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Aim of this thesis is to research how maintenance process of elevator doors can be opti-

mised. To this end, a business goal is set. It is to decrease the amount of unplanned 

maintenance visits caused by door malfunctions. A corresponding analytics goal is de-

fined, which is used for ranking elevators that would make best candidates for mainte-

nance in this respect. Thesis shows that scheduling of preventive maintenance visits us-

ing prognostic models would be beneficial in reducing the rate of unplanned mainte-

nance visits.  

The result was obtained via a practical case study using a real-life dataset containing data 

for more than 20 thousand elevators for a period of two years. Major part of the work 

was to form this dataset from (partially incomplete) raw data that consisted of various 

maintenance records and condition monitoring data on elevator doors. Tested models 

were the well-known Cox Proportional Hazards model, and a more recent recurrent neu-

ral network model called Weibull Time to Event RNN (WTTE-RNN).  

Survival analysis methods were used to extract information from partial observations. 

Prior to training the models, stratified survival curves were obtained via Kaplan-Meier 

estimator for two groups: all elevators and freshly maintained elevators. Difference in 

these curves quantifies the difference that preventive maintenance visit generally yields. 

Then, prognostic models were used for producing daily predictions of the survival curve 

for each elevator. Elevators were ranked using these predictions and based on how much 

their condition seemed to have worsened over time (as this is thought to capture their 

potential to benefit from maintenance). Finally, a comparison between highly ranked el-

evators over all elevators is provided to demonstrate the skill of the models. 
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1 INTRODUCTION 

The topic of this thesis and addressed research problems are introduced in this chapter. 

It begins by discussing a setting where a company is offering preventive maintenance 

and corrective maintenance as a continuous service to its customers. Possibilities of ma-

chine learning for this maintenance business process automation and optimisation are 

described and a business goal is set. Then more detailed analytics goals are considered 

which helps to formulate the research questions and limit the scope of the thesis. The 

introduction is concluded by an outline of the structure of the thesis. 

1.1 Business goal 

Artificial intelligence and machine learning techniques are in the rise across nearly all 

industries. Although many machine learning techniques, such as neural networks, have 

existed for a long time, it seems that only recently have they gained enough momentum 

to make a significant impact to our daily lives. The most prominent evidence of this are 

the totally new products that are being introduced by some of the top technology com-

panies. For instance, self-driving vehicles are an example of this category where techno-

logical limits are being pushed further by machine learning. Nevertheless, these types of 

applications are only the tip of an iceberg. Majority of data scientists today are applying 

machine learning in a more conventional setting where development can be described 

more as an evolution than revolution: existing digital services are being optimised and 

automated through machine learning and advanced analytics. Companies are jumping 

on the wagon and rethinking the ways of conducting their business processes and ser-

vices via harvesting and analysing data and leveraging insights from data analytics. 

 

This thesis focuses on the latter type of application, more specifically automation of 

maintenance business process of an industrial service provider. The service provider is 

offering a continuous maintenance service for elevators. Condition monitoring data is 

continuously collected from elevators that are under maintenance contract. There exists 

also data about all maintenance visits. The aim of the thesis is to research how the col-

lected data can be used to optimise the maintenance process to achieve a business goal. 

By maintenance process we refer to the process in which maintenance technicians are 
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dispatched to conduct site visits for performing preventive and corrective maintenance 

actions. There are different types of visits. Majority of the visits are preventive mainte-

nance visits. These are scheduled and recurring visits where maintenance technician 

does preventive checks for the machinery, and performs certain maintenance actions, 

such as lubrication of elevator parts. In many countries the frequency of preventive vis-

its is governed by the law, in order to guarantee safe operation of the elevator. Another 

type of visit is a repair visit when certain elevator parts are replaced. Trigger for re-

placement may have originated due to the part having reached its predetermined end of 

life, technician noticing the need during preventive maintenance visit, or customer hav-

ing reported a problem with the equipment. Finally, there are so-called unplanned visits. 

These visits are needed when an unprecedented problem has occurred with the elevator. 

Either the end customer or facility manager has contacted the help desk, or fault has 

been detected automatically (e.g. by means of data analytics). In this case a maintenance 

technician shall visit the site immediately to resolve the technical problem. Technician 

needs to cease any actions he may be conducting at the time and travel to the site where 

his help is urgently needed. Entrapment of a passenger inside the elevator car is an ex-

ample of most urgent type of unplanned visit, which must be responded in a timely 

manner despite the hour. 

 

Optimising any business process begins with defining clear business goals. Only after 

the business goals and more specific analytics goals have been clarified it is time to ap-

ply suitable methods, such as machine learning. Let us now proceed by defining the 

business goal. It is evident that the cost associated with an unplanned site visit is very 

high. Direct cost follows from the unprecedented nature of the site visit that causes inef-

ficiency to the otherwise streamlined process. Indirect cost is associated with the per-

ceived quality of the maintenance service by the customer. Customer satisfaction is in 

jeopardy whenever an unplanned visit is called for, since often that is accompanied by 

decreased serving time of the elevator. We arrive to our business goal definition: 

 

Business Goal: Decrease the rate of unplanned maintenance visits that are caused by 

door malfunctions. 
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This thesis focuses on door malfunctions as a lot of condition monitoring data is availa-

ble on elevator doors and door malfunctions represent a large portion of unplanned vis-

its. There are basically two ways to address the business goal using data driven analytics 

(given that the rate of preventive maintenance visits is not to be increased). On one hand 

the preventive maintenance visits may be scheduled more optimally to reduce the rate of 

failures. Idea being, that preventive maintenance actions themselves may keep the ma-

chinery in good enough condition or that maintenance technician is able to detect more 

timely that a repair visit is called for. The other path to improvement is to provide 

maintenance technicians with insights of the root cause to the failure, so that they would 

be able to remedy the problem more efficiently (e.g. avoid multiple visits to the site for 

correcting the fault). This thesis focuses on the former path by studying how scheduling 

of preventive maintenance visits could be based on recommendations from prognostic 

models. 

1.2 Analytics goal 

Authors in Nalchigar (2018a) lay out a framework where an analytics project is de-

scribed, conducted, and documented via three complementary views called 1) business 

view, 2) analytics design view, and 3) data preparation view. This framework provides a 

useful separation of concerns and is therefore used throughout this thesis also. In busi-

ness view, stakeholders document their requirements for the business process as a whole 

and set requirements for the analytics design view. The business requirements lead to 

setting one or more analytics goals. Role of the analytics goal is to provide insights from 

data to be used by various actors. The data preparation view will be discussed later in 

Chapter 3. Let us now discuss the analytics design view and define the analytics goal 

(given the business goal defined in Section 1.1). 

 

Capabilities of different machine learning algorithms may be used in fulfilling the busi-

ness goal. This means providing insights through some analytics goal, such as Predic-

tion Goal, Description Goal, or Prescription Goal (Nalchigar 2018a). For instance, un-

supervised machine learning may be used to provide anomaly detection (Description 

Goal). In the context of this thesis, analysis could be done on different elevator rides 

and outliers could be detected which in turn could facilitate finding and solving prob-
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lems effectively. Alternatively, supervised machine learning algorithms could be ap-

plied to predict the emergence of such anomalies or any undesirable departure from tar-

geted service level in advance (Prediction Goal). For example, a supervised machine 

learning could be trained for evaluating risk of a malfunction using maintenance records 

as the ground truth. Finally, a supervised machine learning model could even provide 

maintenance technician with a list of most probable causes for a potential or already re-

ported malfunction (Prescription Goal). This would require that root cause analysis for 

past malfunctions would be available as ground truth in training. 

 

Analytics goal constitutes a bridge between business goal and machine learning model. 

It is the assignment for the modelling exercise in the analytics design view. What model 

is applicable is determined by available data. Without ground truths, for instance, it is 

not possible to use supervised machine learning. The quantity of the data plays a role 

too - more data supports more complex algorithm. In case the analytics goal is a predic-

tion goal, it essentially specifies the target variable (i.e. what is to be predicted). Analyt-

ics goal should be simple and allow definition of concise and measurable research ques-

tions. In this thesis the primary analytics goal is: 

 

Analytics Goal: Predict the value of a preventive maintenance visit (with respect to the 

business goal). 

 

Note that this is a pure prediction goal. Specifically, it is not in the scope of this thesis 

to provide a prescriptive model for helping the maintenance technicians with the root 

cause analysis. Instead the aim is to build a supervised machine learning model that can 

be used to answer the following question: “If a preventive maintenance visit was to be 

scheduled on a particular elevator today, what would be the expected benefit with re-

spect to the business goal of reducing the rate of door malfunctions?” 

 

Rationale behind the selected analytics goal is that there must exist an optimal sequence 

for performing the preventive maintenance visits. This sequence is the one that mini-

mises the number of unplanned visits caused by door malfunctions. Predicting probabil-

ity of a door malfunction alone is not the most useful information with respect to the 

business goal. This is because certain elevators may be permanently more prone to 
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problems than others. For instance, the owner of the elevator may be reluctant in invest-

ing in the elevator spare parts which means that there is no use in performing preventive 

maintenance just because predicted rate of malfunctions is elevated. Better approach is 

to distinguish the elevators whose condition is detected to have worsened rapidly, as 

these elevators are most likely to benefit from prompt attention. A slight but meaningful 

difference to make, which is reflected in the analytics goal. The analytics goal may 

seem harsh, as it means seeking easy victories and dismissing those elevators that don’t 

benefit from preventive maintenance visits. Nevertheless, it is imperative given the 

business goal. Another rationale for the analytics goal is that it offers potentially a high 

yield in comparison to the implementation effort. Namely, it would be straightforward 

to schedule preventive maintenance visits by taking the prediction into account (as op-

posed to a simple calendar based scheduling) and collect the benefits with a minor 

change to the business process itself. 

1.3 Aim of the thesis 

Aim of the thesis is to extract insights from maintenance records and condition monitor-

ing data, especially with respect to the defined analytics goal. Special interest is in de-

creasing the overall rate of door malfunctions as a whole by scheduling preventive 

maintenance visits based on recommendations from a prognostic model leveraging con-

dition monitoring data (as opposed to current calendar based scheduling). 

 

Survival analysis methods, which are widely used in the medical field, are applied for 

evaluating the so-called survival of elevators. These techniques extract information 

from partial observations (i.e. so-called censored data). This is useful, as door malfunc-

tions are a rare occasion - most of the observation periods end not by a malfunction, but 

by a preventive maintenance visit (which is assumed to restore door condition to as 

good as new). In this context, survival means that elevator doesn’t develop a door mal-

function. A certain non-parametric statistical estimator is first used on maintenance rec-

ords alone in order to compare the survival of average elevator to a freshly maintained 

elevator. This gives an idea how maintenance visit provides value in average, as well as 

how the rate of door malfunctions generally develops after a maintenance visit. Then, a 

simple prognostic model is trained with condition monitoring data. Now, this model can 
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be inferenced for a survival estimate using condition monitoring data . Performance of 

the model is evaluated via cross-validation, and its shortcomings are discussed. Next, a 

more complex neural network model is trained with the condition monitoring data and 

its performance is compared with the simple model. Finally, a method is put forward for 

leveraging skill of any prognostic model for scheduling preventive maintenance visits 

based on condition of the elevator. The effectiveness of the method (for reaching the 

business goal) is examined in retrospect using a real-life dataset, model by model. 

1.4 Research questions and research hypothesis 

Thus, it has been established that predicting the value of a preventive maintenance visit 

is a useful analytics goal. Let us proceed by defining the most interesting research ques-

tions to be addressed in the remainder of this thesis: 

 

1. How much a preventive maintenance visit improves the door malfunction rate? 

 

2. How does the value of a preventive maintenance visit develop over time? 

 

3. How well certain mathematical models can predict the risk of door malfunction 

based on condition monitoring data? 

 

Besides answering the research questions, the thesis puts forward a specific method for 

scheduling preventive maintenance visits that is based on the predicted benefit in terms 

of improved survival (i.e. time to malfunction) after maintenance. A null hypothesis is 

that the proposed method is no more beneficial in scheduling the preventive mainte-

nance visits as the current calendar based method. Turning this around, research hy-

pothesis is as follows:  

 

Research hypothesis: Proposed method for scheduling preventive maintenance visits 

would result in decreased rate of door malfunctions. 
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1.5 Proposed method 

This thesis presents a method for leveraging machine learning in the maintenance busi-

ness process of the service provider. More precisely, historical data about maintenance 

visits is used for training a machine learning model whose predictions represent the risk 

level of developing a door malfunction. Predictions are done on daily basis. Method 

starts by first forming a real-life dataset of daily condition monitoring data and then la-

belling each day by using known ground truths extracted from maintenance records. 

The resulting dataset is then used to train the prognostic model. In this thesis, two mod-

els are trained and their prediction performance is evaluated and compared. 

 

Daily predictions can be used for evaluating drift in elevator condition. Elevators having 

highest drift are thought to benefit most of preventive maintenance. Each day, elevators 

can be ranked based on the evaluated drift. To examine the research hypothesis, a prac-

tical case study is done (in retrospect) to quantify whether maintenance on highly 

ranked elevators has been historically more beneficial than on average elevator. Case 

study yields also an estimate on how much the proposed method could reduce the rate 

of door malfunctions. 

1.6 Outline 

Thesis is organised as follows. First, in Chapter 2, a literature review on relevant meth-

ods is provided. Focus is on understanding what type of methods and methodologies 

have been used by others to answer similar type of questions. Details of data preparation 

view are described in Chapter 3, and also the research methodology is described. Re-

search results are presented in Chapter 4, where performance of two prognostic models 

is reported and the research hypothesis is examined by means of a case study. Finally, 

conclusions are given in Chapter 5. 

2 RELATED WORK 

Condition based maintenance (CBM) is discussed in Bousdekis (2018), where literature 

review on state-of-the-art CBM methods is given. Authors define maintenance as avoid-
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ing the equipment breakdown and improving business performance, for example, in 

terms of productivity, or elimination of malfunctions. They suggest a taxonomy of fol-

lowing three maintenance categories: breakdown maintenance, time-based preventive 

maintenance, and CBM. In other literature similar categories are referred to as correc-

tive (or reactive) maintenance, preventive maintenance, and predictive maintenance 

(Wu 2007). Advantage of time-based preventive maintenance over breakdown mainte-

nance is that it improves serving time of the equipment by eliminating some of the 

breakdowns proactively. However, the time-based preventive maintenance policy does 

not take the condition of the equipment into account, as equipment is maintained at 

fixed time interval. CBM (a.k.a. predictive maintenance) policy is enhancing this as 

maintenance time interval is affected also by the perceived condition of the equipment 

obtained via regular inspections referred to as condition monitoring. Condition monitor-

ing can be based either on on-site inspections or online harvesting of sensor data or 

both. A useful separation of concerns is made by authors where a prognostic model is 

developed via condition monitoring and the model is applied on real-time data streams 

to produce on-the-fly predictions. Then a separate decision support method forms the 

final CBM policy using a custom cost function that takes preferences and choices of the 

human decision maker into account.  

 

Different prognostic models have been used in literature to model the degradation pro-

cess of various systems. The aim of these models is to predict system’s marginal residu-

al life (MRL) distribution using system covariates obtained via condition monitoring. 

New predictions are done at each inspection time to be consumed by the decision sup-

port system. Multi-state degradation models have been proposed where decision support 

method is implemented as Markov decision process. However, the majority of the mod-

els assume a continuous degradation process where the degradation process is described 

using, for example, a stochastic model such as Gamma process (Castro 2012).  

 

Before going deeper into the CBM specific models, let us next discuss the more general 

concepts that go under the name survival analysis. Survival analysis deals with set of 

methods for analysing the time until the occurrence of an event of interest. These tech-

niques have been mostly used in clinical studies to estimate efficacy of medical treat-

ment with time of death as the most common event of interest. For instance, given a set 
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of patients where some receive an experimental treatment, and others don’t, survival 

analysis can be used to determine (and quantify) whether the treatment had statistically 

significant effect to lifetimes of the patients. What makes these methods particularly 

interesting is that they extract information from censored observations. For instance, 

some patients may drop out from the clinical study or may be still alive when study 

ends. Such patient, not experiencing the event of interest during the observation period, 

is said to be right censored. (There exists also left censored observations, where event 

of interest has happened before start of observation period, such as emergence of child’s 

first tooth.) Now, in the context of elevators, vast majority of elevators never experience 

the event of interest (e.g. door malfunction). However, there is value in knowing that an 

elevator went free of malfunctions until the point of censoring, and the survival analysis 

techniques are designed to take advantage of that information. The censoring process is 

said to be non-informative if censoring times and event times are independent of each 

other, meaning that censoring does not leak information about subject’s survival. 

2.1 Survival functions 

Survival function S(t) is a function that gives the probability that event of interest (e.g. 

death or failure) has not yet happened at time t. Survival function, which is also some-

times referred to as survivor function (Armitage 2002) or as reliability function (Wol-

stenholme 1999), is derived from cumulative distribution function F(t) using the follow-

ing formula where T is a continuous random variable and f denotes its probability densi-

ty function:  

 

 
 

(1) 

 

The plot of S(t) against t is called survival curve. 

 

Survival function lends itself well for estimating lifetime distributions. For instance, 

probability density function for remaining lifetime, given that subject has survived until 

a moment t0, can be written now as follows: 
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(2) 

  

Taking derivative with respect to time yields the probability density function of the re-

maining lifetime at t0: 

 

 
 

(3) 

 

It is sometimes convenient to use so-called hazard function that gives the hazard rate 

(i.e. death rate) as a function of time t. Hazard rate gives the probability of subject’s 

death at specific moment in time given that the subject has survived until that moment. 

Hazard function h(t) is derived from survival function and probability density function 

as follows: 

 

 
 

(4) 

  

Finally, a cumulative hazard function H(t) is defined as integral of the hazard function 

and its relation to survival function is: 

 

 
 

(5) 

 

Different statistical functions have been used to model the survival function. These can 

be categorised as non-parametric, semi-parametric and parametric survival functions. 

Let us proceed by discussing the most relevant survival functions used in the field of 

survival analysis. 

2.2 Kaplan-Meier estimator 

Kaplan-Meier estimator is a non-parametric estimator that was first introduced in 

Kaplan (1958) - a fundamental paper that has been cited tens of thousands of times 
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since its introduction more than 60 years ago. Kaplan-Meier estimator is built from set 

of observations and is used to estimate the survival function of the observed entities. 

Authors define the event of interest as death and previous occurrence of some other 

event (i.e. right censoring) as loss.  The estimator of the survival function is given by 

the following discrete function: 

 

 

 

(6) 

 

Where product is taken over all discrete timesteps ti where at least one death happened 

(including timestep t). di is the number of deaths at timestep ti and ni denotes the number 

of individuals at risk (individuals that have not yet experienced either death or loss at 

timestep ti). This formula produces a monotonically decreasing step function. The value 

of the estimator function between sampled observations is assumed to be constant. Im-

portant characteristic of the Kaplan-Meier estimator is that it leverages also right cen-

sored observations (via number of known survivors). 

 

If covariates of the observed subjects are known, such as the genotypes of the patients, 

it is possible to calculate separate, group-wise estimators for comparison. With large 

number of patients, it is then possible to visualise (and quantify) how much the different 

genotypes affect the corresponding survival curves of patients and whether the effect is 

statistically significant. The model is nevertheless limited in its ability to estimate sur-

vival based on covariates due to its non-parametricity. For instance, it can’t be used for 

predicting survival of an individual subject. 

2.3 Cox proportional hazards model 

The Cox proportional hazards (PH) model (Cox 1972) is a semi-parametric model for 

approximating survival. Key assumption of the model is that effect of each covariate to 

subject’s survival is multiplicative with respect to the hazard rate. In other words, 

change in single covariate’s value (others remaining constant) lowers (or raises) the 

hazard rates with a similar amount throughout the time axis. The rate of change is de-
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termined by estimated coefficients of the model. Formally, hazard function now takes 

the form: 

 

  (7) 

 

Where X is a column vector of the covariates of the subject and β is a column vector of 

the corresponding coefficients, and h0(t) is a baseline hazard function that is applicable 

when all covariates are set to zero. The model makes no assumption on the form of the 

baseline hazard function. If a known distribution is assumed for the baseline hazard 

function, then resulting model is referred to as parametric PH model. Interestingly, if 

Weibull hazard function is assumed as the baseline, then the model satisfies require-

ments of an accelerated failure time model. 

2.3.1 Hazard ratio 

Thus, hazard ratio is the ratio between individual’s hazard function and the baseline 

hazard function. The model has the convenient property that natural logarithm of hazard 

ratio HR(X) is a linear function of the covariates:   

 

 
 

(8) 

 

Solving the linear regression equation yields the coefficients (i.e. proportional hazards). 

Each estimated coefficient  βi represents an expected change of log of the hazard ratio 

per unit of change in the corresponding covariate Xi (assuming that all other covariates 

remain constant). This can be seen easily by writing: 

 

  (9) 

 

For instance, if covariate Xi is a dichotomic predictor (e.g. smoking vs. non-smoking), 

then exp(βi) yields the its contribution to the hazard ratio. If the contribution is larger 

than one, then the predictor increases the risk of death. If it is smaller than one, then the 

predictor is a protective one and promotes survival. In other words, sign of the coeffi-
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cient determines whether the corresponding predictor is increasing or decreasing the 

risk of death. Values close to zero mean that the predictor is not significant. For a con-

tinuous predictor (e.g. elapsed days since last preventive maintenance visit to an eleva-

tor) exp(βi) yields the change in hazard ratio per single unit change in the predictor.   

 

Recalling Equation 5, any survival curve S(t, X) may be written as: 

 

  (10) 

 

Where S0(t) is baseline survival function and HR(X) is hazard ratio. This formula is use-

ful when S0(t) is available and Cox PH model has been fitted for calculating HR(X). The 

baseline survival function may have been obtained using a non-parametric estimator, 

such as Kaplan-Meier, or by using a parametric version of the Cox PH model and fitting 

a known distribution to the observations. 

2.3.2 Partial likelihood 

Like Kaplan-Meier estimator, the Cox PH model can be fitted from set of observations, 

while leveraging right censored data. Censoring is handled by a concept of partial like-

lihood (Cox 1975). Model is fitted to the observations by producing (partial) maximum 

likelihood estimates (MLE) for the model coefficients. Fitting is typically done using a 

statistical software package, such as Lifelines (2019) which gives also confidence inter-

vals for the risk ratios. 

 

Key idea in partial likelihood method is to look at death times (i.e. timesteps when at 

least one death occurred). Let λ1 < … < λK represent the distinct death times. Let Xi de-

note the death or loss time of an individual, and Zi its covariates. Let R denote the set of 

individuals at risk at time t (i.e. individuals not having yet experienced either death or 

loss). Partial likelihood is the conditional probability of a death of an individual belong-

ing to the set R over the death times. At each distinct death time Xj, the contribution to 

the partial likelihood is: 
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(11) 

 

Recalling the hazard function definition for the Cox PH model, the full partial likeli-

hood L over all death times may be written as: 

 

 

 

(12) 

 

This is the partial likelihood defined in Cox (1975). Note that no assumptions on under-

lying distribution is made as the baseline hazard function has been cancelled out. Like-

lihood is a function of observations and model coefficients. The maximum likelihood 

estimates for the coefficients can be computed by solving the following system of equa-

tions: 

 

 
 

(13) 

 

The MLE method is known to be asymptomatically consistent, meaning that when 

number of deaths increases, the estimates are converging to the real values (Armitage 

2002).  

 

Cox proportional hazards model is still today the most widely used model in survival 

analysis. It is safe and proven method to use as it makes no assumptions about the dis-

tribution of survival times (Schober 2018). However, parametric models may at times 

have an advantage over Cox PH model, since they can estimate actual survival curves. 

2.4 Parametric survival functions 

Different common statistical distributions have been applied for estimating the survival 

functions of humans or serving time of machines, such as exponential, Gamma, and 

Weibull distributions (Wolstenholme 1999). Each of these distributions are further de-
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fined by their parameters. Exponential distribution has single parameter lambda which 

is the number of events per unit time (i.e. death rate in the context of survival analysis). 

Exponential distribution would estimate the survival function perfectly if the probability 

of death would be constant in each point of time. Obviously, this is not very applicable 

assumption with respect to condition based maintenance where survival function is as-

sumed to depend on system covariates. Weibull distribution extends the exponential dis-

tribution by allowing hazard rate to increase (or decrease) over time. Much more realis-

tic assumption for mechanical equipment, which is why Weibull hazard function is 

widely used in prognostic modelling. Due to its importance in the field of reliability en-

gineering, let us examine the properties of the Weibull distribution a little closer. 

2.4.1 Weibull distribution 

The probability density function of a Weibull distributed random variable in its most 

general form is (Weibull 1951): 

 

 

 

(14) 

 

Where f(t) ≥ 0, β > 0, η > 0, ∞ < γ < ∞   

 

This is referred to as three-parameter Weibull distribution expression. The three pa-

rameters are shape parameter (β), scale parameter (η), and location parameter (γ). When 

location parameter is not used it is set to zero and the equation is reduced to its most 

common two-parameter form: 

 

 

 

(15) 

  

Which in fact is a product of hazard function and survival function, these being: 
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(16) 

     

 
 

(17) 

 

Following from Equation 5 and Equation 17, cumulative hazard function is: 

 

 

 

(18) 

 

Effect of the shape and scale parameters to probability density plot is illustrated in Fig-

ure 1. 

 

 

Figure 1. Weibull distribution by different shape and scale parameters. 
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For β = 1 the Weibull probability density function reduces to that of the exponential dis-

tribution. This constitutes a point of equilibrium where hazard rate is constant. For β < 

1, the hazard rate decreases over time and for β > 1 it increases over time, as can be seen 

from Equation 16. For β > 1 the probability density function has an inflexion point at 

(e1/ β - 1) / e1/ β. Increasing the scale parameter, while keeping the shape parameter con-

stant, stretches the distribution further down the time axis. Shape of the distribution will 

stay similar. The area under the curve must remain the same and therefore stretching 

causes the peak of the distribution to move lower. 

 

Another visualisation is provided in Figure 2 where Weibull hazard rates, given by 

Equation 16, are plotted. 

 

Figure 2. Weibull hazard rates with different shape and scale parameters. 

 

Figure 2 shows how shape parameter controls whether hazards rate increases or de-

creases over time and how scale parameter controls the rate at which the hazard function 

changes. With β = 2 the function increases nearly linearly. With β > 2 the hazard func-
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tion grows more like an exponential function and with 1 < β < 2 the curve resembles a 

logarithmic function. Figure 3 illustrates how shape and scale parameters affect the sur-

vival curve that can be obtained via plotting the Weibull survival function (Equation 

17). 

 

 

Figure 3. Weibull survival curves. 

2.4.2 Weibull plot 

When using parametric models, one must be cautious that the used distribution is repre-

sentative of the underlying phenomenon that is to be modelled. A technique called 

probability plotting can be used to ensure this. Idea is to plot estimates of cumulative 

distribution function over time using log-log scale. Assumption that data follows 

Weibull distribution can be validated using a Weibull plot (Nelson 2004). For Weibull 

distributed random variable: 

 

 

(19) 
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This property allows a visual examination of the appropriateness of the Weibull distri-

bution for the data by plotting ln (-ln(KM(t)) vs. ln(t), where KM(t) is the Kaplan-Meier 

survival estimate. If the plot implies a linear function could be used to approximate the 

observations, then it can be assumed that Weibull distribution is applicable. Weibull 

plot can also be used for fitting the Weibull parameters using linear regression. Least 

squares fit of a line to the observations produces estimates for the shape and scale pa-

rameters (assuming a two-parameter Weibull distribution). Note also, that plotting two 

survival curves for which proportional hazard assumption is valid produces two parallel 

lines that are apart by ln(HR): 

 
 

(20) 

2.4.3 Parametric likelihood 

In Section 2.3.2, it was discussed how partial likelihood handles right censored data 

when calculating the coefficients for the Cox PH Model using the MLE method. For a 

parametric model, parametric likelihood can be leveraged to handle censored observa-

tions. Assuming number of observations to be n, then likelihood can be written: 

 

 

(21) 

Where θ are the parameters of the model. If a subject experienced death, then its contri-

bution is: 

  (22) 

If subject experienced a loss, then its contribution is simply: 

  (23) 

Thus, likelihood can be written as:  

 

 

(24) 

Where di is 1 for death and 0 for loss. Taking natural logarithm on both sides, and ap-

plying cumulative hazard function from Equation 5, gives the general parametric log-

likelihood formula for right censored observations: 
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(25) 

Again, parameters of the distribution can be estimated by applying the MLE method. 

2.5 Concordance index 

Harrell’s concordance index (C-index) is the most used metric when evaluating perfor-

mance of survival models. It was developed to evaluate prognostic models fitted with 

censored data (Harrell 1982). C-index measures how well the model preserves pairwise 

relative rankings of observations. More specifically, it is defined as ratio of correctly 

ordered (i.e. concordant) pairs to all comparable pairs. Pair is comparable if the lower of 

the observation times is for death or the observation times are equal and one of them is 

for death and the other is for loss. Its interpretation is similar to the area under ROC 

curve (AUC), meaning that value 0.5 indicates that model has no skill at all, and value 1 

indicates a perfect model. The metric is calculated as follows. Let observations be a set 

of tuples (yi, di) where yi denotes time to event of interest and di denotes type of the ob-

servation (1 for death 0 for loss). Assume a prognostic model that can quantify survival 

from covariates, and the predictions (denoted as pi) are comparable with each other. 

Now, a pair of observations {(yi, di), (yj, dj)} is said to be concordant if yj > yi and pj > 

pi. C-index yields ratio of such concordant pairs to all comparable pairs. Ties (pj = pi) 

can be assumed to be broken randomly.  Formally this can be expressed as: 

 

 

(26) 

Where C is a set of comparable pairs and indicator I returns 1 for concordant pair and 0 

for discordant pair. 

2.6 Neural networks 

The Cox PH model has its shortcomings. One downside is that interactions between co-

variates are not accounted for inherently by the model. For instance, being a smoker 

could double the risk of a cardiac arrest, and high blood pressure might do the same. 

The model would merely implicate a quadruple risk for an individual with both condi-
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tions. In real-life the risk could be higher, due to the predictors amplifying each other. 

One could apply manual feature engineering to remedy this problem or use a more 

complex model that is able account for feature interactions inherently. See page 28 in 

Martinsson (2016) for a discussion of different approaches that have been developed to 

remedy the shortcomings of the Cox PH model with this respect. Yet another nuisance 

is that Cox PH model only yields hazard ratios for predictors. Generally, it is more use-

ful to know the absolute risk level instead. Thirdly, unlike recurrent neural networks, 

which can extract temporal relationships of condition monitoring data at different in-

spection steps, traditional survival models don’t inherently have any notion of time-

variate covariates. This drawback too needs to be tackled with feature engineering, 

which adds complexity. No doubt that feature engineering is a discipline on its own and 

much progress has been done in that area. However, it is also a laborious process, and 

sometimes time is of essence. For these reasons, let us look beyond the traditional sur-

vival models in this thesis. Neural networks are known to be able to approximate com-

plex mapping functions so why not also the one between covariates and survival curves. 

In addition, neural networks, unlike popular decision-tree methods, can inherently mod-

el also temporal interactions via addition of recurrent layers. A lot of papers on applica-

bility of neural networks on survival analysis has been published recently. A concise 

literature review on these is provided in Sub-section 2.6.2. 

2.6.1 Advent of neural networks 

Artificial neural network (ANN) as a concept is sometimes credited to a paper published 

in 1940’s McCulloch (1943), where authors modelled a simple network of artificial neu-

rons, inspired how neurons in human brain might work, using electrical circuits. Even 

more often, invention of the concept is credited to psychologist Frank Rosenblatt who 

described the Perceptron, a model how a human brain learns to recognise objects (Ros-

enblatt 1958). However, a fundamental practical work was introduced in the field of 

electrical engineering by Professor Bernard Widrow and his graduate student Ted Hoff 

(Widrow 1960) who implemented an adaptive signal processing circuitry. It was named 

ADALINE, for “adaptive linear neuron” and it implemented a binary classifier for pat-

tern recognition of digital inputs. Training of the neuron was implemented by using an 

4x4 array of toggle switches to feed input patterns and a single toggle switch to signal 
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the desired binary output. Adapting of the weights was governed by method called 

steepest descent and a loss function that was later named as least mean square (LMS). 

Weights corresponded to potentiometer settings that were adjusted manually. Figure 4 is 

from Widrow (2005) where Professor Widrow casually tells the story 45 years later. 

 

 

Figure 4. ADALINE circuitry (Widrow 2005). 

 

ADALINE was followed by MADALINE, which was a three-layer fully connected 

feed-forward neural network based on ADALINE circuitry. It was the first commercial 

application of a neural network, implementing an adaptive filter for echo cancellation 

on telephone lines. Since then the number of applications of neural networks have ex-

ploded, but still pattern recognition is where they excel.   

Much of the early foundation still holds, while new concepts have submerged over the 

years such as backpropagation, stochastic gradient descent, recurrent neural networks 

(RNN). In the remainder of the paper, a term neural network is used as an umbrella term 

to refer to any kind of algorithm building on the concept of neurons. More specific 

terms, such as RNN, are used to refer to more specific architectures of neural networks. 

2.6.2 Neural networks for survival analysis 

When it comes to using neural networks for survival analysis, research has been done 

mostly in the medical field. In the following, let us review some of the most relevant 
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papers. Given the characteristics of CBM, interest lies particularly on methods where 

neural network is trained with right censored data and a type of RNN is used. 

A model consisting of hierarchical system of neural networks for predicting survival of 

AIDS patients is put forward in Ohno-Machado (1996). Trained model can be queried 

for six discrete time points on the survival curve (1, 2, 3, 4, 5, and 6 years), meaning 

essentially the problem of assessing the survival curve is translated to a binary classifi-

cation problem with six different prediction horizons. Survival curve begins at the time 

of AIDS diagnosis. Censored data is discarded in the study. System is computationally 

equivalent to a recurrent neural network, where covariates are static in each time step. 

This is because no input data are fed into the model yearly, but predictions are based 

only on baseline covariates (e.g. biological markers for decease progression) obtained 

by the date of the diagnosis. The covariates include demographic and socioeconomic 

explanatory variables, biological markers, clinical findings, and medications. Authors 

provide comparison between the developed model and a simpler method where six iso-

lated feed-forward neural networks are used to obtain predictions for the six time points 

on the survival curve. All networks are trained by backpropagation. Area under receive 

operating characteristics (AUC) is used as the key metric. Proposed method is shown to 

be superior in all six prediction horizons. In addition, the number of non-monotonic in-

tervals seems to be far worse with the simpler method. Yet, also the proposed approach 

has potential to produce (discrete) survival curves that are not monotonically decreas-

ing. 

 

In Wu (2007) authors define a neural network based prognostic model and a decision 

support method for predictive maintenance of rotational equipment (i.e. rolling element 

bearings).  Decision support method is a cost function that optimises the expected cost 

per unit operational time. Authors define a degradation signal based on condition moni-

toring data from vibration sensors and define a failure threshold. Artificial neural net-

work (ANN) model is used to predict the life percentage of the equipment from the deg-

radation signal and operating time at each inspection time. Then authors use a separate 

table for correcting the error made by ANN as compared to actual MRL distributions 

(table is obtained via using ANN on a validation dataset). Corrected MRL predictions 

are fed to a cost matrix that suggests optimal replacement times for the machinery (i.e. 

balance between breakdown maintenance and preventive maintenance). 
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2.6.2.1 WTTE-RNN 

In Martinsson (2016), an RNN is used to learn Weibull distributions from right cen-

sored observations. The name WTTE-RNN stands for Weibull time to event RNN. 

Training dataset is a fixed size continuous matrix whose rows correspond to subjects 

and columns correspond to time steps. Items contain the covariates and ground truth 

which is a tuple (t, d) where t denotes the number of timesteps to next event, and d de-

notes the type of event (1 for death and 0 for loss). Trained model can be inferenced 

with a matrix of similar shape, where number of rows and number of columns can be 

arbitrary. As output, the model gives a matrix whose rows and columns correspond to 

the input and items contain estimated Weibull distributions for each subject on the cor-

responding timestep. Typically, the last column is the interesting one, as it contains the 

most knowledgeable predictions. Model assumes recurring deaths are possible, but de-

rivative works have submerged already where WTTE-RNN model is applied for surviv-

al analysis (Deep-ttf 2018).  

 

Author derives continuous and discrete loss functions for training the model. What 

makes them interesting is their mathematical soundness. The loss functions are derived 

from the general parametric log-likelihood formula (Equation 25) for right censored ob-

servations. This means that, if the censoring process is non-informative (i.e. censoring 

times and survival times are independent of each other), and survival times follow 

Weibull distribution, then the loss function used by this model is the ideal one. 

2.6.2.2 RNN-SURV 

In Giunchiglia (2018), a deep recurrent neural network model called RNN-SURV is 

presented. The model can be used to predict a personal risk scores and survival curves 

for medical patients. A comparative study is described where RNN-SURV superiority 

over competing models is reported using different well-known medical datasets. As the 

model uses censored data, authors use C-index as the main performance metric, and re-

port improvement up to 28.4% over state-of-the-art methods. Authors provide also visu-

alisation where obtained survival curves are compared to the average Kaplan-Meier 

survival curve and show that individual survival curves can be very different than the 

average survival curve. Like in Ohno-Machado (1996), the problem is translated to a 

combination of binary classification problems with different time horizons. The model 
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outputs an array of tuples (Si, ri) where each tuple contains estimates in the end of the 

corresponding time horizon. Si denotes the estimate of the survival curve and ri and de-

notes a risk score that is computed as a linear combination of the Si estimates. All co-

variates are static in each timestep, except for the timestep number that is used as one 

covariate. Model parameters are number of feed-forward layers, number of recurrent 

layers, number of neurons on each feed-forward layer, and LSTM state size.  

 

Since the network predicts both survival curve and risk score, the authors define also the 

loss function as a combination of two separate functions. First one is a modified cross-

entropy function that accounts for censored data and second one is an upper bound of 

the negative C-index (Raykar 2008). 

2.6.2.3 RankDeepSurv 

In Jing (2019), a deep feed-forward neural network is proposed for predicting survival 

curves of medical patients. A case study with different medical databases is performed 

and authors show an overall superiority over other survival models, such as Cox PH 

model. For one dataset, the model performs better than human clinical experts. C-index 

is used as the metric, and bootstrap method on the test set is used to compute confidence 

intervals.   

 

The RankDeepSurv ANN is a fully connected feed-forward neural network except for 

output layer where dropouts are added to tackle overfitting. Number of layers is a pa-

rameter of the model and can be changed (e.g. to match the amount of available data). 

Authors define a loss function specially designed to handle censored data. The loss 

function is sum of two terms L1 and L2. Interpretation of L1 is that deaths always con-

tribute to the function, while losses contribute only if predicted value is smaller than the 

observed value. L2 gives pairwise contributions of the observations to the loss function. 

Interpretation of L2 is that pairwise ranking difference of subjects shall be preserved by 

the ANN (recalling that two losses are not comparable). The loss functions are com-

pletely heuristic as no proof is given where they would be derived from any known 

formula, such as the general parametric log-likelihood for right censored observations 

(Equation 25). Proof of convergence is however given. Due to formula L2, size of the 
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training set is O(n2), n being the number of observations. This may prove to be imprac-

tical. 

2.7 Multimodality of the data 

Condition monitoring data is sequential data where measurements are done at each in-

spection step. Such data can be organised in a 3-dimensional matrix, where rows corre-

spond to data sources (e.g. an individual elevator) and columns correspond to inspection 

times. Third dimension is the number of features, as each item in the matrix contains all 

measurement values of an elevator at inspection time. Let us refer to this matrix as dy-

namic feature matrix since it contains the temporal measurements as dynamic features. 

Now, there exists also static features that remain constant throughout inspection steps. 

In case of an elevator, such static features may be elevator make and model, or door mo-

tor type. These data are stored in a 2-dimensional static feature matrix. Now, the data on 

elevator is referred to be multimodal, meaning it is a collection of dynamic and static 

features. 

 

Traditional machine learning models, such as decision trees or feed forward neural net-

works, are meant to be used with unimodal data. Usually this means that all covariates 

are assumed to be static. This hasn’t nevertheless prevented researchers from using the 

models with dynamic features. A common approach is to supplement static features ob-

tained from static feature matrix with a slice from the dynamic feature matrix in order to 

obtain a sample. Complete set of samples is formed by iterating over inspection times. 

The slice represents a history window which consists of consecutive values of meas-

urements since start of the history window. Number of features seen by the model is 

proportional to both number of dynamic features and size of the history window. Thus, 

this approach suffers from the curse of dimensionality. To deal with this problem, an-

other approach is to summarise the dynamic feature matrix (or slice of it) by curating 

each dynamic feature using either statistics, stochastic model or machine learning mod-

el. Curated features can then be fed into the model instead of full history window data. 

One such approach for extracting characteristics of multivariate time series is given in 

(Christ 2018) where python package called tsfresh is documented. In Leontjeva (2016) 
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authors describe another approach where a model, such as RNN, is used for producing 

the curated features from dynamic features as illustrated in Figure 5. 

 

 

Figure 5. A pipeline that can use RNN for feature transformation (Leontjeva 2016). 

 

Idea is that the first stage model is trained first using first half of the training set. This 

model can be either a hidden Markov model, or RNN. Then the predictions from the 

first model are used as new set of features by the second stage model, which in the pa-

per is a Random Forest classifier. In other words, the final model is a pipeline consisting 

of RNN based feature transformer and RF based classifier. To be more precise, predic-

tions from the RNN are mean squared error of a sample per each class rather than the 

actual binary prediction. In this respect the approach resembles so-called transformation 

learning where only last layer of neurons of a trained model is trained again using a sec-

ondary dataset. 

 

Recurrent neural networks, on the other hand, assume features to be dynamic. They are 

inherently seeking temporal interactions between consecutive samples. Therefore, RNN 

is not able to consider any static features unless they are transformed into a dummy time 

series data. In other words, the dynamic feature matrix items must be supplemented 

with the values of static features. Same set of static covariates are now concatenated to 

dynamic measurement values at each inspection time, which leads to growing the third 

dimension of the dynamic feature matrix by the number of static features. The supple-

mented matrix is then used by the model as shown in Figure 6.  
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Figure 6. Combining static features and dynamic features by making a dummy time series out of static features. 

3 RESEARCH METHODOLOGY 

The research questions are analysed by a series of survival analysis exercises. Real-life 

condition monitoring data on more than 20 thousand elevators is used. Time span of the 

data is ca. 2 years. Machine data is combined with site visit data, in order to form a la-

belled dataset. Resulting dataset focuses on door malfunctions, other types of malfunc-

tions are left out. Ratio between non-censored and censored observations is approxi-

mately 1:30. Censoring process is assumed to be non-informative, meaning that mal-

functions, preventive visits, and censoring times are assumed to be independent of each 

other. 

 

First, Kaplan-Meier estimator is used to visualise the general effect of a preventive 

maintenance visit with respect to survival time. Samples are stratified based on whether 

they are for freshly maintained elevators or not and obtained survival curves are plotted. 

Then, Weibull plots of the Kaplan-Meier estimates are drawn, in order to assess whether 

Weibull distribution may be used for estimating survival times, and to see how well 

proportional hazards assumption holds.  
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Two prognostic models are fitted with the dataset, and corresponding learning curves 

are plotted using C-index as the performance metric for comparison. Models can be  

inferenced to obtain daily risk predictions using historical data of the training set. Cox 

PH model yields directly hazard ratios, while WTTE-RNN yields Weibull survival 

curves that too can be ranked by fixing a time horizon. Elevators are assigned daily 

ranks based on how much the predicted risk has been increased during the ongoing ob-

servation period. Finally, highly ranked elevators are compared to all elevators to exam-

ine the magnitude of the maintenance effect in retrospect. Null hypothesis is that effect 

of a preventive maintenance visit is not any different within the high-rank group than it 

is on the whole population of elevators. 

3.1 Dataset 

The dataset, that was crafted to fuel the models, consists of a dynamic feature matrix 

combined with static feature matrix as depicted in Figure 6.  The combined feature ma-

trix is a multi-indexed dataset, containing 10 daily condition monitoring daily aggre-

gates for different elevators, and 3 static features as dummy time series. Rows of the 

dataset correspond to elevators, and columns correspond to days. Data preparation is 

started by forming daily condition monitoring aggregates, per elevator. For example, 

number of total door openings was one of the condition monitoring covariates that was 

aggregated per calendar day (see Table 1 for other covariates). Only elevators for which 

at least 90% of days had daily condition monitoring aggregates available were accepted 

to the dataset. Missing days (i.e. inspection steps) were filled using forward fill policy. 

Then, the obtained dataset was merged with maintenance records to denote where in the 

past and in the future the next preventive or unplanned visits have occurred. This infor-

mation gave birth to two more covariates called DaysSincePreventive and DaysSin-

ceUnplanned. Finally, static features were merged by elevator to form three static co-

variates, called NumberOfFloors, NumberOfLandingDoors, and BuildingType (a cate-

gorical feature, which was still one-hot endoded before training the models). Final di-

mensions of the dataset seen by the models were 20465 rows, 670 columns, and 27 co-

variates. 
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3.1.1 Labelling 

Each sample in the dynamic feature matrix represents an observation which is a tuple (t, 

d) where t denotes number of days to next observation and d denotes the type of obser-

vation (1 for death, 0 for loss). In this case, death corresponds to a reported door mal-

function. Loss can happen for two reasons. It may be that there is no data available after 

censoring time. Another reason for a loss can be that preventive maintenance visit has 

been done before any door malfunction has occurred. It is assumed that doors are then 

fixed to as good as new condition, which concludes the ongoing observation period and 

starts a new one. Usually malfunctions are repaired immediately during the same day 

when they were reported. In a rare case where malfunction stays active more than a sin-

gle day, all active days are labelled as deaths. 

3.2 Training and cross-validation 

Learning curves are produced using 3-times repeated group 3-fold cross-validation 

where the splits are done on elevator basis in order to avoid leaking information be-

tween test set and training set. This means that altogether 9 different C-index scores are 

calculated per training set fraction and average of these observations form each of the 

points in the learning curve. Same elevator never appears in both training and test sets. 

This method was selected to ensure that results will represent the true predicting power 

of the model on unseen data. Validation of the research hypothesis is done using the 

same method and with full dataset. In other words, the lift curves represent an average 

of 9 different cross-validation rounds. 

3.3 Performance 

Models are tuned and compared by C-index as the score, since that is designed to be 

used with censored data. Downside with C-index is its complexity O(n2). Therefore, 

number of observations is truncated to 100 000 by random choice without replacement 

when C-index is calculated. C-index is not linked to the research hypothesis very well. 

Hence, additional metrics are used to quantify the effect of preventive maintenance visit 

within a group of elevators (e.g. high-risk elevators). First, let us define a metric called 
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lift and define it as a ratio of cumulative hazards of two survival curves. Let us denote 

Lij(t) := Hj(t) / Hi(t). Lift can be interpreted as the inverse of the risk ratio for an interval 

t of two elevator populations. For example, consider two survival curves i and j that cor-

respond to two distinct elevator populations. Now, if Hi(t) < Hj(t) risk ratio would be 

less than 1, which would indicate a decreased risk level being associated to group i as 

compared to group j (i.e. when comparing their probabilities to survive until time t). The 

smaller the risk ratio, the greater the lift. Research hypothesis can now be defined for-

mally, as an expectation that for most intervals t, LiftA(t) > Lift(t), where LiftA is calcu-

lated for high-risk elevators, and Lift(t) for all elevators. 

 

Finally, a metric called gain is defined as the ratio of LiftA(t) to Lift(t). Let us denote 

Gain(t) := LiftA(t) / Lift(t). Gain is interpreted as the benefit of using model based 

scheduling over random scheduling. It yields the expected reduction in the number of 

unplanned visits as a function of days passed after the maintenance which is a relevant 

metric considering the business goal which is to decrease the rate of unplanned visits. 

4 RESULTS 

In Section 1.3, a number of research questions were posed, and a research hypothesis 

was given. In the following, research questions are answered by leveraging the con-

structed real-life dataset. This chapter is concluded by examination of the research hy-

pothesis via case study. 

4.1 Effect of a preventive maintenance visit 

Let us examine how a maintenance visit affects survival curves. See Figure 7 for two 

survival curves. 
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Figure 7. Average survival curve and survival curve after preventive maintenance. 

 

The two curves were obtained by applying Kaplan-Meier estimator. Average survival 

curve was produced by considering all observations in the dataset while second curve 

was obtained by filtering observations where planned maintenance visit had been done 

on previous day. 

4.1.1 Weibull analysis 

Next, the Weibull plot technique, described in Section 2.4.2, was used to validate 

whether the survival times can be assumed to follow the Weibull distribution. Figure 8 

shows the plot of the average survival curve and the baseline survival curve. 
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Figure 8. Weibull Plot of the Kaplan-Meier survival curves. 

 

Especially the average survival curve seems to follow the Weibull distribution well, 

since the plot implies a linear relation between x and y axis. The baseline survival curve 

follows reasonably well too, so it can be concluded that it makes sense to try out 

Weibull based survival analysis techniques. Corresponding trendlines that were fitted 

using the least squares method are shown in Figure 9. 
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Figure 9. Trendlines for Weibull plotted Kaplan-Meier survival curves. 

 

The trendlines are not parallel, which implies that Cox PH model might not yield the 

most accurate results. For the Cox PH assumption to hold, the difference of the trend-

lines should be constant, ln(HR). Now it seems that the real-life hazard ratio is not con-

stant, but proportional to time. Next, a Weibull fit was done with the observations corre-

sponding to the two survival curves using Lifelines (2019). Figure 10 shows different 

Weibull visualisations for the two populations. 
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Figure 10. Weibull distributions based on Kaplan-Meier survival curves. 

 

Now that Weibull estimates are known, let us try to answer the research question 1, 

which is “How much a preventive maintenance visit improves the door malfunction 

rate?”. This is best summarised by top right graph where hazard functions are graphed 

for the two elevator populations. It shows that maintenance clearly decreases the rate of 

door malfunctions, and that the effect is quite permanent. Subtracting the means of the 

two Weibull distributions yields 98 days.  However, the bottom right Lift curve encodes 

even more interesting information. Assuming an uninterrupted observation period t, 

Lift(t) yields the ratio of unplanned visit rates of an average elevator and a freshly main-

tained elevator. In other words, Lift(t) quantifies, on average, the future benefit of per-

forming preventive maintenance and therefore answers the research question 2, which is 

“How does the value of a preventive maintenance visit develop over time?”. The Lift 

will be leveraged also later, when the research hypothesis is examined. 
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4.2 Model validation 

Before testing for the research hypothesis, let us first examine the Cox PH model and 

WTTE-RNN model. C-index can be used to evaluate their performance. Evaluations 

were done by running Python-based Jupyter notebooks on a laptop with 16GB of RAM 

and Intel core i5-6300U CPU (2.40 GHz). 

4.2.1 Cox PH model performance 

Cox PH model was fitted with the covariate matrix. More precisely, a Cox PH model 

with elastic net penalty was used, as standard Cox PH model is not able to cope with the 

fact that some covariates were highly correlated with each other. Before fitting, all co-

variates were scaled to same range (from 0 to 10). Actual fitting took 20 minutes. Table 

1 shows the obtained hazard ratios per unit for each covariate. 

Table 1. Cox PH model hazard ratios per unit of change. 

Covariate Hazard ratio (per unit) 

NBR_DOOR_OPERATIONS 1.479 

NBR_DOOR_REOP_BY_LIGHTCURTAIN_CUTS 1.391 

NBR_DOOR_REOP_BY_OPEN_BUTTON 1.0 

NBR_DOOR_REOP_BY_SAFETY_EDGE 1.0 

NBR_DOOR_REOP_BY_UNKNOWN_REASON 1.0 

NBR_LIGHTCURTAIN_CUTS 1.0 

NBR_NUDGING 1.0 

NBR_PHOTOCELL_CUTS 1.161 

NBR_STARTS_DOWN 1.0 

NBR_STARTS_UP 1.0 
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DaysSinceUnplanned 0.819 

DaysSinceMaintenance 1.063 

NumberOfFloors 1.321 

NumberOfLandingDoors 1.047 

BuildingType [0.929,1.126] 

 

The strongest risk increasing predictors are NBR_DOOR_OPERATIONS, 

NBR_DOOR_REOP_BY_LIGHTCURTAIN_CUTS, and NumberOfFloors. Strongest 

risk decreasing predictor is DaysSinceUnplanned (perhaps if elevator has run for a long 

time without door malfunctions, it is likely to do so in future also). BuildingType ex-

pands to so many one-hot encoded columns that let us just make note of the range that 

these covariates are in and that none of them makes a very strong predictor. Recall that 

no trends or interactions are provided to the model. It is possible that via feature engi-

neering one could construct better predictors. 

 

Figure 11 shows a box plot of hazard ratios with 95% confidence intervals, variance, 

and mean. Figure 12 shows corresponding survival curves, where average Kaplan-Meier 

estimate from Figure 7 is scaled by ratio of the means of hazard ratios obtained via Cox 

PH model. Compared to stratified Kaplan-Meier estimators and Weibull fit techniques 

(cf. Figure 7 & Figure 10) the Cox PH model significantly underestimates the mainte-

nance effect, due to the PH assumption being slightly off for the dataset. 

 



44 

 

 

Figure 11. Distribution of hazard ratios. 

 

 

Figure 12. Effect of preventive maintenance by Cox PH model. 
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Figure 13 shows how C-index develops as function of training set size for the Cox PH 

model with elastic net penalty. Curves were obtained through 3-times repeated 3-fold 

group cross-validation. Hence, the model was trained 9 times (3 x 3) per each of the 

points in x-axis. Graphs shows the means of these scores, as well as the standard devia-

tions as function of training set size. 

 

 

Figure 13. Learning curves for Cox PH model with elastic net penalty. 

 

Graphs indicate that the performance converges quickly and adding more samples does 

not help much after training set size of one million samples where model is achieves its 

maximum C-index of 0.65. Early saturation of the learning curve was to be expected as 

the model is so simple. On the other hand, the model seems stable and overfitting is not 

an issue. 
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4.2.2 WTTE-RNN model performance 

Let us next build a neural network model based on WTTE-RNN (Martinsson 2016). Au-

thor of the model has released the source code in Python WTTE-RNN (2019) and it was 

used for training the model. Training set consists of a matrix whose rows correspond to 

elevators, columns correspond to days, and contents are the daily condition monitoring 

covatiates and ground truth tuples (t, d), where t denotes time to event, and d is 1 for 

death and 0 for loss. Figure 14 shows the learning curves for the model. Training of the 

model for largest training set size took 40 minutes. Model consisted of two feed-forward 

layers, followed by one LSTM layer, one dense layer, and final output layer, and had 

altogether  

 

 

Figure 14. Learning curves for WTTE-RNN. 
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Learning curves show that the model benefits of adding more samples, and that model 

generalises well. At around 10 million samples, the performance on test set equals that 

of the training set C-index being around 0.71, which is about 6 percentage points higher 

than that of the Cox PH model in saturation. 

4.3 Validation of the research hypothesis 

The research hypothesis was carved in Chapter 1 and formulated formally in Chapter 3. 

To validate the hypothesis via case study let us graph metrics LiftA(t) and Lift(t) for both 

models. 

4.3.1 Lifts from Cox PH model 

To calculate lift for Cox PH model, 3-times repeated 3-fold group cross-validation was 

performed on the dataset to label samples as either high rank or low rank samples. For 

each round, train set was used to fit Cox PH model with elastic net penalty and fitted 

model was used to predict risk ratios for the test samples. Then each prediction was 

normalised by subtracting the baseline risk ratio which was the prediction on the first 

day of the observation period. This gave the rank of the elevator, which can be inter-

preted as potential to benefit from a maintenance visit. Top 15% of the ranks were 

deemed as high rank and the rest as low rank. This threshold was selected ad hoc, be-

cause it provided enough elevators in high rank group that had been maintained (com-

puting survival curves for a group that has under 20 members is not reliable, and used 

math package gave a warning about that). Weibull fit was done on all rounds, and corre-

sponding survival curves and lift curves were calculated. Figure 15 shows average of 

the survival curves for high rank elevators (group A) and all elevators. 
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Figure 15. Survival curve estimates in the case study with Cox PH model. 

 

Research hypothesis is validated by examination of the graphs LiftA(t) and Lift(t) that are 

shown in Figure 16 as well their relation referred to as Gain(t) := LiftA(t) / Lift(t). Left 

y-axis is for the lifts, while right y-axis is for the gain. 
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Figure 16. Lifts and gain in the case study (Cox PH model). 

 

Fixing maintenance interval to, for example, 300 days the Cox PH model based sched-

uling would produce 13% less unplanned visits, than the current scheduling (gain being 

1.15 at 300 days). To see this, recall that lift yields the ratio of unplanned visit rates of 

an average elevator and a freshly maintained elevator. Now, let us denote that a mainte-

nance visit reduces the rate of future unplanned visits by factor X in all elevators group 

and factor XA in the high rank group. Writing X = 1 / Lift  and XA = 1 / LiftA, yields Gain 

= X / XA. Gain being 1.15 at 300 days means that the ratio of expected rates of un-

planned visits right after maintenance in the two groups is XA / X = 1 / 1.15 which is 

around 0.87.  In other words, expected value of unplanned visits in the high rank group 

is 13% less than that in the all elevators group. 
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4.3.2 Lifts from WTTE-RNN model 

Similar exercise was done with WTTE-RNN model. Figure 17 graphs the average of the 

survival curves for the high rank elevators (group A) and all elevators. 

 

 

Figure 17. Survival curve estimates in the case study with WTTE-RNN model 

 

Figure 18 shows corresponding lifts and gain for the WTTE-RNN model. The gain for 

300 day maintenance interval is 1.39 as compared to that of 1.15 obtained with the Cox 

PH model. Respective reductions in the amount of unplanned visits are 28% and 13%. 
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Figure 18. Lifts and gain in the case study (WTTE-RNN model). 

 

5 CONCLUSIONS 

The aim of the thesis was to study how elevator doors respond to maintenance and how 

a prognostic model could be used to decrease the rate of elevator door malfunctions by 

scheduling the preventive maintenance visits according to model recommendations. 

Idea being that a prognostic model could be used to filter out elevators that would bene-

fit most of a preventive maintenance visit.  

 

Survival analysis methods were used to analyse available data that consisted of mainte-

nance records and condition monitoring data (20 thousand elevators for a period of two 

years). Condition monitoring data was aggregated on a daily level. First, stratified sur-
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vival curves were obtained by fitting a non-parametric Kaplan-Meier estimator with the 

maintenance records. This was done for two groups: all elevators and freshly main-

tained elevators. In addition, the so-called Weibull plot technique was used to establish 

that survival times roughly adhere to the Weibull distribution. This justified performing 

stratified Weibull fit for the two groups, which gave a nice continuous visualization of 

how a maintenance visit generally improves door malfunction rate (research question 1), 

and how the value of a preventive maintenance visit develops over time (research ques-

tion 2). 

 

Next, a real-life dataset was built using both the maintenance records and condition 

monitoring data and a semi-parametric model called Cox PH model was used to approx-

imate the survival. As opposed to Kaplan-Meier estimator, a trained Cox model can be 

inferenced for survival using condition monitoring data. Performance of the model was 

evaluated using cross-validation and a metric called C-index. A comparative analysis to 

a more complex neural network model called WTTE-RNN was performed. It was estab-

lished that the C-index for the models in saturation were 0.65 and 0.71 for the Cox PH 

model and the WTTE-RNN model respectively. This analysis answered the research 

question 3 (“How well certain mathematical models can predict the risk of malfunction 

based on condition monitoring data?”). 

 

Finally, a method was put forward for decreasing the rate of door malfunctions via con-

dition monitoring based scheduling of preventive maintenance. Method relies on first 

inferencing a prognostic model for daily survival estimates of all elevators since start of 

their current observation periods. These predictions are then used for evaluating drift in 

elevator condition. Elevators having the highest drift are thought to benefit most of a 

preventive maintenance visit. Research hypothesis was that if scheduling of preventive 

maintenance visits would be based on the model recommendations (i.e. the drift), rather 

than calendar based scheduling, then the rate of door malfunctions would be decreased. 

A case study was made to validate the research hypothesis using the proposed method 

with historical data. Both the Cox PH model and the WTTE-RNN were evaluated.  

 

In the case study, prognostic model recommendations were used for selecting daily high 

rank elevators. Then, stratified survival curves were calculated by performing a Weibull 
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fit for the freshly maintained elevators and all elevators. This was done separately for 

the high rank elevators and all elevators (i.e. four survival curves were obtained alto-

gether). A function called Lift was defined to capture the maintenance effect as a func-

tion of time (i.e. how a preventive maintenance visit generally enhances survival within 

the particular group of elevators). Using the four survival curve estimates, two lift 

curves were formed for high rank elevators, and all elevators respectively. Lastly, a 

concept called Gain was used for comparing the maintenance effect within the high 

rank elevators and all elevators. A Gain curve was obtained by division of the two lift 

curves. From the Gain curve, a result was derived, that the proposed scheduling method 

would decrease the door malfunction rate by 13% using the Cox PH model and by 28% 

using the WTTE-RNN model (when maintenance interval of 300 days was assumed).  

 

Since the case study was made in retrospect, it is not possible to anticipate the exact 

change in the rate of reported door malfunctions should the proposed method be used in 

real-life. In the beginning, the algorithm could be able to select elevators whose doors 

would benefit significantly from maintenance. However, it is not clear how soon such 

high lift elevators would run out, leaving scheduling algorithm with a fairly homoge-

nous group of elevators to select from. Another practical point to consider is that the 

loss function of the WTTE-RNN model relies on censoring process being non-

informative. Now, if scheduling decisions would be based on the WTTE-RNN model, 

then censoring would no longer be strictly non-informative (as preventive visit causes 

censoring). Observation periods that end due to preventive maintenance visit being 

scheduled by the model should in theory be dismissed from future training sets. This 

could limit the usefulness of the method. Due to these reasons, it would be subject for 

further work to quantify the real-life benefit of leveraging the methods discussed in the 

thesis. A comparison between the proposed condition monitoring based scheduling and 

calendar based scheduling would provide clearly quantified results on the efficacy and 

applicability of the proposed method. 

 



 

 

 

REFERENCES 

Armitage P., Berry G., Matthews J.N.S. 2002, Statistical methods in medical research, 

4th ed., Blackwell Publishing, pp. 85-86.  

 

Bland, J.M. & Altman, D.G. 2004, The logrank test: British Medical Journal, Vol. 328, 

Issue 7447, p. 1073.  

 

Bousdekis, A. et al. 2018, Review, analysis and synthesis of prognostic-based decision 

support methods for condition based maintenance: Journal of Intelligent Manufacturing, 

Vol. 29, No. 6, pp. 1303–1316.   

 

Castro, I. T. et al. 2012, A predictive maintenance strategy based on mean residual life 

for systems subject to competing failures due to degradation and shocks: 11th Interna-

tional Probabilistic Safety Assessment and Management Conference and the Annual 

European Safety and Reliability Conference 2012, PSAM11 ESREL 2012, 1, pp. 375–

384.  

 

Christ, M. & Braun, N. & Neuffer, J. & Kempa-Liehr A.W. 2018, Time Series FeatuRe 

Extraction on basis of Scalable Hypothesis tests (tsfresh -- A Python package): Neuro-

computing 307, pp. 72-77.  

 

Cox, D.R. 1972, Regression Models and Life-Tables: Journal of the Royal Statistical 

Society. Series B (Methodological), Vol. 34, No. 2, pp. 187–220. 

  

Cox, D.R. 1975, Partial likelihood: Biometrika, Vol.62, No. 2, pp. 269–276. 

 

De Laurentiis, M., Ravdin, P.M., (1994), ‘Survival analysis of censored data: Neural 

network analysis detection of complex interactions between variables.’, Breast Cancer 

Research Treatment 32, pp. 113–118.  

 



 

 

 

Deep-TTF 2018. Available from https://github.com/gm-spacagna/deep-ttf/, Accessed 

3.3.2020. 

 

Dittman, D. and Khoshgoftaar, T. (2014) ‘Comparison of Data Sampling Approaches 

for Imbalanced Bioinformatics Data’, The Twenty-Seventh …, pp. 268–271. Available 

at: http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/paper/viewFile/7850/7850  

 

Giunchiglia, E. & Nemchenko, A. & van der Schaar, M. 2018, RNN-SURV: A deep 

recurrent model for survival analysis: Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

11141 LNCS, pp. 23–32.  

 

Harrell, F.E. et al 1982, Evaluating the yield of medical tests: JAMA - Journal of the 

American Medical Association, Vol. 247, No. 18, pp. 2543–2546.  

 

Jing, B. et al. 2019, A deep survival analysis method based on ranking: Artificial Intel-

ligence in Medicine, Elsevier, Vol. 98, pp. 1–9. 

 

Kaplan, E. L. and Meier, P. (1958) ‘Nonparametric estimation from incomplete sam-

ples’, J. of the ASA, 73(282), pp. 457–481. Available at: 

https://web.stanford.edu/~lutian/coursepdf/KMpaper.pdf.  

 

Lee, H. et al. (2010) ‘Toward optimal churn management: A partial least square (PLS) 

model’, 16th Americas Conference on Information Systems 2010, AMCIS 2010, 

2(July), pp. 961–971. Available at: https://www.scopus.com/inward/record.uri?eid=2-

s2.0-84870447433&partnerID=40&md5=de6940dc252b840c89af555ff5d049be.  

  

Leontjeva, A. & Kuzovkin, I. 2016, Combining static and dynamic features for multi-

variate sequence classification: Proceedings - 3rd IEEE International Conference on 

Data Science and Advanced Analytics, DSAA 2016, pp. 21–30.  

 

https://github.com/gm-spacagna/deep-ttf/


 

 

 

Lifelines. 2019. Available from https://lifelines.readthedocs.io/en/latest/ Accessed 

3.3.2020. 

 

Mantel, Nathan. 1966. ‘Evaluation of Survival Data and Two New Rank Order Statis-

tics Arising in Its Consideration.‘ Cancer Chemotherapy Reports 50 (3): 163–70.  

 

Martinsson, E. (2016) ‘WTTE-RNN : Weibull Time To Event Recurrent Neural Net-

work A model for sequential prediction of time-to-event in the case’. Available at: 

https://ragulpr.github.io/assets/draft_master_thesis_martinsson_egil_wtte_rnn_2016.pdf  

 

Nalchigar, S. & Yu, E. 2018, Business-driven data analytics: A conceptual modeling 

framework: Data & Knowledge Engineering, Elsevier Ltd, Vol. 117, pp. 359–372.  

 

Nelson, W.B. 2004, Applied Life Data Analysis, John Wiley & Sons, 664 pages. 

 

Ohno-Machado, L. 1996, Sequential use of neural networks for survival prediction in 

AIDS: Proceedings  of a conference of the American Medical Informatics Association, 

AMIA Fall Symposium, pp. 170–174.  

 

Raykar, V.C. et al. 2008, On ranking in survival analysis: Bounds on the concordance 

index: 20th NIPS, pp. 1209–1216. 

 

Schober, P. & Vetter, T.R. 2018, Survival analysis and interpretation of time-to-event 

data: The tortoise and the hare: Anesthesia and Analgesia, Vol. 127, No. 3, pp. 792–

798.   

 

Scholz, F. (2008) ‘Inference for the Weibull Distribution’, Stat 498B Industrial Statis-

tics, 632, p. 59. Available at: 

http://www.stat.washington.edu/fritz/DATAFILES498B2008/WeibullBounds.pdf.  

 

https://lifelines.readthedocs.io/en/latest/


 

 

 

Scikit-survival. 2019. Available from https://github.com/sebp/scikit-survival/ Accessed 

3.3.2020. 

 

Vanderplas et al (2012), ‘Introduction to astroML: Machine learning for astrophysics’, 

proc. of CIDU, pp. 47-54.  

 

Weibull, W. 1951, A statistical distribution function of wide applicability: ASME Jour-

nal of Applied Mechanics, Vol. 18, No. 3, pp. 293–297.  

 

Widrow, B. 2005, Thinking about thinking: The discovery of the LMS algorithm: IEEE 

Signal Processing Magazine, Vol. 22, No. 1, pp. 100–103.  

 

WTTE-RNN 2019. Available from https://github.com/ragulpr/wtte-rnn/ Accessed 

3.3.2020. 

 

Wolstenholme, L.C. 1999, Reliability Modelling: A Statistical Approach, Chapman and 

Hall/CRC, 256 pages. 

 

Wu, S. J. et al. 2007, A neural network integrated decision support system for condi-

tion-based optimal predictive maintenance policy: IEEE Transactions on Systems, Man, 

and Cybernetics Part A:Systems and Humans, Vol. 37, No. 2, pp. 226–236. 

https://github.com/sebp/scikit-survival/
https://github.com/ragulpr/wtte-rnn/

