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APPREVIATIONS 

Appreviation Explanation 

MATS Mechanics Automated Test System. Automatic test 

development system that this thesis describes. 

Host Computer Computer connected to robot controller. Runs test 

programs and monitors the state of the robot. 

PCDK PC Developers Kit created by FANUC Robotics. Col-

lection of ActiveX components that allow controlling 

of the robot with PC. 

R-J3 robot controller Robot controller developed by FANUC Robotics. 

Handles motion calculations, IO operations and 

communications. 

LR Mate 200i robot Industrial robot developed by FANUC Robotics. 

SubVI LabVIEW sub routine 

DUT Device Under Test 
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1 INTRODUCTION 

1.1 General 

Cassidian Finland has strict requirements for their products functionality, wear 

resistance and endurance. Various tests are performed during the develop-

ment to verify the requirements. This way most of the product manufacturing 

and design faults can be detected before the products are released. When 

performed by employees these product tests would consume a large amount 

of work hours and they are difficult to repeat similarly. Results may vary de-

pending on the test person, the test person's state of mind and test tools. For 

this reason Cassidian Finland started a project to create a test development 

environment for creating and executing mechanical endurance and wear re-

sistance tests. 

This thesis reports the software development and creation part of a mechani-

cal test system called Mechanics Automated Test System or MATS.  The main 

parts of MATS are FANUC Robotics LR Mate 200i industrial robot, FANUC 

Robotics R-J3 robot controller with IO modules, LabJack U6 data acquisition 

card and a host computer. MATS system block diagram can be seen in figure 

1 and appendix 1. 
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FIGURE 1. MATS block diagram 
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1.2 Goals 

In the early requirement of the Cassidian Finlands Mechanics Automated Test 

System it is defined that the system must be capable of performing tests for 

Cassidian Finlands products for long periods of time and as autonomously as 

possible. This system could be used through the life cycle of the products from 

concept selection to confirming faults that arise from the field. The main prod-

ucts of Cassidian Finland in Jyväskylä are in the area of Professional Mobile 

Radios or PMRs. The company designs both hand held radio units and mobile 

vehicle radios. 

To create a highly adaptable system without fully knowing what kind of tests it 

will perform, the best option is to use a programmable industrial robot. In gen-

eral, robots have higher reach and are more versatile than pneumatic manipu-

lators. By using an industrial robot as a device that manipulates the test ob-

jects, it is almost certain that most of the upcoming future products can be 

tested with the same test system, making only small modifications and addi-

tions. 

For this purpose, Cassidian Finland had acquired two used FANUC Robotics 

LR Mate 200i robots and R-J3 controllers with various parts and pneumatic 

equipment. 

The goal of the project was to create an adaptable and easy to use test crea-

tion and execution system utilising one of the robots. When building a system, 

available parts and programs should be used as much as possible. Using al-

ready purchased parts would keep the costs reasonable. When defining the 

goals of the project these three goals rose above the others. 

1) Create automated test creation environment for mechanical relia-
bility testing that utilizes an industrial robot. 

2) System must be as easy to learn and to use as possible. 
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3)  System must be highly adaptable for future EADS products. 

The first goal means that test designers and operators should not need to 

have extensive programming or robotic experience to create or run tests. If the 

tests take too much time to create, the costs of test creation are too high for 

the system to be used as regularly as intended. Some level of technical or 

mechanical test background can be required from the persons who create the 

tests.  

The first goal was the main concern in the software development part of MATS 

project. This required designing and creation of the system tools and process 

in a way that the test creation would be extremely easy and fast. Additionally, 

the test running environment and user interface for robot monitoring would 

have to be simple and user friendly. 

The second goal was the adaptability of the system. This meant that the sys-

tem needed to accept different kind of products, including future products that 

have not yet been designed. This was the major concern of the hardware de-

sign part of this project. This goal had to be taken into consideration when de-

signing product attachments and robot grippers. In the software side there 

should be easy an access to any new devices that would be connected to the 

system. 

All in all, this project was quite different from traditional robot applications. 

Usually industrial robots perform well defined pre-programmed task for long 

periods of time without any need of reprogramming. The objects that robots 

normally manipulate in production lines might stay the same for years.  In this 

project the task of the robot was almost opposite. Every new fault or irregulari-

ty in the product would require a new robot program to be created. The robot 

also had to be able to manipulate objects that did not yet exist. 

1.3 Topicality and importance 

The current trend in the robot development is the replacement of separate 
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robot controllers with regular personal computers. In the near future robot con-

trollers will most likely be replaced by normal office PCs that run real time and 

multitasking operation systems. One example of this kind of robot application 

is the border monitoring robot developed by VTT (Technical Research Centre 

of Finland). This robot has military grade PC running real time Linux operating 

system that handles all low- and high level controlling and communication 

tasks (Jalovaara 2010, 6). The reason for using PCs over robot controllers is 

obvious. PCs are cheaper, more adaptable and have more universal connec-

tion methods than traditional robot controllers (Robotiikka 1999, 34). 

This thesis is a halfway experiment for a computer controlled robot. Even 

though the robot controller still handles all motion calculations and some of the 

IO operations, robot programs are created and executed with a regular office 

computer. A PC sends commands to the robot controller and then monitors 

their execution. An actual robot program is running in the computer's memory, 

not in the robot controller's memory. 

Robot manufacturers search for new methods of creating robot programs. Ro-

bot programming tools are being developed to be more intuitive and easy to 

use. The results of this thesis show that graphical programming environment 

is highly effective in robot programming, saving time and money from program 

development. 

1.4 Company details 

Cassidian is a global provider of defense and information systems. Their rep-

ertoire includes military and paramilitary aerial, naval and land systems. Cas-

sidian's products include for example cyber security, secure communication 

systems, weapon systems, services and support.  In the year 2009 Cassidian 

had around 28.000 employees world wide and achieved revenues of 5.4 bil-

lion euros. Cassidian is a part of European Aeronautics Defense and Space 

Company also known as EADS (Cassidian website, 2011). 

Cassidian is divided into integrated business units. Cassidian Systems con-
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centrate to provide their military and paramilitary customers comprehensive 

and tailored security and communications systems. Cassidian Systems pro-

vides integrated solutions covering all domains (underwater, surface, shore, 

air, space) for naval warfare and maritime security. (Cassidian website, 2011). 

 

FIGURE 2. Cassidian organization chart. 

In 2005 EADS Defense & Security bought Nokia Plc's professional mobile ra-

dio business that designed and manufactured professional radios and network 

devices. This new EADS unit was named EADS Secure Networks. The name 

was changed into Cassidian Finland in October of 2010. (EADS Defence & 

Security changes its name to Cassidian 2010). 

Currently Cassidian Finland departments in provide professional mobile radi-

os, network solutions and supporting applications and services. In year 2008 

Cassidian Finland had 297 employees and a turnover of 156 million euros (Ta-

louselämä 500 website). Cassidian Finland has two locations in Finland. The-

se sites are located in Helsinki and Jyväskylä. This thesis was assigned by 
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Cassidian Finland in Jyväskylä. 

2 THEORETICAL BACKGROUND 

2.1 Robot programming 

When industrial robots were first introduced, programming of the robots was 

handled with electromechanical switches. When a robot drove to a defined 

position, it activated the switch inside robot joints and the robot performed the 

next action. This was quite a primitive way to perform motion paths and 

changing the motion patterns required major changes to the robot's hardware 

configuration (Robotiikka 1999, 78.) 

Another method to teach paths for robots was a leading method. The robot 

joints had pulse coders, and the robot arm was lead along the desired path by 

hand. This path was recorded to tape drive, and when that tape was played, 

the robot repeated the taught path. This was not very accurate or effective 

way to teach paths. Storing and changing of the tapes was difficult and time 

consuming (Robotiikka 1999, 78.) 

Currently the most common method to create paths for robots is to save ro-

bot's positions inside virtual coordinates to controller's memory, and give mo-

tion commands from the robot's current location to one of the saved positions. 

Changing of the robot position is not done anymore leading by hand, but ro-

bots are driven to wanted position with remote control-like devices (Robotiikka 

1999, 78.) 

Now the revolution of the robotics is emerging. High speed of communication 

lines, accuracy of sensors, calculation power of the CPUs and large data stor-

age capabilities are revolutionizing the minds and brains of the robots. They 

can react to things they “see” in real time and make decisions from the data 

stored in neural networks (Brooks 2002, 5). 
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2.2 LabVIEW programming 

LabVIEW is a graphical programming environment developed by National In-

struments. It was first introduced in 1986 for Apple Macintosh computers. In 

1992 LabVIEW became available for other platforms than Macintosh. Now 

LabVIEW can be used with Windows, Unix, Linux and naturally Mackintosh 

operating systems (Charterhouse Solutions website 2011). 

LabVIEW is mainly used in engineering as an instrumentation, measurement 

and control tool but it can also be used as a higher level graphical program-

ming environment. With LabVIEW, the programmer does not have to follow 

strict syntax of traditional programming languages. LabVIEW uses a pro-

gramming language called G. G language is a data flow code and with it pro-

grammers can build applications by connecting program blocks with wires that 

represent different variables, values and constants (Travis & Kring 2006, xxxi). 

 

FIGURE 3. Example of data flow programming. 

LabVIEW is not just instrumentation and programming environment but it also 

assists test designers by visualising data types and errors with colours and 

symbols. This is why learning curve in LabVIEW is not as steep as in tradi-

tional programming languages. An inexperienced program developer can have 

a functional and executable application with few minutes of learning. The 

down side of LabVIEW is its price. Other programming languages have lots of 

free development tools, but LabVIEW is only usable if purchased. 

As with all higher level programming languages, program execution perfor-

mance is somewhat lower with LabVIEW than with more basic programming 

languages like C++ or Visual Basic. (Travis & Kring 2006, xxxi). 
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LabVIEW programs consist of two different layers, block diagram and front 

panel. The front panel is the window that opens when a new LabVIEW pro-

gram is created. It contains the controls that the user interacts with and indica-

tors that give output from process or program. 

Block diagram is the window where LabVIEW test designers build their appli-

cations. It holds the graphical representation of the data flow code. In block 

diagram the application is made by creating and connecting terminals, nodes 

and wires. 

 

FIGURE 4. LabVIEW objects 

The terminals (C) can be used to transfer data between block diagram and 

front panel objects.  Node (D) is a block diagram object that performs actions 

with variables and constants (A). Nodes represent the operators, functions 

and subroutines in line based programming environments. All the LabVIEW 

block diagram objects are connected with wires (B). The colours of the wires 

represent the data it relays. This makes LabVIEW code easy to read and in-

terpret. 

When a program is built with different graphical elements and wires, a com-

plex program might start to look like a bowl of spaghetti carbonara more than 

a functional computer program. This is a big down side of LabVIEW environ-

ment. LabVIEW subVIs (E) and global variables (F) can help LabVIEW pro-

gram to look clearer. 
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subVIs or LabVIEW sub-routines are large program segments that appear in 

block diagram to be a small nodes. SubVI is a call method of LabVIEW envi-

ronment. SubVIs can have input and output terminals, and also front panel 

objects. Global variables are data objects, that can be used to pass data be-

tween several simultaneously running LabVIEW programs (NI LabVIEW Envi-

ronment Basics). 

 

FIGURE 5. Example from MATS block diagram. 

2.3 ActiveX 

ActiveX is a universal object interface introduced by Microsoft in year 1996. 

ActiveX is a common name for OLE controls and Component object model 

(COM). In MATS ActiveX objects are used to access the robot's functions and 

methods. FANUC Robotics has created an ActiveX library that utilises the ro-

bot's functions via a network interface. 

2.4 MATS Software components 

2.4.1 General 

One main goal of the application design of MATS was that the system must be 

easy to use and the robot programs easy to create. Often robot programming 

tools and languages can be quite complicated. Usually robot programming is 

done either locally with teaching pendant or with an external offline program-

ming tool that runs on a computer. Offline programming of the LR Mate 200i 

robots and R-J3 controllers are usually done with FANUC Robotics offline pro-

gramming software called WinTPE. 



16 

 

These programming methods are highly effective in most cases where a robot 

program's stays unchanged for long periods of time. For MATS, Cassidian 

Finland wanted an even more straightforward solution. The test programs 

must be created and managed with an easy to use computer based applica-

tion. Additionally robot monitoring must be handled with a computer. Following 

sections explain about selection and interaction of software components that 

were used with Mechanics Automated Test System. 

The system where MATS robot programs are run is a normal office desktop 

computer running Microsoft Windows XP professional. 
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2.4.2 FANUC Robotics PC Developers kit 

 

FIGURE 6. Block diagram of MATS software components 

FANUC Robotics PC developer’s kit (PCDK) is used as communications soft-

ware between the robot and a computer. PCDK is actually a collection of Ac-

tiveX components, their documentation and supporting computer applications. 

PCDKs ActiveX objects allows the host computer to send commands through 

the robot server. PCDK package also has example programs written in Visual 

Basic programming language. 
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PCDK allows the computer to read the desired register and digital signal val-

ues from the robot controller's memory in to the host computer. These values 

can be used in any program that requested the information. It can also change 

values and issue commands through ActiveX controls. PCDK is currently 

somewhat old-dated program for these kinds of tasks, but R-J3 robot control-

ler does not support any newer communication applications. Newer FANUC 

Robotics robot controllers have better support for computer integration than 

what R-J3 and PCDK offer. 

PCDK was the only reasonable software choice to be used for robot/PC com-

munications in our projects time frame. Another option would have been to 

create this kind of ActiveX library from scratch, but it would have taken years 

of reverse engineering and software developing. The datasheet of the PCDK 

can be seen in appendix 4. 

2.5 Robot server 

Robot server is a computer program developed by FANUC Robotics and it is a 

part of the PCDK software package. Robot server is an ActiveX executable 

program and enables the robot connection and relays commands from Ac-

tiveX components to the robot controller. It initiates the connection with TCP/IP 

protocol and usually operates through Ethernet connection. Computer side 

communications are handled through ActiveX object interface. ActiveX object 

interface allows robot test designers to use any programming tool that suits 

best for their purpose (PC Developers Kit 2011). 

2.5.1 LabVIEW in Mechanics Automated Test System 

National Instruments LabVIEW was selected as the main test creation soft-

ware for Mechanics Automated Test System (MATS). Cassidian Finland al-

ready had a program license for LabVIEW and employees who had LabVIEW 

programming experience. The idea of building robot programs graphically was 

also alluring. The LabVIEW version used for MATS was LabVIEW 8.5. 
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FASTEMS Plc the Finnish importer of FANUC Robotics did not have any ex-

perience or knowledge of any applications where robot programs were creat-

ed with LabVIEW. They said that it should be possible if LabVIEW supported 

ActiveX components. FASTEMS provided computer side software PC Devel-

oper's Kit and controller side software called Data communications option. 

Together these allowed robot programs to be created with computer and with 

any programming tool that supported ActiveX components. 

LabVIEW  has had a full support for ActiveX components since version 8.2. 

LabVIEW can act as an ActiveX client to access ActiveX objects, properties, 

methods and events (Using ActiveX with LabVIEW 2006). 

With the combined features of LabVIEW and PCDK it was possible to create 

all needed tools under LabVIEW programming environment. FANUC Robotics 

has a ready made computer programs that can act as a user panel or pro-

gramming environment; however, these programs cost money and test crea-

tion would not be as easy as it is with LabVIEW. Using one platform for robot 

programming, monitoring and project management would make the usage of 

the system much easier than using large collection of pre-made applications. 

2.5.2 Data communications option 

Robot controller software that was needed to enable robot/PC communication 

is called data communications option. Data communications option is installed 

on robot controller with PCMCIA card. FANUC Robotics refers robot side soft-

ware packages as options, and they must be purchased separately. Data 

communications option enables the controller to send and receive packages 

between computer and robot controller. The contents and consistency of these 

packages remain confidential information that FANUC robotics is not revealing 

in any of the PCDK related documents. 

It is clear that this data communications option installs at least two programs 

to robot controller. One sends data to PC and the other one receives data 

from PC. The receiving program has some control over robot, because it can 
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issue motion commands, change signal values and change robot configura-

tion.  

2.5.3 Robot controller alarms 

When the robot controller detects an unwanted state it raises an alarm. Se-

vere alarms abort current program cycle and notify user with error code and 

message. Alarms are displayed in the Teaching Pendant’s alarm menu, and 

they can also be sent to host computer via Ethernet connection.  

In MATS ten most recent alarms are displayed in user panel and new alarms 

are sent to operator via email. The operator is notified with alarm time, error 

code, message and test programs current status. This way operator can im-

mediately react to error situations. 

2.6 MATS Hardware components 

2.6.1 General 

This section introduces the hardware components of MATS so that the read-

ers of this thesis have a better understanding of the test environment and its 

software components. All hardware in the system is controlled or monitored 

with customized computer applications. Therefore it is important to know the 

basics of the devices that are controlled and monitored.  



21 

 

2.6.2 FANUC Robotics LR Mate 200i industrial robot 

 

FIGURE 7. FANUC LR Mate 200i industrial robot. 

The robot FANUC LR-Mate 200i that Cassidian Finland acquired for test sys-

tem suits this kind of work well. It is an articulated robot with six degrees of 

freedom. It has a modular construction and an electric-servo driven table top 

robot with a small footprint. The six degrees of freedom ensure that the robot 

is versatile enough to manipulate small buttons and parts that are in different 

angle compared to the main body of the product being tested. 

The robot’s maximum speed for the sixth joint is 480°/sec. The speed of the 

robot is limited to 250mm/sec which is the safety limit defined by an interna-

tional standard.  The robot’s reach is 700mm, and this is enough for about ten 

or more products to be tested in one session, depending on the product's size. 

Usually the products being tested are a bit larger than a modern mobile 



22 

 

phone. 

The maximum joint payload is 3kg. The robot is not powerful enough to per-

form tests that need high forces, like fall tests or professional mobile radio's 

hull endurance tests, but is enough for testing smaller parts, like keys, key-

boards and battery releasing.  

The robots repeatability is up to 0.04mm. The robot is accurate enough to lo-

cate buttons and other small mechanical parts. The datasheet of the LR Mate 

200i robot is in appendix 2 (LR Mate 200i datasheet, 1999). 

 

2.6.3 FANUC Robotics R-J3 Robot controller 

 

FIGURE 8. FANUC Robotics R-J3 robot controller. 

Robot controller is the brain that moves the hand that is the actual robot. For 

MATS FANUC Robotics R-J3 controller has all required features. It has 32-bit 
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dual process architecture. The processors handle motion calculations and 

communication processes independently. It can be modified and expanded by 

buying software options and I/O modules. The controller also has an in- built 

Ethernet card that enables easy host computer access and FTP server for 

backup operations. 

Positions of FANUC Robotics LR mate 200i robot must be taught with teach-

ing pendant. FANUC Robotics R-J3 controller can store only a limited amount 

of positions so it was anticipated that positions had to be uploaded to LR Mate 

200i robot controller from external source, most likely from host computer. The 

R-J3 controller has an inbuilt Ethernet connection and FTP server. These were 

earlier used to make system backups and for saving robot programs to R-J3 

controller's memory. The datasheet of the R-J3 controller is in appendix 3. 

2.6.4 FANUC input and output modules 

FANUC R-J3 controller has a modular input/output interface module model 

number BIF04A1. This unit can hold up to five input and output modules that 

can be both digital and analogue. These modules can be changed according 

to the requirements of the system. When Cassidian Finland purchased the 

robot and the controller there was two digital input modules (AID16D) and two 

digital output modules (AOD16D). One analogue input module (AAD04A) was 

purchased to read the signal from HBM force transducer that is installed on 

the head of the robot hand. 

2.6.5 SMC Auto Hand Change System 

MATS is equipped with SMC MA310 Auto Hand Change (AHC) system. This 

AHC system can change robot tools to accommodate to different tasks. With 

AHC system the robot can change tools autonomously whenever the robot 

program requests that.  

There are five tool stands inside the robot work area that can be used to hold 

tools that the robot uses during a test session. SubVIs for picking up a tool 
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from tool stand, and leaving tool to empty tool stand had to be created. AHC 

system has six pneumatic ways and twelve signal ways that initiate connec-

tion to every tool hand that is picked up. 

2.6.6 LabJack U6 data acquisition card 

 

 

FIGURE 9. LabJackU6 and one of the test signal boxes 

LabJack U6 is a data acquisition card with digital and analogue signal ways. 

LabJack U6 data acquisition card was acquired as a modifiable signal reader 

to read digital and analogue signals from devices under test. These signals 

can include for example connection signal of a key, or the resistance of a bat-

tery. Some of the LabJack signals are connected to the test signal boxes 

which allow a tester to easily connect needed test signal lines to the device 
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under test. 

LabJack U6 was shipped with Windows driver and LabVIEW example pro-

grams. This enabled easy computer access via USB cable and seamless 

LabVIEW integration. This data acquisition card has good connectivity and 

measurement options. (LabJack U6 (-Pro ) User's Guide, 2009). 

2.6.7 HBM AE101 50N force transducer 

HBM S2/50N Force transducer is mounted directly under the robot arm. The 

force transducer can be used to measure pushing and pulling forces up to 5kg 

(HBM S2 Force Transducers data sheet). LabVIEW applications could also 

use force information to identify objects by picking up an object and measuring 

tensile force. The signal from force transducer is amplified by HBM AE101 in-

dustrial DC amplifier. The amplified signal is then sent to FANUC analogue 

input unit. This analogue signal information is transformed to integer number 

in range from -2047 to + 2048. This value can be read to LabVIEW through 

custom made subVI. This subVI also converts integer pulse value to grams. 

2.6.8 SMC ZSE40 pressure switch 

SMC pressure switch monitors the pressure of two pneumatic suction lines. 

When using suction caps to pick up objects the pressure switch can be used 

to confirm successful pick up operation. SMC ZSE40 pressure switch monitors 

two pre set pressure limits and turns two digital outputs on or off depending on 

the device settings. Test developers can react to these value changes and 

program the robot by trying unsuccessful pick up operation again or by notify-

ing operator with email about the failed pick up operation. 
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3 MECHANICS AUTOMATED TEST SYSTEM 

3.1 Program architecture 

3.1.1 Initializing and connecting the robot object 

LabVIEW accesses ActiveX objects of FANUC Robotics PCDK through auto-

mation reference number control or the ActiveX container. Both of them are 

also LabVIEW front panel objects (Using ActiveX with LabVIEW, 2006). 

 

FIGURE 10. Initializing FANUC Robotics ActiveX objects in LabVIEW. 

In MATS, the automation reference number is used to access ActiveX objects. 

When LabVIEW function Automation Open (H) is called for FRRobot.IRobot 

object (G), it initializes all ActiveX methods (I) and properties (J). Opening 

FRRobot.IRobot ActiveX object causes the robot server to start automatically. 

The robot server handles communications between computer and robot. The 

robot server runs silently in the background while robot programs are being 

executed, and then shuts down when FRRobot.IRobot object is closed.  

The first action after opening an ActiveX object is connecting the robot server 

to the robot. This can be completed easily with ActiveX methods Connect or 

ConnectEx (I). ConnectEx method gives more options about connection times 

and number of retries. After the robot connection is initiated all robot controller 
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data can be accessed with same kind of line notation that is shown in figure 

10. LabVIEW offers an easy way to explore ActiveX object's properties and 

methods. When the robot reference number is clicked with the right mouse 

button, a menu opens where there is option called create. Here the test de-

signer can examine all properties and methods that exist in the selected ob-

ject. Despite easy exploring of methods and properties, it still is a huge task to 

build all of these as LabVIEW sub-programs. PCDK has dozens of properties 

that all can contain hundreds of methods and properties. 

3.1.2 Reference number 

In LabVIEW a reference number is used to identify objects from each other. 

Reference is a random number that LabVIEW creates each time the object is 

called. LabVIEW uses reference number to identify which instance of the ob-

ject is being used.  With PCDK reference number represents the robot object 

that is opened when FRRobot.IRobot is initialized. Through the robot object 

test creator can access PCDK's properties and methods. The reference num-

ber is passed between LabVIEW terminals and nodes with a wire, like any 

variable. 

 

FIGURE 11. Reference number 

The same robot reference number runs through the whole LabVIEW main 

program. If FRRobot.Irobot instance is cloned in sub-programs, this cloned 
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reference number is closed inside a sub-program (L), and the original refer-

ence number is passed to the next sub-program (K). This keeps the LabVIEW 

loop conditions functional, and the program development clearer. If the original 

robot reference number were closed inside any loop, the whole LabVIEW pro-

gram would crash when the loop would be to run another cycle. 

3.1.3 Program execution order 

LabVIEW is a graphical programming environment and the program execution 

order is not always as clear as in traditional line based programming lan-

guages. LabVIEW terminals and subVIs are executed from left to right. If 

some functions are at the same horizontal level but one is on top of the other, 

these functions are tried to be run simultaneously. (Block Diagram Data Flow 

2006). 

 

FIGURE 12. Two add operations 

In figure 12 two add operations are executed simultaneously. This is useful in 

some applications where simultaneously performed functions will not affect 

physical world. In the case of robot software development, the correct execu-

tion order is very important, for example when a robot is commanded to move 

to a certain position and perform an action when reached there. If these two 

imaginative sub-programs are located in same horizontal level, both move-

ment and control commands are executed simultaneously. This causes the 

robot to fail in completing its task. 
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FIGURE 13. Data driven execution 

LabVIEW execution order can also be called data driven. Program blocks are 

run when they have all required data. In figure 13 subtract action is not per-

formed before add operation gives data to it. 

With robots, it is important that the first move is completed before trying to ex-

ecute the next one. With PCDK sending a new command to the robot control-

ler that is still executing a previous task causes a system crash. PCDK has 

good functions to ensure that the robot has reached its destination before con-

tinuing the program cycle. This situation is achieved by an IsAtCurPos method 

placed inside a loop, where methods output Boolean is connected as a loops 

stop condition. 

 

FIGURE 14. Reference and error wires 

There is also a way to ensure that any method or property is not executed 

when the system is in error state. This is done by connecting the same error 

wire (N) to every block and sub-program in LabVIEW program. This single 

error wire also makes the program execution linear, since all LabVIEW func-

tions wait for the error data before execution if the wire is connected. In MATS 

the program execution order is managed with error wire (N) and the robot ref-
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erence number (M). 

3.2 Sub programs 

3.2.1 General 

MATS includes 45 subVIs that can be used for the program creation. These 

subVIs include motion commands, position reading, tool changing, email 

sending etc. Overall amount of the used LabVIEW functions is hard to deter-

minate. The estimated amount of the used functions is in the range of 1000 - 

1500. 

Using and initializing all needed PCDK functions with ActiveX interface in 

LabVIEW is somewhat time consuming. If robot programs would have to be 

created every time from scratch, it would not be efficient or cost-effective. To 

achieve the main goals of easy usability of the test creation system, a collec-

tion of easy to use subroutines had to be created. These subroutines could be 

used during the creation of the test programs. 

Subroutines in LabVIEW are called subVIs. SubVIs can be called from any 

block diagram. When subVI is called it runs the LabVIEW program it refers to. 

(Creating subVIs 2008). 

With MATS, almost every subVI has at least two input and output wires. These 

two wires are the Robot reference number and error wire. Both of them are 

run uninterrupted through the whole robot program. Reference and error path 

determine the program execution order and subVIs reserve these two values 

until they have performed their task. This prevents running two programs sim-

ultaneously. 

3.2.2 Move to example subVI 

Move to subVI is one of many subroutines created for MATS. This subroutine 

reads position data from a position file and moves the robot in a defined way 
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to these coordinates. 

 

FIGURE 15. Two sequential “Move to” subVIs used in a robot program. 

The function of this subroutine may sound extremely simple, but constructing 

this subroutine from PCDK ActiveX components is quite complicated. This 

LabVIEW program's block diagram is so large that it is represented in several 

parts. 
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FIGURE 16. Beginning part of Move to subVI. 

As seen in figure 15 in the the left side there are terminals that relay values 

from the main robot program to subVI (O). These values are the robot refer-

ence, motion type, speed and error wire. Position file path and position index 

number are also brought from main program. All these values are needed in 

subVI. 

Inside Move to subVI is another subVI called Set Motion parameters (P). Set 

Motion parameters subVI change the robot controller's register values to set 

the next movement’s type and speed. The values are reset automatically by 

the robot controller when the robot has reached the desired position. 
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RemoteMotionMaster (Q) property must be set to frHostMaster. This way the 

robot controller knows that the host computer can issue motion commands to 

robot controller.  

Because the controller normally has all positions saved to its own memory, an 

independent position must be created inside the LabVIEW program. This is 

done by calling CreateIndependentPosition (R) method. This method creates 

a new empty independent position that can be used outside of the robot con-

troller. For CreateIndependentPosition method a motion group must be de-

fined. The robot controller can have many motion groups. These motion 

groups represent the robot's degrees of freedom. In MATS there is only group 

1 in use. 

Record (T) method is called for independent position. This ensures that the 

independent position has all the needed information that move to command 

can be issued to it. The record method also saves the current position of the 

robot, but this position data can be changed. Note also how original robot ref-

erence number (S) is transferred to reference output port. 

Opening the position file is performed simultaneously with first part of Move to 

subVI. This does not cause error because reading from the file does not use 

robot server. First all positions from position file is opened as an array (U). 

Desired position from array is broken down to series of strings (W). Strings 

represents one of the elements in X,Y,Z,W,P,R coordinate system. Coordinate 

strings are then converted to numbers (Y) and transferred to IXyzWpr proper-

tie. Position comment is transferred to user panel via global variable (X). 
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FIGURE 17. Second part of Move to subVI. 

In second part of Move to SubVI the first motion group is selected for Inde-

pendent position with IIndPosition method (Z). Then position data of the rec-

orded independent position is formatted to X,Y,Z,W,P,R format with IInd-

GroupPosition method (B1). After this the independent position is type cast to 

the same format with variant to data node (C1). Then the position data of the 

independent position can be read and written. In this example the position da-

ta is written to the independent position with IXyzWpr property (D1).  

The Close reference (A1) nodes that are placed after some of the methods 

and properties ensure that the opened instances of robot objects are closed 

when they are not needed any more. This saves computer resources and pre-

vents problems that occur when multiple robot objects are alive in computer 

memory. Sometimes in these kinds of situations the robot server could not 

handle the commands sent to multiple robot objects, and caused an error 

message and program crash. 
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FIGURE 18. Last part of Move to subVI. 

In last part of Move to subVI Parent property (E1) is called to gain access to 

the properties of the independent position. Moveto (F1) method is the com-

mand that sends the independent position to the robot controller and moves 

the robot. Wait Cycle end (H1) is another subVI that reserves the robot refer-

ence number and error line until the robot has reached the position. Note how 

original robot reference (G1) is passed to output terminal. 

There is also a Move to offset subVI that changes positions according to offset 

information. Workbenches where the test objects are placed are crafted accu-

rately, so with offset motion command the test designer can use the same 

program and positions in multiple places in the work area. 

 

FIGURE 19. Usage of the Move to offset subVI on robot program. 

3.3 LabVIEW subVI icons 

To make program creation and execution easier, three hours were spent to 

create customized icons for most commonly used MATS subVIs. This made 
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LabVIEW robot programs much easier to read. National Instruments does not 

yet have a large collection of robot themed program icons. There were maybe 

two or three robot related icons in National Instruments website, but they real-

ly were not descriptive enough for this purpose. Instead there were many 

icons in other sections that could be used as a template for custom made 

icons. 

 Because LR Mate 200i is coloured bright yellow, this yellow colour was used 

in the icons to represent the robot. This clarified icons more and now test de-

signer or any other person who has never worked with MATS can immediately 

gain some idea of functionality of a sub-program based on its name and icon. 

 

FIGURE 20. MATS customised LabVIEW icons 

3.4 Position teaching 

3.4.1 General 

Teaching positions to a robot is something that cannot be avoided in current 

industrial robot systems. Sometimes position teaching can be somewhat cum-

bersome and time consuming. When LabVIEW was selected as a main pro-

gram creation tool, it was clear that some kind of position teaching program 

had to be created. There was no ready implementation or template for robot 

position teaching program available for LabVIEW environment, from FANUC 

Robotics or National Instruments. 
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3.4.2 Teach positions LabVIEW program 

Position teaching of MATS is handled with host computer and LabVIEW pro-

gram named Teach positions. PCDK ActiveX components allow near real time 

position data to be read from R-J3 controller. LabVIEW can read this data and 

save it to file. With Teach positions LabVIEW program test designer can easily 

create new or open existing position files. There is no limit how many position 

files can be created, but one position file can contain -100 positions. This limi-

tation is set only to keep position files manageably sized. One robot program 

can use data from any created position file. 

 

FIGURE 21. LabVIEW front panel view of the Teach positions program. 

“Teach positions” LabVIEW program reads the current position from robot con-

troller and saves it to file, when the operator so chooses to. All save, retouch-

ing and motion actions are controlled by the user with LabVIEW front panel 

objects. Positions are identified in the program code with path the of the posi-

tion file, and index of the position in that file. The position comment is added to 

remind users about the function of a position. 

Based on the results of early trial runs of position teaching it was decided to 

add the possibility to give motion commands to the robot from “Teach posi-

tions” program. This way the test designer can test the functionality of position 

combinations immediately after the positions have been taught. The test de-

signer can also select the motion type of the motion to be tested. Robot has 
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joint and linear motion type. Linear motion type travels path between two posi-

tions following a strict straight line. Joint motion type exchanges precision for 

speed. Joint motion makes transfer between two positions faster, but does not 

necessarily follow straight path. 

The possibility of jogging the robot with LabVIEW program was also studied. 

Jogging LabVIEW program initiated connection and retrieved current position 

data from the robot controller. When this position data was changed with Lab-

VIEW front panel object or computers keyboard, LabVIEW sent “move to” 

command to the robot. This experiment worked, but the delay caused by the 

Ethernet connection was too large for jogging with LabVIEW or keyboard to be 

allowed. Robot jogging has to be performed with the robot controller's remote 

control like device called the Teaching Pendant. The teaching pendant allows 

delay free and accurate control over robot. 

3.4.3 Position format 

Positions are saved to file as a plain numbers. It was decided to keep position 

data accessible, so an experienced test designer could change positions from 

the position file without full retouch procedure. Files that store positions have a 

postfix “pos”.  The position file is actually a table where “tabulator” is used as a 

separator for columns and “enter” as a separator for rows. This way the posi-

tion files can be opened with a compatible spread sheet program. Every posi-

tion has X,Y,Z,W,P and R coordinate position information, index number from 

1 to 100 and a comment. Values X,Y and Z express a 3D location of the robot 

tool inside workspace. Values W,P and R represent the tilt of the robot tool in 

that position. 

The position data is saved as real numbers with three decimals. The index 

number of the position is used when creating robot programs, to identify dif-

ferent positions in the position file. The position comment helps the test de-

signer to remember what the position actually is. The comment is also dis-

played in MATS user panel when a motion command to that particular position 

is issued. 
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FIGURE 22. Example of opened position file. 

3.5 Data collection 

The tests that are performed with the system can collect a wide variety of dif-

ferent measurement data. The only limitation to the output data is the sensory 

equipment. Currently test developers can measure pressure and tensile forces 

with force transducer, digital and analogue output data with LabJack U6 data 

acquisition card and Fanuc IO modules. Test developers can also program 

tests in a way that the test is paused when a certain part of the test is com-

pleted. This way the operator can perform complex measurement actions 

manually if needed. 

Data that is collected by LabVIEW test program can be processed with Lab-

VIEW functions. Data can be saved to a file inside the host computer's 

memory or sent to an operator by email. LabVIEW has many inbuilt functions 

that can perform all file handling operations. Send Email subVI has an input 

port that can be used to send data to the operator. Email notifications can be 

turned off during the program testing. This way MATS does not spam the test 

creator’s mail box if there are errors, or a test cycle is done multiple times. 

3.6 User panel 

Mats user panel provides information for a tester during the test program exe-

cution. MATS user panel also has a few buttons for the user to have some 

control over the robot. These buttons execute LabVIEW sub program for vari-

ous purposes. Pause button interrupts the robot motion. Operators can use 
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this button to perform calibration actions inside robot work area safely. Contin-

ue button continues the program cycle after it is paused. Stop button aborts 

the program cycle and closes the opened robot connection. 

 

FIGURE 23. A Screenshot from MATS User panel. 

Values of MATS User panel and running robot program are transferred 

through global variables. This way the test test designer will not have to draw 

wires from Start mats user panel subVI block to every value instance that is 

being monitored or changed. Changing of the values is handled inside subVIs 

and changed values are updated to the user panel. 

Great numbers of the test cases that are run with the system repeat the same 

cycle for tens of thousands of times. The data in loop timer boxes is linked to 

the subVI that has the same name. The loop timer box shows information 

about the duration and count of the loop, that test program is currently run-

ning. The loop time left box shows estimation how long the loops are going to 

run. The current cycle box shows how many cycles are already performed.  

The topmost information box shows general information of the test program. It 
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shows the test program’s name, test start time, system’s time, and elapsed 

thetime of the test. 

Program status data field shows the information about the current state of the 

test program. Position comment field shows the comment of the position, 

where the robot is moving if this data has been saved when the position has 

been taught. Current routine shows the name of the routine that the robot is 

performing. Alarms table shows the ten most recent alarms from the robot 

controller. New alarms are also always sent to the operator via email. 

The robot's status changes are being handled by activating PCDK ActiveX 

event monitors. These event monitors communicate with FANUC Robotics 

robot server program that handles robot to computer communication. An event 

monitor can be issued to monitor specified data for changes. The occurring 

data changes launch a new VI that contains wanted actions. These user panel 

values do not have to be updated in every program cycle, but only when a 

change is detected. Using event monitors makes the program more efficient 

by saving computing time for other processes. 

Monitoring is handled with Reg Event Callback LabVIEW node. It defines what 

value is monitored and what VI is run when an event is detected. Event 

Callback VI acts like a subVI. 

A good example of an event is alarm update of MATS user panel. When the 

robot server detects a new alarm in the robot controller, it raises an event. This 

event is detected by Reg Event Callback node that is connected to the alarm's 

property of IRobot object. The detected event launches AlarmNotify Event 

Callback subroutine that updates alarms from controller to user panel. 
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FIGURE 24. Example usage of Reg Event callback. 

Event monitors are started at the beginning of a robot program. This is done 

by placing the Start MATS user panel LabVIEW program at the beginning of 

every test program. Start MATS user panel LabVIEW program is run simulta-

neously with the main LabVIEW program. It contains all event monitors and 

other user panel objects that have to be updated during running program. 

The user panel does not have any security related actions like emergency 

stop. Ethernet connection is not a traditional automation field bus, and it can-

not be trusted to perform this critical action. Additionally, the user panel values 

are not updated regularly so it would be dangerous to place critical controls to 

this virtual user panel. 

The objects of MATS user panel are logically arranged in groups. Values that 

are somehow related to each other are placed inside a box. This way the op-

erators can have an intuitive understanding of the user panel. More vital in-

formation is placed to the left side of the user panel. This arrangement mimics 

other computer programs. For example in Windows XP Start menu and desk-

top the icons are placed on the left side by default. 

3.7 Tool identification 

It is important that the right tool is used for right test sequences. MATS was 

built in a way that it would be capable to identify the tool that the robot is trying 

to pick up from the tool stand. Tool identification ensures that correct tool is 

used in all test sequences. Five of the twelve signal lines of SMC AHC system 

are used for tool identification. These signal wires are connected to FANUC 
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Robotics digital input modules. Robot tools are built in a way that every tool 

has a unique binary identification number. Identification numbers are formed 

by connecting proper digital input wires to digital output wire.  This gives pos-

sibility to identify 14 different tools. 

Tool identification subVI detects if the robot is picking up a desired tool. Tool 

number must be specified for tool identification subVI. This is done only once 

during the test creation. Tool identification subVI gives a Boolean value as an 

output. If the correct tool is picked up the output is true. Boolean output can be 

used as an input value of LabVIEW case structures. With LabVIEW case 

structure it is possible to react differently in cases where the wrong tool is de-

tected. 

 

FIGURE 25. Usage of the tool identification subVI. 

Tool changing subVI has an inbuilt capability to identify the tool, and search 

the correct tool from all of the tool stands. If the robot does not find the correct 

tool from any of the tool stands, it will notify the operator with an email. The 

positions of the tool stands are taught in advance so the robot programmer 

does not need to reteach them at any point. 

3.8 Test project handling 

LabVIEW has an inbuilt tool to manage LabVIEW projects. This project tool is 

called Project Explorer. It can be used to create and edit project files. With 

Project explorer it is easy to group LabVIEW and non LabVIEW files to 

groups, manage dependencies and resolve conflicts. Project Explorer folders 

can be defined to be auto-populating. This way files that are added to auto-

populated folders are automatically added as part of the project. (Using Lab-
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VIEW Projects 2007). 

LabVIEW project explorer's ability to manage all file types makes it an efficient 

tool to manage all test related data that MATS provides. It can be used to 

manage LabVIEW subroutines, position files, test instructions and test results. 

This way there is no real need to have different project and data management 

software when using MATS. This adds a great deal of usability to the system. 

With LabVIEW project explorer test developers can manage all of the test re-

lated files. Project manager keeps automatically track of new position files and 

subVIs. 

 

FIGURE 26. LabVIEW Project Explorer window. 

One down side of LabVIEW project explorer is that with it the project files have 

to be managed locally.  There is no possibility to publish or manage test files 

online in another computer. On the other hand this makes the system more 

secure. Ability to publish and manage sensitive data through network might be 

considered a security risk. 
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3.9 Ethernet security 

 

FIGURE 27. Network connection 

R-J3 controller has an access control IP list that defines computers that can 

access the robot controller. The computer's IP address must be in this IP list, 

otherwise the controller will deny all connection attempts.  R-J3 controller has 

feature where users could be identified with username and password. In this 

case user name and password access control is not being used because user 

name and password exchanges might increase the controller’s response time. 

R-J3 controller is connected to the company network, but the router is config-

ured in a way that only the host computer that is in the same room with MATS 

can access the R-J3 controller. 

Cassidian Finlands company network is restricted and can be considered as a 

safe environment. The room where the robot is located is locked at all times. 

Only few company employees have access to this room. Strict physical ac-

cess control increases the security of the system. 
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4 EXAMPLE CASE 

4.1 General 

This section tries to open the overall process of test creation with Cassidian 

Finlands MATS. The values given in this example test case do not represent 

any actual mechanical test. The values have been changed due to confidenti-

ality issues. 

4.2 Test Design 

If there is a new product or new part to be tested, the first part of the test crea-

tion process would be to design a robot tool and attachment for the product. 

Robot tool design and manufacturing are time consuming processes. In be-

tween the design phase and Position teaching phase there can be several 

weeks in between. This extra time comes mainly from designing and ordering 

robot tools and attachments. If there is no need to order new accessories, test 

the creation process is much faster. A functional test can be created in less 

than eight hours. 

As the test definition illustrates, a tool that is used in this test case has to be 

able to push THR9 power and volume buttons. For this example test it is as-

sumed that these tasks can be performed with the same robot tool. It is also 

assumed that the robot tool is ready, and can be used immediately. 
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FIGURE 28. Collection of Cassidia Finland’s TETRA products 

The test is documented in a way that it can be repeated every time when 

needed. The test object positions, position files and robot program files are 

saved so the test can be quickly run when needed. 

In the design phase a first draft of robot movements are created. When creat-

ing motion sequence drafts for test programs, it was a good practice to first 

create a motion path sequence table. Motion sequence table could then be 

used during position teaching as a template. Motion path sequence should 

contain at least position index, motion type and comment. Some transitional 

positions might have to be added during position teaching. 
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FIGURE 29. Position sequence flow chart of example test case 

In this example case only four positions have to be taught. The first position is 

above the power key, and the second one is when the power key is pushed 

down. After THR9 is turned sideways the third position is above volume up key 

and in the fourth position the volume up key is pushed down. There may be 

need to train additional transitional positions, but there are also pre-taught 

safe positions inside a work area. Transitions between safe positions could be 

performed with joint motion type. This motion type is faster, but it will not nec-

essarily follow a straight path. The actual pushing of a key is done with the 

linear motion type. The linear motion is not as fast as the joint motion, but it 
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travels a straight line between the positions. The position sequence for these 

coordinates would be as follows. 

Position sequence indicates the type of the motion, index of position and order 

of motions and actions. For example J1 means that robot moves to first posi-

tion of the position file with Joint motion type. L4 means that robot moves to 

fourth position in position file with Linear motion type. 

HOME1 position is the pre-defined safe position above workbench 1.  After 

position sequence has been created, the first draft of robot program can be 

created.  

4.3 Definition 

Normally test definition is based on a test standard or detected fault that has 

to be verified or examined. In this example test case the values and test case 

itself are invented. Even if this use case is a fake, it will give a good overview 

about how MATS can be used. 

The first step of test creation process is filling in a test specification template. 

It provides information about the test for test designers and testers. It specifies 

the needed hardware components, preconditions, robots actions and post-

conditions of the test. At this point the template is only a draft, and it can be 

updated when there is more information about the test. 

TABLE 1. Example test specification template. 
Test 1988 

Test ID 1988 

Status Draft 

Date/version 14.01.2010 

Name THR-9 keys and keyboards 
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Description   

Purpose of test Keys and keyboards mechanical reliability. 9 samples required. 

- Configuration Fully assembled THR-9 radios. 3 radios on table each time. Test repeated 
three times to collect data on 9 samples. 

- Test options Number of radios to be tested in this run. (Default is 3 radios) 

- Reference documents   

- Supported HW version Standard THR-9 radios. 

- Test duration Approx. 3 hours for one radio. 

Pre-condition Place product specific tool head "Finger tool" in tool post no 1. Place 1 to 5 
"THR – connector test" jigs to test table A. Coordinates "B-5, B-10 and B-
15". Insert 1 to 3 radios on jigs screens upwards. Test puttons functionality. 

Test steps STEP 1: Push power key 30.000 

  STEP 3: E-mail notification to change radio position 

  STEP 4: Tester positions all radios volume buttons upwards 

  STEP 5: Start next phase from robot monitor centre 

  STEP 6: Push volume up key  500.000 times 

  STEP 7: Email notification about test competition 

Criteria Characteristics must be within specified limits. Key should give contact 
every time. Contact must happen immediately after tactile point without any 
extra force. 

Test data Pass/fail/incoclusive 

Post-condition Remove the product specific jigs.  Functionality of the keys must be checked 
at least at temperatures of -35 and +60 degrees. Functionality of test buttons. 

 

In this example test Cassidian THR9 Professional Mobile Radio power key 

and volume up button's endurance was tested. The tool used in this example 

is mechanically designed in a way that it presses the keys with at desired 

force. The power-key is pressed 30 000 times. Then device under test is 
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turned by an operator and volume up key is pressed 300 000 times. Values or 

test progression do not represent any actual test. 

4.4 Teach positions 

Position teaching is handled with Teach positions LabVIEW program and R-J3 

Robot controller's teaching pendant. With the teaching pendant the robot is 

jogged inside work area. When the desired position is reached, the position is 

saved to the position file by clicking a button in Teach positions program's front 

panel. The position teaching for these four positions would take about fifteen 

minutes if the system start up time and position sequence testing were includ-

ed. 

 

FIGURE 30. FANUC Robotics Teaching pendant. 

When pushing a key of a device under test, the key contact can be verified 

either with an installed force transducer or by wiring key contacts inside the 

THR9 to outside of the hull. By connecting these contact lines to the test sig-

nal box, a LabVIEW function could verify a successful key contact. 

Teach positions LabVIEW program has an option to drive the robot between 

positions with the wanted motion type. This way the test designer can immedi-
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ately test and retouch the positions that have been created. 

4.5 Program creation 

A first draft of position teaching has been created in a design phase of the test 

creation process. Before starting to create a robot program from the test, it is 

recommended to perform a step test from the taught positions according to 

position sequence table. This way it can be ensured that the taught positions 

are correct, and no transitional positions are needed. Positions can be added 

to position files at any time with Teach positions utility. Example test program 

is represented as a whole in appendix 4. 

 

FIGURE 31. First part of the example robot program. 

The first part of this robot program is a “Connect” subVI. It initiates the robot 

connection, so that other methods can use the robot object. The second rou-

tine is the starting of MATS user panel.” Start MATS User panel” subVI starts 

event monitors and updates the MATS user panel. 

The first Move to subVI drives the robot to a safe position above the work-

bench 1. This movement is added because it is not sure where the robot is 

inside a work area. 
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Motions that push the power key are placed inside a while loop structure. This 

way the push motion can easily be repeated for 30.000 times. The push mo-

tion is formed from two positions. The first one is located above the power key, 

and the second is the position where power key is pushed down. When the 

robot moves between these positions it creates the push motion 

When the “Loop counter” subVI is given the wanted cycle amount and the loop 

iteration as an input, it gives a Boolean output value that can be used to stop 

the loop when desired amount of cycles have been performed. The “Loop 

counter” also calculates the estimate how long this particular loop runs, and 

updates the time information to user panel. 

 

FIGURE 32. Second part of the example robot program. 

When the loop iteration is 30 000 the stop condition is set to true. After this the 

robot is driven to a safe position above the workbench 1. “Send email” subVI 

sends an email notification for the test operators. Email receivers are de-

terminated in MATS user panel. “Dialog box” subVI stops the program execu-

tion. It reserves the robot reference and lets the operator to change the posi-

tion of the test object. Program execution continues when the operator pushes 

button from dialogue box that pop ups when program execution reaches the 

“Dialog box” subVI. 
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FIGURE 33. Last part of example robot program. 

This section of the robot program is copied from the first loop. Copying similar 

code segments with LabVIEW is easy and saves time. Pushing operation the 

same as in the first push operation. This time volume up key is pushed for 300 

000 times. 

The last Move to subVI drives the robot to a safe position above workbench 1. 

“Finalize” subVI closes the robot connection and event monitors. It also sends 

a notification email for the operators. After the test program is created, it can 

be tested with low speed. The speed can be controlled with the teaching pen-

dant. Testing of the robot program ensures that the robot performs all needed 

operations correctly. 

5 RESULTS 

An outcome of this thesis is a working test creation environment that utilizes 

an industrial robot. The environment can be easily modified if new hardware 

components are introduced. The test creation environment is also easy to use 

as can be seen from MATS usability study from appendix 5. 

The largest part of the work hours put to this project has been spent to con-

necting FANUC Robotics R-J3 robot controller with LabVIEW. Trying different 

connection methods and interfaces before choosing the one described in this 
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thesis was very time consuming. 

Another large time consumer was the creation of the LabVIEW subVIs in a 

way that the test programs would be easy to create. Figuring out the internal 

structure of PCDKs ActiveX components was the main duty in this part of the 

project. Correcting detected structural faults from LabVIEW code took equally 

much time. This time was largely lengthened by the fact that there were no 

earlier studies or examples published about this subject. Additionally inade-

quate PCDK documentation caused few bad surprises and even development 

halts. 

The creation of LabVIEW programs for position teaching and robot monitoring 

was an easy task after the structure of the ActiveX components was resolved. 

Some consideration was put into usability and alteration of the user interfaces 

of these programs after user experiences had been received. 

Integrating LabJack U6 data acquisition card to the system was straightfor-

ward task because LabJack provided compatible LabVIEW functions in the 

package. It only took a small time to convert these functions to look like sub-

VIs that I had created for the robot. This way test designer will not get con-

fused about the different structure of the data acquisition cards LabVIEW sub-

VIs. 

The last part of the project was the documentation. This documentation on my 

part included writing the software and hardware user manuals, LabVIEW sub-

VI list with functional descriptions and an annual maintenance table. 

6 SYSTEMS FUNCTIONALITY AND USABILITY 

The functionality of the test creation systems software was verified by creating 

and running test cases that resembled actual tests. The tests cases were sim-

plified in a way that robot did not affect any actual objects. This way it could be 

assured that occurring faults were caused by the system's software and not by 
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the hardware parts. 

The test system was left to perform a test for a weekend. On Monday it was 

verified that the test was still running. This ensured that there were not any 

software crashes or malfunctions during the weekend test session. Some of 

the test runs were interrupted by system crash, but crashes were caused by 

faults in the test program design, not in the system software itself. 

LabVIEW’s and robot server's memory consumptions were written down in the 

first cycle of the weekend test. These figures were then re-checked after the 

weekend, and verified that they were not above the normal levels. This test 

ensured that LabVIEW functions and subVIs did not leave any unclosed ob-

jects in the computer's memory. 

The overall usability was verified by interviewing the person who uses this 

system. A form was created that consisted of questions about the usability of 

the system. The answers of this questionnaire can be seen in the appendix 5. 

These results can not be used widely because only one person has taken the 

test. However the usability of the system can be verified from the results. 

There is no real need to create more accurate tests about the software's func-

tionality at this point of the system development. For the employer, it was 

enough that the system works as requested. 

7 REQUIREMENTS 

This thesis project was a very challenging task for me. At the beginning every-

thing looked fairly simple. The first time estimation for the completion of the 

project was three months. In the end this project took about a year. A major 

part of it was part time work, done during studies. People at the Cassidian Fin-

land were flexible and gave the author more time and resources. Thanks to 

them, the end product of this thesis is a functional and an easy to use me-

chanics automated test system. 
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I had some robot studies in the university before this project, but they consist-

ed mainly of robot programming and light peripheral communication exercises. 

The university had no Fanuc robots available for learning. For this thesis I had 

to examine and learn the functionality of the R-J3 controller very deeply, much 

deeper than I even knew was possible from my classes. I took part in the me-

chanical maintenance and troubleshooting operations that had to be done for 

robot before it was functional. 

I also learned the TP language that FANUC normally uses for robot program-

ming. I used this language early in the project to test the robot's functionality 

and capabilities of the peripheral devices. I  created robot programs with TP 

language with FANUC's offline programming applications and Teaching Pen-

dant. I also learned a bit of VisualBasic programming language while interpret-

ing FANUC’s PCDK program examples. 

One significant thing that I learned during my thesis project was the 

knowledge acquisition from different sources, and making the decisions and 

interpretations early on based on this knowledge. After the first two months 

working in this project I understood that there were no persons or documents 

available who could explain how get LabVIEW and R-J3 controller to com-

municate. People at the Cassidian Finland did not know that much about ro-

botics, and people at the Finland's FANUC importer Fastems did not know 

much about LabVIEW robot applications. Combining the knowledge from all 

the sources and applying it to this project was a skill that I learned.  

Lack of publications about this subject added a great number of difficulties to 

the project. There were only some different forum discussions where was 

mentioned that someone somewhere in the world had controlled a FANUC 

robot with LabVIEW. Everything else was up to me to learn and to discover. 

The referenced actions of learning and discovering are actually a small under-

statement when talking about the knowledge that I absorbed from PCDK's and 

LabVIEW's combined functionality. It was not enough to find out material and 

then apply it to the system. I had to really internalize the information about the 
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PCDK's structure, and then use this information in a way that FANUC, Nation-

al Instrument nor any other source have documented, or at least published. 

The useful issue in my education was the LabVIEW experience I had from 

many of the courses. We never actually handled ActiveX components with 

LabVIEW but still the existing LabVIEW skills helped. Additionally the idea of a 

robot being just another programmable machine came from university studies. 

During school exercises I discovered that there was nothing difficult about ro-

bots. It is basically just a computer with an arm. This mentality helped a great 

deal during this project. 

8 CONCLUSIONS 

8.1 General 

The project that this thesis describes was quite different from “traditional” robot 

applications. Usually industrial robots perform particular programmed task for 

long periods of time without any need of reprogramming. They may react to 

sensor and vision information; however the same program might be used for 

several years without any changes. 

In this project the goal was almost the opposite of traditional robot program-

ming. A whole test creation system had to be created that would be modular 

and highly adaptable because one test case might only be performed once. 

Every new fault or mechanics detail would need a new test program to be cre-

ated. 

8.2 Future improvements 

One problem that occurred when running the robot programs from the host-

computer was that a robot paused for a short time between motions. The 

length of the pauses was about a tenth of a second, but when the robot per-

formed tens of thousands of cycles, these pauses increased the overall of the 
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test time considerably. Eliminating the pauses would allow tests to be run dur-

ing one work day. 

When running normal TP programs from the robot controller’s memory, these 

pauses did not exist. The reason for these pauses must be in The Ethernet 

connection or in LabVIEW's habit of running programs slower than “traditional” 

programming environments. 

The Data transfer between the robot controller and the host computer should 

be minimized. This might make pauses shorter. Also R-J3 controller's Ethernet 

card is working in half-duplex speed. FANUC Robotics might have replace-

ment Ethernet card that works in full-duplex mode. This might reduce the data 

transfer time, and the length of the pauses. 

The system's error handling also has some issues that could be improved. 

The test programs work perfectly when the test designer follows the instruc-

tions. If the test designer makes a programming mistake and runs the faulty 

program, the whole environment might crash. The tests are easy to start all 

over again, however this is not a desired feature. The system should have 

some kind of error recovery method, or subVIs could be created in a way that 

the test programs will not run if they do not have all the correct data in all in-

puts. 

The last and minor improvement would be to add MATS LabVIEW subVIs to 

LabVIEW functions menu under their own segment. This way the test creation 

would be even easier. 

8.3 Achieved goals 

The main goal of the thesis was to create an environment that could be used 

to test the mechanical endurance and wear resistance of professional mobile 

radios, their parts and the peripherals. This goal can be considered to be 

achieved because some tests have already been run successfully. According 

to the person who created the tests the system gives useful data that can be 



60 

 

used in professional mobile radio development. 

An other significant goal was that the usability of the system should be high. 

MATS usability study shows that this goal has also been achieved. Test crea-

tion is carried out with a graphical program creation environment and there is 

no need for line based programming. Functional tests can be created in a few 

hours. Also the usage of LabVIEW for test program creation, position teach-

ing, robot monitoring and project management makes test creation and run-

ning simple. All peripherals are also connected to LabVIEW. 
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10 APPENDIX 

APPENDIX 1. MATS Block diagram  
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APPENDIX 2. LR Mate 200i data sheet 
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APPENDIX 3. R-J3 Data sheet 
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APPENDIX 4. Example test program 
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APPENDIX 5. MATS Usability study 
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APPENDIX 6. Teach positions LabVIEW program 
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APPENDIX 7. MATS user panel 

 


