

Performing remote live response on

organizational environment

Joni Ahonen

Bachelor’s thesis
February 2020
Technology
Degree Programme in Information Technology
Cyber Security

Description

Author(s)

Ahonen, Joni
Type of publication

Bachelor’s thesis
Date

February 2020

Language of publication:
English

Number of pages

75
Permission for web publi-

cation: Yes

Title of publication

Performing remote live response on organizational environment

Degree programme

Information Technology

Supervisor(s)

Saarisilta, Juha
Kotikoski, Sampo

Assigned by

JAMK University of Applied Sciences; JYVSECTEC; CYBERDI project; Vatanen, Marko

Abstract

With the digitalization of society, the traditional crimes have manifested in digital opera-
tional environment in cybercrimes, which have created a need for organizations to build a
lasting ability to detect and respond to the occurring security incidents. JAMK University of
Applied Sciences in association with the Police University College have striven to find
means to improve the organizations’ capabilities in a cooperation project named CYBERDI.
One result of the project has already been published, namely the conceptual cybercrime
prevention model, Prepare – Hunt – Response. The model created by JYVSECTEC’s special-
ists helps organizations to improve their capability to prepare, detect, and respond to inci-
dents occurring in organizations’ information systems and networks. During the project the
model will be supplemented to include a technical environment for cybercrime prevention.

Before the technical environment execution, JYVSECTEC being the assignor of the thesis,
had the desire to examine the capabilities of two of existing open source remote live re-
sponse tools, and performance restrictions when utilized for investigation in an organiza-
tional environment consisting of hundreds of endpoints. The assignment was set to be the
objective of the research. The research was constructed using two different test cases
which produced the results of how the tools’ performance. The results verified that the re-
searched tools are capable of gathering data from occurred incident on organizational en-
vironment, and usage of the tools in the assignor’s technical environment execution is jus-
tifiable. However, the tools require additional expertise when performing intensive investi-
gation as they have similar features. All things considered, the researched tools should still
be considered as a combination of two tools and when selected to investigate an organiza-
tion environment, they should be extending each other, not excluding the other.

Keywords/tags (subjects)

Cyber security, cybercrime, live response, incident response, digital forensics

Miscellaneous (Confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

Kuvailulehti

Tekijä(t)

Ahonen, Joni
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Helmikuu 2020

Julkaisun kieli
Englanti

Sivumäärä

75
Verkkojulkaisulupa myön-

netty: Kyllä

Työn nimi

Performing remote live response on organizational environment

Tutkinto-ohjelma

Tieto- ja viestintätekniikka

Työn ohjaaja(t)

Juha Saarisilta
Sampo Kotikoski

Toimeksiantaja(t)

JAMK Jyväskylän ammattikorkeakoulu; JYVSECTEC; CYBERDI-projekti; Marko Vatanen

Tiivistelmä

Yhteiskunnan digitalisoituminen on aiheuttanut rikollisuuden siirtymistä digitaaliseen
toimintaympäristöön. Tietoverkoissa tapahtuvat rikokset ovat luoneet organisaatioille
tarpeen kehittää organisaatiokohtaista kyvykkyyttä kyberhyökkäyksien tunnistamiseen,
havaitsemiseen sekä niiltä suojautumiseen.

Jyväskylän ammattikorkeakoulu on yhdessä poliisiammattikorkeakoulun kanssa pyrkinyt
löytämään keinoja organisaatioiden kyvykkyyksien kehittämiseen CYBERDI-yhteishankkeen
avulla. Osana hankkeen tavoitteita on luoda organisaatioille edellytyksiä parantaa sekä tie-
toisuutta että teknistä kyvykkyyttä kyberrikollisuudelta puolustautumiseen, johon on py-
ritty jo hankkeen aikana vastaamaan JYVSECTECin, työn tilaajan, julkaisemalla konseptita-
soisella mallilla. Mallia täydennetään hankkeen aikana teknisellä ympäristöllä, joka sisältää
avoimen lähdekoodin työkaluja, joista osaa voidaan käyttää keräämään tietoa organisaa-
tioympäristössä tapahtuvista poikkeamista reaaliaikaisesti verkon yli.

Työn tilaajalla oli tarve selvittää ennen kahden reaaliaikaiseen tutkintaan tarkoitetun työ-
kalun käyttöönottoa, mitkä ovat työkalujen kyvykkyydet, kun työkaluja käytetään edisty-
neiden ja kohdistettujen kyberhyökkäyksien havaitsemiseen kohdejärjestelmistä, sekä työ-
kalujen resurssivaatimukset, kun tutkimusta suoritetaan organisaatioympäristössä, joka
koostuu sadoista tutkittavista päätelaitteista. Tilaajan tarve asetettiin vastaamaan tutki-
muksen tavoitetta, joka saavutettiin käyttämällä kahta testitapausta, joiden avulla voitiin
muodostaa tutkimustulokset.

Tulokset osoittavat, että työkalujen käyttöönotolle on riittävät perusteet ja että tulokset
ovat vertailukelpoisia, vaikka työkalut pitävätkin sisällään päällekkäisiä ominaisuuksia ja
vaativat asiantuntijuutta, kun työkalujen avulla tutkitaan organisaatioympäristöjä.

Avainsanat (asiasanat)

Kyberturvallisuus, kyberrikollisuus, tietoturvapoikkeaman hallinta, digitaalinen forensiikka

Muut tiedot (Salassa pidettävät liitteet)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

1

Contents

1 Introduction ... 9

1.1 Motivation ... 9

1.2 JYVSECTEC – Jyväskylä Security Technology ... 10

1.3 Project CYBERDI ... 11

2 Research design .. 12

2.1 Research problem ... 12

2.2 Research method .. 13

3 Digital forensics and incident response ... 16

3.1 Incident response process ... 16

3.2 Digital and computer forensics ... 17

3.3 Data acquisition ... 18

4 Technical review ... 20

4.1 Osquery ... 20

4.1.1 Operational overview ... 20

4.1.2 Query structure and management ... 21

4.1.3 Deployment considerations.. 22

4.2 GRR Rapid Response.. 23

4.2.1 Operational overview ... 23

4.2.2 GRR server and agent ... 25

4.2.3 Client-Server communication ... 26

4.2.4 GRR concepts .. 28

4.2.5 Security considerations .. 30

5 Deployment work ... 31

5.1 Starting point ... 31

2

5.2 Research of publicly available resources .. 32

5.3 Division of official GRR Docker image ... 33

5.4 Deployment of containerized GRR server ... 36

5.5 Deployment of GRR and osquery agents .. 39

6 Capability testing .. 39

6.1 Overview .. 39

6.2 Testing environment ... 40

6.3 Test case attack ... 41

6.3.1 Purpose ... 41

6.3.2 Phases ... 42

6.3.3 Mapping the techniques ... 43

7 Performance requirement testing ... 46

7.1 Overview .. 46

7.2 Testing environment ... 46

7.3 Load monitoring of containerized GRR ... 47

8 Results ... 49

8.1 Containerized GRR ... 49

8.2 Capabilities .. 50

8.3 Performance requirements ... 53

9 Conclusions .. 60

9.1 Discussion .. 60

9.2 Reliability of research .. 62

9.3 Further research .. 63

3

References ... 64

Appendices .. 69

Figures

Figure 1. GRR operation mode illustrated ... 24

Figure 2. Message exchange illustrated ... 28

Figure 3. Initial build environment structure for containerized GRR........................... 33

Figure 4. Build environment structure for containerized GRR Rapid Response 35

Figure 5. Functionality of containerized GRR ... 38

Figure 6. Investigation workflow on testing environment ... 41

Figure 7. Anatomy of test case attack .. 43

Figure 8. Mitre ATT&CK Framework – Technique navigator (filtered) 45

Figure 9. Memory usage by container ... 55

Figure 10. CPU usage by container .. 56

Figure 11. Packet speed by container .. 57

Figure 12. Packet count by container... 57

Tables

Table 1. Used hardware ... 48

Table 2. Investigation details.. 50

Table 3. Gathered artefacts.. 50

Table 4. Artefact acquiring capabilities .. 51

Table 5. General information ... 53

Table 6. Investigation related information .. 54

Table 7. Images space usage .. 58

Table 8. Containers space usage .. 58

Table 9. Recommended hardware ... 59

4

5

Acronyms

AES Advanced Encryption Standard

AFF4 Advanced Forensic Format 4

AI Artificial Intelligence

API Application Programming Interface

APT Active Persistent Threat

ARP Address Resolution Protocol

BASH Bourne Again Shell

BGP Border Gateway Protocol

C2 Command and Control

CBC Cipher Block Chaining

CLI Command Line Interface

CPU Central Processing Unit

CSV Comma Separated Values

DC Domain Controller

DDoS Distributed Denial of Service

DFIR Digital Forensics and Incident Response

DNS Domain Name System

DoS Denial of Service

EU European Union

FOSS Free and Open Source Software

GCE Google Compute Engine

GRR GRR Rapid Response

GTS Global Time System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IoC Indicator of Compromise

IoT Internet of Things

6

IP Internet Protocol

IR Incident Response

ISP Internet Service Provider

IT Information Technology

IV Initial Vector

JYVSECTEC Jyväskylä Security Technology

LR Live Response

MITM Man in the Middle

NIST National Institute of Standards and Technology

ODT OpenDocument Text

OS Operating System

PKI Public Key Infrastructure

R&D Research and Development

RAM Random Access Memory

RAT Remote Access Trojan

RFC Request for Comments

RGCE Realistic Global Cyber Environment

RSA Rivest-Shamir-Adleman

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

TTP Tactics, Techniques, and Procedures

VBA Visual Basic for Applications

VCS Version Controlling System

WMI Windows Management Instrumentation

YAML YAML Ain’t Markup Language

7

Glossary

.dockerignore Special file of Docker which Docker Engine utilizes to
exclude sensitive and unnecessary files and folders from
build context of image.

Apache License 2.0 Open source license by Apache, version 2.0.

Cobalt Strike Beacon Feature of Cobalt Strike penetration testing tool
developed by Raphael Mudge which allows modelling
threat actors actions using common protocols such HTTP,
HTTPS or DNS via payload.

Docker image Production of Dockerfile which is used as a base when a
running instance of image, Docker container, is created.

Docker Swarm Clustering tool of Docker used for deploying and scaling
services on multiple Docker hosts.

Docker Refers to Docker Engine. Enables the creation, managing
and running of containerized applications on any major
operating system without dependency issues.

Dockerfile Special text file, a receipt, which the Docker utilizes when
the image is built.

Git Version Controlling System (VCS) enabling paraller
changes to the project to be made and versioning and
storing the data as a stream of snapshots.

Hybrid cryptosystem Involves use of more than one cryptographical method for
data encryption, where the public-key cryptosystem is
used for key encapsulation and symmetric-key
cryptosystem for data encapsulation.

Kubernetes Orchestration tool for containerized applications.

KYHA19tv Cyber security exercise planned, organized, and executed
by JYVSECTEC for Finland’s national defensive agencies
held in fall 2019.

MySQL Oracle Corporation’s developt database management
system which utilizes relational database tables.

Nginx Server software designed to versatile use such as HTTP
web server serving with reverse proxying and load
balancing, initially written by Igor Sysoev.

PHR model Conceptual Prepare – Hunt – Respond model designed by
JYVSECTEC’s specialists to help organizations improve
their ability to prepare, detect, and response to the
incidents.

8

PowerShell Powerful command-line shell designed for automated use
of systems and advanced system administration tasks
invented by Jeffrey Snover, initially targeted for Windows
operating systems but latter open sourced and cross-
platformed.

REL_DB Database format which replaced the use of older AFF4
database format in GRR from version 3.3.0.0 onwards.

SQLite Widely used and efficient SQL database engine written in
C programming language with long term support of
developers.

Terraform Tool for descriping infrastructure as a code. Enables the
manageable way to build, change, and version
infrastructure.

9

1 Introduction

1.1 Motivation

The digitalisation of society has placed citizens and organizations to face a new mani-

festation of crime, called cybercrime, in their everyday life. In today’s world, a single

individual can confront harassment, fraud, abuse, or even get killed by cybercrime

committed utilizing digital operational environment. When a cyber-attack is targeted

at organization’s information systems and networks, it can be vital for continuance of

the operation if the critical assets are accessed and revealed by the attacker. (Sihto

2019; Tietoverkkorikollisuuden torjuntaa koskeva selvitys 2017.)

At the same time when the amount of criminal activity has increased in information

networks, the amount of reports of an offence made to the Police of Finland has

been trailed. The reasons for this can be seen to vary. Single individuals can feel

shame about what have happened, and an organization can face image-related prob-

lems. On the other hand, a single individual does not necessarily know how to act in

this kind of situation, organizations may not have corresponsive processes, or lack

knowledge, insufficient observation ability and resource targeting during and after

when the security incident occur. (Anttila 2018; Valkama 2019.)

The objective of this thesis, assigned by JYVSECTEC (Jyväskylä Security Technology) is

to examine and test the capability and performance requirements of two preselected

open source tools, GRR Rapid Response and osquery, designed for performing re-

mote live response. The objective is reached using two different test cases that

measure both the tool’s ability to gather data from endpoints to identify and contain

assumed information security incident from the organizational Information Technol-

ogy (IT) environment simulating a real-world organizational environment, and perfor-

mance requirements that the tool sets for the underlying hardware when used for

active investigation on organizational environment that includes hundreds of end-

points.

The cyber-attacks used in test cases are based on Techniques, Tactics, and Proce-

dures (TTPs) that Active Persistent Threat (APT) actors have executed on their cam-

paigns in the past years. Promising results lead the implementation of the tools as a

10

part of a larger cybercrime prevention environment that will be designed and built

during the CYBERDI project’s cybercrime prevention working package in association

with Police University College, the Finnish police education facility.

1.2 JYVSECTEC – Jyväskylä Security Technology

According to the JYVSECTEC’s official website (JYVSECTEC overview n.d) JYVSECTEC is

an independent cyber security research, development, and training center located in

Jyväskylä, Central Finland. JYVSECTEC is a part of the Institute of Information Tech-

nology at JAMK University of Applied Sciences, and nationally it is one of the leading

operators in the domain of cyber security, as well as a globally noticed partner.

JYVSECTEC operates Finland’s national Cyber Range and is the assignor of this thesis.

(Finnish cyber security expertise in Singapore – JAMK University of Applied Sciences

and Singapore Polytechnic collaborating in Centre of Excellence in Applied Cyber Se-

curity 2019; JYVSECTEC organization 2019; JYVSECTEC overview n.d.)

One of JYVSECTEC’s objectives is to offer high-quality cyber security exercises for

Finnish national government’s defensive agencies and organizations operating under

public and private sector. Along with planning, providing, and executing the exer-

cises, JYVSECTEC participates in numerous research and development (R&D) projects

as a part of the Institute of Information Technology at JAMK University of Applied Sci-

ences, executes system and software testing, consulting, offering also lightweight

certification programs. (JYVSECTEC services n.d.)

The cyber security exercises organized by JYVSECTEC utilize the unique Realistic

Global Cyber Environment (RGCE). RGCE simulates the real-world Internet, its core

functionalities, and services as accurately as possible. For instance, RGCE consists of

implementation of following protocols and systems:

• Border Gateway Protocol (BGP) routed network

• a real-world public Internet Protocol (IP) addressing

• hierarchically implemented Domain Name System (DNS)

• Global Time System (GTS)

• Public Key Infrastructure (PKI). (JYVSECTEC Cyber Range – RGCE and solutions n.d, 2–
3.)

11

To create a more realistic environment, use of different public services such as social

media platforms Twitter and Facebook, application store, news media and instant

messengers are resolved in RGCE. In addition, RGCE includes numerous organiza-

tional environments from the field of business and industry as well as Internet Ser-

vice Provider (ISP) and cloud providers, each of them with unique sectoral and corpo-

rative features. In this research, two of the RGCE’s organizational environments were

used to simulate a real-world organizational environment in test cases. (JYVSECTEC

Cyber Range – RGCE and solutions n.d, 3–11.)

One of the biggest advantages of RGCE is that it is fully isolated from the production

network, i.e. RGCE’s Cyber Range can be thought of as a digital shooting range,

where the organizations participating in the exercise have the possibility to practice

offensive as well as defensive actions in real-world circumstances without insulting

the existing laws or regulations. In Cyber Range, a large collection of different real-

world cyber threat attack vectors typical to a specific threat actor have been imple-

mented. There are also modelled single person actors such as script kiddies, small

hacktivists and activists’ groupings with political or other agenda as well as several

national APTs and organized criminal adversaries. Depending on the threat actors’

capability, it is possible to execute threat vectors such as variant Distributed Denial of

Service (DDoS) attacks, ransomware and phishing campaigns, watering holes, mal-

ware variants originating from different malware families, as well as viruses, worms

and Remote Access Trojans (RATs). (ibid., 2–4.)

1.3 Project CYBERDI

The name of CYBERDI project stands for the sentence “Cybercrime prevention,

awareness raising and capacity building by RDI on modern cyber-attacks”. CYBERDI is

an R&D project funded by the Ministry of Education and Culture of Finland and ad-

ministered by JAMK University of Applied Sciences with the association of Police Uni-

versity College, which is the Finnish police education facility. The total duration of the

project is three years and it is executed in years 2018–2021. The project has been di-

vided into three different working packages: cybercrime prevention, awareness rais-

ing, and capacity building. (5 miljoonaa euroa ammattikorkeakoulujen soveltavaan

12

tutkimukseen ja innovaatioihin 2019; CYBERDI – Kansallista & kansainvälistä kyber-

osaamista kasvattamassa n.d; CYBERDI n.d.)

In cybercrime prevention, the project executors’ intend to enhance their capability to

prevent cybercrimes in modern digital environments. Prevention is built using the

latest technologies such as Artificial Intelligence (AI), machine learning, and data ana-

lytics. Furthermore, new effective cooperation models are developed for cybercrime

prevention and investigation to ease collaboration between different authorities. The

research performed in this thesis is published as a part of the cybercrime prevention

working package. (CYBERDI – Kansallista & kansainvälistä kyberosaamista

kasvattamassa n.d.)

In awareness raising the focus is to increase the target audience’s knowledge about

the digital world around them and threat landscape that it brings. The target audi-

ence consist of organizations that operates in Finland’s public and private sector and

healthcare organizations as well as students in upper secondary education and com-

prehensive school. (CYBERDI – Kansallista & kansainvälistä kyberosaamista

kasvattamassa n.d.)

In capacity building the cooperation with the partners from national and global net-

works is expanded to strengthen already existing partnerships and create new viable

productive stakeholders across the globe, especially in the region of European Union

(EU). The objective is to reinforce the already existing profiles of JAMK University of

Applied Sciences and JYVSECTEC, when speaking of actors in the cyber security do-

main. (CYBERDI – Kansallista & kansainvälistä kyberosaamista kasvattamassa n.d.)

2 Research design

2.1 Research problem

One of the CYBERDI project’s results has already been published by JYVSECTEC,

namely the Prepare-Hunt-Respond conceptual model (PHR model). PHR model has

been designed to ease the ability of organizations to absorb and understand how to

13

successfully detect, defend, and build efficient countermeasures against modern

cyber-attacks. During the project, the model will be also developed to include a tech-

nical environment for the use of organizations consisting of a collection of tools, the

source code of which has been published under open source license. (PHR model

2019.)

JYVSECTEC in the role of the assignor of the thesis has the problem that the tools

need to be examined and tested extensively before they can be accepted and applied

as a part of the PHR model’s technical execution. The scope for the tool survey is set

to include investigation and documentation of the technical capabilities and limita-

tions as well as performance requirements of the tools so that it is possible to accom-

plish the applied execution. The absolute goal of the assignor is to find the best pos-

sible tools to tackle a specific field of the PHR model. The tools should also have inte-

gration possibilities and least possible overlap with other selected tools.

One of the fields of the PHR model is Triage and Respond which involves an organiza-

tion’s use of digital forensic methods and incident response processes in a detailed

investigation during the incidents (PHR model 2019). For the technical environment

execution, the assignor had preselected two different existing tools, GRR Rapid Re-

sponse and osquery, which should cover both digital forensics and incident response

actions, when the remote live response is performed. However, before the tools can

be approved and applied as a part of the PHR model’s technical environment execu-

tion, the research problem needs to be set and answered first. Hence, the research

problem for this thesis is defined using a set of research questions:

• How well and reliably can the selected tool be used to identify and contain incidents
from the selected organizational environment?

• What are the performance requirements when the selected tool is used for investi-
gation performed in organizational environment that consists of hundreds of end-
points?

2.2 Research method

The research made in this thesis should be considered as an applied research, since it

solves problems and find solutions in a practical manner. Furthermore, in research

the specified tools are tested, and research is targeted for the assignor and its needs.

In addition, the generated results should offer added value when practical execution

14

based on the research is made or further research executed. On the other hand, the

research relies to the researcher’s empirical concrete observation and for this reason

the research involves use of empirical research methods. (Baimyrazaeva 2018, 6;

Hirsjärvi, Remes, & Sajavaara 2008, 128–129.)

According to Baimyrzaeva (2018, 17–38) applied research should be considered as a

process involving the research to be executed in five steps:

1. Clarify your research focus
2. Scan existing information
3. Plan your research tasks and methods
4. Collect, analyse, and interpret data
5. Share your work.

The base for the research work is constructed according to what is the objective of

the research to be made (Baimyrzaeva 2018, 18). In this research, the objective is to

find answers to the found research questions in a way that the produced results are

reliable and can be used when applied execution or further research is considered.

Therefore, the research questions dictate the base and direction for the research,

and the construction of research methodology. The direction of the research is mod-

elled and focused during the research to provide more accurate results. However,

the main objective of the research, answering the predefined research questions, re-

mains as the same.

To get better perception of the researched field, the research is started by examina-

tion of the collection of scientific researches, papers, and resources as well as tools

technical documentations published by the developers of the tools. The source criti-

cism is used when the reference material is gathered for the research. Based on the

gathered material, a literature review is included to the research. The literature re-

view is the theoretical base of the research and includes a presentation of the exist-

ing theory in the scope of the research and provides overview to the technical opera-

tion of the researched tools.

Research is continued by executing the initial tool deployment in local test environ-

ment to get early perception of the tools. The tools’ caveats and possible develop-

ment targets are discussed with the assignor. If any tool development targets are

recognized they are to be solved before the research is continued.

15

Research objective is achieved by executing two different test cases that are con-

structed with an aim to produce accurate results for the research questions. In test

case construction, the used testing environments in RGCE are taken into account and

are resolved before any further construction work for the test cases is executed.

There is discussion with JYVSECTEC’s specialists who are also consulted when the

testing environment selections are made to improve the quality of test cases.

After the testing environment selections, the tools are deployed in the environments

on RGCE where the real-world organizational environment circumstances exist. A

suitable construction for the tools in the testing environments is resolved in coopera-

tion with the assignor, since the used environments in RGCE are controlled by the as-

signor and involve the assignor’s administration, expertise, and consultation. This

also applies to the tool deployment. Before and during the deployment process of

the tools, the requirements and other expectations set by the assignor of the thesis

are resolved and respected. This provides transparency between the parties during

the tool deployment process.

The first test case, capability testing, is constructed to answer the capability related

research problem. To produce reliable and accurate results, the real-world APT level

cyber-attack is generated on testing environment, a real-world organizational envi-

ronment. Use of realistic adversary techniques enables the investigation made using

the tools to be executed in amidst of real-world security incident.

In the second test case, performance requirement testing, the components of the

GRR Rapid Response server are monitored using pre-existing advanced network

monitoring solution. In this research the monitoring focuses on the server-side of the

tool and the monitoring of GRR and osquery agent is excluded. The reason for this is

twofold. First, when research is made only to the GRR’s server-side, it enables the re-

search to be more targeted. Targeting behalf provides more accurate results for the

research question related to performance requirements. Secondly, the parties of the

research are aware that there is already research made about the performance con-

straints and footprint of GRR’s agent, and the research is available for the use of the

assignor (Moser & Cohen 2013). Furthermore, GRR agent resource usage can be con-

trolled on server-side in considerable manner. This also applies to the osquery agent,

16

since in this research the osquery agent is used and controlled by GRR Rapid Re-

sponse server and should remain within the same restrictions that are set for the

GRR agent.

As mentioned, the execution of test cases enables the objective of the research to be

reached and provides results for the research questions. The criticisms and objective

standpoint are used during the test cases and in presentation of the results to avoid

any human errors. In other words, the presented results answer only the research

questions and any ambiguousness is omitted. Based on results, it is possible to deter-

mine how well the research questions can be answered and deduce the success and

reliability of the research and concern possibilities for further research.

3 Digital forensics and incident response

3.1 Incident response process

As the name of the term suggests, incident response or in shorter IR is an organized

and premeditated way to respond to security incidents occurring in organizational

environments. The incident itself can be classified as any malicious activity that ex-

ceeds an organization's security policy. The objective of the incident response is to

decrease the incident’s impact so that its severity can be reduced and the recovery

process accelerated. (Luttgens, Pepe, & Mandia 2014.)

Incident response is executed as a process called incident response process, which is

carried out by an organization’s team, often designated for only this purpose. Inci-

dent response is a continuing variegated process and in every organization where the

incident response process is implemented, the process takes into account the organi-

zation’s needs, resources, and procedures, meaning that the incident response pro-

cess is always organization-specific way to respond occurring security incidents. The

incident response process is self-developing and every incident occurring in the or-

ganization’s environment should develop and improve it. (Luttgens et al. 2014.)

17

Regardless of how the incident response process methodology is applied to an organ-

ization, it is normally seen as a cycle of procedures involving actions from an incident

response team assigned to the process as well as organization-wide actions. National

Institute of Standards and Technology (NIST) (2012) suggests that the incident re-

sponse process should be executed as a four-step cycle process:

• Preparation

• Detection and analysis

• Containment, eradication, and recovery

• Post-incident activity.

The detection and analysis phase involves that the organization has a general proce-

dure to detect and analyze the most common incidents occurring in organization’s

environment, since the preparation for every possible incident bonds unnecessary

resources and is not a lasting solution. When the organization has a described and

organized procedure to recognize the typical attack vectors used by adversaries and

detect the common IoCs (Indicator of Compromise) from the organizational environ-

ment, the possible occurring or an already occurred incident can be detected earlier,

and the investigation started and recovery from incident is accelerated. (NIST – Na-

tional Institute of Standards and Technology 2012.)

3.2 Digital and computer forensics

The term forensics originates from Latin and according to Merriam-Webster diction-

ary (n.d), the definition for the word is “application of scientific knowledge to legal

problems”. Forensics, in a term as it stands, does not take into account what the sci-

entific knowledge brought to courts of judicature is or what is the field of forensics or

the methods that has been used. When forensic science involves evidence collection

from digital devices or more specifically from computers, the terms digital forensics

and computer forensics are used. (Graves 2013; Reith, Carr, & Gunsch 2002.)

Digital forensics intend to find traces about criminal activity in a digital operational

environment such as digital devices and networks so that the emphasized knowledge

of what was happened can be proved and used as evidence in court. Digital devices

can be classified to include all those physical computing devices that use electronic

18

signals. Beyond these devices, everyday devices such as laundry dryers, which are

traditionally not seen as digital devices, are now becoming digitalized by the Internet

of Things (IoT). Appending IoT devices to the list of digital devices expands the list of

potential devices for digital forensics drastically. (Bourgeois 2019; Marcella &

Menendez 2008; Reith et al. 2002.)

Speaking of computer forensics, the investigation is targeted at computers; however,

the means are the same as in digital forensics: to find evidence from malicious ac-

tions that are accepted in court (Reith et al. 2002). When crime scene investigation is

started by first responders the National Institute of Justice (2008) suggests that the

following digital devices should be considered as potential evidence:

• Computer systems

• Storage devices

• Handheld devices

• Peripheral devices

• Computer networks

• Other potential sources of digital evidence.

As incident response, digital forensics is executed as a predefined process. According

to Johansen (2017) digital forensics process involves investigator to execute investi-

gation in six steps: identification, preservation, collection, examination, analysis and

presentation. Johansen also informs that the digital forensics process is an important

part of incident response process; when applied, digital forensics process is a compo-

nent of investigation workflow which should deliver knowledge about what has hap-

pened and bring evidence to the investigation that can be used connecting the party

behind the incident to the incident. (Johansen 2017.)

3.3 Data acquisition

As mentioned, during computer forensics process the investigator intend to find evi-

dence from computer devices. The process driven by an investigator usually involves

taking a duplication from the target device such as hard drive or memory. Imaging al-

lows the investigator to accomplish forensic investigation to the duplicated target

without affecting the device’s original state. However, improvements that the digital

devices have faced have brought new methods of how the investigation is executed,

19

since imaging is a time consuming process and when the number of investigated sys-

tems grows, the forensic process involves more and more time. (Luttgens et al.

2014.)

Live response, or in shorter LR, refer to the real-time data collection for the use of in-

vestigation process. The gathered data vary; however, the means is the same; with

live response an investigator intend to gather volatile data from a target system that

can otherwise be lost. Live response also answers to the challenges that the tradi-

tional forensics produces to the investigation by forensic duplication, since live re-

sponse intend to gather data in real-time, answering the investigation related ques-

tions more rapidly and without delaying the continuance of investigation process.

(Luttgens et al. 2014.)

According to Luttgens, Pepe, and Mandia (2014), performing live response can be

considerable when following observations in investigation are recognized:

• Volatile data consists of data that can not be investigated using other methods

• The change to the target system is controllable and as minimal as possible

• The number of contaminated systems is large

• The performed imaging preserve time and possibility for failing exists

• Legal or other considerations require as much data as possible.

However, the live response should be considered harmful if the process of acquisi-

tion of volatility data is not well automated and described, and the impact of the

tools is unknown. Live response tools used for data gathering inevitably change the

target system’s state and without precise knowledge about the used tool’s impact to

the target system, live response can paralyse, mislead or damage the investigation

process. For instance, Walters and Petroni inform (2007) that specific tools used in

live response research have changed the system state significantly: how drastic

change to the system was, Walters and Petroni notices that the impact is bigger than

letting the system run 15 hours incessantly. In some cases, live response might also

be the ringing bell for the attacker in system to go undercover. (Luttgens et al. 2014;

Walters & Petroni 2007.)

Brezinski and Killalea (2002) inform in Request for Comments (RFC) 3227 that the

data should be gathered in the order of its volatility. According to Brezinski and

Killalea, the data collection should be started from registers and cache and continued

20

with network related data such routing tables and Address Resolution Protocol (ARP)

tables. In addition, the processes and temporal file systems are to be gathered be-

fore the hard disk, logging and monitoring data is acquired. The least volatile data to

gather is the systems physical configuration and archive medias. However, the

knowledge of what to acquire and in what order is not enough; also the individual

features of a target system such as the running operating system (OS) are needed to

take into account when data is gathered. (Brezinski & Killalea 2002; Lutggens et al.

2014.)

Live response is executed locally at the same physical location where the target sys-

tem or systems reside. However, when the number of investigated systems increases

and the physical location varies, performing live response becomes challenging. How-

ever, remotely performed live response can be used for data acquisition over the

networks. Remote live response intends to gather the same volatile data from the

target system as live response; however, the investigation can be performed using

network connections whether or not the investigator has physical access to the sys-

tem. (Johansen 2017.)

4 Technical review

4.1 Osquery

4.1.1 Operational overview

Osquery is an open source agent-based tool designed for endpoint instrumentation.

Osquery is written in C++ programming language and it is designed and maintained

by Facebook. Along with Facebook, also other contributors have participated in the

development work of the tool. Osquery was introduced and published to the crowd

in June 2014 when the Facebook made the first announcement of the tool that has

capability to model and describe the OS in which the tool is deployed as a relational

database by making the initial commit to the osquery’s Git project repository. By

constructing the Structured Query Language (SQL) based queries, osquery can be

used to retrieve information about abstract concepts such as established network

21

connections from the underlying OS in an efficient manner. (Chacon & Straub 2014;

Osquery documentation n.d; Osquery n.d; Sereyvathana & Reed n.d.)

Osquery consists of two separate instances of which the osquery’s interactive shell,

osqueryi can be used to retrieve information about the current OS and its changes.

The use of osqueryi comes in handy when a new constructed query needs to be eval-

uated without affecting the existing configurations, since it does not involve the use

of daemon in its working and can be considered as a standalone version of the tool.

The daemon instance of the tool, osqueryd, gathers information from the endpoints,

and it can be queried, logged, scheduled and monitored by changes in a more effi-

cient and scalable manner. The current version of the tool (version 4.0.2, released on

13 September 2019) includes in total 232 different tables that can be used to retrieve

a large scale of distinct information about the target system, and it changes by con-

structing and executing the queries. (Osquery documentation n.d; Schema n.d; Os-

query n.d.)

Osquery has been designed to run on every major OS used in enterprises such as

Windows, Linux, MacOS, and FreeBSD. Regardless of what the underlying OS is, the

same query, utilizing for instance the table that can be used to retrieve the currently

logged in users, made on every supported OS should retrieve the report with the

same structure. What is worth of noticing is that the current version consists of 40

tables that can be used regardless of what is the underlying OS. The major part of the

tables has OS related features and tables are not supported other than in one OS;

however, the way how the queries are constructed remains the same. (Osquery doc-

umentation n.d; Performant endpoint visibility n.d.)

4.1.2 Query structure and management

The construction of a correct query structure involves using osquery’s implementa-

tion, a subset of SQLite. Osquery’s query construction starts from using the tradi-

tional SQLite statements. However, in osquery the only statement with direct effect

on queries is the SELECT statement. After SELECT statement, the construction is con-

tinued by selecting the desired rows, records from tables, which are selected using

FROM clause after the record specification. The specification for retrieved data is

22

performed using clauses such as WHERE. In addition, it is possible to perform the

normal use of SQLite wildcards. (About SQLite n.d; Osquery documentation n.d.)

Osquery enables the joining of distinct tables. For instance, if it is desired to acquire

those processes executed by a specific user, osquery tables processes and users can

be joined in query to retrieve the desired result as concatenation of two tables. For

construction of queries osquery provides a detailed schema documentation, which is

useful when monitoring is performed efficiently and in a more intensive manner. (Os-

query documentation n.d; Schema n.d.)

As mentioned, the execution of single queries is viable when queries are evaluated,

and interactive instance of the tool used. When performing more sustained and ro-

bust monitoring, for instance in organization environment, the management of que-

ries can easily become challenging since the number and interval of queries raises in-

exorably. However, the daemon instance of tool, osqueryd, allows packing distinct

queries by default in filesystem plugin, a specific configuration file, which enables

growing the number of used queries without losing the tool’s controllability. In addi-

tion, the scheduling and logging related configuration is added to the configuration

file. (Osquery documentation n.d.)

4.1.3 Deployment considerations

Deployment of a single instance of osquery agent is a straightforward process. The

project offers distinct installation packages and executables for every supported OS.

Alternatively, compiling the tool directly from the source code is possible and is the

developer recommended way for the tool deployment. (Osquery documentation

n.d.)

Osquery agent is installed and deployed on every endpoint that is desired to be mon-

itored. In small deployments controlling agents can be managed via a remote con-

nection such SSH (Secure Shell). However, when the number of monitored endpoints

rises, the manual management of agents becomes more difficult. When the system

monitoring is about to be executed in a large scale, for instance on an organizational

environment, the use of alternative solutions is required. As the osquery’s official

documentation (n.d) informs, osquery does not offer by default any centralized fleet

23

manager for the agents. However, few third-party solutions exist and are available

for the fleet management, the implementation, suitability, and use of which is left on

deployer’s own consideration. (Osquery documentation n.d.)

Managing every endpoint in an organization without centralized access to the system

to be monitored is not a lasting and viable solution when speaking of remote live re-

sponse. One solution for controlling osquery agents in endpoints for the use of re-

mote live response is to use GRR Rapid Response, which allows gathering data and

composing results from the osquery agents on endpoints in a centralized way with-

out changing the tool’s default usage, constructing queries. (Osquery documentation

n.d.)

4.2 GRR Rapid Response

4.2.1 Operational overview

GRR Rapid Response, later GRR, is an open source incident response framework writ-

ten in Python 2.7 programming language. The development work of GRR was started

in 2011 by Google with an aim to create a state-of-the-art tool that meets the re-

quirements set for a cross-platform and scalable incident response framework focus-

ing on remote live response. Google has committed a long-term support for the GRR

and since 2011 it has been continuously developed and maintained by Google's full-

day software engineers and other contributors, currently being at version 3.3.0.8 (re-

leased on 9 October 2019). (GRR Rapid Response n.d; GRR Rapid Response documen-

tation n.d.)

According to GRR’s official documentation (n.d), the main features of GRR are (only

features viable for the research are listed):

• Written in Python 2.7 programming language (Python 3.6 written version was re-
leased in the end of the year 2019)

• Consists of two main parts: server and agent

• Allows a powerful investigation to be made remotely to the organization environ-
ment over the network

• A cross-platform agent that supports the most common operating systems (Win-
dows, Linux, MacOS)

• A fully functional API (Application Programming Interface) that can be used to man-
age the incident responders' everyday tasks across the fleet of agents

24

• The scalability of GRR has been tested on around 50 k client machine environment
by Google and in smaller deployments made by other organizations

• Due to open source code, GRR can be implemented and modelled into a different
environment with different requirements. (GRR Rapid Response documentation n.d.)

GRR server and agent utilize the traditional client-server model in bilateral communi-

cation. GRR server is a centralized server used to launch forensic tasks on the clients

over the network. Respectively, GRR agents are installed on those endpoints, or in

other words, on clients desired to be examined. GRR utilizes the unique messages for

the communication between server and clients, and all message exchange is en-

crypted. Figure 1 explains GRR's operation mode from the start of a single request-

response investigation workflow to the view of results: (Cohen, Bilby, & Caronni

2011; GRR Rapid Response documentation n.d.)

1. Investigator starts a new desired investigation workflow on a GRR server for a de-
sired client or fleet of clients on investigation domain where the GRR agent is suc-
cessfully installed

2. GRR server serializes, encrypts and signs required workflow and appends it to the cli-
ent specific message queue

3. GRR agent installed on the client polls the GRR server for assigned message queue
periodically for addressed workflows

4. When the addressed workflow is successfully added to the queue, the GRR agent will
then request the message from the server to the client in the next time period using
a signed HTTP (Hypertext Transfer Protocol) GET request

5. The GRR agent will then decrypt the signed workflow and start the requested investi-
gation workflow on the client

6. After the task is executed, GRR agent will then encrypt the results to a message and
send them as a reply to the GRR server with an appropriate signed HTTP POST re-
quest

7. GRR server decrypts the serialized message and informs investigator for the results.

Figure 1. GRR operation mode illustrated (adapted from Cohen et al. 2011)

Message ueue I xyz

GRR Server

GRR Agent

Client I xyz

Inves ga on omain

25

4.2.2 GRR server and agent

The operation of GRR server has been divided between four distinct logical compo-

nents: HTTP front-end, worker, user interface consisting of web-based Graphical User

Interface (GUI) and API endpoint, and datastore. Every component has their own

special purpose; front-end handles the HTTP based communication between GRR

server and agent, worker is used for flow processing, user interface to the adminis-

trative purposes and investigation creation, launch, management, and automation,

and datastore to store the collected results and messages generated during the com-

ponent communications. (Cohen et al. 2011; GRR Rapid Response documentation

n.d.)

Since the scalability is one of the main features of GRR, the server components are

designed to be executable as separate processes and multiple instances to meet the

requirements set by the environment where the tool is used for and the intensity of

incident’s responders team actions. By the nature of components, the load between

distinct components varies. To avoid a possible bottleneck emergence on those com-

ponents that fall under heavy load, the reasonable resource targeting and scaling

should be considered when components are deployed. Accordingly, those compo-

nents that fall under light load are not so critical when speaking of bottlenecks, and

scaling of which can be considered in situations when redundancy is desired. (GRR

Rapid Response documentation n.d.)

For instance, if an organization’s incident response team is going to use GRR inten-

sively and investigation domain consists of thousands of clients, it is advisable to con-

sider running distinct HTTP front-end and worker processes as multiple instances and

deploying reasonable datastore, which should scale linearly. Accordingly, even if GRR

is deployed for the use of an active incident response team, there is no necessary

need to run multiple user interface instances as the component is under light load;

however, this might be considerable and reasonable if redundancy is needed and in-

vestigation team consist of multiple concurrent users. Using reasonable resource tar-

geting, every component can be correctly dimensioned and built to meet investiga-

tion and environmentally implemented needs. (GRR Rapid Response documentation

n.d.)

26

As mentioned, the GRR server uses a centralized database to store formalized data.

From the version 3.2.4.5 (released on 17 December 2018) onwards the support for

MySQL database management system was released, and the support for its prede-

cessor SQLite was deprecated. However, as the developer team announces on GRR’s

official documentation (n.d), due to the version updates the use of distinct backend

system is also possible such as Google’s Bigtable datastore. Furthermore, from the

version 3.3.0.0 (released on 22 May 2019) onwards the old, default Advanced Foren-

sic Format 4 (AFF4) data storing technology has been replaced with REL_DB data for-

mat to bring stability and performance improvements. Even if the REL_DB is not

backward compatible with AFF4, the AFF4 can still be used instead of REL_DB if de-

sired; however, this is discouraged by developers for beforementioned reasons.

(Cruz, Moser, & Cohen 2015; GRR Rapid Response documentation n.d; Moser & Co-

hen 2013; What is MySQL? n.d.)

GRR agent is a Python 2.7 written piece of program supporting common enterprise

used operating systems: Windows, Linux and MacOS. After the first deployment of

the GRR server adding a new client to GRR’s investigation domain is a simple and

straightforward process. If configured, the GRR server produces the GRR agent instal-

lation binary with the corresponding configurations and populates the desired loca-

tion with generated installation packages. If changes to the GRR server configuration

are made, repacking of the installation packages can be made and updates on clients

perform. (GRR Rapid Response documentation n.d.)

Updates on agents can be delivered using the specific administrative flow designed

for replacing the obsoleted agent with updated or performing agent reinstallation

manually. In addition, when the forensic task is created, the GRR agents’ resource us-

age on clients can be managed using flow or hunt specific trace holds. (GRR Rapid Re-

sponse documentation n.d.)

4.2.3 Client-Server communication

GRR agent and server communication are based on top of HTTP protocol, and all

transmitted data between GRR server and agent are serialized. GRR utilizes Google’s

protocol buffer (protobuf) data serialization mechanism for a data serialization. Pro-

tobuf allows serialization of data regardless of the used programming language or

27

platform. In fact, the messages exchanged between GRR agent and server are a pro-

tobuf encoded description of the flow execution containing fields such as session

identifier, name and arguments as well as request and response identifier. (Devel-

oper Guide n.d; GRR Rapid Response documentation n.d.)

As mentioned, GRR encrypts all message exchange between client and server. Ac-

cording to the GRR Rapid Response’s source code (2019), encryption is performed us-

ing a hybrid cryptosystem constructed from a key encapsulation scheme and data en-

capsulation scheme. The source code (n.d) indicates that GRR uses symmetric-key ci-

pher algorithm AES (Advanced Encryption System) in CBC (Cipher Block Chaining)

mode with 128-bit key length and IV (Initial Vector) as key encapsulation scheme.

The RSA (Rivest-Shamir-Adleman) keys are used as a data encapsulation scheme to

bring protection against symmetric key delivery problems. (Cramer & Shoup 2003;

GRR Rapid Response n.d.)

As the developer of the GRR, Ogaro (2019a) informs, following phases describe how

hybrid cryptosystem is implemented on message exchange between server and

agent when the GRR server requests a forensic task to be performed on a client:

1. Both GRR server and agent have their own RSA, by default a 2048-bit, public-private
key pair used for signing and encrypting, public keys are exchanged

2. Server generates a new random AES 256-bit session key
3. Server encrypts protobuf message which holds the forensic task using the AES key
4. Server encrypts the AES key and signs the message using client’s RSA public key
5. Agent fetches the encrypted message and key from the server’s message queue
6. Agent decrypts the AES key and verifies the signed message using the client’s RSA

private key
7. Agent decrypts the message using the decrypted AES key
8. Agent starts the request forensic task on the client and replies to the server with ap-

propriate encrypted message. (Ogaro 2019a.)

The message exchange is started when GRR server requests the GRR agent on client

to perform a task such as forensic data acquisition. The composed message is la-

belled with request identifier as illustrated in Figure 2, which is incremented be-

tween distinct flows. After the message has been composed, server sets the message

to the client’s message queue. When the agent on client has fetched the message

from the assigned message queue and resolved the requested task, the agent then

constructs and delivers the response message to the server server using HTTP POST

28

request. Before transmission to the server, the client composes and labels the mes-

sage with corresponsive request identifier and response identifier. (Cohen et al.

2011; GRR Rapid Response documentation n.d.)

Figure 2. Message exchange illustrated (adapted from Cohen et al. 2011)

If the required task needs multiple client responses, the agent increases the response

identifier by one between responses. In such scenarios, GRR server waits the special

final response, a status message, which informs the server that the requested task is

terminated successfully or with errors. If termination ends with error, the correspon-

sive traceback is included into the message. Otherwise, the corresponsive results are

shown to the user and the message exchange has succeeded. (Cohen et al. 2011;

GRR Rapid Response documentation n.d.)

4.2.4 GRR concepts

Flow is a logical task that can be used to perform a forensic or administrative opera-

tion on a desired client agent. For example, task specific flow can be used when an

incident responder wants to start a new investigation from finding out if a specific

file has been seen on a specific client on the environment by listing the target file sys-

tem. The organizational networks can easily consist of a thousand of clients and

launching this kind of search on every client machine would bond unnecessary re-

sources and time if only targeted investigation is desired. As in the beforementioned

case, the incident investigation is often started from a certain point of organization

environment and then extended to consider the larger fleet of clients to find out the

Message ueue I xyz

GRR Server

GRR Agent

Client I xyz

Inves ga on omain

Request I

Request I
Response I

29

spread of an incident. In fact, flows can be copied to hunt to make the same research

on every or specific subset of clients on investigation domain. (Cohen et al. 2011;

GRR Rapid Response documentation n.d.)

Configuration and flow management is handled via a web-based GUI or utilizing the

API endpoint via CLI (Command Line Interface). GRR includes a large collection of

preinstalled flows for the most common forensic tasks. Executing a flow produces re-

sults that the investigator can examine directly from the GUI or CLI or exporting them

to an archived file using common file formats such CSV (Comma Separated Values).

Additionally, investigators can write and import their own Python scripts which can

be used via a flow on GRR that is designed for this purpose. (GRR Rapid Response

documentation n.d.)

To avoid the excessive tying of recourses, the developers of GRR have designed flow

to be an asynchronous task, a state machine. In client-server model this means that

the resources are freed from the flow execution on the server-side when the flow is

launched on a desired client agent. This enables server resources to be used else-

where before the client responses and flow execution is continued. (GRR Rapid Re-

sponse documentation n.d.)

Simply put: hunt is an extended flow. As mentioned, every terminated flow can be

copied to a hunt to start the same investigation using the same parameters, for in-

stance on every client or a subset of clients in the environment. If the beforemen-

tioned scenario leads to IoC which it is defined to be originated from malicious ac-

tion, the incident responders’ next step in investigation process would be to define

all those client machines in the organization’s environment where the IoC has been

seen and perform a suitable analysis for the acquired artefact. Using hunt, exploring

contaminated clients from the environment is efficient and should reduce the time

what is taken to conducting contaminated machines from the environment and ac-

celerates the start of further investigation. (GRR Rapid Response documentation

n.d.)

As mentioned, hunt can be useful in cases when clarifying the spread of a certain in-

cident needs to be made. Furthermore, GRR’s implementation of scheduled jobs al-

30

lows the use of scheduled hunts. If the investigator wants to perform proactive hunt-

ing in an organization’s environment, every hunt can be configured to perform a cer-

tain activity on desired clients as scheduled in specific periods of time range. (GRR

Rapid Response documentation n.d.)

4.2.5 Security considerations

When speaking of security, the GRR’s official documentation (n.d) informs that the

GRR should be taken as a tool that has security considerations needed to be recog-

nized and resolved before the tool is deployed for production use. By default, with-

out any security consideration, the GRR enables possibilities for harmful actions.

(GRR Rapid Response documentation n.d.)

The GRR server can be connected, and a new client added to the investigation do-

main by using any server generated GRR agent and correct server address. This

means that if the adversary gets its hands on the GRR agent installer, it can use the

adversary-controlled agent to inspect what the forensic tasks are that are performed

by a trusted investigator on investigation domain when an environment-wide hunt is

performed. Using this knowledge, the adversary can gather information about the in-

vestigated client systems of the organization environment and from the investigation

methods. (GRR Rapid Response documentation n.d.)

Investigation information can be useful for the adversary in scenarios, for instance,

when the adversary already has access to the target environment and intends to stay

under of investigation radar or monitor if the means of the adversary are already re-

solved by the investigator. What is more, if the adversary has privileged access to the

organization environment and clients, the execution of agents can be stopped or dis-

abled. In some scenarios, adversary-controlled agent can be used to send arbitrary

messages such as error messages to the server, and if succeeded, raise the possibility

of a potential DoS (Denial of Service) attack, the exhaustion of resources on the

server so that the server's normal operation aborts. (GRR Rapid Response documen-

tation n.d.)

Other consideration when speaking of security is to resolve how the authentication is

handled in GRR when GUI or API endpoint is reached over the network. By default,

31

GRR’s administrative GUI can be reached using HTTP protocol and server’s IP address

and desired web browser, and the API endpoint with developer provided Python li-

brary. However, the used HTTP protocol does not provide any encryption for the

transmitted data, and all information such as login information is delivered as a

plaintext. Adversary using this knowledge can sit between the client and server,

called man-in-the-middle (MITM) attack and inspect network traffic for the legitim

credentials from the transmitted data, which then can be used to successful login on

the GRR’s investigation domain. Along with the implementation of secure protocols

for the use of authentication, what also should be considered are the correct con-

straints to and from where the GUI and API endpoint can be connected. (GRR Rapid

Response documentation n.d.)

5 Deployment work

5.1 Starting point

The deployment work of the researched tools, GRR Rapid Response and osquery, was

executed first to receive an initial and general perception about the installation pro-

cess and use of the tools in practice. Furthermore, the assignor introduced a list of

requirements needed to be resolved before the tools were deployed on the RGCE’s

organizational environments and implemented to the test cases:

• The deployment process of GRR server should be simple and straightforward, and it
should be handled using Docker images (Docker Glossary n.d)

• The containerized GRR should use the latest version of the official GRR image

• The usage of a containerized GRR should also be possible in offline environments

• The containerized GRR should offer good scalability and added security.

The list of requirements focused only on the server-side of GRR since it was observed

that the deployment of GRR and osquery agents is a straightforward process. In addi-

tion, the agents do not have or produce any restrictions that should have been re-

solved when implemented on RGCE’s organizational environments.

32

GRR project offers an official Docker image which can be used to deploy the GRR

server’s logical components’ HTTP front-end, worker and user interface within a sin-

gle Docker container. The official image includes also a bundled MySQL database for

data storing. However, as the developer team has been noticed on GRR’s official doc-

umentation (n.d), the use of the official image is ideal only when the tool is deployed

for testing or evaluation purposes. According to the developer of GRR, Ogaro (Ogaro

2019b), this originates from the fact that the component bundling in one container

removes the scalability of a single component.

It is worth noticing that GRR server can already be deployed and scaled when the

server is compiled directly from a source code or installed from software packages.

These installation methods allow the deployment and execution of logical compo-

nent instances multiple times and on demand in distinct physical servers. However,

from the perspective of the research, the beforementioned options were excluded,

since the requirements for the tool development set by assignor demanded the use

of Docker images. (GRR Rapid Response n.d.)

Initially, the idea was to divide the official image in a way that each logical compo-

nent of the GRR server can be executed in their own Docker container. The predic-

tion was that if the division of components success, it should offer a better scalability

than the official image allowing usage of the containerized GRR also in large organi-

zational networks and the ability to perform investigation more intensively when an

orchestration solution such as Docker Swarm or Kubernetes is used for scaling.

(Docker Glossary n.d; Production-Grade Container Orchestration – Automated con-

tainer deployment, scaling, and management n.d.)

5.2 Research of publicly available resources

To get the best result for the GRR official image division, publicly available resources

were searched to examine how other developers have deployed GRR in their envi-

ronments. During the research process Spotify free and open source software (FOSS)

team's blog post was researched. Spotify’s FOSS team announced on their engineer-

ing and technology blog post how the team has built a Terraform module for a GRR

33

server and implemented it in a Google Compute Engine (GCE) successfully. (Introduc-

tion to Terraform n.d; Whacking a Million Moles – Automated Incident Response In-

frastructure in GCP 2019.)

Spotify's Git project repository (2019) on their behalf revealed that the team has also

built a working testing environment successfully containing Dockerfiles for HTTP

front-end, worker, and user interface components of GRR server. In addition, the

Dockerfiles use the official GRR image as a base image (Docker Glossary n.d).

Although the work Spotify’s FOSS team have performed seemed promising for a di-

rect deployment, there were features that did not meet the requirements set by the

assignor. For instance, Spotify's version used quite an old version of GRR image as a

base image (version 3.2.4.7) so there was need for an update. Another disparity was

that Spotify's version takes advantage of GCE, which did not meet the requirement

for an offline tool. For this reason, it was decided to use Spotify's version as a review

base and build a unique containerized GRR on top of the developing work that

Spotify’s developer team has made. (Spotify 2019.)

5.3 Division of official GRR Docker image

The division work of official GRR Docker image was started by making the code base

review to the GRR Rapid Response’s and Spotify’s Git project repositories. During the

review it was seen to be suitable that the initial build environment of divided GRR

Docker image should use the same folder structure as Spotify’s FOSS team designed

it as illustrated in Figure 3.

Figure 3. Initial build environment structure for containerized GRR

admin

front

worker

containerized-grr ockerfile

 ockerfile

 ockerfile

34

The use of this kind of folder structure originates from the fact that when the Docker

image is built from Dockerfile, Docker uses a special build context for the image.

Build context uses by default everything located in the same directory for the build

process. Hence, every image to be created from Dockerfile should have only the nec-

essary files and subdirectories for the build process in the same directory to keep the

build process efficient. It is worth noticing that excluding additional files and subdi-

rectories from build context is also possible if special .dockerignore file is used; how-

ever, on initial build environment the use of .dockerfile was omitted since the direc-

tory structure itself reduced and dimensioned the build context correctly. (Dockerfile

reference n.d.)

As mentioned, Spotify’s Terraform implementation was partly obsolete due to ver-

sion updates made to GRR. In addition, Spotify’s implementation consists of code

mainly targeted for Terraform implementation in GCE. For this reason, every file that

had source code or configurations related to Terraform or GCE was examined, left

out or modified from execution of the containerized GRR build environment. There

was also a need to write totally new BASH (Bourne-Again Shell) shell scripts to make

the preparation for deployment process of GRR server more convenient. Hence, the

folder structure was the only concern seen to be suitably used as it is in Spotify’s im-

plementation. Figure 4 illustrates the final working and the tested build environment

structure for the containerized GRR version 3.3.0.8, the latest version of GRR (re-

leased on 9 Oct 2019).

35

Figure 4. Build environment structure for containerized GRR Rapid Response

monitor

admin

worker

containerized-grr

prometheus.yaml

env

installers

front

config.yaml

nginx grr.config

scripts

LICE SE

REA ME.md

docker-compose.yaml

config.yaml

setup.sh

shared.env

deploy-admin.sh

 ockerfile

prepare-certs.sh

config.yaml

deploy-front.sh

 ockerfile

prepare-certs.sh

repack-clients.sh

.htpasswd

config.yaml

deploy-worker.sh

 ockerfile

prepare-certs.sh

generate-csrf.sh

update.sh

generate-certs.sh

36

The division work of official GRR image happened to be a more challenging process

than predicted. A lot of time for division work was needed to be used only for GRR’s

and Spotify’s code base reviews, and it was required to read official documentation

to understand the fundamental functionalities of GRR. For example, GRR uses in its

working special configuration parameter expansion, filtering the syntax of which is

totally unique.

Another challenge was solving the build process for each logical component. As

Docker, GRR uses a special build context when components are deployed; however,

in the official image the build of components are bundled into one build process. In

the end, the use of GRR configuration filters, single component build context, and

other issues were solved. After testing, the division work of official GRR Docker im-

age succeeded without errors.

The Spotify’s code base is licenced under Apache License, version 2.0 meaning that

the licence used for the division work was needed to be the set to the same or

stricter license so that the violation of terms of licence does not occur. The license

for division work was set to be Apache Licence, version 2.0. (Apache License 2019.)

5.4 Deployment of containerized GRR server

For the deployment of containerized GRR, a special Docker Compose file was com-

posed. Every Dockerfile can be used to build a respective image, which can then be

used to launch a running instance of the image, respective Docker container. How-

ever, when multi-container applications with different services are created, and the

number of images to be built increases, the more convenient way is to use Docker

Compose file. The file is composed using YAML (YAML Ain’t Markup Language) data

serialization standard language, which is a manageable and user-friendly way to de-

scribe and manage the multi-container application and its configuration parameters.

Every service of multi-container application is described to the Docker Compose file

separately; however, by default the run of which is performed simultaneously. (Ben-

Kiki, Evans & döt Net 2009; Compose file version 3 reference n.d; Overview of Docker

Compose n.d.)

37

Docker Compose and the constructed Docker Compose file enable deployment of the

containerized GRR in two commands. The first command is used to create a suitable

subnetwork for the containers allowing data transmission between correct compo-

nents with limited access to the system and external network. The second command

is used for building, deploying, and launching the run of multi-container GRR server

from composed Docker Compose file. This was seen to meet the requirement set by

the assignor for the simple and straightforward deployment of GRR server.

Figure 5 presents the functionality of containerized GRR server components. As men-

tioned, when deployed all communication between components is transmitted on its

own isolated subnetwork. However, the HTTP front-end and user interface have lim-

ited access to the system and external network through the Nginx reverse proxy. Re-

verse proxy ensures that the communication from GRR agents and investigation

workstation to the GRR server is transmitted successfully to the corresponsive com-

ponents and vice versa. Container name conventions presented in Figure 5 should be

comprehended as follows:

• grr-proxy equals to Nginx reverse proxy

• grr-admin equals to user interface component

• grr-front equals to HTTP front-end component

• grr-worker equals to worker component

• grr-mysql equals to data store component.

38

Figure 5. Functionality of containerized GRR

Reverse proxy also provides added security for the data transmission between inves-

tigation workstation and GRR server offering TLS (Transport Layer Security) encryp-

tion for the transmitted data during TCP (Transmission Control Protocol) connection

ergo HTTPS (Hypertext Transport Protocol Secure) when administrative GUI or API

endpoint is reached by the investigator. Furthermore, Nginx reverse proxy can be

also used for load balancing, which enables division of the same type traffic between

multiple similar containers reducing the load directed to the single component. This

is a feature needed when component scaling is performed. (Nginx n.d.)

Inves ga on omain

Containerized GRR

grr-proxy

grr-admin

grr-worker

grr-mysql

grr-front

Client I xyz

Inves ga on
worksta on

GRR Server

GRR Agent

39

5.5 Deployment of GRR and osquery agents

When the containerized GRR server is deployed, the server populates a local direc-

tory from build environment with a respective GRR agent installers for every sup-

ported OS. The GRR agents along with osquery agents can then be installed and de-

ployed on desired endpoints. However, the GRR server does not provide installers for

the osquery agents directly, and they must be fetched separately from official

source.

A convenient way to carry out agent installation on endpoints in organizational envi-

ronments is to use centralized management such the Group Policies offers in Active

Directory environments. Group Policies allow pushing organization-wide agent instal-

lation, update, and uninstallation on desired endpoints. However, after the contain-

erized GRR has been deployed, the server can also be used directly to push updates

for the GRR agent and if desired, perform agent termination or uninstallation. By de-

fault, the containerized GRR can manage osquery agents only when an investigation

is made; however, the server allows execution of binaries on clients, the feature of

which can be used to deliver e.g. updates on osquery agents.

When the agent installation process is terminated successfully, the GRR agent in-

tends to connect to the containerized GRR and if it succeeds, the respective client is

added to the list of known clients on the server with status active. The message ex-

change between server and active status client agents can then be transmitted and

investigation work in investigation domain established.

6 Capability testing

6.1 Overview

Capability testing test case was constructed and executed to produce results for the

capability related research question: “How well and reliably can the selected tool be

used to identify and contain incidents from the selected organizational environ-

ment?” In the test case the RGCE’s organizational environment Funnel was used as a

40

testing environment, which was used to simulate a real-world organization environ-

ment on which the deployment and implementation of the researched tools were

performed and results for the research question gathered.

The real-world APT level cyber-attack was generated on testing environment which

involved the researched tools to investigate attacked environment endpoints on

which the realistic adversary techniques were targeted at. The tools were used to

gather attack related data, artefacts, from the management workstations. The ac-

quired artefacts were determined based on IoCs that the generated test case attack

left on the target systems.

6.2 Testing environment

Testing environment selection was made based on requirements defined together

with the assignor in order to create a real-world circumstance for the test case exe-

cution. First, the selected environments had to simulate the real-world organization

environment as accurately as possible from including public and internal services and

endpoints to correct networking solutions. Secondly, the deployment of the re-

searched tools on the environment should be a straightforward process.

RGCE’s road tunnel provider Funnel’s environment was selected to be used as testing

environment. Funnel is a fictional organization, the main objective of which is to pro-

vide an undersea road tunnel between Helsinki and Tallinn. Funnel’s network is di-

vided into two separate segments: office and management, of which the office seg-

ment was selected to be used in the test case. The organization’s environment was

designed bearing in mind JYVSECTEC’s commercial igital Forensics and Incident Re-

sponse (DFIR) trainings, and therefore it adapted perfectly to be used also in capabil-

ity testing. The precise description of Funnel network topology is not relevant for the

execution of research and for this reason it is omitted. (JYVSECTEC Cyber Range –

RGCE and solutions n.d.)

Figure 6 illustrates the structure of the testing environment in the resolution needed

to describe of how the tool deployment was made to the environment. Furthermore,

Figure 6 explains how the investigation workflow on the testing environments was

41

resolved: Starting from on how the investigation workstation was managed by inves-

tigator to request GRR server to start investigation on client(s) where GRR and os-

query agent(s) were installed, which then sent results to GRR server informing the in-

vestigation workstation to show generated results to the investigator.

Figure 6. Investigation workflow on testing environment

It is worth noticing that the containerized GRR server could have been made inside or

deployed outside of the testing organization environment’s network; however, for

the execution of the test case the GRR server was placed inside of the Funnel organi-

zation’s management network segment, where it was managed remotely by the in-

vestigation workstation. GRR and osquery agents were installed and deployed using

centralized Group Policy on ten management workstations running Windows 7 OS.

6.3 Test case attack

6.3.1 Purpose

The test case attack for the capability testing was created on Funnel’s organization

environment to involve the researched tools to investigate and to gather artefacts

related to the real-world incident from the environment’s management workstation

to enable evaluation of the capability of the researched tools. The attack comprised

APT level techniques to create a real-world security incident on Funnel’s organization

environment’s staff network.

GRR Server

Inves ga on omain

Inves ga on
worksta on

Message ueue
I xyz-a

Inves gator

Client I xyz-a

Client I xyz-b

Client I xyz-c

GRR Agent

42

Used techniques in test case attack produced IoCs to the target environment’s man-

agement workstations. This knowledge was used for the tools to focus on the investi-

gation and collect only the corresponsive artefacts from the systems where the GRR

and osquery agents were installed.

6.3.2 Phases

An email message with malicious OpenDocument Text (ODT) attachment was sent to

four employees of Funnel roadway tunnel organization. The sender’s email address

was spoofed to see that it was sent from a person with whom the employees have a

trusted relationship. The document included a macro created by Visual Basic for Ap-

plication (VBA) containing an obfuscated PowerShell script. The obfuscated script

was executed on the system when the document was opened, and the run of macros

was accepted. (Dent & Blawat 2017; Snover 2016.)

The email attachment was opened and executed in total of four of the ten Funnel

management workstations by employees. The obfuscated PowerShell script in mali-

cious macro planted and executed a Cobalt Strike Beacon from the target file system

which started immediately to communicate with the Command and Control (C2)

server. Beacon communicated with the C2 server in constant intervals using HTTP re-

quests and DNS queries and executed the commands sent from the C2 server on the

target environment. (Cobalt Strike documentation n.d.)

Using the Cobalt Strike Beacon an internal recon was executed in the target environ-

ment with an intention to find those servers and services from the environment that

can be used in lateral movement or contained potentially useful information. The in-

ternal recon consisted of actions such as port scanning of various subnets on target

environment network and unsuccessful logins attempts to Domain Controller (DC)

using a fileless PowerShell script. Furthermore, the organizations network share was

explored, which revealed a valuable file. The file contained information about the do-

main administrator credentials, which were then used to successfully login remotely

to the organization’s DC using Windows Management Instrumentation (WMI).

The Figure 7 illustrates the different phases of the described test case attack from ini-

tial access to the lateral movement.

43

Figure 7. Anatomy of test case attack

6.3.3 Mapping the techniques

Mitre ATT&CK Framework is a community-driven knowledge base. The framework’s

enterprise version consists of a detailed information about the TTPs that the APT-

Employees worksta onsEmail Server

Employees worksta onsOrganiza on environment

Employees worksta onsC Server

Employees worksta onsFile Server

Employees worksta ons omain Controller

 . Employees receives an email with
malicious a achment seeming to

come from trusted sender.
A achment is downloaded and

opened in employees worksta ons.

 . A achment s harmful code is
executed, which plants and executes

Cobalt Strike beacon on vic ms
systems. Beacon starts to

communicate with C server.

 . Internal recon on organiza on
environment is performed by

execu ng port scanning and login
a empts via beacon.

 . A file containing creden als from
network share is discovered and its

content is exposed.

 . Successful login is perfomed to
organiza on s omain Controller
using discovered creden als.

Test case a ack

44

level actors have observed to be using during their campaigns targeted at organiza-

tion environments. According to Mitre (n.d), the framework’s construction work was

started in 2013 by Mitre and on 9 October 2019 the framework consisted of 12 dif-

ferent enterprise tactics, 266 techniques and 41 mitigation methods. (Mitre ATT&CK

n.d.)

The usefulness of the framework has been absorbed widely by the different actors in

the domain of cyber security such as software vendors, government agencies as well

as private sector and service community. A large number of different actors use the

framework when referring to APT actors and their capabilities in their products to

share information to the end-users. For instance, Microsoft refers to Mitre’s

knowledge base in Windows Defender Advanced Threat Protection (WDATP) service.

Furthermore, different tools have added features and modules to enable referencing

in Mitre’s knowledge base. One of the well-known Microsoft Sysinternal tools, sys-

tem monitoring tool Sysmon, has optional configuration developed by Olaf Hartong

enabling the mapping of malicious events to the corresponsive technique in Mitre’s

knowledge base. (Mitre ATT&CK n.d; Sysmon modular n.d.)

Mitre ATT&CK Framework’s technique navigator can be used to illustrate (Figure 8)

how the used TTPs in different phases of the executed test case attack projects to

the Mitre ATT&CK Framework matrix.

45

Figure 8. Mitre ATT&CK Framework – Technique navigator (filtered)

The illustrated matrix shows that the used TTPs in the test case attack are the same

as the APT actors have been used in their campaigns. It is worth noticing that the

used techniques cover only the phases from the initial access to the lateral move-

ment on a matrix. However, in this research the scope of the attack was seen to be

reliable to gather accurate results, and the execution of other attack phases was

omitted.

In this research the mapping of the test case attack techniques to the Mitre’s matrix

was used only for the verification purposes; however, if mitigation methods, require-

ments or additional information about the used techniques and adversaries who are

known to be using these techniques should be needed, the mapped fields of the ma-

trix should have led directly to the corresponding source of Mitre’s knowledge base.

46

7 Performance requirement testing

7.1 Overview

Performance requirement testing was constructed and executed to produce data

that can be used to answer the research question “What are the performance re-

quirements when the selected tool is used for investigation performed in organiza-

tional environment that consists of hundreds of endpoints?”.

To generate accurate results the researched tools were used normally, meaning that

the tools were tested as they should be used in everyday investigation in real-world

circumstances. It is advisable to notice that the test was not created to benchmark

the tools but only for dictating performance requirements needed when the perfor-

mance recommendations for the cybercrime prevention environment is made by as-

signor.

Performance requirement testing focused on the server-side of GRR, and testing for

the GRR and osquery agents was excluded from the research. As the GRR’s develop-

ers indicate on GRR’s official documentation (n.d), the certain server-side compo-

nents are under high load when an investigation is performed. In addition, it was no-

ticed that there was already existing research material available about the GRR agent

memory usage considerations and footprint on client (Moser & Cohen 2013). What is

more, the deployment and development work performed for the GRR’s server-side,

containerized GRR, raised the need to focus performance testing on the server-side

of GRR. For beforementioned reasons the scope for the performance requirements

testing was set with the assignor to consider only the server-side of GRR.

7.2 Testing environment

As in capability testing, the testing environment selection for performance require-

ment testing was made based on the requirements defined together with the as-

signor. In this way it was possible to provide accurate and reliable data for the per-

formance requirement evaluation. First, the organization used for performance re-

47

quirement testing has had to consist of advanced monitoring software so that the ac-

curate monitoring could be executed and reliable data for the evaluation purposes

generated. Second, the organization environment had to include hundreds of end-

points on where the investigation could be performed to create a valuable amount of

monitoring data.

The selected environment was totally unique since it was designed to be utilized only

in one national cyber security exercise by only specific participating training organiza-

tion. Any other distinctive information about the training organization or the used

testing environment could not be revealed since the delicense reasons. However, the

used testing environment fills the predefined requirements. In addition, the investi-

gation workflow in testing environment corresponded to the workflow presented in

capability testing.

7.3 Load monitoring of containerized GRR

A suitable event for the performance testing was chosen to be the KYHA2019tv cyber

security exercise for Finland’s national defensive agencies. The five-day exercise was

held in fall 2019 and was planned, organized and executed by JYVSECTEC. In exercise,

the tools were used for everyday investigation to identify APT level security incidents

from organizational environment. During the exercise a large collection of different

adversary techniques was used, which produced an extensive amount of IoCs on the

organization environment’s endpoints that were investigated from the artefacts

gathered using the tools. (Security authorities develop their competence in National

Cyber Security Exercise (KYHA19) 2019.)

The GRR server was monitored using PRTG Network Monitoring software. PRTG ena-

bles a real-time monitoring as well as collecting and exporting data from sensors in

between the specific time frame. PRTG sensors can be used to monitor different

loads from the system such CPU (Central Processing Unit) and RAM (Random Access

Memory) when protocols such as WMI and SNMP (Simple Network Management

Protocol) are used. In addition, PRTG enables gathering data from network band-

width utilizing industrial softwares and standards such as NetFlow and sFlow. (Moni-

tor Load n.d.)

48

Port binding and requested certificate files were configured on the host’s Docker

daemon unit file, which enabled to add a sensor for each container of containerized

GRR server component in PRTG monitoring software. In this way it was possible to

monitor and gather load data from distinct components in a centralized way. (PRTG

Manual – Docker Container Status Sensor n.d.)

Load monitoring data was used to indicate those components of the GRR server that

were under high load during the test case and can be considered as possible bottle-

necks if sufficient resource targeting is not executed and investigation is made inten-

sively in large scale. After the test case the accurate data from sensors were exported

as CSV data. The results from the exported data were calculated and used to make

performance recommendations for the containerized GRR.

Table 1 presents the details of the hardware components used in the test case for

the containerized GRR. The hardware consisted of a single dual-core CPU with rea-

sonable amount of memory (RAM), 8 GB. In addition, the hardware included a hard

disk with total of 164 GB free space. The assigned resources were seen to be enough

so that there is no exhaustion of resources during test case. The host system had

CentOS Linux 7 OS with Docker Engine and Docker Compose installed.

Table 1. Used hardware

Component Description

CPU 1 dual-core

Hard disk 164 GB

Memory 8 GB

49

8 Results

8.1 Containerized GRR

The deployment work of GRR server produced a unique containerized GRR, which

was developed to meet the requirements set by the assignor for the tool’s deploy-

ment on RGCE’s organizational environment. Containerized GRR brings added value

when deployment of GRR Rapid Response is considered; however, when following

features are also required from the tool:

• Simple and straightforward deployment process using Docker images

• Scaling for a single component is possible to perform

• Minimal need for required dependencies

• Added security.

Containerized GRR should be considered as a current work as the member of GRR’s

developer team, Ogaro (Ogaro 2019b) informed that the containerization of GRR is

also one of the team’s main priorities in the medium or long run. The development

work made for containerized GRR is directly available for the use of GRR developer

team and other developers, since the work will be published by the assignor in near

future. Appendix 1 presents the deployment manual for the containerized GRR,

which can be used as a reference material when the tool is deployed.

It is worth noticing that the testing made for containerized GRR was limited due to

time restrictions and for this reason the more intensive testing and the evaluation

also by other contributors needs to be performed to test the tool is trustworthy. Fur-

thermore, the scalability of the containerized GRR was not tested during the re-

search, since it was not demanded by the test cases or testing environment circum-

stances; however, testing the single component scalability opens a need for further

research.

In the end, containerized GRR functioned and performed from the test cases without

any errors, which shows that the performed development work has been successful

and the objective set for the deployment work of the researched tools was reached.

50

8.2 Capabilities

The produced results involved preselected remote live response tools, GRR and os-

query, to gather data about the generated APT level incident targeted in a real-world

organization environment.

Table 2 presents the general information about the investigation performed in Fun-

nel’s organization environment during the test case execution. Active clients present

the number of those management testing environment’s management workstations

on which GRR and osquery agents were deployed. Respectively, contaminated clients

indicate the number of the endpoints found the be contaminated by the test case at-

tack. Used flows and hunts present those features of GRR that were used to gather

artefacts from endpoints using GRR and osquery agents.

Table 2. Investigation details

Information Value

Active clients 10

Contaminated clients 4

Used flows and hunts MultiGetFile, ListDirectory, ArtifactCol-

lectorFlow, OsqueryFlow, Client Side

File Finder, Netstat, ListProcesses

Table 3 consists of descriptive information about IoCs that the test case attack pro-

duced to the Funnel organization environment’s management workstations and cor-

responsive artefacts acquired during the test case using the researched tools. The

workstations with artefacts consisting of test case attack related IoCs were consid-

ered as contaminated and the containment for the workstations from the testing en-

vironment was performed.

Table 3. Gathered artefacts

IoC description Gathered artefacts

51

Malicious email attachment File system, Prefetch files, Running pro-

cesses

Obfuscated PowerShell script Windows Event log

Cobalt Strike Beacon File system, Running processes, Out-

bound network traffic, Prefetch files

Fileless PowerShell script Windows Event Log, Localhost network

traffic

Table 4 presents the capability of the researched tools in a summary. The purpose is

to adduce features from both tools that were able to be used to gather artefacts con-

sisting those IoCs that tie the client in question to the test case attack. In addition,

the results show those features of the tools that overlapped with each other, and

possible caveats when data was collected.

Table 4. Artefact acquiring capabilities

Artefact GRR Rapid Response Osquery

File system Audit / Collect Audit

Localhost network traffic Audit / Collect Audit

Outbound network traffic Audit / Collect Audit

Prefetch files (Audit) / Collect (Audit)

Running processes Audit / Collect Audit

Windows Event log (Audit) / Collect Audit

Audit points those artefacts that were able to gather without extracting them sepa-

rately from the target system and collect in turn those artefacts that could be ex-

tracted and pulled from the target system using the researched tools. Audit with pa-

rentheses indicates that the tool was able to audit the desired artefact; however, the

used mean does not suffice when the precise investigation is executed.

The capability of the tool depended on how well and reliably the tool was able to

gather incident related artefacts from the clients. Presented results do not take into

52

account which tool is preferable or has a better feature to perform a specific task on

the client during investigation, since this was not in the scope of research. In addi-

tion, the results evaluate the capability of the tools when they are used for investiga-

tion in similar circumstances.

As the results indicate, the tools overlap with each other when speaking of data au-

diting; however, only GRR Rapid Response was able to extract and collect all the de-

sired artefacts from contaminated workstations. Osquery’s ability to only audit data

originates from the fact that the osquery is designed to describe the system and it

changes. For this reason, lack of data extraction feature in osquery should not be

considered as a shortage.

It should also be noted that the GRR is able to audit Windows Event log and Prefetch

files in file system level; however, the tool’s text and hex views do not describe the

contents of the binary formatted files in human-readable format and for this reason

the lack of audit possibility was considered as a caveat. However, the possibility to

audit files’ contents in beforementioned ways is a desired feature when other types

of binary and text files are examined. Furthermore, osquery was able to audit the

contents of Windows Event log files; however, auditing the Prefetch files consisted of

only the file system level auditing as in GRR.

The GRR consisted of a large collection of flows for different artefact auditing and

collection to be used via user interfaces, such as listing and acquiring binaries for run-

ning processes; however, some artefacts such as specific Windows Event logs were

needed to be collected separately using flows that allow direct file system explora-

tion and data extraction. It is worth noticing that some of the flows also had similari-

ties with each other and explanations about the differences were frail. One explana-

tion for multiple similar flows was found to be related to the fact that some of the

flows are just a more robust and efficient implementation of its predecessor; how-

ever, use of the correct flows is left to the investigator, and lack of precise references

exists.

The osquery was used by GRR mainly via specific collector flow assigned for the use

of osquery. The flow allowed use of osquery in a similar way as it functions without

GRR, i.e. performing database queries. Constructing and performing queries for the

53

use of test case artefact auditing was straightforward and efficient. After the corre-

sponsive query was constructed and executed, the results were directly available to

be examined from the GRR’s user interfaces. In spite of overlap between similar fea-

tures, the GRR’s support for osquery was considered to be a desired feature, since it

enabled efficient and human-friendly data auditing after the syntax of the queries

was absorbed.

As mentioned earlier, without the GRR’s ability to operate as osquery’s fleet man-

ager, the use of osquery agents remotely by default should not have been possible

and implemention of centralized manager for osquery should have to be solved and

implemented separately. In this research the researched tools were used to extend

each other, not excluding others’ necessity.

In the end, the tools have caveats and features that overlap with each other; how-

ever, when these concerns are taken in account the both of the researched tools,

GRR Rapid Response and osquery were able to perform remote live response well

and reliably and have a strong capability when security incident related artefact data

is audited and collected from endpoints on organizational environment during secu-

rity incident investigation.

8.3 Performance requirements

The produced results involved using the preselected remote live response tools, GRR

Rapid Response and osquery for security incident investigation in cyber security exer-

cise event in five-day duration so that it was possible to gather a reasonable amount

of data for evaluation from PRTG Network Monitoring software sensors.

Table 5 presents the general information about the test case execution. The number

of installed clients presents those endpoints on testing environment on which GRR

and osquery agents were installed and deployed. Furthermore, the number of PRTG

sensors equals the number of monitored GRR server component containers.

Table 5. General information

Information Value

54

Clients 173

Monitoring software PRTG Network Monitor software

PRTG sensors 4

Test case duration (days) 5

Investigation related data gathered from GRR server is composed in Table 6. The

number of terminated flows is directional, and precise value lands somewhere be-

tween 5,800 and 6,000 terminated flows. In addition, the number of active clients in-

dicates the highest coincidental number of clients that were in active state during the

test case. Due to the nature of the test case event, the number of active clients var-

ied between days; however, remaining over 160 clients on each day of test case.

Table 6. Investigation related information

Information Value

Active clients 173

Active cron jobs 6

Executed hunts 22

Terminated flows > 5800

Figures 9–12 present the monitored load for each containerized GRR container ac-

quired from PRTG Network Monitoring software sensors during test case. The

amount of investigation presented in Table 6 was enough to produce a reliable load

on containers. As the results indicate the load could have been notably larger and

still the exhaustion of resources would have taken place; however, by the nature of

the test case event, the load of investigation was not controllable during the test

case. The Figures 9–12 presents the following calculated average loads from five-day

duration to each container:

• CPU usage

• Memory (RAM) usage

• Packet speed (Sum of input and output speed)

• Total packet count (Sum of input and output count).

55

In Figures 9–12 the average load by container is presented in thick black lines in blue

boxes. Blue boxes indicate the range in which most of the measured values landed,

and the T values the highest and lowest measured values during test case execution.

Container name conventions presented in Figures 9–12 should be comprehended as

follows:

• admin equals to user interface component

• front equals to HTTP front-end component

• worker equals to worker component

• mysql equals to data store component.

Figure 9 presents the memory usage of each containerized GRR container. The re-

sults show that the HTTP front-end has on average the highest memory usage,

around 9 %, as well as that the worker container had the least memory usage, only

2–3 %. The biggest variance on memory usage in five-day time frame was on MySQL

database container (4–10 %).

Figure 9. Memory usage by container

Figure 10 presents the CPU usage of each containerized GRR container. As in memory

usage, the HTTP front-end container’s CPU usage average was the largest, being

56

around 20 %. The second highest CPU usage average was measured by MySQL data-

base container sensor; however, the difference between HTTP front-end and MySQL

database is significant, around 15 %. The produced results indicate that the user in-

terface and worker container’s CPU usage is quite moderate and does not charge re-

sources from the underlying hardware.

Figure 10. CPU usage by container

Figure 11 presents the overall of inbound and outbound packet speed by container-

ized GRR container. The results indicate that the HTTP front-end and MySQL data-

base containers had the highest packet speed average during the test case as well as

that the user interface and worker container’s overall packet speed is quite moder-

ate. Furthermore, the results indicate that the HTTP front-end and MySQL database

containers manage the major part of the data transmission.

57

Figure 11. Packet speed by container

Figure 12 presents the packet count by containerized GRR container. As in packet

speed, the packet count results indicate that the containerized GRR’s data transmis-

sion relies largely on two components, HTTP front-end and MySQL database.

Figure 12. Packet count by container

58

Table 7 presents the containerized GRR’s image disk space usage, the minimum

space which is needed when the initial deployment of containerized GRR is made.

Table 7. Images space usage

Docker image Size (GB)

grr-admin 1.8

grr-front 1.8

grr-mysql 0.5

grr-proxy 0.2

grr-worker 1.8

Total 6.1

Table 8 presents the hard disk usage by each container and the total hard disk usage

of containerized GRR in five-day duration. It is advisable to notice that the values pre-

sented in Table 8 do not take into account the size of collected artefacts, which re-

duced the investigation workstation’s hard disk space, not the host’s where the con-

tainerized GRR was deployed.

Table 8. Containers space usage

Docker container Size (GB)

grr-admin 0.9

grr-front 34.6

grr-mysql (mounted) 0.6

grr-proxy 0.3

grr-worker 2.9

Total 39.3

The results show that the used hardware during test case was suitable enough; how-

ever, if investigation duration had been longer, the available hard disk space would

have been reduced and shredded. The reason for excessive disk usage originates

59

from the fact that the verbose logging feature was enabled during the test case exe-

cution being the largest single factor for the high disk usage. The log files consumed

around 36.7 GB, which is over 90 % of total container’s hard disk space usage. With-

out having verbose logging enabled, the disk usage would have been quite moderate.

In addition, at no point of test case does any container consume over 25% CPU or

memory, which proved that the selected hardware for the test case was reasonable;

however, not being extravagant.

The results also show that the assumptions stated by developers in GRR’s official

documentation were correct: HTTP front-end component was under higher load than

other components, and is a possible bottleneck if resources are not correctly dimen-

sioned. In addition, the user interface component load was moderate.

Table 9 presents the hardware recommendations which are composed by the exe-

cuted test case. Recommendations cover the hardware requirements when the con-

tainerized GRR is used for remote live response on environments that consist of hun-

dreds of endpoints, and the investigation is performed in similar circumstances. The

recommendations should cover also the requirements when a single component

scaling for the containerized GRR is performed; however, scaling and its impact

should be tested and verified separately.

Table 9. Recommended hardware

Component Description

CPU 1 dual-core

Memory 8 GB

Hard disk 32 GB

It should be noticed that the suggested hard disk recommendation do not cover ver-

bose logging. The logging of containerized GRR should be handled using distinct cen-

tralized logging system and have verbose logging feature enabled only when the test-

ing for the tool is performed.

60

9 Conclusions

9.1 Discussion

The main scope of the research focused on two different test cases involving the re-

mote live response tools, GRR Rapid Response and osquery, preselected by the as-

signor to gather data, artefacts, related to occurred incidents from real-world organi-

zation environment’s endpoints that indicated both the tools’ capability and perfor-

mance requirements. The research also involved using a significant part of the time

for practical deployment work of the tools to the selected environments in RGCE,

solving and taking into account the requirements set by the assignor first.

The deployment process of the tools should be considered as a straightforward pro-

cess and the developers’ official documentations consult the user in a sufficient man-

ner if universal tool is deployed. When the deployment work for the tools is started

in environments with special restrictions or if special requirements are set for the

tools, as in this research, the deployment work should be considered to reverse time,

expertise, and additional resources. In such cases, implementing the tool is a devel-

opment process itself and no easy solutions exist, since every requirement have to

be examined, evaluated, and solved separately when the tool’s deployment process

is started or even considered. In addition, such deployment work needs testing,

which also bonds resources and time.

It should also be noted that even if there are pre-existing available solutions made by

other developers, they consist inexorably of caveats and should not be considered to

fit directly for the deployer’s needs without a precise evaluation. However, as the re-

search proved, other developers’ pre-made solutions can contain valuable infor-

mation and a possible starting point for the development work. Furthermore, the im-

plementation of the tool with special needs is easier to perform when the tool and

solutions are open sourced, and the specification for the requirements is set and well

known.

The capability test case results indicate that even when the remote live response

tools have maturity, strong developer background, and are designed to be able to

perform investigation in a large scale and an intensive manner, tools have necessarily

61

caveats or overlap with other similar tools designed for the same kind of purpose.

For this reason, the “one fits for all” out of the box open source tool for remote live

response should be not considered to exist. However, the researched tools fit per-

fectly to the investigator’s toolkit when the tool’s individual constricts and deficien-

cies are recognised and evaluated, and when the overlap between tools is noticed

and accepted.

If the researched tools are used separately, they do not give as much for the investi-

gator as the GRR’s capability to function as an osquery’s fleet manager is utilized. If

GRR is used as an osquery fleet manager, it gives an investigator a combination of

two tools that extend the investigator’s ability to investigate the target systems more

extensively and efficiently. In addition, since the osquery does not include a central-

ized way to handle agents in remote locations by default, the GRR should be consid-

ered as being a saving when deployment time that is required to be spent when the

centralized fleet manager for the osquery is implemented. Implementation of fleet

manager is necessary if the remote live response is wanted to be executed by using

osquery in large organizational environments. As mentioned, the features that over-

lap between tools are also easier to perceive when the tools are used as one in inves-

tigation workflow. By this way the best features from both tools can be recognized

and used.

Performance test case results indicate the performance requirements of the contain-

erized GRR are moderate when investigation in similar circumstances is performed.

However, this is not always the case and if the investigation made on environments

consisting of tens of thousands of endpoints, the tool will consume resources in a dif-

ferent manner. The recommendations made should, however, cover the most com-

mon investigation use cases performed in similar organization environments and cir-

cumstances.

The usage of remote live response tools requires expertise from the user. The tools

are developed with a special purpose in mind, and the user must understand and

master the purpose and proper use of the tools to get the most out of them. How-

ever, the usage of the tools is not always unambiguous, and developers often de-

scribe the most common use cases in documentation, omitting the specific needs of

62

environments to be deployed and the complex features that are usually left to the

user’s own concern.

Cooperation with the assignor of the thesis was a success. Information, expertise, ad-

ministration, and consultation was shared during the research to get the best possi-

ble results for the research work. The research work was transparent between par-

ties, which enabled solving the raised issues during the research such RGCE environ-

mental questions.

Selected research methodology, applied research, applied to the research well. By

the nature of the research, it focused largely on tools and their deployments as well

as test cases which also were largely practical work. In addition, the assignor of the

research is satisfied with the produced results, which indicates that the research

methodology used was selected well, and that the research was able to cover the re-

search questions set for the research correctly. Furthermore, all the considerations

and requirements that the assignor set for the research were achieved.

The accuracy of research was dimensioned correctly; however, correct dimensioning

required omitting the Mitre ATT&CK Framework’s phases collection, command and

control, exfiltration, and impact from the test case attack, which should have been

executed in capability testing test case. In addition, the GRR Rapid Response and os-

query agent testing in the performance requirement test case was excluded from the

research. However, the accuracy of the research did not jeopardize the results and

answers to the research questions; vice versa, dimensioning produced more accurate

results.

9.2 Reliability of research

The results of research can be considered reliable. In different phases of research

criticism and additional time was used for observation. In reference material gather-

ing source criticism was performed. During the development work of the researched

tools and the test case construction the focus was on producing accurate results for

research and any unambiguousness was omitted.

The results indicate that the use of containerized GRR can be considered as reliable

as the use of official Docker image directly; however, as mentioned, excessive testing

63

needs to be executed to verify the reliability. The direction of a development work;

however, has been correct, since the GRR Rapid Response’s development team’s de-

sire is also to bring the containerization feature to the GRR in future.

9.3 Further research

The research results proved that the two test cases were suitable enough to indicate

the tools’ capability and performance requirements. In addition, the research verified

the possible caveat and overlap that the tools have when they are used simultane-

ously and as parts of the same investigation workflow. The results are suitable when

further research is considered; however, during the research also a need for further

research emerged.

The research pointed out that the containerized GRR can be used to the investigation

also in larger organizational environments; however, the research executed did not

involve testing the containerized GRR’s component scalability, since the testing envi-

ronments used in test cases consisted of only at the best hundreds of endpoints. The

scalability in larger deployments should be researched using similar real-world cir-

cumstances and suitable test cases as in this research, which evaluates the container-

ized GRR’s ability to perform investigation in environments consist of thousands of

endpoints so the scalability of the tool can be verified.

Furthermore, the research addressed a need to examine how the researched remote

live response tools, GRR Rapid Response and osquery, change the target system’s

state and what the tool’s impact is when used for investigation and data acquisition.

Further research should cover log gathering and analysis, target machine’s state anal-

ysis as well as a descriptive guide for the investigator on how to perform the investi-

gation when using the tools, and automated use cases with corresponsive tests.

64

References

5 miljoonaa euroa ammattikorkeakoulujen soveltavaan tutkimukseen ja
innovaatioihin. 0 8. Page on Finnish Government’s website. Accessed on July
2019. Retrieved from https://valtioneuvosto.fi/artikkeli/-
/asset_publisher/1410845/5-miljoonaa-euroa-ammattikorkeakoulujen-soveltavaan-
tutkimukseen-ja-innovaatioihin.

About SQLite. N.d. Page on SQLite's website. Accessed on 16 November 2019.
Retrieved from https://www.sqlite.org/about.html.

Anttila, A. 2018. Kyberrikokset – Kirjaaminen ja alkutoimet tietotekniikkarikoksissa.
Bachelor's thesis. Police University College. Accessed on 14 November 2019.
Retrieved from http://urn.fi/URN:NBN:fi:amk-2018060612820.

Apache License. 2019. Apache License, Version 2.0. Accessed on 6 October 2019.
Retrieved from https://www.apache.org/licenses/LICENSE-2.0.

Baimyrzaeva, M. 0 8. Beginners’ Guide for Applied Research Process – What Is It,
and Why and How to Do It?. Occasional report. University of Central Asia. Accessed
on 25 January 2020. Retrieved from
https://www.ucentralasia.org/Resources/Item/1661/EN.

Ben-Kiki, O., Evans, C., & döt et, I. 009. YAML Ain’t Markup Language (YAML
Trademark) Version 1.2. 3rd ed. Accessed on 11 November 2019. Retrieved from
https://yaml.org/spec.

Bourgeois, D. 2019. Information Systems for Business and Beyond. 2nd ed. Accessed
on 5 September 2019. Retrieved from https://opentextbook.site/exports/ISBB-
2019.pdf.

Brezinski, D., & Killalea, T. 2002. Request for Comments 3227–Guidelines for
Evidence Collection and Archiving. Accessed on 18 October 2019. Retrieved from
https://www.ietf.org/rfc/rfc3227.txt.

Chacon, S., & Straub, B. 2014. Pro Git. 2nd ed. Accessed on 17 December 2019.
Retrieved from https://git-scm.com/book/en/v2.

Cobalt Strike documentation. 0 9. Page on Cobalt Strike’s website. Accessed on
November 2019. Retrieved from https://www.cobaltstrike.com/help-beacon.

Cohen M.I., Bilby D., & Caronni, G. 2011. Distributed forensics and incident response
in the enterprise. Accessed on 8 August 2019. Retrieved from
https://doi.org/10.1016/j.diin.2011.05.012.

Compose file version 3 reference. N.d. Page on Docker's website. Accessed on 8
October 2019. Retrieved from https://docs.docker.com/compose/compose-file.

Cramer, R., & Shoup, V. 2003. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33, 1, 167–60. Accessed on 15 October 2019. Retrieved from
http://dx.doi.org/10.1137/S0097539702403773.

https://valtioneuvosto.fi/artikkeli/-/asset_publisher/1410845/5-miljoonaa-euroa-ammattikorkeakoulujen-soveltavaan-tutkimukseen-ja-innovaatioihin
https://valtioneuvosto.fi/artikkeli/-/asset_publisher/1410845/5-miljoonaa-euroa-ammattikorkeakoulujen-soveltavaan-tutkimukseen-ja-innovaatioihin
https://valtioneuvosto.fi/artikkeli/-/asset_publisher/1410845/5-miljoonaa-euroa-ammattikorkeakoulujen-soveltavaan-tutkimukseen-ja-innovaatioihin
https://www.sqlite.org/about.html
http://urn.fi/URN:NBN:fi:amk-2018060612820
https://www.apache.org/licenses/LICENSE-2.0
https://www.ucentralasia.org/Resources/Item/1661/EN
https://yaml.org/spec
https://opentextbook.site/exports/ISBB-2019.pdf
https://opentextbook.site/exports/ISBB-2019.pdf
https://www.ietf.org/rfc/rfc3227.txt
https://git-scm.com/book/en/v2
https://www.cobaltstrike.com/help-beacon
https://doi.org/10.1016/j.diin.2011.05.012
https://docs.docker.com/compose/compose-file

65

Cruz, F., Moser, A., & Cohen, M. 2015. A scalable file based data store for forensic
analysis. Accessed on 30 August 2019. Retrieved from
https://doi.org/10.1016/j.diin.2015.01.016.

CYBERDI – Kansallista & Kansainvälistä kyberosaamista kasvattamassa. N.d. Page on
JAMK University of Applied Sciences Jyväskylä’s website. Accessed on September
2019. Retrieved from https://www.jamk.fi/fi/Tutkimus-ja-
kehitys/projektit/CYBERDI/Projektiesittely.

CYBERDI. N.d. Page on JYVSECTEC's website. Accessed on 24 September 2019.
Retrieved from https://jyvsectec.fi/2018/10/cyberdi.

Dent, C., & Blawat B.J.W. 2017. Mastering Windows PowerShell Scripting–One-stop
guide to automating administrative tasks. 2nd ed. Packt Publishing.

 eveloper Guide. .d. Page on Google’s website. Accessed on 7 November 2019.
Retrieved from https://developers.google.com/protocol-buffers/docs/overview.

 ocker Glossary. .d. Page on ocker’s website. Accessed on 7 December 2019.
Retrieved from https://docs.docker.com/glossary.

Dockerfile reference. N.d. Page on Docker's website. Accessed on 7 December 2019.
Retrieved from https://docs.docker.com/engine/reference/builder.

Finnish cyber security expertise in Singapore – JAMK University of Applied Sciences
and Singapore Polytechnic collaborating in Centre of Excellence in Applied Cyber
Security. 0 9. Page on JYVSECTEC’s website. Accessed on 31 August 2019. Retrieved
from https://jyvsectec.fi/2019/01/finnish-cyber-security-expertise-in-singapore-
jamk-university-of-applied-sciences-and-singapore-polytechnic-collaborating-in-
centre-of-excellence-in-applied-cyber-security.

Graves, M. W. 2013. Digital archaeology – The Art and Science of Digital Forensics.
Pearson Education.

GRR Rapid Response documentation. N.d. Page on GRR Rapid Response’s website.
Accessed on 31 August 2019. Retrieved from https://grr-
doc.readthedocs.io/en/v3.3.0.

GRR Rapid Response. .d. Page on Github’s website. Accessed on 22 October 2019.
Retrieved from https://github.com/google/grr/tree/v3.3.0.8.

Hirsjärvi, S., Remes, P., & Sajavaara, P. 2008. Tutki ja kirjoita. 14th ed. Helsinki:
Tammi.

Introduction to Terraform. N.d. Page on HashiCorp's website. Accessed on 20
December 2019. Retrieved from https://www.terraform.io/intro/index.html.

Johansen, G. 2017. Digital Forensics and Incident Response – An intelligent way to
respond to attacks. Packt Publishing.

JYVSECTEC Cyber Range – RGCE and solutions. .d. P F document on JYVSECTEC’s
website. Accessed on 29 August 2019. Retrieved from https://jyvsectec.fi/wp-
content/uploads/2018/10/JYVSECTEC-cyber-range.pdf.

https://doi.org/10.1016/j.diin.2015.01.016
https://www.jamk.fi/fi/Tutkimus-ja-kehitys/projektit/CYBERDI/Projektiesittely
https://www.jamk.fi/fi/Tutkimus-ja-kehitys/projektit/CYBERDI/Projektiesittely
https://jyvsectec.fi/2018/10/cyberdi
https://developers.google.com/protocol-buffers/docs/overview
https://docs.docker.com/glossary
https://docs.docker.com/engine/reference/builder
https://jyvsectec.fi/2019/01/finnish-cyber-security-expertise-in-singapore-jamk-university-of-applied-sciences-and-singapore-polytechnic-collaborating-in-centre-of-excellence-in-applied-cyber-security/
https://jyvsectec.fi/2019/01/finnish-cyber-security-expertise-in-singapore-jamk-university-of-applied-sciences-and-singapore-polytechnic-collaborating-in-centre-of-excellence-in-applied-cyber-security/
https://jyvsectec.fi/2019/01/finnish-cyber-security-expertise-in-singapore-jamk-university-of-applied-sciences-and-singapore-polytechnic-collaborating-in-centre-of-excellence-in-applied-cyber-security/
https://github.com/google/grr/tree/v3.3.0.8
https://www.terraform.io/intro/index.html
https://jyvsectec.fi/wp-content/uploads/2018/10/JYVSECTEC-cyber-range.pdf
https://jyvsectec.fi/wp-content/uploads/2018/10/JYVSECTEC-cyber-range.pdf

66

JYVSECTEC organization. 0 9. Page on Github’s website. Accessed on 28 December
2019. Retrieved from https://github.com/jyvsectec.

JYVSECTEC overview. N.d. Page on JYVSECTEC’s website. Accessed on ovember
2019. Retrieved from https://jyvsectec.fi/about/overview.

JYVSECTEC services. .d. Page on JYVSECTEC’s website. Accessed on ovember
2019. Retrieved from https://jyvsectec.fi/services.

Luttgens, J. T., Pepe, M., & Mandia, K. 2014. Incident Response & Computer
Forensics, 3rd ed. McGraw-Hill Education.

Marcella, J., & Menendez, D. 2008. Cyber Forensics – A Field Manual for Collecting,
Examining, and Preserving Evidence of Computer Crimes. 2nd ed. Auerbach
Publications.

Merriam-Webster dictionary. N.d. Page on Merriam-Webster's website. Accessed on
28 December 2019. Retrieved from https://www.merriam-
webster.com/dictionary/forensics.

Mitre ATT&CK. .d. Page on Mitre ATT&CK’s website. Accessed on January 0 0.
Retrieved from https://attack.mitre.org.

Monitor Load. N.d. Page on PRTG Network Monitoring Software's website. Accessed
on 1 November 2019. Retrieved from https://www.paessler.com/monitor_load.

Moser, A., & Cohen, M. I. 2013. Hunting in the enterprise – Forensic triage and
incident response. Accessed on 31 August 2019. Retrieved from
https://doi.org/10.1016/j.diin.2013.03.003.

National Institute of Justice. 2008. Electronic Crime Scene Investigation – A Guide for
First Responders. 2nd ed. Accessed on 13 January 2020. Retrieved from
https://www.ncjrs.gov/pdffiles1/nij/219941.pdf.

Nginx. N.d. Page on Nginx's website. Accessed on 19 January 2020. Retrieved from
https://nginx.org/en.

NIST – National Institute of Standards and Technology. 2012. Computer Security
Incident Handling Guide – Recommendations of the National Institute of Standard
and Technology, Special Publication, 800–61. Rev. ed. Accessed on 7 January 2020.
Retrieved from http://dx.doi.org/10.6028/NIST.SP.800-61r2.

Ogaro, D. 2019. Hybrid cryptosystem in GRR Rapid Response. Email on 23 July 2019.
Receiver Ahonen, Joni (GRR Users mailing list).

Ogaro, D. 2019. GRR Rapid Response's future work. Email on 6 December 2019.
Receiver Ahonen, Joni (GRR Users mailing list).

Osquery documentation. N.d. Page on Osquery's website. Accessed on 17 October
2019. Retrieved from https://osquery.readthedocs.io/en/4.0.2.

Osquery. .d. Page on Github’s website. Accessed on 7 September 2019. Retrieved
from https://github.com/osquery/osquery.

Overview of Docker Compose. N.d. Page on Docker's website. Accessed on 7
December 2019. Retrieved from https://docs.docker.com/compose.

https://github.com/jyvsectec/
https://jyvsectec.fi/about/overview/
https://jyvsectec.fi/services/
https://www.merriam-webster.com/dictionary/forensics
https://www.merriam-webster.com/dictionary/forensics
https://attack.mitre.org/
https://doi.org/10.1016/j.diin.2013.03.003
https://www.ncjrs.gov/pdffiles1/nij/219941.pdf
https://nginx.org/en
https://osquery.readthedocs.io/en/4.0.2
https://github.com/osquery/osquery
https://docs.docker.com/compose

67

Performant endpoint visibility. N.d. Page on Osquery's website. Accessed on 9
September 2019. Retrieved from https://osquery.io.

PHR model. 0 9. Page on Github’s website. Accessed on 18 December 2019.
Retrieved from https://github.com/JYVSECTEC/PHR-model.

Production-Grade Container Orchestration – Automated container deployment,
scaling, and management. .d. Page on Kubernetes’ website. Accessed on 17 January
2020. Retrieved from https://kubernetes.io.

PRTG Manual – Docker Container Status Sensor. N.d. Page on PRTG Network
Monitoring Software's website. Accessed on 1 November 2019. Retrieved from
https://www.paessler.com/manuals/prtg/docker_container_status_sensor.

Reith, M., Carr, C., & Gunsch, G. 2002. An Examination of Digital Forensic Models.
International Journal of Digital Evidence, 1, 3. Accessed on 18 January 2020.
Retrieved from http://www.just.edu.jo/~Tawalbeh/nyit/incs712/digital_forensic.pdf.

Schema. N.d. Page on Osquery's website. Accessed on 12 November 2019. Retrieved
from https://osquery.io/schema/4.0.2.

Security authorities develop their competence in National Cyber Security Exercise
(KYHA19). 2019. Page on JYVSECTEC's website. Accessed on 5 December 2019.
Retrieved from https://jyvsectec.fi/2019/11/security-authorities-develop-their-
competence-in-national-cyber-security-exercise-kyha19.

Sereyvathana T., & Reed, T. N.d. Osquery – Cross-platform Lightweight Performant
Host Visibility. Presentation at Open Source Digital Forensics Conference, 26 October
2016. Accessed on 3 January 2020.
http://www.osdfcon.org/presentations/2016/Facebook-osquery.pdf.

Snover, J. 2016. PowerShell is open sourced and is available on Linux. Blog post on
Microsoft Azure blog, 18 August 2016. Accessed on 6 January 2020. Retrieved from
https://azure.microsoft.com/en-us/blog/powershell-is-open-sourced-and-is-
available-on-linux.

Spotify. 0 9. Page on Github’s website. Accessed on 6 September 2019. Retrieved
from https://github.com/spotify/terraform-google-grr.

Sysmon modular. .d. Page on Github’s website. Accessed on 8 January 0 0.
Retrieved from https://github.com/olafhartong/sysmon-modular.

Tietoverkkorikollisuuden torjuntaa koskeva selvitys. 2017. Publication of Ministry of
the Interior of Finland. Accessed on 6 September 2019. Retrieved from
http://urn.fi/URN:ISBN:978-952-324-136-7.

Valkama, S. 2019. Kyberrikoksista ilmoittaminen poliisille – kaupunkien ja poliisin
välinen yhteistyö. Master’s thesis. University of Jyväskylä. Accessed on 6 September
2019. Retrieved from http://urn.fi/URN:NBN:fi:jyu-201904252266.

Whacking a Million Moles – Automated Incident Response Infrastructure in GCP.
 0 9. Page on Spotify’s website. Accessed on 31 August 2019. Retrieved from
https://labs.spotify.com/2019/04/04/whacking-a-million-moles-automated-incident-
response-infrastructure-in-gcp.

https://osquery.io/
https://github.com/JYVSECTEC/PHR-model
https://kubernetes.io/
https://www.paessler.com/manuals/prtg/docker_container_status_sensor
https://osquery.io/schema/4.0.2
https://jyvsectec.fi/2019/11/security-authorities-develop-their-competence-in-national-cyber-security-exercise-kyha19/
https://jyvsectec.fi/2019/11/security-authorities-develop-their-competence-in-national-cyber-security-exercise-kyha19/
http://www.osdfcon.org/presentations/2016/Facebook-osquery.pdf
https://azure.microsoft.com/en-us/blog/powershell-is-open-sourced-and-is-available-on-linux
https://azure.microsoft.com/en-us/blog/powershell-is-open-sourced-and-is-available-on-linux
https://github.com/olafhartong/sysmon-modular
http://urn.fi/URN:ISBN:978-952-324-136-7
http://urn.fi/URN:NBN:fi:jyu-201904252266

68

What is MyS L?. .d. Page on MyS L’s website. Accessed on 19 January 2020.
Retrieved from https://dev.mysql.com/doc/refman/5.7/en/what-is-mysql.html.

https://dev.mysql.com/doc/refman/5.7/en/what-is-mysql.html

69

Appendices

Appendix 1. Deployment manual for containerized GRR server

Prerequisites

Containerized GRR server is successfully tested on following operating systems:

Ubuntu 18.04 Bionic (1 dual-core CPU, 8 GB RAM) with following packages and their

respectively versions:

• Docker Engine and Client v19.03.1

• Docker Compose v1.24.1

CentOS 7 (1 dual-core CPU, 8 GB RAM) with following packages and their respectively

versions:

• Docker Engine and Client v18.09.6

• Docker Compose v1.24.0

Docker images used during deployment process (hosted on Docker Hub):

• grrdocker/grr:v3.3.0.8

• mysql:5.7

• nginx:latest

• prom/prometheus:latest

GRR agents are successfully tested on following operating systems and versions:

• Windows Workstation 7, 10

• Windows Server 2008, 2012

• CentOS 7

• Ubuntu 18.04

Quick deployment

GRR server

70

Deployment of containerized GRR server is designed to be a straightforward process.

After you have executed the requirements shown in prerequisites section you should

be able to deploy GRR server using following commands:

• git clone https://github.com/JYVSECTEC/containerized-grr

• cd ./containerized-grr

• bash setup.sh

• docker network create --driver=bridge --subnet=<SUBNETWORK> static

• docker-compose up --build --detach

If no errors occur command “docker-compose ps” should inform that there are now

six containers up and running:

• grr-admin

• grr-front

• grr-proxy

• grr-mysql

• grr-worker

• grr-prometheus

Now you can access the administrator GUI by browsing by Nginx IP address or URL

and use the credentials provided during deployment process (default: admin/grr).

However, you must install GRR agents on those clients that you want to examine be-

fore you can really execute any forensic tasks on endpoints. Consult the "GRR agent

installation on clients" section for additional information.

GRR agent installation on clients

After GRR Server is successfully deployed, client installers can be examined. GRR

Server populates “./containerized-grr/installers” directory with installer packages for

both 32-bit and 64-bit operating systems:

• dbg_GRR_x.x.x.x_amd64.exe

• dbg_GRR_x.x.x.x_i386.exe

• grr_x.x.x.x_amd64.changes

• grr_x.x.x.x_amd64.deb

• GRR_x.x.x.x_amd64.exe

• grr_x.x.x.x_amd64.pkg

• grr_x.x.x.x_amd64.rpm

• grr_x.x.x.x_i386.changes

• grr_x.x.x.x_i386.deb

• GRR_x.x.x.x_i386.exe

• grr_x.x.x.x_i386.rpm

71

Depending on the client operating system, you can push the correct installer package

to the client and execute it, or install agent using respective package manager:

• # On Red Hat based Linux distros

• yum install grr_x.x.x.x_amd64.rpm

• # On Debian based Linux distros

• dpkg --install grr_x.x.x.x_amd64.deb

• # On Windows operating systems

• .\GRR_x.x.x.x_amd64.exe

• # On MacOS

• sudo installer -pkg grr_x.x.x.x_amd64.pkg -target /

Configuration explained

Authentication

In future containerized GRR will support various authentication methods, but cur-

rently there are two tested methods available (defaults to Remote Authentication):

• Basic Authentication – Username and password are generated during setup process
of GRR server and stored on the database

• Remote Authentication – GRR server trusts authentication that the Nginx reverse
proxy handles.

Database

MySQL database files are mounted to host side of system to prevent any data loss if

the container execution terminates.

Monitoring

Containerized GRR includes Prometheus monitoring system which enables investiga-

tor to observe the status of each GRR sever component and query monitoring data

for occurred changes. However, it should be noticed that the monitoring system is

only implemented to bring additional feature for the server execution. Any exten-

sively testing of Prometheus is not made.

Proxy

72

Containerized GRR utilizes Nginx proxy which handles the traffic between GRR agents

and GRR HTTP front-end. In addition, administrative user interface is accessed via

proxy, and by default it handles the user authentication.

Creating a new self-signed certificate for the proxy:

• cd ./containerized-grr

• openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ./nginx/cert.key -out
./nginx/cert.crt

Creating a new username and password for Remote Authentication:

• cd ./containerized-grr

• sh -c "echo -n '<USERNAME>:' >> ./nginx/.htpasswd" && sh -c "openssl passwd -apr1
>> ./nginx/.htpasswd"

Osquery

Containerized GRR supports also centralized management of osquery agents. GRR is

configured to search osquery binary on clients from its default installation path, so it

is advisable to keep binaries on their default installation location. Osquery is success-

fully tested in containerized GRR using the osquery version 4.0.2.

	1 Introduction 9
	2 Research design 12
	3 Digital forensics and incident response 16
	4 Technical review 20
	5 Deployment work 31
	6 Capability testing 39
	7 Performance requirement testing 46
	8 Results 49
	9 Conclusions 60
	References 64
	Appendices 69
	1 Introduction
	1.1 Motivation
	1.2 JYVSECTEC – Jyväskylä Security Technology
	1.3 Project CYBERDI

	2 Research design
	2.1 Research problem
	2.2 Research method

	3 Digital forensics and incident response
	3.1 Incident response process
	3.2 Digital and computer forensics
	3.3 Data acquisition

	4 Technical review
	4.1 Osquery
	4.1.1 Operational overview
	4.1.2 Query structure and management
	4.1.3 Deployment considerations

	4.2 GRR Rapid Response
	4.2.1 Operational overview
	4.2.2 GRR server and agent
	4.2.3 Client-Server communication
	4.2.4 GRR concepts
	4.2.5 Security considerations

	5 Deployment work
	5.1 Starting point
	5.2 Research of publicly available resources
	5.3 Division of official GRR Docker image
	5.4 Deployment of containerized GRR server
	5.5 Deployment of GRR and osquery agents

	6 Capability testing
	6.1 Overview
	6.2 Testing environment
	6.3 Test case attack
	6.3.1 Purpose
	6.3.2 Phases
	6.3.3 Mapping the techniques

	7 Performance requirement testing
	7.1 Overview
	7.2 Testing environment
	7.3 Load monitoring of containerized GRR

	8 Results
	8.1 Containerized GRR
	8.2 Capabilities
	8.3 Performance requirements

	9 Conclusions
	9.1 Discussion
	9.2 Reliability of research
	9.3 Further research

	References
	Appendices

