

HELSINKI METROPOLIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

Multimedia Communications

MASTER’S THESIS

VIRTUALIZATION-BASED FAULT TOLERANCE

 Author: Jagan Mohan Devinani

 Supervisor: Kari Björn, Development Manager

 Instructor: Michael Zhidovinov, Senior Specialist

 Approved: ___ ___ 2011 Kari Björn, Development Manager

PREFACE

This has been a great learning process for me to work with the topic related to

virtualization. This work has been extremely demanding and required a sustained effort

for more than one year. Especially, carrying out the experiments with the most

advanced hardware at the laboratory in the Nokia Siemens Networks has been an

invaluable learning experience.

I would like to thank my supervisor Kari Björn, from Metropolia University of Applied

Sciences, for his support and valuable comments during the writing of this thesis, as

well as Jonita Martelius for the help provided with the English language checking of this

study.

I would like to thank my instructor Michael Zhidovinov and all other colleagues at Nokia

Siemens Networks, for their invaluable support and guidance.

Finally, I would like to thank all the members of my family and friends for their

relentless support and encouragement.

May 26, 2011
Espoo, Finland

Jagan Mohan Devinani

HELSINKI METROPOLIA UNIVERSITY OF APPLIED SCIENCES

ABSTRACT OF THE MASTER’S THESIS

Name: Jagan Mohan Devinani

Title: Virtualization-Based Fault Tolerance

Date: May 26, 2011 Number of pages: 49

Degree Programme: Specialization:
Information Technology Multimedia Communications

Supervisor: Kari Björn, Development Manager

Instructor: Michael Zhidovinov, Senior Specialist

This thesis presents an evaluation of the Virtualization-Based Fault Tolerance

solutions and approaches available from different vendors.

The performance of a SIP (Session Initiation Protocol) based application among

“native environment”, “virtual environment” and “virtual environment with fault-

tolerance feature turned on” are compared.

The experiment was carried out with “VMWare ESXi” as the virtualization layer and

“VMWare vSphere” as the management client to administer the “VMWare ESXi”

platform.

The experiment was carried out in a client-server model with UAC (User Agent

Client) acting as the SIP client and SUT (System Under Test) as the SIP server.

The “IMS-Bench SIPp” software was used in UAC and the “opensips” software was

used in the SUT.

The results obtained from the experiments carried out in the three different

environments are compared with respect to the SAPS (Scenario Attempts Per

Seconds). The SAPS in “native environment” are one hundred and thirty nine, in

“virtual environment” are one hundred and in “virtual environment with fault-

tolerance feature turned on” are thirty four.

Key words: Virtualization, Fault Tolerance, High Availability, Hypervisor

TABLE OF CONTENTS

PREFACE

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF GRAPHS

LIST OF TABLES

ABBREVIATIONS

1 INTRODUCTION 1

1.1 Research Methods .. 2

1.2 Study Structure ... 3

2 BACKGROUND 4

2.1 Virtualization Concepts .. 4

2.2 Virtualization-Based Fault ToleranceTechniques 8

2.3 Virtualization-Based Fault Tolerance Solutions .. 9

2.4 Initial Prototype of Hypervisor ... 10

2.5 VMWare vSphere Fault Tolerance .. 11
2.5.1 VMware Fault-Tolerance Functionality ... 11
2.5.2 VMWare Fault-Tolerance Architecture .. 12

3 DESCRIPTION OF THE EXPERIMENT 15

3.1 Native Environment .. 19
3.1.1 Configuring and Starting SUT ... 20
3.1.2 Configuring and Starting Manager ... 21
3.1.3 Configuring and Starting UAC .. 23
3.1.4 Report Generation at Manager .. 24

3.2 Virtual Environment .. 24
3.2.1 Configuring and Starting SUT ... 27
3.2.2 Configuring and Starting Manager ... 27
3.2.3 Configuring and Starting UAC .. 28
3.2.4 Report Generation at Manager .. 29

3.3 Virtual Environment with FT Switched ON .. 30

4 RESULTS AND ANALYSIS 32

4.1 Performance in Native Environment .. 32

4.2 Performance in Virtual Environment ... 34

4.3 Performance in Virtual Environment with FT Switched ON 36

4.4 Performance Improvement Techniques in Virtual Environment 45

5 SUMMARY 47

6 REFERENCES 48

LIST OF FIGURES

Figure 2-1 Before Virtualization .. 5

Figure 2-2 After Virtualization ... 5

Figure 2-3 High Availability ... 7

Figure 2-4 Fault Tolerance .. 7

Figure 2-5 Transparent Failover .. 8

Figure 2-6 Hypervisor based Fault Tolerance ... 10

Figure 2-7 VMWare vSphere Fault Tolerance [5:1] .. 12

Figure 2-8 High level Architecture of VMWare Fault Tolerance [6:4] 13

Figure 3-1 Physical host in Native Environment .. 16

Figure 3-2 Physical host in Virtual Environment .. 17

Figure 3-3 Experiment setup in Native Environment .. 19

Figure 3-4 Starting opensips on SUT on IP address 10.20.106.105 21

Figure 3-5 Starting Manager on static IP address 10.20.106.106 22

Figure 3-6 Starting the first UAC on static IP address 10.20.106.107 23

Figure 3-7 Experiment setup in Virtual Environment .. 25

Figure 3-8 Starting opensips on SUT on VM_4_SUT_105.................................... 27

Figure 3-9 Starting Manager on VM_1_Manager_106 ... 28

Figure 3-10 Starting UAC on VM_2_UAC_107 ... 29

Figure 3-11 VMWare-vSphere Cluster view with FT switched on 30

Figure 4-1 Configuring all the Network Interface Cards ... 46

LIST OF GRAPHS

Graph 4-1 CPU utilization of SUT in Native Environment 34

Graph 4-2 CPU utilization of SUT in Virtual Environment 36

Graph 4-3 CPU utilization of SUT in Virtual Environment with FT switched on . 38

Graph 4-4 Inadequately Handled Scenarios .. 39

Graph 4-5 Inadequately Handled Scenarios for ims_uac scenario 40

Graph 4-6 Retransmissions for All Scenarios .. 41

Graph 4-7 Retransmissions for ims_uac scenario .. 42

Graph 4-8 Retransmissions for ims_reg scenario ... 43

Graph 4-9 Calling Use Case for Session Setup .. 44

Graph 4-10 Calling Use Case : Delay between BYE and OK 45

LIST OF TABLES

Table 4-1 Performance in three different environments ... 32

Table 4-2 Resource utilization of SUT in Native Environment 33

Table 4-3 Resource utilization of SUT in Virtual Environment 35

Table 4-4 Resource utilization of SUT in Virtual Environment with FT switched

on .. 37

ACRONYMS / ABBREVIATIONS

HW Hardware

SW Software

CPU Central Processing Unit

OS Operating System

RHEL RedHat Enterprise Linux

VMWare ESXi Virtualization Platform from

 VMWare

VMWare vSphere Management SW to administer

the ESXi platform

Xen Virtualization Platform from Xen

open source community

FT Fault Tolerance

VFT Virtualization Based Fault

 Tolerance

HA High Availability

VM Virtual Machine

VMM Virtual Machine Monitor

CA Continuous Availability

FDRT Fined-grained Dirty Region

 Tracking

SMP Symmetric Multi Processing

NIC Network Interface Card

SIP Session Initiation Protocol

IP Internet Protocol

SAPS Scenario Attempts Per Seconds

IHS Inadequately Handled Scenarios

TS Test System

UAC User Agent Client/Load

 Generator

SUT System Under Test

Manager Test harness system to control

 the tests, collect the data from

 SUT and to generate report.

opensips Open SIP Server

IMS-Bench SIPp The SIP Proxy for generating SIP

 traffic

{CPB} Directory of Control Plane

 Benchmark

 {opensips} Installation directory of opensips-

 1.6.2-notls at SUT

{IMS_Bench@SUT} Installation directory of IMS

 Bench SIPp at SUT

{IMS_Bench@MANAGER} Installation directory of IMS

 Bench SIPp at the Manager

{IMS_Bench@UAC_x} Installation directory of IMS

 Bench SIPp at the UAC

BYE Message to initiate a SIP call

 termination

OK Acknowledgement to BYE

 message during SIP call

 termination

 1

1 INTRODUCTION

This thesis presents an evaluation of the Virtualization-Based Fault Tolerance solutions

and approaches available from different vendors. This thesis compares the

performance of a SIP (Session Initiation Protocol) based application among “native

environment”, “virtual environment” and “virtual environment with FT (Fault-tolerance)

feature turned on”. The experiment was carried out with “VMWare ESXi” as the

virtualization layer and “VMWare vSphere” as the management client for administering

the “VMWare ESXi” platform. The experiment was carried out in a client-server model

with UAC (User Agent Client) acting as the client and SUT (System Under Test) as the

server. The UAC (running “IMS-Bench SIPp” software) generates the SIP traffic to load

the SUT (running “opensips” software). Three physical hosts represent the Manger,

SUT and UAC respectively. The Manager was used as a test harness system to control

the execution of the tests, to collect the data from SUT and to generate the report

based on the collected data. SUT was the target system, which gets loaded with SIP

(Session Initiation Protocol) traffic. The SUT was subjected to the continuously

increasing SIP traffic. The test gets stopped automatically as soon as the resources of

the SUT were exhausted. The UAC was acting as the SIP proxy for generating SIP

traffic, which used to load the SUT.

Motivation

There are no experiments carried out in this space to compare the performance of an

application in the “native environment”, “virtual environment” and “virtual environment

with FT feature turned on”. The application utilized for carrying out the experiments is

”IMS-Bench”, which is used as a standard SIP application across the telecom space by

many organizations.

Research Problem

The aim of the present study was to evaluate the “Virtualization-Based Fault Tolerance”

solutions and approaches available from different vendors. As well as to compare the

 2

performance of a SIP(Session Initiation Protocol) based application among “native

environment”, “virtual environment” and “virtual environment with fault-tolerance feature

turned on”.

Scope

The experiment was carried out with ”VMWare ESXi” platform only. This platform

serves as the infrastructure for providing the virtualization.

There is another competent platform namely Xen [12], which is an open source product

providing the virtualization infrastructure with “fault tolerance” feature. But the

experiment was not carried out using this platform as this platform lacked the “fault

tolerance” feature at the time, when this experiment was carried out.

1.1 Research Methods

The following research methods were used to carry out this study.

Desk research was used to research the background information related to

virtualization, VFT implementation techniques and to study about the products VMWare

ESXi, Xen.

Experiments in the controlled environment were carried out with VMWare ESXi

platform providing the virtualization layer and VMWare vSphere as the management

SW to administer the ESXi platform. The experiment has been also carried out with

another open source product namely Xen to some extent. But it was realized that the

VFT feature in Xen was not matured enough to proceed further with the experiments.

Interviews were conducted with the colleagues at the Nokia Siemens Networks namely

Machael Zhidovinov and Kari Hautio. The interviews with Machael Zhidovinov helped in

scoping the thesis work, downgrading the system configuration in order to reach the

100% CPU utilization, removing the irrelevant data (after the experiment) to generate

accurate reports, optimizations in virtual environment. The interviews with Kari Hautio

helped to configure the Storage Area Network to store the Virtual Machines.

 3

1.2 Study Structure

This study consists of five chapters.

Chapter two presents the background information related to the concepts of

virtualization, VFT (Virtualization-Based Fault Tolerance) techniques and solutions. The

products, which implemented these VFT techniques. Also presents the initial prototype

of Hypervisor implementation. Also discusses the VMWare vSphere VFT functionality

and the architecture. Chapter three presents the procedure to carry out the

experiment, required HW(Hardware) and SW(Software), the experimental setup in

“Native Environment”, “Virtual Environment” and “Virtual Environment with Fault-

Tolerance switched on”. Configuring and starting the SUT, Manager, UAC and the

report generation at the Manager.

Chapter four presents the results and analysis with respect to the performance in

“Native Environment”, “Virtual Environment” and “Virtual Environment with FT switched

on”. The analysis of failover situation with respect to IHS (Inadequately Handled

Scenarios), delays and retransmissions with respect to the number of SAPS (Scenario

Attempts Per Seconds) are discussed. The calling use case with respect to delays in

session setup time and delays during session termination time are analysed. Also

presents the performance improvement techniques in Virtual Environment. Chapter five

presents the summary of this study. Also includes the discussion and conclusions

about the most important findings, evaluates the key issues and points to potential

future work in the area of Virtualization-Based Fault Tolerance.

 4

2 BACKGROUND

This chapter first introduces virtualization as a general concept, then presents the VFT

(Virtualization-based Fault Tolerance) techniques and VFT solutions. Then presents

the initial work to build a prototype of the hypervisor to support virtualization. Finally,

the architecture of VMWare vSphere Fault-tolerance is explained.

The research in the VFT (Virtualization-based Fault Tolerance) domain had started way

back in 1990’s. The initial work to build a prototype of the hypervisor to support

virtualization and to further demonstrate the virtualization-based fault tolerance was

built in 1996 [1:14]. The detailed description about the Initial Prototype of Hypervisor is

furnished in the Chapter 2.3. The interest towards virtualization has increased as it

offers the efficient utilization of the resources. The latest HW (Hardware) from various

vendors supports virtualization at the HW level.

2.1 Virtualization Concepts

This chapter introduces the general concepts and terminology associated with

virtualization such as “Virtual Machine”, “Virtual Machine Monitor (Hypervisor)”, “High

Availability”, “Fault-Tolerance”, “Virtualization-Based Fault Tolerance (VFT) ” and

“Transparent Failover”.

Virtualization

The term virtualization broadly describes the separation of a resource or request for a

service from the underlying physical delivery of that service. The virtualization

technologies provide a layer of abstraction between computing, storage and networking

hardware, and the applications running on it. Figure 2-1 depicts the environment

before virtualization with traditional infrastructure containing and HW (hardware), OS

(Operating System), SW (software) and applications.

 5

Figure 2-1 Before Virtualization

It has a single OS (Operating System) image per machine. In this environment, the SW

and HW are tightly coupled. The resources are usually underutilized, inflexible and the

infrastructure is expensive. It often creates a conflicting situation, when the multiple

applications are executed on the same machine.

Figure 2-2 depicts the environment after virtualization with virtualization layer

introduced on top of the HW. The virtualization layer helps to create multiple VMs

(Virtual Machine) and each VM mimics a physical host.

Figure 2-2 After Virtualization

It is possible to manage OS and application as a single unit by encapsulating them into

VM. Each VM can be installed with OS (Operating System) and applications on top of

 6

the OS. In this environment, the OS and applications are independent of underlying

HW. The resources are efficiently utilized.

Virtual Machine (VM)

The VM a software implementation of a machine (i.e. a computer) that executes

programs like a physical machine. The VMs allow the sharing of the underlying

physical machine resources between different VMs, each running its own operating

system. The advantages of VMs are that multiple OS environments can co-exist on the

same computer, in strong isolation from each other. The application provisioning,

maintenance are easy and the services such as high availability and disaster recovery

are provided as part of the virtual infrastructure. The disadvantage of VM is that it is

less efficient than a real machine because it accesses the hardware indirectly.

Virtual Machine Monitor (VMM) or Hypervisor

The VMM is the software layer providing the virtualization. A hypervisor can run on

bare hardware (Type 1 or native VM) or on top of an OS (Type 2 or hosted VM).

Virtualization-Based Fault Tolerance (VFT)

The Fault-tolerance systems designed based on the virtual infrastructure, leveraging on

the capabilities of virtualization.

High Availability (HA)

The VMs on a failed host are automatically restarted on another available server to

maintain the availability of service. The VM is unavailable during this switch over

period. Figure 2-3 shows the restart of VM on secondary host, when the primary host

running the VM fails.

 7

Figure 2-3 High Availability

To provide HA in virtual environments, no modifications are needed to the applications

and OS. The HA monitors hosts and VMs to keep applications running.The HA reduces

downtime but does not eliminate it.

Fault-Tolerance (FT)

The FT is the property that enables a system to continue operating properly in the

event of the failure of (or one or more faults within) some of its components.

Figure 2-4 Fault Tolerance

The VM state is replicated on the Secondary host. Figure 2-4 shows that the VM on

secondary host takes over, when the primary host running the VM fails. The downtime

is almost zero.

Transparent Failover

Figure 2-5 shows an example scenario depicting the transparent failover situation with

respect to VMWare vSphere [16:4]. When the “Physical Machine” running the “Primary

VM” fails, the hypervisor on the “Secondary Physical Machine” notices the failure

immediately and has full information on pending I/O (Input/Output) operations from the

failed “Primary VM” (it commits all pending I/O). The hypervisor performs a “go live”

operation and becomes the “New Primary”.

http://en.wikipedia.org/wiki/System

 8

Figure 2-5 Transparent Failover

The previous dependencies on the old (and now failed) Primary are terminated. The

HA (after the initial failover) selects a “New Host” and starts a “New Secondary VM

Instance” on that host. The entire failover process is automatic and there is no

disruption of service, no loss of state.

2.2 Virtualization-Based Fault ToleranceTechniques

The following are the common VFT techniques employed to synchronize the state of

VM’s across Physical Machines.

Lockstep

Some of the products implementing this technique are Kemari [2] and VMWare-

vSphere [5]. The core logic of this technique is that external events are logged on

Primary VM and replayed on Secondary VM. Lockstep has efficient synchronization

mechanism. The drawback of the lockstep is that the implementation complexity is high

as it needs to handle differences between processor families.

Lockstep systems are redundant computing systems that run the same set of

operations at the same time in parallel. The output from lockstep operations can be

compared to determine if there has been a fault. To run in lockstep, each system is set

up to progress from one well-defined state to the next well-defined state. When a new

set of inputs reaches the system, it processes them, generates new outputs and

updates its state. This set of changes (new inputs, new outputs, new state) is

considered to define that step, and must be treated as an atomic transaction; in other

words, either all of it happens, or none of it happens, but not something in between.

 9

Checkpointing

Some of the products implementing this technique are Kemari [2] and Remus [3].

Kemari takes advantage of the best of lockstep and checkpointing techniques. The

core logic of this technique is that the state of Primary VM is transferred to the

Secondary VM frequently. The states of healthy machines are preserved either locally

or remotely. In case of failures, the system is rolled back to the most recent checkpoint.

The checkpointing involves less domain-specific knowledge of either HW (Hardware) or

applications. Hence the complexity of implementation is less. The drawback of the

lockstep is that the outputs to devices are delayed for a specific period of time because

they are buffered to keep the state of the VMs and the attached devices consistent). It

is possible to perform the state checkpointing on the basis of per-process and also on

the whole-machine.

2.3 Virtualization-Based Fault Tolerance Solutions

The most popular VFT solutions and the logical aspects of these approaches are

discussed in brief in this section.

VMWare vSphere

VMWare vSphere [5:1] eliminates the downtime even in the event of a complete host

failure. It is based on vLockstep technology and it works by keeping primary and

secondary VMs in synchronization across different ESX Hosts. The synchronization is

maintained by recording the input executed on primary and replaying the same on

backup. The replaying on the backup is carried out via FT logging. If the host running

an FT enabled VM fails then the VM will continue running on secondary host

seamlessly. There is no loss of system state. The control and presentation of the VM

will be transferred live to the backup. The detailed description about VMWare vSphere

is furnished in the chapter VMWare vSphere Fault Tolerance.

 10

Kemari

Kemari [4:3] takes advantage of both checkpointing and lockstep. Kemari checkpoints

primary instance, when VMM is going to duplicate external events to the backup

instance. The buffering of external events can be avoided. The detailed description of

Kemari is discussed further in APPENDIX F.

Remus

Remus [3] works by live-migrating VM from the primary physical host to the backup

physical host continuously. For live-migrating the VM, the guest's disk must be

available through shared storage both on primary and backup. Remus copies over only

the dirtied memory states to reduce amount of memory states to be transferred

between primary and backup during checkpointing. The checkpointing frequency can

be as high as every 25 msec. Remus buffers the external events until the end of each

synchronization between primary and the backup VM. The detailed description of

Remus is discussed further in APPENDIX G.

2.4 Initial Prototype of Hypervisor

The initial work to build a prototype of the hypervisor to support virtualization and to

further demonstrate the virtualization based fault tolerance was built in 1996 [1:14]. The

setup is as shown in Figure 2-6. [1:14]

Figure 2-6 Hypervisor based Fault Tolerance

 11

The initial prototype SW of hypervisor was running on two physical hosts. The

hardware on the physical hosts was namely HP 900/720 (the HW vendor was Hewlett-

Packard). The hypervisor functions by logging each instruction-level operation to

primary machine and then replaying the logged operations on top of the backup

machine. The advantages of this approach are due to the reason that the logging is

done in VMM (Virtual Machine Monitor) or Hypervisor. This logging of instructions in

the VMM is possible due to virtualization. Also no additional modifications are needed

to the OS(Operating System) or applications. The drawbacks of this approach are as

follows. The domain-specific knowledge is required to log events, The “deterministic

replay of logging events” relies on the target architecture, The deterministic replay

requires an implementation on a specific VMM. The deterministic replay depends on

the order in which multiple cores access shared memory for multi-core CPUs.

2.5 VMWare vSphere Fault Tolerance

This chapter describes the functionality and the architecture of the VMWare FT (Fault-

Tolerance).

2.5.1 VMware Fault-Tolerance Functionality

The VMWare FT creates a clone of a running “FT Enabled VM” on another Host within

the VMWare cluster as shown in Figure 2-7. The changes made on the “FT Enabled

VM” are replicated to the “FT Clone VM” in real time. Both VMs have the same IP

address and the same MAC address.

 12

Figure 2-7 VMWare vSphere Fault Tolerance [5:1]

“The ESX Hosts sends continuous heartbeat signals between the primary and

secondary hosts to detect any failures. If the heartbeat is lost then the secondary ESX

hosts will immediately know about it and the virtual machine will failover without any

loss of data. The application continues to function on the secondary server without

interruption.” [5:2]

2.5.2 VMWare Fault-Tolerance Architecture

The VMware FT is based on the vLockstep technology. This chapter describe some of

the key aspects of VMware vLockstep technology, i.e. the “Deterministic

Record/Replay” and “Fault Tolerance Logging Traffic”.

Deterministic Record/Replay

Deterministic Record/Replay [6:3] is a technology that allows to capture the execution

of a running VM for later replay. Deterministic Replay of computer execution is

challenging since external inputs such as incoming network packets, mouse, keyboard,

disk I/O completion events operate asynchronously and trigger interrupts that alter the

 13

code execution path. Deterministic Replay can be achieved by recording non-

deterministic inputs and then by injecting those inputs at same execution point during

replay. This method greatly reduces processing resources and space as compared to

exhaustively recording and replaying individual instructions.

Fault Tolerance Logging Traffic

The high level architecture of VMware Fault Tolerance is shown in Figure 2-8.

Figure 2-8 High level Architecture of VMWare Fault Tolerance [6:4]

The Primary and Secondary VMs (Virtual Machines) share the same virtual disk on

shared storage, but all I/O operations are performed only on the Primary host. When

the FT is enabled for a “Primary VM” [6:3], the “Secondary VM” gets created by live-

migrating the memory contents of the “Primary VM” using VMware vMotion. Once the

“Secondary VM” is live, it runs in lockstep and mirrors the guest instruction execution of

the “Primary VM”. The Hypervisor running on the Primary Host [6:3] captures the

external inputs to the VM and transfers them asynchronously to the secondary host.

The Hypervisor running on the Secondary Host [6:3] receives these inputs and injects

them into the replaying VM at the appropriate execution point.

“The communication channel between the Primary and the Secondary host is

established by the hypervisor using a standard TCP/IP socket connection and the

traffic flowing between them is called FT logging traffic. By default, incoming network

traffic and disk reads at the primary virtual machine are captured and sent to the

 14

secondary, but it is also possible to make the secondary virtual machine read disk I/O

directly from the disk.” [6:4].

This chapter has now explained the general concepts of virtualization, VFT techniques

and VFT solutions, the initial prototype of the hypervisor to support virtualization, the

architecture of VMWare vSphere Fault-Tolerance.

 15

3 DESCRIPTION OF THE EXPERIMENT

“The benchmark system simulates a group of SIP end point users who perform SIP

operations through the SUT (System Under Test).” [13:2.1]. The SUT is the physical

host running the opensips (OpenSIP Server). The UAC (User Agent Client) is another

physical host running the “IMS-Bench SIPp” [11], which generates the SIP traffic. The

Manager is the test harness system, which is responsible for coordinating the test. The

Manager carries out the tasks of starting and stopping the TS (client workload

generator) on UAC, collecting and aggregating the results from the SUT, determining if

a run was successful and generating the reports based on the results obtained from

SUT.

The experiment was carried out in all the three different environments until the

resources of system such as CPU utilization reaches 100%. The following scenarios

are extensively measured and observed during the experiment as those are the most

important results obtained through this experiment. The remaining measurements

obtained through this experiment are not extensively discussed to limit the scope of this

thesis.

1. Performance (CPU utilization)

The performance means the number of SAPS (Attempts Per Seconds)

achieved when the CPU utilization of the physical host representing the SUT

reaches 100% (which means that all the CPU resources of SUT are exhausted

). The number of SAPS executed in each iteration is increased gradually until

the resources of the SUT are exhausted. The SAPS are defined in XML

(Extensible Markup Language) configuration files. The examples of SAPS are

such as SIP subscribers sending registration requests to SUT, establishing call

between different SIP subscribers.

2. Delays

The delays in transmission of the SAPS occur, when the failover situation

occurs in the virtual environment. The consequences of failover situation

 16

appear as delays in transmission of the data. It is obvious that the effect of

failover is more, when the delays in transmission of the SAPS increases.

3. Retransmits

The retransmission of the SAPS happens, when the failover situation occurs in

the virtual environment. It is obvious that the effect of failover is more, when the

retransmission of the SAPS increases.

The experiment was carried out in the following three different environments namely ”

Native Environment”, “Virtual Environment” and “Virtual Environment with FT

feature turned on”.

Native Environment

Figure 3-1 shows the logical architecture of how the components of a physical host fit

together in the native environment. The native environment contains the HW, OS and

applications deployed on top of the OS. There is no virtualization layer in the native

environment. The instructions being processed by the applications are executed at the

HW level by utilizing the OS.

Figure 3-1 Physical host in Native Environment

Only a single OS image can be installed per physical machine. The SW and HW are

tightly coupled. It can often lead to conflicts if multiple applications are run on the same

 17

machine. The resources are underutilized. The infrastructure can be costly and also

inflexible.

Virtual Environment

Figure 3-2 shows the logical architecture of how the components of a physical host fit

together in the virtual environment. The physical host in the virtual environment

contains the HW, virtualization layer, virtual machine installed with OS and applications

deployed on top of the OS.

Figure 3-2 Physical host in Virtual Environment

In the virtual environment, it is possible to create multiple VMs(virtual machine) on a

single physical host by utilizing the virtualization layer. Each VM can be installed with a

separate OS. The OS and applications can be managed as a single unit by

encapsulating them into VM. The applications and OS are independent of HW. The

resources are efficiently utilized in the virtual environment.

Virtual Environment with FT feature turned on

The logical architecture of how the components of a physical host fit together in the

“Virtual Environment with FT switched ON” is as shown in Figure 3-2. This is exactly

same as described in the “virtual environment”. The only difference is that the Fault

Tolerance feature is turned on in the cluster environment.

 18

Hardware

This experiment was carried out with three physical hosts. Each of the physical hosts

had the “Intel Xeon X5460” processor [14]. This processor supports the virtualization

at HW level, which is important to make the Fault Tolerance feature to work fine. The

virtualization support at the HW level is available in most of the latest processors

supplied by the HW vendors. The detailed specification of the HW used in this

experiment is shown in APPENDIX A.

Software

The following software was used in the experiment. All the software components used

in this experiment are free except “VMWare ESXi” and “VMWare vSphere”. The

evaluation versions of “VMWare ESXi” and “VMWare vSphere” were used in this

experiment and were promptly uninstalled from the physical hosts before the expiration

of the evaluation license.

 Operating System

The operating system used in this experiment was “RedHat Enterprise Linux

5.5 (RHEL5.5)”. This experiment can be carried out with any other variant of

Linux distributions available from other vendors and open source software

communities.

 MySQL [15]

The “MySQL” database software was used in this experiment to store the SIP

subscriber information. This database is running on the physical host

representing the SUT. The SUT authenticates the SIP subscribers by verifying

the existing information of the subscribers available in the database.

 opensips [10]

This software acts as the SIP server. The version used in this experiment was

“opensips-1.6.2-notls”

 IMS-Bench SIPp [11]

This software is used to generate the SIP traffic, which acts as the SIP client.

 19

 Control Plane [9]

This software provided the configuration data, which was used as a reference

configuration while configuring the experiment for the first time.

Prerequisite

The SW that need to be installed and the configurations that are done prior to starting

the experiment are described in APPENDIX D. These are the mandatory steps that

need to be performed before installing any other SW and carrying out any other

configuration changes on SUT, UAC and Manager.

3.1 Native Environment

Figure 3-3 shows the logical architecture of how the components of the benchmark

system fit together.

Figure 3-3 Experiment setup in Native Environment

The “Native Environment” contains the HW (Intel Xeon X5460), OS (RHEL-5.5) and

applications deployed on top of the OS. Three physical hosts (UAC, SUT, Manager)

were needed to carry out the experiments in “Native Environment”.

 20

Execution of the Experiment

The following set of instructions listed below to carry out the execution of the tests are

the same in all the three types of environments (Native Environment, Virtual

Environment, Virtual Environment with FT switched on). The “ntpd”, “ptpd” services

should be started on SUT, Manager and UAC with the commands “./etc/init.d/ntpd

start” and “./ptpd/trunk/src/ptpd” respectively.

Configure Virtual IPs [11] on UAC

It is required to run each of the UAC with distinct IP address and port combination can

support up to 10000 SIP subscribers. To create a traffic of 100000 subscribers, 10

UACs are needed. Since it is not feasible to have 10 physical hosts, one physical host

used as primary UAC and 9 virtual IP addresses are created on top of this physical

host. So that 10 UACs can be run simultaneously on a single physical host by

configuring virtual IP addresses. After the virtual IPs are created and configured [11] on

UAC, the routes are added on both SUT and Manager to all the virtual IP addresses of

UAC.

The scope of these virtual IP addresses is confined to UAC only. These virtual IP

addresses are not published to the entire network. They do not carry any meaning,

when referenced external to the UAC. Hence, when these virtual IP addresses are

referenced on SUT and Manager, the routes should be added both on SUT and

Manager so that SUT and Manager can route the traffic destined for these virtual IP

addresses to the physical IP address of UAC. In turn, UAC can internally route the

traffic to one of the virtual IP addresses internally, where the traffic is actually destined

to. The routes to the virtual IP addresses (10.20.106.2 to 10.20.106.9) can be added

both on SUT and Manager using the command “route add -net 10.20.106.2 netmask

255.255.255.255 gw 10.20.106.107”.

3.1.1 Configuring and Starting SUT

The SUT is already configured with the static IP address “10.20.106.105”. The

command to start the SIP server on the SUT is shown in Figure 3-4.

 21

Figure 3-4 Starting opensips on SUT on IP address 10.20.106.105

The SUT was installed with the MySQL database. The “opensips” SW contains the

required scripts to populate the MySQL database with the information of SIP

subscribers. The detailed instructions to install the MySQL database and the

installation of other software components such as “opensips” are described in detail in

the APPENDIX B. The detailed instructions to populate the MySQL database with SIP

subscriber information are described in detail in the APPENDIX B. The detailed

instructions to start the SIP server (opensips) are described in detail in the APPENDIX

B.

3.1.2 Configuring and Starting Manager

The Manager will wait until all the UACs alias TSs(Test Systems) are started on the

physical host dedicated for UAC. Each of the started UACs gets registered with the

Manager. At the Manager side, the key “e” on the keyboard should be pressed to start

the execution of the experiment. The experiment stops at the Manger side, when the

IHS (Inadequately Handled Scenarios) exceeds 10%. The “CPS” (Calls Per Second) in

the “manager.xml” is increased by 10 after each iteration automatically until IHS

 22

reaches 10% during Benchmark run phase. The Manager was already configured with

the static IP address “10.20.106.106”. The command to start the Manager is as shown

in Figure 3-5.

Figure 3-5 Starting Manager on static IP address 10.20.106.106

Also the naming convention of the SIP subscribers should be cross checked with the

database on SUT and configure the naming of subscribers similarly during the

configuration of the IMS-Bench (when the IMS-Bench configuration was generated).

The SIP subscriber names should look like this “subs003544” in the database on SUT.

In order to have this kind of naming for SIP subscribers, the name of the SIP

subscribers should be appended with the string “subs” but not “subscriber”, when IMS-

Bench configuration was generated. The detailed instructions for installing SW,

configuring and starting the Manager are described in detail in APPENDIX C. The

detailed instructions for creating IMS-Bench configuration are described in APPENDIX

C. The detailed instructions to prepare the Test Systems (TS) for benchmark execution

are described in detail in APPENDIX C.

 23

3.1.3 Configuring and Starting UAC

The UAC is already configured with the static IP address “10.20.106.107”. The

execution details of the UAC are shown in Figure 3-6.

Figure 3-6 Starting the first UAC on static IP address 10.20.106.107

Logging into the UACs with Virtual IP Addresses

It is possible to login to the Virtual IP (for example 10.20.106.2) address of each of the

UACs running on the Virtual IP addresses by first login to the UAC with physical IP

address (10.20.106.107) and then from that physical host. Each of the UACs should be

started from the directory “/usr/local/sipp”. Start all the UAC (clients) in different

terminals with the corresponding script namely "run_x.sh”. To start the first UAC, start

the script by name “run_1.sh”, to start the second UAC, login to the concerned host

and then start the script by name “run_2.sh”. The various phases in establishing a SIP

call happens via the SUT, which creates the load on the SUT. The registration and

calling phases of SIP subscribers gets initiated between different SIP subscribers.

 24

3.1.4 Report Generation at Manager

The report generation for the tests executed is carried out on the Manager. The

following steps are involved in report generation.

1. Copy the directory "ims_bench" to some other directory.

2. Execute the command “./scripts/getResults.pl” to fetch the results collected

during the benchmark run

3. There will be some unnecessary data in the result files, which are usually large

numbers. These large numbers should be removed from the end of the

files "sipp.csv" and "sipp_retrans.csv”.

4. The reports are generated with the command “./scripts/doReport.pl -i

ims_bench_1/ims_bench.xml”, based on the result files.

5. The actual report of the bench mark run is in the HTML (Hyper Text Markup

Language) format, which can be viewed by opening the file "report.html".

It is worth noticing that the data collected is in the format of “csv” files. But the final

report was in the HTML format, which helps to present the data in a user friendly form.

The IMS-Bench SW has the necessary scripts to generate the report in HTML format.

A sample test report generated (after the completion of the experiment) in “Virtual

Environment” is provided in the APPENDIX E.

3.2 Virtual Environment

Figure 3-7 shows the logical architecture of how the components of the benchmark

system fit together. Each of the physical hosts in the virtual environment contains the

HW (Intel Xeon X5460), virtualization layer (VMWare ESXi), virtual machine installed

with OS (RHEL-5.5) and applications deployed on top of the OS (RHEL-5.5). Three

physical hosts (UAC, SUT, Manager) are needed to carry out the experiments in virtual

environment.

 25

Figure 3-7 Experiment setup in Virtual Environment

The “VMWare vCenter Server” and “vSphere Client” are installed on a physical host,

which is installed with the “Microsoft Windows Server 2003” OS. The “vCenter Server”

allows to centrally manage the hosts (UAC, SUT, Manager), and enables the use of

advanced features such as VMware Distributed Resource Scheduler (DRS), VMware

High Availability (HA), and VMware vMotion. The “vSphere Client” allows to connect to

the “vCenter Server”, which enables to manage the cluster of hosts together. Each of

the ESXi hosts is connected to the SAN (Storage Area Network) to enable the VMs to

utilize the bigger storage area. Each of the ESXi hosts is configured with a static IP

address. The VMs created on these ESXi hosts are also configured with static IP

addresses.

Cluster Setup

The cluster environment is as shown in Figure 3-11. The cluster environment is needed

to carry out the tests in the “Virtual Environment”. The cluster environment can be

created and configured using the “vSphere Client” as follows. The steps described

below should be followed in the proper order to create and configure the cluster

environment.

 26

1. The “Data Center” namely “Data-center-1” needs to be created as a first

step.

2. The “Cluster” namely “FT_Cluster” is created under the “Data-center-1”.

3. The “VMWare ESXi” platform was installed on four physical hosts and

are configured with the dedicated IP addresses 10.20.106.101,

10.20.106.102, 10.20.106.103, 10.20.106.104 respectively. Three VMs

representing the Manager, SUT and UAC are created on each of these

hosts. The “Secondary VM” of SUT gets created on the fourth physical

host, when the fault-tolerance feature was turned on. The four hosts are

added to the “FT_Cluster”.

4. The name of the VM representing the SUT is ”VM_4_SUT_105”. This

VM is installed with the OS namely RHEL(RedHat Enterprise Linux).

This VM is assigned with the IP address 10.20.106.105 and is running

on the host 10.20.106.104.

5. The name of the VM representing the UAC is ”VM_2_UAC_107”. This

VM is installed with the OS namely RHEL(RedHat Enterprise Linux).

This VM is assigned with the IP address 10.20.106.107 and is running

on the host 10.20.106.102

6. The name of the VM representing the Manager is

”VM_1_Manager_106”. This VM is installed with the OS namely

RHEL(RedHat Enterprise Linux). This VM is assigned with the IP

address 10.20.106.106 and is running on the host 10.20.106.101

7. The features such as HA, vMotion are turned on at the cluster level

The procedure to carry out the experiment is the same in all the three types of

environments namely “Native Environment”, “Virtual Environment” and “Virtual

Environment with FT switched ON”. The detailed instructions about how to carry out

the experiment are described in detail in Chapter 3. The detailed instructions about

how to install the prerequisite SW and the configuration changes that need to be

performed are also described in detail in Chapter 3. The detailed instructions about the

execution of the experiment are described in the Chapter 3.1.

 27

3.2.1 Configuring and Starting SUT

The SUT is already configured with the static IP address “10.20.106.105”. The

command to start the SIP server on the SUT is shown in Figure 3-8. The detailed

instructions are described in Chapter 3.1.1.

Figure 3-8 Starting opensips on SUT on VM_4_SUT_105

The SUT was installed with the MySQL database. The “opensips” SW contains the

required scripts to populate the MySQL database with the information of SIP

subscribers. The detailed instructions to install the MySQL database and the

installation of other software components such as “opensips” is described in detail in

the APPENDIX B. The detailed instructions to populate the MySQL database with SIP

subscriber information is described in detail in the APPENDIX B. The detailed

instructions to start the SIP server (opensips) is described in detail in the APPENDIX B.

3.2.2 Configuring and Starting Manager

The Manager is already configured with the static IP address “10.20.106.106”. The

command to start the Manager is as shown in Figure 3-9.

 28

Figure 3-9 Starting Manager on VM_1_Manager_106

Figure 3-9 shows the cluster view in the vSphere client. The terminal window on the

right hand side of Figure 3-9 shows VM representing the Manager. The detailed

instructions are described in Chapter 3.1.2. The instructions to install the SW and to

start the Manager are the same in all the three types of environments namely “Native

Environment”, “Virtual Environment” and “Virtual Environment with FT switched ON”.

3.2.3 Configuring and Starting UAC

The UAC is already configured with the static IP address “10.20.106.107”. The

execution details of the UAC are shown in Figure 3-10.

 29

Figure 3-10 Starting UAC on VM_2_UAC_107

Figure 3-10 shows the cluster view in the vSphere client. The terminal window on the

right hand side of Figure 3-10 shows the VM representing the UAC. The detailed

instructions are described in the Chapter 3.1.3. The instructions to install the SW and to

start the UAC are the same in all the three types of environments namely “Native

Environment”, “Virtual Environment” and “Virtual Environment with FT switched ON”.

3.2.4 Report Generation at Manager

The report generation for the tests executed is carried out on the Manager. The

detailed instructions are described in Chapter 3.1.4. It is worth noticing that the data

collected was in the format of “csv” files. But the final report was in the HTML format,

which helps to present the data in a user friendly manner. The IMS-Bench SW has the

necessary scripts to generate the report in HTML format. A sample test report

generated (after the completion of the experiment) in “Virtual Environment” is provided

in the APPENDIX E.

 30

3.3 Virtual Environment with FT Switched ON

The procedure to carry out the experiment is the same in all the three types of

environments namely “Native Environment”, “Virtual Environment with FT switched

OFF” and “Virtual Environment with FT switched ON”.

The detailed instructions as to how to carry out the experiment are described in detail

in Chapter 3.2. The detailed instructions as to how to install the prerequisite SW and

the configuration changes that need to be performed are described in Chapter 3.1. The

detailed instructions about the execution of the experiment are described in Chapter

3.2.

Figure 3-11 VMWare-vSphere Cluster view with FT switched on

The ”FT” feature can be switched on through ”vSphere Client”. Right click on the

”FT_Cluster” and select the FT from the menu. When the FT is switched on at the SUT,

the secondary SUT is created on another physical host. When the failover situation

occurs, the secondary SUT takes over the responsibilities from the primary SUT

seamlessly and also creates another secondary SUT on another host.

 The VM namely ”VM_4_SUT_105” is the SUT assigned with the IP address

10.20.106.105 and running on the host 10.20.106.104

 The VM namely ”VM_4_SUT_105(secondary)” is the backup of SUT running on

host 10.20.106.103

 The VM namely ”VM_2_UAC_107” is the UAC assigned with the IP address

10.20.106.107 and running on host 10.20.106.102

 31

 The VM namely ”VM_1_Manager_106” is the Manager assigned with the IP

address 10.20.106.106 and running on the host 10.20.106.101

Figure 3-11 shows the cluster view in the vSphere client on the left hand side. Figure 3-

11 shows all the VMs on the right hand side. The VMs represent SUT (Primary), SUT

(Secondary), UAC and Manager respectively.

The Chapter presented the SW,HW requirements, configuring and starting SUT,

Manager and UAC, procedure to carry out the experiment in the three different

environments namely ” Native Environment”, “Virtual Environment” and “Virtual

Environment with FT switched ON”. The instructions to execute the experiment are

the same in all the three types of environments namely “Native Environment”, “Virtual

Environment” and “Virtual Environment with FT switched ON”.

 32

4 RESULTS AND ANALYSIS

The results obtained from the three different modes are compared. The performance

was measured in the three different modes with respect to the SAPS (Scenario

Attempts Per Seconds) as shown in Table 4-1. The scenarios are various phases

during the SIP call setup, which are defined in the IMS-Bench configuration.

 Native

Environment

Virtual

Environment

Virtual Environment with FT

turned ON

Design Objective

Capacity (SAPS)

139 100 34

Table 4-1 Performance in three different environments

The number of SAPS in the virtual environment is lower than that of native

environment. The results should not be compared merely on the basis of performance

achieved in terms of SAPS as there are huge benefits in using the virtual environments

such as effective utilization of resources and other features such as HA, FT, which are

readily available without any additional costs.

4.1 Performance in Native Environment

The following graphs represent the result of a benchmark run performed by "IMS

Bench SIPp", an implementation of the IMS/NGN Performance Benchmark suite. The

test reports generated in all of the three environments look quite similar except that the

number of SAPS are different. A sample test report generated (after the completion of

the experiment) in “Virtual Environment” is provided in the APPENDIX E. Only the

measurements pertaining to SUT are discussed in this study even though the test

report shows the measurements pertaining to UAC and Manager.

Table 4-2 shows the average of the key measurements for each step of the test. Each

of the steps is characterized by the requested load, the effective load, the global IHS

(total of all IHS for this step divided by number of SAPS for this step), the scenario IHS

 33

(number of IHS for this step divided by the number of SAPS for this step), the CPU

utilization and the available Memory on the SUT.

Table 4-2 Resource utilization of SUT in Native Environment

The available Memory is expressed in Mega Bytes, and the requested and effective

loads in Scenarios Attempts Per Seconds (SAPS). It should be noted that the IHS

percentages represented in this table are the number of failures for a step divided by

the number of scenario attempts for this step, and so is not the average of (IHS per

seconds). The number of SAPS were maintained as 50 (constant load) during the “pre-

registration” phase. The number of SAPS (load) were increased gradually from step-1

to step-11 by incrementing the number of SAPS by 10 in each step. The utilization of

the CPU resources of the SUT were also increasing gradually with the increase in the

number of SAPS in each step. The resources of the CPU had got exhausted

completely in the step-11.

Graph 4-1 represents the percentage utilization of the CPU of the SUT over the time

and the SAPs for each of the steps. One of the curves shown in the graph represents

the SAPs and the other curve represents the percentage utilization of the CPU of the

SUT over the time for each of the steps. In Figure 4-1, the SAPS are represented on y-

axis on the left hand side, where as the CPU utilization is represented on y-axis on the

right hand side.

 34

Graph 4-1 CPU utilization of SUT in Native Environment

It can be observed from the graph that the experiment was initially carried out with a

sample load in the “pre-reg” and “stir” phases, before starting with the testing of the

actual load (SAPS). The number of SAPS were increased gradually from iteration-1 to

iteration-11. The resources of the CPU had got exhausted completely in the iteration-

11. The number of SAPS at this stage were 139, which was the maximum

measurement of SAPS achieved in the “native environment”. The entire process gets

carried out automatically once the test was started at the Manager.

4.2 Performance in Virtual Environment

The following graphs represent the result of a benchmark run performed by "IMS

Bench SIPp", an implementation of the IMS/NGN Performance Benchmark suite. The

test reports generated in all of the three environments look quite similar except that the

number of SAPS are different. A sample test report generated (after the completion of

the experiment) in “Virtual Environment” is provided in the APPENDIX E. Only the

measurements pertaining to SUT are discussed in this study even though the test

report shows the measurements pertaining to UAC and Manager.

 35

Table 4-3 shows the average of the key measurements for each step of the test. Each

of the steps is characterized by the requested load, the effective load, the global IHS

(total of all IHS for this step divided by number of SAPS for this step), the scenario IHS

(number of IHS for this step divided by the number of SAPS for this step), the CPU

utilization and the available Memory on the SUT.

Table 4-3 Resource utilization of SUT in Virtual Environment

The available Memory is expressed in Mega Bytes, and the requested and effective

loads in Scenarios Attempts Per Seconds (SAPS). It should be noted that the IHS

percentages represented in this table are the number of failures for a step divided by

the number of scenario attempts for this step, and so is not the average of (IHS per

seconds). The number of SAPS were maintained as 50 (constant load) during the “pre-

registration” phase. The number of SAPS (load) were increased gradually from step-1

to step-7 by incrementing the number of SAPS by 10 in each step. The utilization of the

CPU resources of the SUT were also increasing gradually with the increase in the

number of SAPS in each step. The resources of the CPU had got exhausted

completely in the step-7.

Graph 4-2 represents the percentage utilization of the CPU of the SUT over the time

and the SAPs for each of the steps. One of the curves shown in the graph represents

the SAPs and the other curve represents the percentage utilization of the CPU of the

SUT over the time for each of the steps. In Figure 4-2, the SAPS are represented on y-

 36

axis on the left hand side, where as the CPU utilization is represented on y-axis on the

right hand side.

Graph 4-2 CPU utilization of SUT in Virtual Environment

It can be observed from the graph that the experiment was initially carried out with a

sample load in the “pre-reg” and “stir” phases, before starting with the testing of the

actual load (SAPS). The number of SAPS were increased gradually from step-1 to

step-7. The resources of the CPU had got exhausted completely in the step-7. The

number of SAPS at this stage were 100, which was the maximum measurement of

SAPS achieved in the “virtual environment”. The entire process gets carried out

automatically once the test was started at the Manager.

4.3 Performance in Virtual Environment with FT Switched ON

The following graphs represent the result of a benchmark run performed by "IMS

Bench SIPp", an implementation of the IMS/NGN Performance Benchmark suite. The

test reports generated in all of the three environments look quite similar except that the

number of SAPS are different. A sample test report generated (after the completion of

 37

the experiment) in “Virtual Environment” is provided in the APPENDIX E. Only the

measurements pertaining to SUT are discussed in this study even though the test

report shows the measurements pertaining to UAC and Manager.

Table 4-4 shows the average of the key measurements for each step of the test. Each

of the steps is characterized by the requested load, the effective load, the global IHS

(total of all IHS for this step divided by number of SAPS for this step), the scenario IHS

(number of IHS for this step divided by the number of SAPS for this step), the CPU

utilization and the available Memory on the SUT.

Table 4-4 Resource utilization of SUT in Virtual Environment with FT switched on

The available Memory is expressed in Mega Bytes, and the requested and effective

loads in Scenarios Attempts Per Seconds (SAPS). It should be noted that the IHS

percentages represented in this table are the number of failures for a step divided by

the number of scenario attempts for this step, and so is not the average of (IHS per

seconds). The number of SAPS were maintained as 50 (constant load) during the “pre-

registration” phase. The number of SAPS (load) were increased gradually from step-1

to step-7 by incrementing the number of SAPS by 5 in each step. The utilization of the

CPU resources of the SUT were also increasing gradually with the increase in the

number of SAPS in each step. The resources of the CPU had got exhausted

completely in the step-7.

 38

Graph 4-3 represents the percentage utilization of the CPU of the SUT over the time

and the SAPs for each of the steps. One of the curves shown in the graph represents

the SAPs and the other curve represents the percentage utilization of the CPU of the

SUT over the time for each of the steps. In Figure 4-3, the SAPS are represented on y-

axis on the left hand side, where as the CPU utilization is represented on y-axis on the

right hand side.

Graph 4-3 CPU utilization of SUT in Virtual Environment with FT switched on

It can be observed from the graph that the experiment was initially carried out with a

sample load in the “pre-reg” and “stir” phases, before starting with the testing of the

actual load (SAPS). The number of SAPS were increased gradually from step-1 to

step-7. The resources of the CPU had got exhausted completely in the step-7. The

number of SAPS at this stage were 34, which was the maximum measurement of

SAPS achieved in the “virtual environment with FT switched on”.

Analysis of Failover Situation

The graphs are zoomed in to analyze the failover situation, when the FT is switched

ON in the virtual environment. The failover situation was created with the help of the

VMWare vSphere client. The failover situations were made to be occurred on the

timeline on x-axis between 2000-2500 and 3500-4000 seconds.

 39

Analysis of Inadequately Handled Scenarios

Graph 4-4 shows the graph representing the global IHS over the time line. The graph

was zoomed in to analyze how the IHS versus SAPS varies, when the failover

situations were made to be occurred on the timeline on x-axis between 2000-2500 and

3500-4000 seconds. The SAPS are represented on y-axis on a scale of 0 to 0.01 and

the global IHS on y-axis on a scale of 0 to 70.

Graph 4-4 Inadequately Handled Scenarios

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The inadequately handled SAPS are less than 0.02.

Graph 4-5 shows the graph representing the IHS of the ims_uac scenario over the time

line. The graph was zoomed in to analyze how the IHS versus SAPS varies, when the

failover situations were made to be occurred on the timeline on x-axis between 2000-

2500 and 3500-4000 seconds. The SAPS are represented in on y-axis on a scale of 0

to 0.01 and the IHS on y-axis on a scale of 0 to 80.

 40

Graph 4-5 Inadequately Handled Scenarios for ims_uac scenario

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The inadequately handled SAPS are less than 0.02.

Analysis of Retransmissions

Graph 4-6 shows the graph representing the total number of retransmits versus SAPS

over the time line. The graph was zoomed in to analyze how the total number of

retransmits versus SAPS varies, when the failover situations were made to be occurred

on the timeline on x-axis between 2000-2500 and 3500-4000 seconds. The SAPS is

represented in on y-axis on a scale of 0 to 0.01 and the total number of retransmits on

y-axis on a scale of 0 to 90.

 41

Graph 4-6 Retransmissions for All Scenarios

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The scenarios, which were being processed at the time, when the failover

situation occurred are usually retransmitted. The total number of retransmitted

scenarios is less than 0.02.

Graph 4-7 shows the graph representing the total number of retransmits for the

scenario ims_uac versus SAPS over the time line. The graph was zoomed in to

analyze how the total number of retransmits for the scenario ims_uac versus SAPS

varies, when the failover situations were made to be occurred on the timeline on x-axis

between 2000-2500 and 3500-4000 seconds. The SAPS is represented in on y-axis on

a scale of 0 to 0.01 and the total number of retransmits for the scenario ims_uac on y-

axis on a scale of 0 to 70.

 42

Graph 4-7 Retransmissions for ims_uac scenario

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The scenarios, which were being processed at the time, when the failover

situation occurred are usually retransmitted. The total number of retransmitted

scenarios for the scenario ims_uac is less than 0.02.

Graph 4-8 shows the graph representing the total number of retransmits for the

scenario ims_reg versus SAPS over the time line. The graph was zoomed in to analyze

how the total number of retransmits for the scenario ims_reg versus SAPS varies,

when the failover situations were made to be occurred on the timeline on x-axis

between 2000-2500 and 3500-4000 seconds. The SAPS is represented in on y-axis on

a scale of 0 to 0.01 and the total number of retransmits for the scenario ims_reg on y-

axis on a scale of 0 to 1.

 43

Graph 4-8 Retransmissions for ims_reg scenario

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The scenarios, which were being processed at the time, when the failover

situation occurred are usually retransmitted. The total number of retransmitted

scenarios for the scenario ims_reg is less than 0.02.

Analysis of Calling Use Case

Graph 4-9 shows the graph representing the delay in milliseconds for the calling use

case scenario (during the session setup) versus SAPS over the time line. The graph

was zoomed in to analyze how the delay that had occured during the calling use case

scenario (during the session setup) versus SAPS varies, when the failover situations

were made to be occurred on the timeline on x-axis between 2000-2500 and 3500-

4000 seconds. The SAPS are represented on y-axis on a scale of 0 to 0.01 and the

delay on y-axis on a scale of 0.1 to 10000 milliseconds.

 44

Graph 4-9 Calling Use Case for Session Setup

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The calling use case (during the session setup) suffers a negligible delay in

the range of 10 to 100 milliseconds and the affected SAPS are in the range of 0.004 to

0.006, which were being processed at the time, when the failover situation occurred.

Graph 4-10 shows the graph representing the delay in milliseconds for the calling use

case scenario (during the BYE and OK) versus SAPS over the time line. The graph

was zoomed in to analyze how the delay that had occured during the calling use case

scenario (during the BYE and OK) versus SAPS varies, when the failover situations

were made to be occurred on the timeline on x-axis between 2000-2500 and 3500-

4000 seconds. The SAPS are represented on y-axis on a scale of 0 to 0.01 and the

delay on y-axis on a scale of 0.1 to 1000 milliseconds.

 45

Graph 4-10 Calling Use Case : Delay between BYE and OK

It can be observed from the graph that the effect of the failover is almost negligible as

expected. The calling use case (during the BYE and OK) suffers a negligible delay in

the range of 1 to 100 milliseconds and the affected SAPS are in the range of 0.004 to

0.008, which were being processed at the time, when the failover situation occurred.

4.4 Performance Improvement Techniques in Virtual

Environment

The performance in the virtual environment can be improved to some extent by

optimizing the configuration in the virtual environment. Some of the most common

optimization techniques are “installation of the VMWare Tools” and “utilization of all the

NICs available on the physical host”.

The number of SAPS increased from 89 to 100 after configuring and utilizing all the

available NICs (Network Interface Cards) as shown in Figure 4-1. Dedicated NICs were

configured to carry different types of traffic such as “Management Network traffic”, “FT

traffic”, “vMotion traffic” and “Virtual Machine Network traffic” on separate NICs.

Otherwise, all the traffic was channeled through a single NIC, which would be a

bottleneck to achieve the peak performance.

 46

Figure 4-1 Configuring all the Network Interface Cards

It is possible to run the entire setup in one physical host, which is installed with ESXi,

by creating four VMs on the same ESXi host. Three VMs can function like SUT,

Manager, UAC and the fourth VM can be installed with the “VMWare vCenter Server”

and “vSphere Client” for administering the VMs on the ESXi host. This scenario of

running all the VMs in a single host would be useful to carry out a sample run of the

experiment. It is highly advisable to run at least SUT on a separate physical host to

achieve the more practical results.

This Chapter presented the analysis of results with respect to the performance in

“Native environment”, “Virtual environment” and “Virtual Environment with FT switched

ON”. Then presented the techniques to improve the performance in “Virtual

Environment”.

 47

5 SUMMARY

This thesis presented an evaluation of the performance of a SIP based application

among “Native Environment”, “Virtual Environment” and “Virtual Environment with FT

feature turned on”. According to the analysis the effect of failover situation was almost

negligible, when the switch over occurs in “Virtual Environment with FT feature turned

on”. It was noticed that the configuration of the physical hosts needed to be

downgraded to achieve the complete exhaustion of the CPU resources on the System

Under Test. The goal of this study was reached as the advantages of Fault-Tolerance

feature in “Virtual Environment” was demonstrated and also the performance metrics

were also analyzed.

The outcome of the study has been applied at NSN (Nokia Siemens Networks) to carry

out the experiments to estimate the influence of virtualization on power consumption.

This research was carried out because the power management and optimization of

power consumption in telecommunication products is vital. The effects of power

consumption in virtual environments is measured since most of the products are

moving towards virtualization to achieve the efficient utilization of resources.

This study covered experiments based on the “VMWare ESXi” platform only. There is

another competent platform namely Xen, which is an open source product providing

the virtualization infrastructure with the “fault tolerance” feature. An attempt was made

to carry out the experiment using the Xen platform. But the “fault tolerance” feature in

the Xen platform was not fully matured and stable at the time when this experiment

was carried out. This experiment can be repeated in the future with an open source

based Xen platform and the results can be compared with the results obtained with the

“VMWare ESXi” platform.

 48

6 REFERENCES

[1] Hypervisor-Based Fault-Tolerance,

http://www.cs.cornell.edu/fbs/publications/HyperFTol.pdf (Accessed May 4, 2011)

[2] Kemari, http://www.xen.org/community/projects.html (Accessed May 4, 2011)

[3] Remus, http://people.cs.ubc.ca/~andy/papers/remus-nsdi-final.pdf (Accessed May

4, 2011)

[4] Fast Memory State Synchronization for Virtualization-based Fault Tolerance,

http://www.ecsl.cs.sunysb.edu/tr/TR235.pdf (Accessed May 4, 2011)

[5] VMWare vSphere 4.0 Fault Tolerance, http://xtravirt.com/xd10007 (Accessed May

4, 2011)

[6] VMWare vSphere Architecture, http://www.vmware.com/files/pdf/perf-vsphere-

fault_tolerance.pdf (Accessed May 4, 2011)

[7] An Introduction to Virtualization with VMware vSphere 4,

http://www.petri.co.il/vmware-vsphere-4.htm (Accessed May 4, 2011)

[8] Processors and guest OS that support VMware Fault Tolerance,

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=display

KC&externalId=1008027 (Accessed May 4, 2011)

[9] Control Plane SW, http://sourceforge.net/projects/control-plane/ (Accessed May 4,

2011)

[10] OPENSIPS, http://opensips.org/pub/opensips/1.6.2/src/ (Accessed May 4, 2011)

[11] IMS Bench SIPp, http://sipp.sourceforge.net/ims_bench/reference.html (Accessed

May 4, 2011)

[12] Xen,

http://wiki.xensource.com/xenwiki/Xen4.0?highlight=%28xen%29|%284.0%29

(Accessed May 4, 2011)

http://www.cs.cornell.edu/fbs/publications/HyperFTol.pdf
http://www.xen.org/community/projects.html
http://people.cs.ubc.ca/~andy/papers/remus-nsdi-final.pdf
http://www.ecsl.cs.sunysb.edu/tr/TR235.pdf
http://xtravirt.com/xd10007
http://www.vmware.com/files/pdf/perf-vsphere-fault_tolerance.pdf
http://www.vmware.com/files/pdf/perf-vsphere-fault_tolerance.pdf
http://www.petri.co.il/vmware-vsphere-4.htm
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1008027
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1008027
http://sourceforge.net/projects/control-plane/#_blank
http://opensips.org/pub/opensips/1.6.2/src/
http://sipp.sourceforge.net/ims_bench/reference.html
http://wiki.xensource.com/xenwiki/Xen4.0?highlight=(xen)|(4.0)

 49

[13] UAC User Model,

http://www.spec.org/specsip/docs/designdocument.html#4_4_1_UAC_User_Model(Acc

essed May 4, 2011)

[14] Intel Xeon X5460 Quad Core Processor Specification,

http://ark.intel.com/Product.aspx?id=33087&code=Intel®+Xeon®+Processor+X5460+(

12M+Cache%2C+3.16+GHz%2C+1333+MHz+FSB) (Accessed May 4, 2011)

[15] MySQL, http://www.mysql.com/

[16] VMWare vSphere Fault-Tolerance,

http://www.vmware.com/files/pdf/fault_tolerance_recommendations_considerations_on

_vmw_vsphere4.pdf

http://www.spec.org/specsip/docs/designdocument.html#4_4_1_UAC_User_Model
http://ark.intel.com/Product.aspx?id=33087&code=Intel®+Xeon®+Processor+X5460+(12M+Cache%2C+3.16+GHz%2C+1333+MHz+FSB)
http://ark.intel.com/Product.aspx?id=33087&code=Intel®+Xeon®+Processor+X5460+(12M+Cache%2C+3.16+GHz%2C+1333+MHz+FSB)
http://www.mysql.com/
http://www.vmware.com/files/pdf/fault_tolerance_recommendations_considerations_on_vmw_vsphere4.pdf
http://www.vmware.com/files/pdf/fault_tolerance_recommendations_considerations_on_vmw_vsphere4.pdf

APPENDIX A 1 (1)

APPENDIX A

Specification of the Intel Xeon X5460

Specification of Intel Xeon X5460

Processor Number Intel® Xeon® X5460 Quad Core

Processor 3.16 GHz

Processor speed 3.16 GHz

Number of processors 2 processors

Processor core available Quad

Internal Cache 12 MB (2 x 6 MB) Level 2 cache memory

Standard memory 4 GB (4 x 1 GB) Standard Memory

APPENDIX B 1 (4)

APPENDIX B

Installing SW, Configuring and Starting SUT

Before starting the SIP server on the SUT, the following tasks need to be carried out.

1. Modify the IP address of the SUT in the configuration file

1.1. /etc/opensips/opensips.cfg

2. Start the MySQL daemon with the command “/etc/init.d/mysqld start”

3. Install opensips

3.1. Download the opensips-1.6.2-notls [10] source code.

3.2. Untar and unzip the downloaded file.

3.3. Read the {opensips}/INSTALL file for supported architectures and installation

requirements (only MySQL devel libs are needed from the optional list)

3.4. Edit {opensips}/Makefile: Remove mysql from the excluded modules list

(exclude_modules?=)

3.5. Compile opensips: make prefix={opensips} all

3.6. Install opensips: make prefix={opensips} install

APPENDIX B 2 (4)

4. Populate the SIP subscriber database as shown in the below steps

4.1. Edit “{opensips}/scripts/opensipsdbctl.base” to include a new line:

DBENGINE=MYSQL (or uncomment it if it is already there)

4.2. Also uncomment the same line at {opensips}/scripts/opensipsctlrc

4.3. Run "{opensips}/scripts/opensipsdbctl create" (answer NO to all the questions

about optional tables)

4.4. Configure opensips to use the MySQL database and modify the settings

pertaining to this experiment based on the configuration file

“{CPB}/examples/opensips_example.cfg”

4.4.1. Edit {opensips}/etc/opensips/opensips.cfg

Change: debug=0

Change: children={USER_SPECIFIED_VALUE} (number of threads to

be used)

 Add: alias=open-ims.test

 Uncomment: #listen=udp: 10.20.106.105:5060 (and change the IP

address)

 Uncomment: #loadmodule "mysql.so"

 Uncomment: #loadmodule "auth.so"

 Uncomment: #loadmodule "auth_db.so"

 Uncomment: #modparam("usrloc", "db_mode", 2)

 Uncomment: #modparam("usrloc", "db_url",

"mysql://opensips:opensipsrw@10.20.106.105/opensips-1.6.2-notls") (and

change the end to @localhost/opensips)

APPENDIX B 3 (4)

 Uncomment: #modparam("auth_db", "calculate_ha1", yes)

 Uncomment: #modparam("auth_db", "password_column", "password")

 Uncomment: #modparam("auth_db", "db_url",

"mysql://opensips:opensipsrw@192.168.1.3/opensips_1_3") (and change the

end to @localhost/opensips)

 Uncomment: ##if (!www_authorize("", "subscriber"))

 Uncomment: ##{

 Uncomment: ## www_challenge("", "0");

 Uncomment: ## exit;

 Uncomment: ##}

*: If several network interfaces are to be added, just add more lines

 "listen=udp:ANOTHER_IP-ADDRESS:5060" rows

4.4.2. Add users to Opensips MySQL database

4.4.2.1. Edit {opensips}/scripts/opensipsctlrc:

 Uncomment: #DBENGINE=MYSQL

 Uncomment: #DBRWUSER=opensips

 Uncomment: #DBRWPW="opensipsrw"

4.4.2.2. Edit {opensips}/scripts/opensipsctl:

 Change: TEST="true"

4.4.2.3. Copy {CPB}/scripts/generate_db_subscribers.sh to

{opensips}/scripts/ and run it

(By default the script generates 100000 SIP users. The number of SIP users

to be generated can be changed by modifying the value of “LIMIT”.

APPENDIX B 4 (4)

Beware that it might take several hours to generate all the users.

If the IMS Bench SIPp test run suddenly ends with no apparent reason, the

SIP users in the database should be more than the default 100000 users)

 If, for some reason, the SIP users need to be deleted from the database,

copy “{CPB}/scripts/remove_db_subscribers.sh” to “{opensips}/scripts/” and

run it (and possibly change the amount of users to be deleted)

5. Start the SIP Server with the following command

5.1. ./opensips -l 10.20.106.105 -m 3200 ../etc/opensips/opensips.cfg

6. Start the tool “cpum”, which measures the CPU utilization and memory usage

statistics of the SUT

6.1. @ims_bench> ./cpum 10.20.106.106:5000 (IP address of the Manager

followed by the Port number)

http://10.20.106.116:5000/#_blank

APPENDIX C 1 (3)

APPENDIX C

Configuring and Starting Manager

1. Create IMS-Bench configuration

== IMS Benchmark Configuration - Main Menu ==

1) Test System Setup

2) SUT Setup

3) Traffic Time Profile

4) Traffic Set

5) Users provisioning

6) Options

Enter option to select OR 'q' when done > q

Do you want to generate the benchmark run files? [Y/n] > Y

Creating benchmark run files in './ims_bench_0'

 Saving configuration to ./ims_bench_0/ims_bench.xml

 Copying scen/ims_rereg.xml

 Copying scen/ims_reg.xml

 Copying scen/ims_uac.xml

 Copying scen/ims_dereg.xml

 Copying scen/ims_msgc.xml

 Copying scen/ims_uas.xml

 Copying scen/ims_msgs.xml

 Generating user data files for 100000 users for TS1. This may take some

time...

 Generating run script for TS1....

All files necessary to execute the benchmark have been copied or created into

'./ims_bench_0' directory.

APPENDIX C 2 (3)

The current configuration has also been saved under

'./ims_bench_0/ims_bench.xml'.

You may later prepare a new benchmark configuration based on this one by

running

 ./scripts/ims_bench.pl ./ims_bench_0/ims_bench.xml

2. Prepare the Test Systems (TS) for benchmark execution

2.1. Make sure all the TSs have the necessary authentication keys set up so that

SSH sessions can be opened from this host without requiring a password to be

entered.

2.2. Check that all TSs have the prerequisite software installed to run the IMS

Bench SIPp (for example GSL library). See the installation instructions in the

documentation for more details on this.

2.3. Change to './ims_bench_0' directory

cd ./ims_bench_0

2.4. Copy the necessary files onto all the TSs by executing

./prepare.sh

3. Start the Manager

3.1. Copy scenario files from the directory CPB (Control Plane Benchmark). It

should be noted that these files are copied from CPB only at the Manager's

side and not at the SUT and UAC. The “IMS-Bench SIPp” is used on SUT and

UAC for different purpose than it is used on the Manager’s side.

cp {CPB}/scenarios/* ims_bench/scen

3.2. Edit {IMS_Bench@MANAGER}/ims_bench_0/manager.xml (in order to

configure “manager.xml”, refer to the configuration file

{CPB}/examples/manager_example.xml)

3.2.1. Add the following line under the “Scenario Parameters” section.

 <param name="scenario_path" value="scen"/>

APPENDIX C 3 (3)

3.2.2. Set the “cps” value under the “Pre-Registration Phase” to the maximum,

the SUT can handle (probably something like 50 or more)

3.2.3. Set the following values under the “Benchmark Run Phase”. These

values can be modified based on the need of the experiment accordingly.

<run cps="50" duration="900" step_increase="10" num_steps="9999"

distribution="poisson" stats="2000">

3.3. It should be noted that the phrase "Service-Route:" should be removed from

the files “ims_reg.xml” and “ims_rereg.xml”. These files are located in the

directories "scen" and "ims_bench_0".

3.4. Start the Manager at the level of the directory "ims_bench" but not at the level

of the directory "ims_bench_0".

 ./manager -f ims_bench_0/manager.xml

APPENDIX D 1 (2)

APPENDIX D

PREREQUISITE

The following SW is installed and the configurations are done as mentioned below prior

to starting the experiment.

1. The Virtualization Technology (VT) support at HW level was turned on during

the boot phase of the physical host.

2. Installed the RedHat Enterprise Linux 5.5 (RHEL5.5) on all the physical hosts.

The RHEL5.5 is the OS installed on all the physical hosts in the native

environment. The VMs are installed with RHEL5.5 in the virtual environment.

3. Installed the following common SW on SUT, Manager and UAC

1. GSL library [11]

2. Perl XML::Simple module [11]

3. Gnuplot 4.2 [11]

4. ntpd [11]

5. ptpd [11]

6. IMS-Bench SIPp [11]

4. Installed the following SW on SUT, which is specific to SUT

1. MySQL database

2. opensips-1.6.2-notls [10]

5. Installed the following SW on Manager, which is specific to Manager

1. Control Plane Bench Mark [9]. This is used as the reference

configuration in this experiment to modify the default configuration of the

“IMS-Bench SIPp [11]”. The detailed instructions to perform these

configuration changes are described, while generating the IMS-Bench

Mark configuration at the Manager.

6. OS (RHEL5.5) Configuration

APPENDIX D 2 (2)

The capacity of the physical hosts was downgraded by modifying the configuration

file “grub.conf”, which is located in the directory “/boot/grub” as follows

1. Edit the file “/boot/grub/grub.conf” and set the values

“maxcpus=1” and “mem=6G”, which means that only 1 CPU is

used and 6GB of RAM is used out of all the resources available

in the host.

2. The physical hosts, which were deployed in the experiments had

8 CPUs and 16 GB of RAM.

3. Turn off "kdump” with the following command

1. chkconfig --list | grep :on

2. chkconfig kdump

Turn off "swap" with the command “swapoff -av“

APPENDIX E 1 (26)

APPENDIX E

RESULTS OF THE EXPERIMENT IN VIRTUAL ENVIRONMENT

Summary

This report shows the result of a benchmark run performed by "IMS Bench SIPp", an

implementation of the IMS/NGN Performance Benchmark suite, ETSI TS 186.008.

The test was started on 22-Apr-2010 01:41, and the total time for the test execution was 2h

10m 47s. The Design Objective Capacity (DOC) is 100 scenarios per second.

The following systems and parameters were used for the test. The full list of IMS benchmark

parameters can be found in Appendix.

The following table shows the average of the key measurements for each step of the test. Each

steps is characterized by the requested load, the effective load, the global IHS (total of all

APPENDIX E 2 (26)

Inadequately handled scenarios for this step divided by number of Session Attempts for this

step) the scenario IHS (number of inadequately handled scenarios for this step divided by

thenumber of scenario attempts for this step), the CPU utilization and the available Memory on

the SUT. The available Memory is expressed in MegaBytes, and the requested and effective

loads in Scenarios Attempts Per Seconds (SAPS).

Note that the IHS percentages represented in this table are the number of failures for a step

divided by the number of scenario attempts for this step, and so is not the average of (IHS per

seconds)

The following chapters show details on different measurement, like delay between two

messages, response time or number of messages per seconds.

Each measurement can be represented in one of the four following forms.

1. Evolution in function of the time. On such graphs, the raw information is plotted, like

number of messages per seconds, or response time of each scenario. This graph is

useful in giving for instance a good idea on the distribution of response times, and it's

evolution over the time.

2. Evolution (mean) in function of the time. While previous graph gives a good indication,

it may sometimes be easier to see the evolution of the mean of the measurement over

a second in function of the time.

3. Histogram. This graph shows the histogram of the measurement, so how many times

each value of the measurement occured.

4. Probability. This graph gives the probability of the measurement to be higher than a

certain value. This graph can be used to determine percentile for instances.

For some graphs, a cubic Bezier curve is plotted as well.

APPENDIX E 3 (26)

1. Scenario Attempts Per Second
This graph represents the number of scenario per seconds generated by the test system. For

each step, the generation was based on a Poisson.

1.1 Scenario Attempts Per Second (Mean per second)

1.2 Scenario Attempts Per Second Histogram

APPENDIX E 4 (26)

This graph shows the Histogram of the SAPS for each step. It should follow Poisson

distributions.

1.3 Scenario Attempts Per Second Probability

This graph shows the probability distribution of the SAPS for each step. It shows the

probability that the effective load is higher than x.

APPENDIX E 5 (26)

2 SUT CPU %

This graph represents the CPU of the system under test (SUT).

APPENDIX E 6 (26)

2.1 SUT CPU % over time

3 SUT Available Memory [MB]

This graph represents the Available memory on the system under test, in MBytes (SUT).

APPENDIX E 7 (26)

3.1 SUT Available Memory [MB] over time

4 ALL SIPP CPU %

This graph represents the CPU of SIPP on ALL Test Machines

APPENDIX E 8 (26)

4.1 ALL SIPP CPU % over time

5 ALL SIPP Free Memory [MB]

This graph represents the free memory of SIPP on ALL Test Machines, in Mbytes

APPENDIX E 9 (26)

5.1 ALL SIPP Free Memory [MB] over time

6 Inadequately handled scenario Percentage

This graph represents the percentage of inadequately handled scenarios.

APPENDIX E 10 (26)

6.1 Inadequately handled scenario Percentage over time

7 Scenario retransmissions - all scenarios

This graph represents the number of retransmissions per seconds for all scenarios.

APPENDIX E 11 (26)

7.1 Scenario retransmissions - all scenarios over time

7 Calling

7.1 PX_TRT-SES1: Session Setup Time

This graph represents the delay between the Caller sending INVITE and callee receiving ACK.

APPENDIX E 12 (26)

7.1.1 PX_TRT-SES1: Session Setup Time(Calling use case) (Mean per second)

7.1.2 PX_TRT-SES1: Session Setup Time(Calling use case) Histogram

APPENDIX E 13 (26)

7.2 PX_TRT-SES2: Session Initiation transversal time

This graph represents the delay between the caller sending INVITE and the callee receiving

INVITE.

7.2.1 PX_TRT-SES2: Session Initiation transversal time(Calling use case)

(Mean per second)

APPENDIX E 14 (26)

7.2.2 PX_TRT-SES2: Session Initiation transversal time(Calling use case)

Histogram

7.3 PX_TRT-REL1: Delay Between BYE and 200 OK

This graph represents the delay between the first BYE and the corresponding 200 OK.

APPENDIX E 15 (26)

7.3.1 PX_TRT-REL1: Delay Between BYE and 200 OK (Calling use case) (Mean

per second)

7.3.2 PX_TRT-REL1: Delay Between BYE and 200 OK (Calling use case)

Histogram

APPENDIX E 16 (26)

7.4 PX_TRT-SES3: INVITE and re-INVITE cost

This graph represents the caller sending first INVITE and callee receiving second ACK.

7.5 ims_uac : Scenario retransmissions

This graph represents the number of retransmissions per seconds for this scenario.

7.5.1 Scenario retransmissions(ims_uac scenario) over time

7.6 ims_uac : Inadequately handled scenario Percentage

This graph represents the percentage of Inadequately handled scenarios for the uac.

APPENDIX E 17 (26)

7.6.1 Inadequately handled scenario Percentage(ims_uac scenario) over

time

8 Messaging

8.1 PX_TRT-PMM1: Message Transmission time

This graph represents the delay between the message and the 200 OK.

APPENDIX E 18 (26)

8.1.1 PX_TRT-PMM1: Message Transmission time(Messaging use case) over

time

8.1.2 PX_TRT-PMM1: Message Transmission time(Messaging use case) (Mean

per second)

APPENDIX E 19 (26)

8.1.3 PX_TRT-PMM1: Message Transmission time(Messaging use case)

Histogram

8.2 PX_TRT-PMM2: Message Transmission time (error case)

This graph represents the delay between the message and the 404 Not Found.

9 Registration

9.1 PX_TRT-REG1: Time of the first register transaction

This graph represents the time of the first register transaction in the registration use_cases i.e.

the time between the REGISTER and the 401 Unautorized for all scenarios in the Registration

use_case.

APPENDIX E 20 (26)

9.1.1 PX_TRT-REG1: Time of the first register transaction(Registration use

case) (Mean per second)

9.1.2 PX_TRT-REG1: Time of the first register transaction(Registration use

case) Histogram

9.2 PX_TRT-REG2: Time of the second register transaction

This graph represents the time of the second register transaction in the registration use_cases,

i.e. the delay between the second REGISTER and the 200 OK.

APPENDIX E 21 (26)

9.2.1 PX_TRT-REG2: Time of the second register transaction(Registration use

case) (Mean per second)

9.2.2 PX_TRT-REG2: Time of the second register transaction(Registration use

case) Histogram

APPENDIX E 22 (26)

9.3 ims_rereg : Time of the re-register transaction

This graph represents the time of re-register transaction i.e. the time between the REGISTER

and the 200 OK.

9.3.1 Time of the re-register transaction(ims_rereg scenario) (Mean per

second)

9.3.2 Time of the re-register transaction(ims_rereg scenario) Histogram

APPENDIX E 23 (26)

9.4 ims_reg : Scenario retransmissions

This graph represents the number of retransmissions per seconds for this scenario.

9.4.1 Scenario retransmissions(ims_reg scenario) over time

9.5 ims_reg : PX_TRT-REG1: Time of the first register

transaction

This graph represents the time of the first register transaction i.e. the time between the

REGISTER and the 401 Unautorized.

APPENDIX E 24 (26)

9.5.1 PX_TRT-REG1: Time of the first register transaction(ims_reg scenario)

(Mean per second)

9.5.2 PX_TRT-REG1: Time of the first register transaction(ims_reg scenario)

Histogram

9.6 ims_dereg : PX_TRT-REG1: Time of the first register

transaction

This graph represents the time of the first register transaction i.e. the time between the

REGISTER and the 401 Unautorized.

APPENDIX E 25 (26)

9.6.1 PX_TRT-REG1: Time of the first register transaction(ims_dereg

scenario) (Mean per second)

9.6.2 PX_TRT-REG1: Time of the first register transaction(ims_dereg

scenario) Histogram

APPENDIX E 26 (26)

Appendix
The test was run based on the following IMS benchmark parameters.

The following information is also available for the test

APPENDIX F 1 (3)

APPENDIX F

KEMARI (http://www.xen.org/community/projects.html)

• Introduction

 Kemari :

 Aim : Keeps VMs transparently running at times of

HW failures

 No special HW required

 No modification to applications

 Takes advantage of both checkpointing and Lockstep

1. Design and Implementation

 Synchronization Model

 Kemari Procedure

• Synchronizes state of VMs on multiple HW

(Primary, Secondary VMs kept in sync)

• Detects HW failures

• Transfers the state of “Primary VM” to

“Secondary VM”, when an event occurs

• Synchronizes VMs when the “Primary VM” is

about to send an event to devices such as storage

and networks

• Switches to a Secondary VM, when failure occurs

on a Primary VM

• Does not require external buffering mechanisms

which impose output latencies (which is

necessary in continuous checkpointing)

http://www.xen.org/community/projects.html

APPENDIX F 2 (3)

Figure: Synchronization steps initiated by an event sent to storage

> Scenario: Primary VM tries to read/write to the storage,

> This action outputs an event to the storage

> Since this event will change the state of the storage, Kemari

– Pauses the Primary VM

– Updates the Secondary VM state to the current state of the

Primary VM

– Resumes the primary VM (after synchronization)

– Transmits the trapped event to the storage

• Secondary VM can continue transparently, when the Primary VM FAILS.

> If a HW failure is detected, Kemari

– switches to the Secondary VM

– starts running from the latest synchronized point (where

Secondary VM and virtual disk are consistent)

• Network Events are handled in a similar manner

• Applications using reliable protocols (TCP)

– transparently continue after switching to the Secondary VM.

• Applications using unreliable protocols (UDP) :

– need to keep the network status consistent by themselves.

 Implementation

APPENDIX F 3 (3)

Kemari is implemented based on Xen VMM.

Two types of domains:

• Privileged Domain (Domain 0): can access the devices.

• Unprivileged Guest Domain : need to request I/O through

virtualized devices such as virtual disks and virtual networks,

provided by domain 0 .

• Frontend : guest domain side of the virtual device

• Backend : domain 0 side of the virtual device

• Event channel : notification mechanism connecting the frontend

and the backend, provided by Xen.

> Kemari is implemented across VMM and userland.

> The VMM part of Primary Kemari captures events sent through the “event

channel” to kick start the “synchronization” process.

> When Kemari detects an event from the frontend,

> Pauses the guest domain

> Searches for dirty pages in the guest domain created since the

previous synchronization

> Notifies userland part of Kemari to send the pages and the vcpu

context to the Secondary Kemari.

> Unpauses the guest domain and sends the captured event to the

backend (after the synchronization).

• Kemari used a guest domain whose page tables are virtualized by shadow

pagetables. With this technique, Kemari avoided depending on suspend used in

the live migration, which might change the state of the guest.

• It also simplified the transfer mechanism by removing the canonicalization

process of the pagetables.

APPENDIX G 1 (7)

APPENDIX G

REMUS (http://people.cs.ubc.ca/~andy/papers/remus-nsdi-final.pdf)

1. Approach in brief
– Migration of running VMs between physical hosts (Virtualization

aids to create a copy of a running VM)

– Encapsulates Protected SW in a VM

– Replicate snapshots of an entire running OS instance between a

pair of physical machines

– Uses speculative execution to run “Active VM” ahead of

replicated system state

– Single host to execute speculatively (rather than running two

hosts in lock-step) then

• checkpoint
• replicate its state asynchronously

– System State : not made externally visible until the checkpoint is

committed

– External output : Not released until the system state is

replicated (Network packets etc.)

2. Goals
– Generality : HA provided as a low-level service and independent

of the protected Application or HW

– Transparency : OS or Applications not tied to HA logic

– Seamless Failure Recovery
1. Host State - Preserves completely (such as active

network connections)

2. Downtime - few seconds

3. Failure recovery proceeds rapidly

4. Appears as a temporary packet loss from the external

user's perspective

3. Design and Implementation

Based on “Xen VMM” and extends Xen’s support for “live migration” to

provide “fine-grained checkpoints”.

– Propagates checkpoints of Active VM to Backup physical host

frequently.

– On the Backup, VM image is in memory and may begin

execution immediately if Active system FAILS.

– Since Backup is only periodically consistent with the Primary, all

network output must be buffered until state is synchronized on

the Backup.

http://people.cs.ubc.ca/~andy/papers/remus-nsdi-final.pdf

APPENDIX G 2 (7)

– To maintain disk replication,

 Writes to the Primary disk are transmitted asynchronously to the

Backup

 Buffered in Backup's RAM until the corresponding memory

checkpoint arrives

 At that point,

• complete checkpoint is acknowledged to the Primary

• Primary releases outbound Network traffic

• buffered disk writes are applied to the Backup disk

– The checkpoint, buffer, and release cycle happens very frequently

 whole-machine checkpoint including network - at frequencies up to

40 times/sec

 on disk state - every 25 milliseconds.

1. Failure model
Remus provides the following properties:

• The fail-stop failure of any single host is tolerable.

• Protected system’s data will be left in a crash-consistent state

if both Primary and Backup Hosts FAIL concurrently.

• No output will be made externally visible until the associated

system state has been committed to the replica.

• Existing commercial HA products :

• If a physical host fails, reboots the VM on another host from its

crash-consistent disk state

• Remus:

• Survives failure on time frames similar to those of live migration

• Keeps VM running and Network connections intact

• Exposed state is not lost and disks are not corrupted

• Host Machines connected over redundant Gigabit Ethernet

connections and survives the failure of any one of these

components.

• By incorporating block devices into its state replication protocol,

it avoids requiring expensive, shared network-attached storage for

disk images.

APPENDIX G 3 (7)

• Pipelined Checkpoints

• Once per epoch,

• Pause the running VM

• copy any changed state into a buffer (stop and

copy stage of live migration)

• With state changes preserved in a buffer, VM is

unpaused and speculative execution resumes.

• Buffered state is transmitted and stored in memory on the Backup

host.

• checkpoint is acknowledged to the Primary

• Finally, buffered network output is released.

2. Memory and CPU
– Checkpointing is implemented above Xen’s existing machinery

for performing “live migration”.

– Remus implements checkpointing as repeated executions of the

final stage of “live migration”

 Modifications to the migration process described below

 Migration enhancements
 In live migration,

– guest memory is iteratively copied over a number of rounds –

may consume minutes of execution time

– capturing frequent VM checkpoints - every checkpoint is just the

final stop-and-copy phase of migration

– Remus optimizes checkpoint signaling in following two ways:
– reduces number of inter-process requests required to

suspend/resume guest domain

– entirely removes xenstore from the suspend/resume

process

• Migration process desired to suspend a VM

• XEN code (original)

APPENDIX G 4 (7)

– sent a message to xend (VMmanagement daemon)

– xend in turn wrote a message to xenstore

– xenstore alerted the guest by an event channel that it should

suspendexecution

– Guest’s final act before suspending was
– to make a hypercall which descheduled the domain and

caused Xen to send a notification to xenstore

– xenstore then sent an interrupt to xend

– xend finally returned control to the migration process

– This convoluted process takes an arbitrary amount of time

- latencies in the range of 30 to 40ms

• Remus’s optimized suspend code (of Xen) streamlines this process as follows

 signaling changes

– event channel in guest - to receive suspend requests - migration

process can invoke directly.

– new hypercall - to allow processes to “register an event channel

for callbacks notifying them of the completion of VM

suspension”.

– above “notification mechanisms” reduce time required to

suspend a VM to about 100 microseconds

 memory copying process

– quickly filters out clean pages from the memory scan - most

memory is unchanged between rounds.

– maps the guest domain’s entire physical memory into the

replication process when it begins, rather than mapping and

unmapping dirty pages at every epoch

 Checkpoint support
 checkpoint support in Xen - two changes to existing

suspend-to-disk and live migration code :

» support for resuming execution of a domain after

it had been suspended

(Xen previously did not allow “live checkpoints”

- destroyed the VM after writing its state out)
» suspend program was converted from a one-shot

procedure into a daemon process.

 Resume support :

» A new hypercall to mark the domain as

schedulable again

» A similar operation is necessary in order to rearm

watches in xenstore

 Asynchronous transmission.
To allow the guest to resume operation quickly - migration process was

modified to copy touched pages to a staging buffer rather than delivering

them directly to the network (while domain is paused)

 Guest modifications
Paravirtual guests in Xen contain a suspend handler that cleans up device

state upon receipt of a suspend request. The suspend request handler has

also been modified to reduce the amount of work done prior to suspension.

In the original code, suspension entailed disconnecting all devices and

APPENDIX G 5 (7)

unplugging all but one CPU. This work was deferred until the domain was

restored on the other host.

3. Network buffering
– Inbound traffic

1. delivered to protected host immediately

– Outbound packets generated since the previous checkpoint are

queued until

1. current state has been checkpointed

2. checkpoint has been acknowledged by the Backup site

Remus implemented this buffer as a linux queuing discipline applied to

the guest domain’s network device in domain 0, which responds to two

RT netlink messages.

1 Before the guest is allowed to resume execution after a

checkpoint, the network buffer receives a CHECKPOINT

message, which causes it to insert a barrier into the outbound

queue preventing any subsequent packets from being released

until a corresponding release message is received.

2 When a guest checkpoint has been acknowledged by the backup,

the buffer receives a RELEASE message, at which point it begins

dequeueing traffic up to the barrier.

 Two minor wrinkles in this implementation.

1. Linux queueing disciplines only operate on outgoing traffic.

Under Xen, guest network interfaces consist of a frontend device

in the guest, and a corresponding backend device in domain 0.

Outbound traffic from the guest appears as inbound traffic on the

backend device in domain 0. Therefore in order to queue the

traffic, we convert the inbound traffic to outbound by routing it

through a special device called an intermediate queueing device.

This module is designed to work at the IP layer via iptables, but it

was not difficult to extend it to work at the bridging layer.

2. The second wrinkle is due to the implementation of the Xen

virtual network device. For performance, the memory used by

outbound networking traffic is not copied between guest domains

and domain 0, but shared.

APPENDIX G 6 (7)

• However, only a small number of pages may be shared at any one time. If

messages are in transit between a guest and domain 0 for only a brief time, this

limitation is not noticeable.

• Unfortunately, the network output buffer can result in messages being in flight

for a significant amount of time, which results in the guest network device

blocking after a very small amount of traffic has been sent.

• Therefore when queueing messages, Remus “first copies them into local

memory and then release the local mappings to shared data”.

4. Disk buffering
– Remus recovers from a single host failure.

– Preserves crash consistency to recover even if both hosts fail.

– Maintains a complete mirror of the Active VM’s disks on the

Backup host.

– Before Engaging Protection : Current State of disk on Primary

is mirrored to the Backup host

– After Engaging Protection : Writes to persistent storage are

tracked and checkpointed (similar to updates to memory)

 Figure 4 : gives a high-level overview of the disk replication mechanism

– Writes to disk from the Primary are treated as write-through: they

are immediately applied to the Primary disk image, and

asynchronously mirrored to an in-memory buffer on the Backup.

– This approach provides two direct benefits:

– “Active disk image remains crash consistent” at all

times

– writing directly to disk accurately accounts for the latency

and throughput characteristics of the physical device.

– Disk updates reside in memory until the Backup acknowledges a

checkpoint

– Disk state unchanged until the entire checkpoint has been

received – so that Backup can rollback to the most recent

complete checkpoint.

– Disk request buffer may be applied to Disk, once the checkpoint

is acknowledged

APPENDIX G 7 (7)

– In the event of a failure, Remus will wait until all buffered writes

have been applied before resuming execution.

– Only one of the two disk mirrors managed by Remus is actually

valid at any given time. This point is critical in recovering from

multi-host crashes. This property is achieved by the use of an

activation record on the backup disk, which is written after the

most recent disk buffer has been completely flushed to disk and

before the backup VM begins execution. In recovering from

multiple host failures, this record may be used to identify the

valid, crash consistent version of the disk.

– Disk Buffer : implemented as a Xen block tap module.

– Block tap : device which allows a process in the privileged

domain to efficiently interpose itself between the frontend disk

device presented to a guest VM and the backend device which

actually services requests.

– The buffer module logs disk write requests from the protected

VM and mirrors them to a corresponding module on the backup,

which executes the checkpoint protocol described above and then

removes itself from the disk request path before the Backup

begins execution in the case of failure at the Primary.

5. Detecting Failure
 A simple failure detector is directly integrated in the checkpointing stream:

– Timeout
• Backup NOT responding to commit requests -

Primary assumes that the “Backup has crashed”

and disables protection.

• Primary not transmitting new checkpoints -

Backup assumes that the Primary has crashed and

resumes execution from the most recent

checkpoint.

– The system is configured to use

• a pair of bonded network interfaces

• two physical hosts are connected using a pair of

Ethernet crossover cables (or independent

switches) on the protection NICs.

• Should both of these network paths fail, Remus

does not currently provide mechanism to fence

execution.

