.
13 Kopplingsbrytaren är än brytare på huvudavlan, därifrån man väljer hjälpmotor eller axelgenerator drift.
2 Tryck in Sailing VFD request, gröna knappen (laddar mellanliggande DC-kretsen och stänger VFD-brytaren).

![Image of VFD control panel]

Förs etikett. VFD kontrollpanel. (Eget arkiv, 2010d)

- VFD börjar ta över belastningen, (nät sidans AFE startar övergången) och den aktiva effekten genom VFD stiger.
- När hela belastningen tagits över till huvudtavlan (MSB) går ingen effekt igenom SG-brytaren mera och SG-brytaren öppnar.
- Fartyget är nu i VFD Sailing Mode och huvudmotorns varvtal kan regleras i samspråk med propellerstigningen.

För att övergå tillbaka till konstantvarvtal axelgenerator drift, måste frekvensen på axelgeneratorn först höjas tillbaka till 50 Hz genom att öka varvtalet på huvudmotorn till 500 rpm.

Välj läge 4 på kopplingsbrytaren och tryck STOP VFD unit (Röd tryckknapp). VFD enheten avbelastas och VFD-brytaren öppnar sig. (Storbacka M 2010g)
4 Problem

I detta kapitel berättar jag om vilka problem man stötte på vid konverteringen till VFD SG solution och hur problemen blev lösta.

4.1 Projektet

Figur 11. Rum för VFD enheten på huvud däck. (Eget arkiv, 2011)

4.2 **Problem med neutralpunkten**

Installationen löpte i början helt enligt planerna och första testerna av VFD SG enheten gjordes i oktober 2010. Felinställning av VFD SG enheten ledde till några black out\(^{14}\) i början av provturen. När detta blev åtgärdat, upptäckte man att generatorns neutralpunkt\(^{15}\) var ostabil och ”vandrade” i fartyget. Man konstaterade det genom att spänningen varierade på fartyget, i förliga delen av fartyget var spänningen helt annan än i den aktradelen av fartyget. Detta beror på att elsystemet på Miranda inte har någon fast neutralpunkt. (Jarmo Tasa, personlig kommunikation, 04.01.2011)

4.3 **Lösning på problemen**

Problemet löstes med att installera en isolationstransformator. Utrymmet för VFD enheten förstorades, så att transformatorn installerades i samma rum som frekvensomriktarenheten. Kabeldragningen blev så kort som möjlig och spänningsförlusterna minimala.

Efter att de tekniska problemen var lösta, började man provköra VFD enheten åter i mitten av december 2010 och VFD enheten blev godkänd för användning av GL och Trafi. (Jarmo Tasa, personlig kommunikation, 21.12.2010)

Resultaten kan man läsa i nästa kapitel.

\(^{14}\) Black out är när fartyget mister sin elektricitet.
\(^{15}\) Neutralpunkten eller ”nollpunkten” är stjärnpunkten i generatorn dit samtliga faser är inkopplade. Den plats där spänningen är 0 volt. Är inte punkten stabil blir fasförsjutningen ojämn. (faktabanken, 2011)
5 VFD SG vs. Konstant varvtal

I detta kapitel jämförs VFD med konstant varvtal. Uppgifterna är tagna från Mirandans reserapporter.

5.1 Resor med Miranda

Tabell 2 & 3 (Godby Shipping John Lundqvist, m/s Miranda Bunker and voyage report 21/10 – 1/11. 2010/2011a)

VFD

<table>
<thead>
<tr>
<th>Resa</th>
<th>Nm</th>
<th>Timmar</th>
<th>Knop</th>
<th>Tot./ton</th>
<th>Ton/dygn</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/10</td>
<td>449</td>
<td>39</td>
<td>11,5</td>
<td>26,0</td>
<td>16,0</td>
</tr>
<tr>
<td>1/11</td>
<td>1889</td>
<td>134,5</td>
<td>14,0</td>
<td>115,5</td>
<td>20,6</td>
</tr>
<tr>
<td>1/11</td>
<td>324</td>
<td>22,25</td>
<td>14,6</td>
<td>19,7</td>
<td>21,0</td>
</tr>
<tr>
<td>1/11</td>
<td>343</td>
<td>22</td>
<td>15,6</td>
<td>25,8</td>
<td>28,1</td>
</tr>
<tr>
<td>1/11</td>
<td>300</td>
<td>17,5</td>
<td>17,1</td>
<td>27,9</td>
<td>38,4</td>
</tr>
<tr>
<td>Medeltal</td>
<td>661</td>
<td>47,05</td>
<td>14,56</td>
<td>42,98</td>
<td>24,82</td>
</tr>
</tbody>
</table>

KONSTANT VARVTAL

<table>
<thead>
<tr>
<th>Resa</th>
<th>Nm</th>
<th>Timmar</th>
<th>Knop</th>
<th>Tot./ton</th>
<th>Ton/dygn</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/10</td>
<td>118</td>
<td>9,6</td>
<td>11,7</td>
<td>10,23</td>
<td>25,7</td>
</tr>
<tr>
<td>17/10</td>
<td>908</td>
<td>64,8</td>
<td>14,0</td>
<td>73,2</td>
<td>27,1</td>
</tr>
<tr>
<td>19/10</td>
<td>228</td>
<td>16,8</td>
<td>14,6</td>
<td>20,6</td>
<td>29,4</td>
</tr>
<tr>
<td>21/10</td>
<td>3994</td>
<td>249,6</td>
<td>15,6</td>
<td>346,3</td>
<td>33,3</td>
</tr>
<tr>
<td>21/10</td>
<td>99,9</td>
<td>4,8</td>
<td>16,9</td>
<td>7,9</td>
<td>39,3</td>
</tr>
<tr>
<td>Medeltal</td>
<td>1 069,98</td>
<td>69,12</td>
<td>14,56</td>
<td>91,65</td>
<td>30,96</td>
</tr>
</tbody>
</table>
5.2 Bränsleförbrukning

![Diagram](image)

Figur 12. Bunkerförbrukning (Eget diagram, 2011)

Man ser att den största besparingen sker vid lägre hastigheter som VFD är planerad för, men vid 17,1 knop sker det fortfarande en liten besparing.

5.3 Besparing

Bunkerpriset varierar hela tiden, men jag räknar med ett pris som i februari 2011 är 450 €/ton.

Bränslebesparing:

- Med VFD: 21 ton/dag * 7 dagar = 147,0 ton
- Med konstant varvtal: 29,4 ton/dag * 7 dagar = 205,8 ton
- 205,8 – 147,0 = 58,8 ton

Ekonomisk besparing:

- Med VFD kostar resan 450 €/ton * 147,0 ton = 66150 €
- Med konstant varvtal kostar resan 450 €/ton * 205,8 ton = 92610 €
- Skillnaden är 92610 € – 66150 € = 26460 €
6 Sammanfattning av arbetet

VFD SG Solution finns det mycket lite att läsa om, eftersom det är en ny "grej". Jag har haft turen att komma i kontakt med sådana personer som verkligen är insatta och sakkunniga inom detta område.

Miranda har fungerat som pilotprojekt för WE Tech Solutions Oy som utfört denna modifiering och det har varit en utmaning även för dem. Företaget har verkat aktivt inom branschen sedan januari 2010. Man fokuserar sig på energieffektivering för marina installationer och är i nära samarbete med Vacon plc. Huvudkontoret finns i Vasa, och som verkställande direktör fungerar Mårten Storbacka. (Storbacka M. 2011b)

Som man kan se från tabellerna över besparingar, finns det möjlighet att minska bränsleförbrukningen vid lägre hastigheter.
7 Slutsatser och utvärdering

Att skriva examensarbete om VFD SG Solution - hur kunna använda variabelt varvtal vid axelgenerator drift, har varit utmanande men även mycket givande. Eftersom jag själv jobbar i maskin, har det varit lärorikt och nyttigt med tanke på framtiden.

Jag har haft nytta av att arbeta själv inom samma bransch och för samma arbetsgivare, som beställt detta examensarbete. Det har varit lätt att få hjälp vid behov och rederiet har ställt upp när det har behövts.

Det vore intressant att följa upp driften av VFD under en längre tidsperiod och på så vis få en klarare blick över besparingen. Men jag är övertygad om att besparingen är kännbar, speciellt vid låga hastigheter och varför inte i högre hastigheter, då i reducering av vibrationer. Jag har funderat på varvtalsreduceringens inverkan på kolvhaltningintervallen. Vanligtvis kolvhalar man efter en viss tidsintervall (12000 drift timmar). Med att huvudmotorn roterar med en lägre hastighet vid VFD än konstant varvtal, finns det en möjlighet att förlänga kolvhaltningintervallen, i.o.m. att kolven går upp och ner, ett mindre antal gånger under 12000 timmar. Detta innebär besparing i reservdels kostnader.

På basis av fakta som kommit fram under utredningen, ser installationen ut att vara lyckad. Målen har uppnåtts och reducering av bränsleförbrukningen är helt uppenbar. Vidare undersökning av bränslebesparingen i förhållande till investeringskostnader och framför allt vibrationer, är ett bra examensarbete i framtiden.

Själv är jag av den åsikten att om man kan på något sätt kan bidra till en bättre miljö och spara på naturen, godkänner jag ändringar i dagliga rutiner och andra inlärda sätt.
Källförteckning

Litteratur:

Storbacka M. 2010a. *Hur fungerar en VFD. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel. Operation of the VFD unit.*

Storbacka M. 2010b. *Konventionellt system. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel. Introduction.*

Storbacka M. 2010c. *Introduction av VFD. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel. Introduction.*

Storbacka M. 2010d. *Strävan att spara bränsle. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel. Aim to save fuel.*
Storbacka M. 2010e. *Dimensionering av anläggningen. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel.* Principal description of a Variable Frequency Drive.

Storbacka M. 2010f. *VFD enhet. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel.* Operation of the VFD unit.

Storbacka M. 2010g. *PMS, Power management system. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel.* Power management system modifications.

Storbacka M. 2010h. *Dimensionerings kriterier. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal Arrangement for existing Ro-Ro vessel.* Dimensioning criteria for the VFD unit.

Figurer:

Figur 5. Mårten Storbacka. 2010c. MSB med VFD. VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal arrangement for existing Ro-Ro vessel. Typical electrical load balance list.

Figur 6. Frekvensomriktarenheten (Eget arkiv 2010a)

Figur 7. Mårten Storbacka. 2010d. NXC 1300 Standard modul.... VARIABLE FREQUENCY DRIVE SHAFT GENERATOR SOLUTION Principal arrangement for existing Ro-Ro vessel.

Figur 8. Transformatorn (Eget arkiv 2010b)

Figur 9. Koppling brytaren (Eget arkiv 2010c)

Figur 10. VFD kontroll panel (Eget arkiv 2010d)

Figur 11. Rum för VFD enheten på main deck (Eget arkiv 2011)
Figur 12. Bunkerförbrukning (Eget diagram, 2011)

Tabeller:

Tabell 2 & 3. (Godby Shipping John Lundqvist, m/s Miranda Bunker and voyage report 21/10 – 1/11. 2010/ 2011)