
LAB University of Applied Sciences
Technology Lappeenranta
Mechanical Engineering and Production
Technology

 Muhammad Usman

Quadcopter Modelling and Control With
MATLAB/Simulink Implementation

Thesis 2020

2

Abstract

Muhammad Usman
Quadcopter Modelling and Control with MATLAB/Simulink Implementation, 68
pages
LAB University of Applied Sciences
Technology Lappeenranta
Mechanical Engineering and Production Technology
Bachelor’s Thesis 2019
Instructors: Senior University Lecturer Kiviluoma Panu, Aalto University
Supervisor: Jukka Nisonen, LAB University of Applied Sciences;

The objective of the project was to design a Proportional, Integral and Derivative
(PID) based controller in MATLAB/Simulink to achieve attitude control of the
quadcopter.

A controller built upon the mathematical model of kinematics and dynamics of the
vehicle was Implemented and tested on an Arduino hardware for data collection
and control system evaluation. Internet was the primary source of information and
study material on the project. Besides internet, books, articles and online training
programmes related to the topic were also consulted.

The simulation results of the designed model were quite satisfactory. On the real
hardware the controller could lift the quadcopter from the ground while moving in
random directions to achieve stability for hovering, as the controller was not de-
signed to maintain the take-off position of the vehicle. However, because of hard-
ware limitations, processing signals scaling and limiting time for PIDs tuning the
take-off behaviour of the quadcopter was not as expected from simulation studies
of the model.

Further PIDs tuning is required for improved control and smoother flights. In ad-
dition to this hardware board with more computational power, real-time wireless
communication and better compatibility with MATLAB/Simulink can be introduced
to make tuning process easy and safe.

Keywords: Quadcopter, control system, PID, MATLAB/Simulink, mathematical
model, kinematics, dynamics, Arduino, simulation, computation, communication,
tuning

3

Abbreviations

PID – Proportional, Integral, Derivative
UAV – Unmanned Aerial Vehicle
ESC – Electronic Speed Controller
PWM – Pulse Width Modulation
PPM – Pulse Position Modulation
RPM – Rotations Per Minute
Hz – Hertz
MHz – Megahertz
LQR – Linear Quadratic Regulator
DC – Direct Current
ID – Identification
IMU – Inertial Measurement Unit
LiPo – Lithium Polymer
NED – North East Down
GPS – Global Positioning System
BLDC – Brushless DC
ESP – Espressif System
TCP – Transmission Control Protocol
IP – Internet Protocol
I²C – Inter-integrated circuit
SCL – Serial Clock
SDA – Serial Data
VOTL – Vertical Take-off and Landing
MCU – Microcontroller Unit
FLA – Fast Lightweight Autonomy
KV – Constant Velocity
MEMS – Micro Electromechanical Sensor
3-D – Three Dimensions
6-DOF – Six-degrees of Freedom
SRAM - Static Random-Access Memory
AVR - Alf and Vegard's RISC processor
RISC - Reduced Instruction Set Computer

4

Table of Contents

1 Introduction .. 6
1.1 Quadcopter ... 6
1.2 Background Studies .. 6
1.3 Scope of Thesis .. 7

2 Vehicle Dynamic .. 8
2.1 Six-Degrees of Freedom (6-DOF) .. 8
2.2 Orientation and Frames of References ... 8
2.3 Euler Angels ... 9
2.4 Equations of Motion .. 11

2.4.1 Variables .. 11
2.4.2 Inertial Motion in Body Frame .. 12
2.4.3 The Chain Rule .. 12

2.5 Newton’s 2nd Law of Motion .. 12
2.5.1 External Forces and Moments ... 13
2.5.2 Thrust .. 13
2.5.3 Gravity in Body Frame ... 14
2.5.4 Moments of Inertia ... 15
2.5.5 Linear Acceleration and Motion ... 15
2.5.6 Rotational Acceleration .. 16
2.5.7 Angular Velocity and Euler Angles .. 16
2.5.8 Inertial Coordinate ... 16
2.5.9 Non-Linear Equations .. 17

3 Components ... 18
3.1 Frame ... 18
3.2 Propellers/Rotors .. 19
3.3 Motors ... 20
3.4 Electronic Speed Controllers (ESCs) .. 21
3.5 Battery .. 22
3.6 Transmitter .. 23
3.7 Receiver .. 23
3.8 Flight Controller .. 24

3.8.1 Inertial Measurement Unit (IMU) ... 24
3.8.2 Arduino Electronics Platform and Microcontroller Unit (MCU) 26
3.8.3 I2C Communication .. 26
3.8.4 Quadcopter Schematics .. 27

4 Simulink Modelling ... 28
4.1 Plant Model ... 28

4.1.1 Orientation and Motors .. 29
4.1.2 Rotational Dynamics .. 30

4.2 Linear Dynamics ... 32
4.3 Constraints .. 34
4.4 Model Verification ... 35

5 PID Controller .. 37
5.1 Plant Model Controller .. 37
5.2 Controller Tuning .. 39
5.3 Tuning Process ... 39

5.3.1 Altitude PID Tuning .. 39
5.3.2 Roll (Phi) and Pitch (Theta) PID Tuning 42

5

5.3.3 Yaw (Psi) PID Tuning .. 43
6 Trajectory ... 45
7 Implementation .. 47

7.1 Simulink Receiver Model .. 48
7.2 Controller .. 49
7.3 Scaling .. 50
7.4 Implementation Model Tuning .. 54

8 Conclusion ... 56
9 Future Work ... 57
Appendices 1 .. 58

A.1 Weight of The Vehicle ... 58
A.2 Inertia of the Vehicle ... 58

A.2.1 Yaw Moment of Inertia .. 58
A.2.2 Roll and Pitch Moment of Inertia .. 59

A.3 Propeller Moment of Inertia ... 59
A.4 Thrust Coefficient .. 59
A.5 Drag Torque Coefficient .. 60
A.6 Air Resistance ... 60

Figures .. 61
Tables ... 64
References .. 65

6

1 Introduction

1.1 Quadcopter

A quadcopter also known as a quadrotor is a multi-rotor unmanned aerial vehicle
(UAV). Quadcopters falls in the category of vertical take-off and landing (VTOL)
UAVs. A quadcopter has four rotors in square formation at the equal distance
from the centre of mass of the vehicle. Speed of the rotors is manipulated to
perform different maneuvers, hovering, take-off and landing.

Before GPS and internet, drones were only available for military use, but with
continuous development in the UAV technology and exceptional growth rate in
the previous ten years the drones have become very popular among the civil
sector. With growth in popularity drones market was valued at 18.14 billion USD
and it is expected to reach 52.30 billion USD by 2025 (Markets 2018.)

Advancement and introduction of an impressive technology in drones has devel-
oped new fields of applications for it. Today drones are being used in several
areas for various purposes. Stated below are some of common areas of drones
applications. (Fiaz and Mukarram 2018a; VBROADCAST LIMITED 2019.)

• Aerial photography

• Search and rescue

• Agriculture

• Shipping and delivery

• Engineering applications

• 3-D mapping

• Research and science

• Aerial surveillance

• Minerals exploration

• Military use, etc

1.2 Background Studies

Quadcopter as a testing platform for different control strategies attracts people
related to control engineering. A lot of research is happening on quadcopters to
achieve desired maneuverability and hovering while using various control strate-
gies such as Linear Fuzzy Logic, Quadratic Regulator (LQR) control, Adaptive
control, Predictive control, Robust control etc. (Fiaz and Mukarram 2018b.)

In Munich Technical University Computer Vision Group is doing research on an
autonomous quadcopter. The autonomous quadcopter will be able to, localize

7

and navigate in the 3D environment. They are interested in using monocular
stereo and RGB-D cameras as the main sensor. (Technical University of Munich
2014.)

A team of researchers is working on Fast Light weight Autonomy program in
DARPA (AGENCY 2017). The purpose of the researchers is to enable
quadcopter to fly through obstacles and buildings at a speed of 20 m/s. Drone
would be able to use onboard camera and sensor as eyes to see around. An
advanced algorithm will be developed which will use data from camera and
sensors to make decision without human interference. (DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY 2017.)

In Middle East Technical University altitude control was developed by using
Linear Quadratic Regulator (LQR) (ÇAMLICA 2004).

1.3 Scope of Thesis

The objective of the project is to utilize the existing material to understand dy-
namic equations and behaviour of quadcopters. Depending on the dynamic equa-
tions of the quadcopter a Proportional, Integral and Derivative (PID) based
MATLAB/Simulink control system will be designed and implemented to achieve
control of the quadcopter. The designed controller will be able to control attitude
of the vehicle (Roll, Pitch and Yaw). This paper will explain the PID controllers
tuning process and integration of the designed controller with real hardware in
detail. The project is primarily focused on the PID controller, other control strate-
gies are not explained in this project. Altitude control and autonomous navigation
are not part of the project, altitude and position of the vehicle in an inertial frame
will be controlled by the pilot commands.

Hardware board, Sensors, Electrical and Mechanical components will be se-
lected, and their general working and compatibility to each other will be discussed
for implementation of the controller on the actual system. However, components
manufacturing process, materials and detailed working are not concerned with
the purpose of the project.

8

2 Vehicle Dynamic

It is very important to have the concept of 6-degrees of freedom (6-DOF) to de-
scribe the motion of the quadcopter in terms of equations. 6-DOF concept gives
the position and the orientation of the vehicle in three dimensions (3-D). Vehicles
dynamic equations simply represent the change in orientation and position over
time. We assume that in our case the earth is flat, the force of gravity is constant,
centre of mass is equal to center of gravity and quad-copter structure is rigid
(Tytler 2017a.)

2.1 Six-Degrees of Freedom (6-DOF)

The position of the vehicle can be described easily by three coordinates in space,
but to achieve the control on the vehicle we must be aware of the orientation of
the vehicle in space as well. To describe the dynamics (Position vs time and Ori-
entation vs time) in space we need to describe the position of all points on vehi-
cles body, which can be done with six-Coordinates (Two Frames of References),
originating the concept of six-degrees of freedom (6-DOF) (Figure 1). (Tytler
2017a.)

Figure 1. Six-Degrees of Freedom (Wikipedia 2019)

2.2 Orientation and Frames of References

Position of the vehicle can be described by x, y and z coordinates, giving the
respective distance from an origin fixed to the earth known as the inertial frame
of reference, and coordinates are usually in the cardinal directions North, East
and Down. To represent the orientation or attitude of the vehicle φ, θ and ψ angles
are used with respect to the body frame reference which is a coordinate system
with its origin at body center of gravity (Cg). Figure 2 is the representation of the
frames of references for visualization and better understanding.

9

Figure 2. Inertial and Body Frames of References (Tytler 2017b)

2.3 Euler Angels

For this project, we are mainly focusing on the attitude control of the quadcopter.
There are some ways to get the orientation of the vehicle, for example, Trigono-
metric functions, Euler angles and Quatrains. For the sake of simplicity, we will
use Euler angles even though there are some singularity issues. By Euler angles
we can find the final orientation of the vehicle with-respect to the body frame by
using an inertial to body frame transformation matrix. It is convenient to use matrix
multiplication for vector transformation. Let us say (x, y and z) is an inertial frame
of reference and (b1, b2 and b3) is a body frame of reference. Rotation around
one of the body frame axis results in the displacement of the other two body frame
axises with-respect to inertial frame axes. At the same time the rotation axis re-
mains parallel to the corresponding inertial axis. Rotated body frame axises can
be represented as inertial trigonometric function equations. Trigonometric equa-
tions can be later expressed in matrix forms. Similarly, we can get two other ma-
trices by rotating other two body frame axises. Figure 3 shows the rotation of all
three-body frame axises b1, b2 and b3 with respect to corresponding inertial
frame axises, inertial trigonometric function equations and their matrix represen-
tations.

10

Figure 3. Euler Angles (Tytler 2017a)

Orderly combination of these three matrices (Figure 3) gives the inertial to body
frame transformation matrix. Order of the operations is really important.

	"
𝑏$
𝑏%
𝑏&
' = "

1 0 0
0 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜙)
0 − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

' "
𝑐𝑜𝑠(𝜃) 0 − 𝑠𝑖𝑛(𝜃)
0 1 0

𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)
' "

𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛(𝛹) 0
− 𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝛹) 0

0 0 1
' 6
𝑥
𝑦
𝑧
:			(1)

All three matrices representing the trigonometric equations are multiplied to get
a single transformation matrix 𝐶<= shown in equation 2 which will be used for in-
ertial to body frame transformation.

"
𝒃𝟏
𝒃𝟐
𝒃𝟑
' = B

𝒄𝒐𝒔(𝜽) 𝒄𝒐𝒔(𝜳) 𝒄𝒐𝒔(𝜽) 𝒔𝒊𝒏(𝜳) − 𝒔𝒊𝒏(𝜽)
−𝒄𝒐𝒔(𝝓) 𝒔𝒊𝒏(𝜳) + 𝒄𝒐𝒔(𝜳) 𝒔𝒊𝒏(𝜽) 𝒔𝒊𝒏(𝝓) 𝒄𝒐𝒔(𝜳) 𝒄𝒐𝒔(𝝓) + 𝒔𝒊𝒏(𝜽) 𝒔𝒊𝒏(𝝓) 𝒔𝒊𝒏(𝜳) 𝒄𝒐𝒔(𝜽) 𝒔𝒊𝒏(𝝓)
𝒔𝒊𝒏(𝜳) 𝒔𝒊𝒏(𝝓) + 𝒄𝒐𝒔(𝜳) 𝒄𝒐𝒔(𝝓) 𝒔𝒊𝒏(𝜽) − 𝒔𝒊𝒏(𝝓) 𝒄𝒐𝒔(𝜳) + 𝒄𝒐𝒔(𝝓) 𝒔𝒊𝒏(𝜽) 𝒔𝒊𝒏(𝜳) 𝒄𝒐𝒔(𝜽) 𝒄𝒐𝒔(𝝓)

L 6
𝒙
𝒚
𝒛
: 			(𝟐)

For transformation from body to inertial frame theoretically the inverse of the
trans- formation matrix 𝐶=< is used. As transformation matrices are orthonormal,
we can simply use the transpose of the transformation matrix Rt=R−1.
Equation 3 shows transpose of the equation 2 matrix.

6
𝑥
𝑦
𝑧
: 		= B

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛹) −𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝛹) + 𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝛹) 𝑠𝑖𝑛(𝜙) + 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃)
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝛹) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝛹) + 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛹)
− 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

L "
𝑏$
𝑏%
𝑏&
'			(3)

Now using the equations 2 and 3, we can find the orientation of the vehicle with
respect to body frame and inertial frame. (Tytler 2017a.)

11

2.4 Equations of Motion

2.4.1 Variables

Now we can define the position and orientation of the vehicle in space. To get
equations of motion of the vehicle we need variables (Table 1) to represent the
linear and angular velocity of the quadcopter. Using right-hand rule and old con-
vention referring X, Y and Z to North, East and Down respectively, we can derive
the equations of dynamics. (Tytler 2017b.)

Table 1. Variables

Linear velocity variables

VR Linear velocity in body frame

u Longitudinal velocity

v Lateral velocity

w Normal velocity

Rotational velocity variables

𝒲R Rotational velocity in body frame

p Roll rate

q Pitch rate

r Yaw rate

Forces

F[Force in X direction

F\ Force in Y direction

F] Force in Z direction

Euler angles

ϕ Roll angle

θ Pitch angle

Ψ Yaw angle

Moments or Torques

12

L Rotational moment along x axis

M Rotational moment along y axis

N Rotational moment along Z axis

2.4.2 Inertial Motion in Body Frame

As we have assumed that vehicle body is rigid, there is no movement in the body
parts regarding body frame. Our sensors and propellers are attached to the body,
so we want to derive equations of motion in the body frame coordinates inde-
pendent of an inertial frame. Later these equations could be used with any inertial
starting point. (Tytler 2017b.)

2.4.3 The Chain Rule

The chain rule represents the inertial motion in body frame and simultaneously
gives the mathematical representation. We take the derivative of inertial frame
vectors to represent them in body frame. Chain rule of derivation gives the deriv-
ative of both the change because of the time derivative of the vector within the
coordinate frame, as well as the time derivative of the coordinate frame rotation.
Where 𝑏a$, 𝑏a%	and 𝑏a& in equation 4 are unit vectors associated with body frame to
represent the inertial frame velocity in the body frame.

	𝑉= = 6
𝑢
𝑣
𝑤
:
=

= 𝑢𝑏a$ + 𝑣𝑏a% + 𝑤𝑏a&			(4)

Applying the Chain rule on equation 4 we get equation 5.

g
𝑑𝑉
𝑑𝑥ij<klmjno

= g
𝑑𝑢
𝑑𝑡 𝑏

a$ +
𝑑𝑣
𝑑𝑡 𝑏

a% +
𝑑𝑤
𝑑𝑡 𝑏

a&i + q𝑢
𝑑𝑏a$
𝑑𝑡 + 𝑣

𝑑𝑏a%
𝑑𝑡 + 𝑤

𝑑𝑏a&
𝑑𝑡 r			(5)	

In equation 5 above, the first set of parentheses represent inertial velocity in the
body coordinates. The second set represent velocity change due to coordinate
frame rotation. The equation 5 above can be written as equation 6 using the
Coriolis Theorem, which is cross product of angular velocity with velocity vector
representing frame rotation. (Tytler 2017b.)

𝑉̇j<klmjno = 𝑉̇= +𝒲<
= × 𝑉=			(6)

Further it can be represented as a skew-symmetric matrix as shown in the
equation 7.

𝒲 × 𝑣 = [𝒲 ×]𝑣 = B
0 −𝜔z 𝜔{
𝜔z 0 −𝜔|
−𝜔{ 𝜔z 0

L 𝑉			(7)

2.5 Newton’s 2nd Law of Motion

So far, we can switch between the inertial and body frame, and can get inertial
motion in the body frame of reference. To derive linear and rotational equations

13

of motion we use Newtons Second Law of motion summarized as force (F) equals
change in momentum (P) or mass (m) times acceleration (a) or derivative of
velocity (v), represented in equation 8.

𝐹 =
𝑑𝑃
𝑑𝑡 = 𝑚

𝑑𝑉
𝑑𝑡 = 𝑚𝑎			(8)

The equation 8 giving linear momentum, can be used to get angular momentum
(Equation 9) by multiplying with a position vector (r	��⃗).

𝐻 = 𝑟	��⃗ × 𝐹 = 𝑟	��⃗ × 𝑚
𝑑𝑉
𝑑𝑡 			(9)

Further simplified as the moment (M) equals change in angular momentum (H)
which can be replaced with the product of moment of inertia (I) for continuously
mass distributed objects and angular acceleration (Ω), where 𝛺 is the derivative
of angular velocity (ω). The equation 9 becomes as follows (Equation 10). (Tytler
2017a.)

𝑀 =
𝑑𝐻
𝑑𝑡 = 𝐼

𝑑𝜔
𝑑𝑡 = 𝐼𝛺			(10)

We will derive linear and rotational equations separately.

2.5.1 External Forces and Moments

For translation equations of motion, we need to know the external forces and
moments acting on the body of the vehicle

2.5.2 Thrust

Thrust produced by the propellers of the quadcopter acts perpendicular to the
vehicle and moment acts at the centre of gravity of the vehicle. Figure 4 shows
the distance of propellers from the centre of gravity (CG) of the vehicle. These
distances are later used to calculate the moment around the centre of gravity of
the vehicle.

Figure 4. Propellers Distance from centre of gravity (CG) (Tytler 2017b)

14

Following equation 11 represent the thrust equation of the vehicle.

B
𝐹|
𝐹{
𝐹z
L="

0
0

−𝐹$ − 𝐹% − 𝐹& − 𝐹�
'			(11)

Moments are simple product of forces and distance from the centre of gravity
around all three axes of the body frame.

Equation 12 shows moment along X axis of the vehicle.

𝐿 = 𝐹$𝑑${ − 𝐹%𝑑%{−𝐹&𝑑&{ + 𝐹�𝑑�{			(12)

Equation 13 shows moment along Z axis of the vehicle.

𝑀 = −𝐹$𝑑$| + 𝐹%𝑑%|−𝐹&𝑑&| + 𝐹�𝑑�|			(13)

Yaw is produced in quadcopter by the rotation of the propellers. Two propellers
rotate clockwise and other two rotate counter-clockwise to balance the yaw mo-
ment (Figure 5). Equation 14 shows how to calculate yaw moment of the quad-
copter.

𝑁 = −𝑇(𝐹$𝑑$|𝑑${) + −𝑇(𝐹%𝑑%|𝑑%{)+𝑇(𝐹&𝑑&|𝑑&{)+𝑇(𝐹�𝑑�|𝑑�{)			(14)

Figure 5. Motors rotation direction for yaw moment (Black Tie Aerial 2014)

2.5.3 Gravity in Body Frame

The force of gravity acting on the vehicle can be represented in the body frame
using Euler angles. Transformation matrix 𝐶<= from equation 2 can be used for
this purpose. Where 𝐶<= is an inertial to body frame transformation matrix, 𝐹�< and
𝐹�= represents the force of gravity in inertial and body frames of references re-
spectively. Equation 15 shows the force of gravity in an inertial frame of reference.

15

𝐹�< = "
0
0
𝑚𝑔

'			(15)

Equation 15 is multiplied with inertial to body frame transformation matrix 𝐶<= to
get force of gravity in body frame of reference (Equation 16).

𝐹�= = 𝐶<=𝐹�< = B
𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛹) − 𝑠𝑖𝑛(𝜃)

−𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝛹) + 𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)
𝑠𝑖𝑛(𝛹) 𝑠𝑖𝑛(𝜙) + 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝛹) + 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

L "
0
0
𝑚𝑔

'			(16)

After multiplication, equation 16 simplifies as equation 17.

𝐹�= = B
−𝑚𝑔 𝑠𝑖𝑛(𝜃)

𝑚𝑔 𝑠𝑖𝑛(𝜙) 𝑐𝑜 𝑠(𝜃)
𝑚𝑔𝑐𝑜𝑠(𝑚𝑔 𝑐𝑜𝑠(𝜙) 𝑐𝑜 𝑠(𝜃))

L 			(17)

2.5.4 Moments of Inertia

Moment of inertia gives the amount of moment needed to rotate a still object and
moment needed to stop a rotating object. We need moment around all three axes
of the vehicle, so we will present it in matrix form (Equation 18). Moment of inertia
is the square of distance from the centre of mass of the body.

𝐼 = B
𝐼|| −𝐼{| −𝐼|z
−𝐼|{ 𝐼{{ −𝐼{z
−𝐼|z −𝐼{z 𝐼zz

L 			(18)

For a symmetrical body the moment of inertia on opposite sides of the vehicle
cancel each other. We have assumed our vehicle is symmetrical, So our inertia
matrix will be simplified as follows (Equation 19). (Tytler 2017b.)

𝐼 = B
𝐼|| 0 0
0 𝐼{{ 0
0 0 𝐼zz

L			(19)

2.5.5 Linear Acceleration and Motion

Using Coriolis theorem (Equation 6), we can convert inertial acceleration into ro-
tating body frame. Equation 20 shows the inertial acceleration conversion into
body frame acceleration.

𝑉̇= = "
𝑢̇
𝑣̇
𝑤̇
'
=

+ "
0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

' 6
𝑢
𝑣
𝑤
:
=

= "
𝑢̇ + 𝑞𝑤 − 𝑟𝑣
𝑣̇ + 𝑟𝑢 − 𝑝𝑤
𝑤̇ + 𝑝𝑣 − 𝑞𝑢

'		(20)

By putting forces and acceleration in Newton’s 2nd law F=ma we can get linear
motion (Equations 21).

B
−𝑚𝑔 𝑠𝑖𝑛(𝜃)

𝑚𝑔 𝑠𝑖𝑛(𝜙) 𝑐𝑜 𝑠(𝜃)
−𝐹$ − 𝐹% − 𝐹& − 𝐹�𝑚𝑔𝑐𝑜𝑠(𝑚𝑔 𝑐𝑜𝑠(𝜙) 𝑐𝑜 𝑠(𝜃))

L = 𝑚 "
𝑢̇ + 𝑞𝑤 − 𝑟𝑣
𝑣̇ + 𝑟𝑢 − 𝑝𝑤
𝑤̇ + 𝑝𝑣 − 𝑞𝑢

'			(21)

16

2.5.6 Rotational Acceleration

Using Coriolis Theorem (Equation 6) again as above in equation 20, we can get
rotational acceleration (Equation 22), the difference is that, here we use the
angular velocity instead of linear velocity.

"
𝐿
𝑀
𝑁
' = B

𝐼|| 0 0
0 𝐼{{ 0
0 0 𝐼zz

L "
𝑝̇
𝑞̇
𝑞̇
'

=

+ "
0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

' B
𝐼|| 0 0
0 𝐼{{ 0
0 0 𝐼zz

L 6
𝑝
𝑞
𝑟
:			(22)

After addition and multiplication, equation 22 simplifies as equation 23.

"
𝐿
𝑀
𝑁
' = B

𝑝̇𝐼||
𝑞̇𝐼{{
𝑞̇𝐼zz

L + B
−𝐼{{𝑞𝑟 + 𝐼zz𝑞𝑟
𝐼||𝑝𝑟 − 𝐼zz𝑝𝑟
−𝐼||𝑝𝑞 + 𝐼{{𝑝𝑞

L			(23)

2.5.7 Angular Velocity and Euler Angles

We know, how the angular velocities p, q and r are changing over time and a gyro
will give us these values, but these are not the same as Euler angles 𝜙, 𝜃	and	𝛹.
Angular velocity is the rate of change of angles with body axis, while Euler angles
are rotation in their own frame of reference. Using the coordinate transformation,
angular velocity can be represented as Euler angle derivative (Equation 24).
(Tytler 2017b.)

6
𝑝
𝑞
𝑟
: = "

1 0 0
0 𝑐(𝜙) 𝑠(𝜙)
0 − 𝑠(𝜙) 𝑐(𝜙)

' "
𝑐(𝜃) 0 − 𝑠(𝜃)
0 1 0

𝑠(𝜃) 0 𝑐(𝜃)
' "
0
0
𝛹̇
' + "

1 0 0
0 𝑐(𝜙) 𝑠(𝜙)
0 − 𝑠(𝜙) 𝑐(𝜙)

' "
0
𝜃̇
0
' + "

𝜙̇
0
0
'			(24)

Equation 24 simplifies as Equation 25.

6
𝑝
𝑞
𝑟
: = B

−𝛹̇ 𝑠(𝜃)
𝛹̇ 𝑐(𝜃) 𝑠(𝜙)
𝛹̇ 𝑐(𝜙) 𝑐(𝜃)

L + B
0

𝜃̇ 𝑐(𝜙)
𝜃̇ 𝑠(𝜙)

L+"
𝜙̇
0
0
'			(25)	

Finally, the equations look as follows

𝑝 = 𝜙̇ − 𝛹̇ 𝑠𝑖𝑛(𝜃)			(26)

𝑞 = 𝜃̇𝑐𝑜𝑠𝜙 + 𝛹̇ 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)			(27)

𝑟 = 𝛹̇𝑐𝑜𝑠𝜙 𝑐𝑜𝑠(𝜃) + 𝜃̇𝑠𝑖𝑛(𝜙)			(28)

2.5.8 Inertial Coordinate

To calculate position of the vehicle in an inertial frame, we simply use Euler angle
transformation matrix 𝐶=< (Equation 3) to convert body frame velocities to an iner-
tial coordinate position (Equation 29). Where 𝑥�̇, 𝑦�̇	and	𝑧�̇ represents a first de-
rivative of X, Y and Z positions of the vehicle in an inertial frame. (Tytler 2017b.)

B
𝑥�̇
𝑦̇�

−𝑧̇ �
L = B

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛹) −𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝛹) + 𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝛹) 𝑠𝑖𝑛(𝜙) + 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃)
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝛹) 𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝛹) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝛹) + 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛹)
− 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

L 6
𝑢
𝑣
𝑤
:
=

			(29)

17

2.5.9 Non-Linear Equations

By simple mathematical operations on the matrices above, we can rewrite the
equations in non-linear form and can modify them as we want. Equations are
represented below. (Tytler 2017b.)

𝑢̇ = −𝑔𝑠𝑖𝑛(𝜃) + 𝑟𝑣 − 𝑞𝑤			(30)

𝑣̇ = −𝑔𝑠𝑖𝑛𝜙𝑐𝑜𝑠(𝜃) − 𝑟𝑢 + 𝑝𝑤			(31)

𝑤̇ =
1
𝑚
(−𝐹𝑧) + 𝑔𝑐𝑜𝑠𝜙𝑐𝑜𝑠(𝜃) − 𝑞𝑢 − 𝑝𝑣			(32)

𝑝̇ =
1
𝐼||

�𝐿 + (𝐼{{ − 𝐼zz)𝑞𝑟�			(33)

𝑞̇ =
1
𝐼{{

(𝑀 + (𝐼zz − 𝐼||)𝑝𝑟)			(34)

𝑟̇ =
1
𝐼zz
�𝑁 + (𝐼|| − 𝐼{{)𝑝𝑞�			(35)

𝜙̇ = (𝑝 + (𝑞𝑠𝑖𝑛𝜙 − 𝑟𝑐𝑜𝑠𝜙)𝑡𝑎𝑛𝜃)			(36)

𝜃̇ = 𝑞𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑖𝑛𝜙			(37)

𝛹̇ = (𝑞𝑠𝑖𝑛𝜙 − 𝑟𝑐𝑜𝑠𝜙)𝑠𝑒𝑐𝜃			(38)

𝑥̇� = (𝑞𝑠𝑖𝑛𝜙 − 𝑟𝑐𝑜𝑠𝜙)𝑠𝑒𝑐𝜃			(39)

Non-Linear equations represent the dynamic behaviour of the quadcopter, but we
still need to represent the equations including motors rpm, propellers thrust, the
mass of the quadcopter, torque functions and inertial variables values. These
calculations and variable values can be found in Appendix 1(A1, A2, A3, A4, A5
and A6). With these equations we can start the Simulink modeling.

18

3 Components

The components (Table 2) are selected considering the performance and com-
patibility with other selected components. The most suitable components are se-
lected online considering the application and budget of the project to build the
actual model.

Table 2. Components

Frame S500 Quadcopter Frame (1)

Propellers/Rotors 10x4.5 Propellers (4)

Motors TURNIGY 950Kv BLDC motors (4)

ESCs Afro Racing Spec 20A ESCs (4)

Battery 3S LiPo Battery (1)

Transmitter TURNIGY TGY i6S Transmitter (1)

Receiver TURNIGY 6S Channel Receiver (1)

Inertial Measurement Unit (IMU) Adafruit BNO055 IMU (1)

Arduino Board Arduino Mega 2560 (1)

3.1 Frame

Frame of the quadcopter is chosen depending on the purpose of the quadcopter.
Usually, small drones are used for acrobats and racing, because they are twitchy
and considerably unstable. Contrary to this, bigger drone are used for aerial pho-
tography as they are more stable with smoother flight. An S500 with 480mm mo-
tor centres (Figure 6) is chosen to achieve smoother flights and for clearer obser-
vation of control systems performance. After choosing the frame recommended
motors and propellers can be chosen from the description sheet.

19

Figure 6. S500 Quadcopter Frame (HobbyKing 2019c)

3.2 Propellers/Rotors

Propellers are selected based on the amount of thrust they can produce depend-
ing on motor RPM to obtain the desired performance and altitude of the vehicle.
Each propeller should at least provide thrust force equals to the quarter of the
weight of the vehicle while rotating within the RPM range of the motor to perform
hovering. In a quadcopter two of the propellers rotate clockwise and the remain-
ing two rotate counter-clockwise to balance the torque produced by the rotation
of propellers. Propellers can be selected by diameter and pitch representing
length and distance covered in one rotation respectively, usually given in
inches.(Pro Maker 2016.)

Four 10x4.5 propellers (Figure 7) are selected for this project as they can provide
a sufficient amount of thrust to perform hovering and other maneuvers easily.

Figure 7. Propellers 10x4.5 (HobbyKing 2019b)

20

3.3 Motors

Brushless DC motors (BLDC) motors are used for the quadcopter, as they pro-
vide more torque than the brushed motors and they do not need maintenance
that often, as brushed motors. There are two types of BLDCs, in-runner and out-
runner with rotating inner and outer part of the motor, respectively. In-runners
rotate faster as compared to out-runners while the out-runners provide more
torque making them popular for quadcopters. Motors are available with different
Kv ratings which gives the maximum RPM of the motor when multiplied by the
maximum voltage provided by the battery. Usually for large propellers motors with
low Kv ratings and for small propellers with high Kv ratings are selected.(Pro
Maker 2016.)

Figure 8 shows 950Kv motors selected for 10x4.5 propellers (Figure 7) to obtain
the desired thrust and table 3 shows the motors specifications.

Table 3. Table of Motors Specifications

Battery 2~4 Cell /7.4~14.8V

RPM 950kv

Max current 23.2A

No load current 1A

Max power 243W

Internal resistance 0.070 ohm

Weight 70g (including connectors)

Diameter of shaft 4mm

Dimensions 28x36m

Prop size 7.4V/12x6 14.8V/9x6

Max thrust 850g

21

Figure 8. TURNIGY 950Kv BLDC Motor (HobbyKing 2019d)

3.4 Electronic Speed Controllers (ESCs)

ESCs control the speed of BLDC motors according to the signals from the con-
troller for maneuvering and hovering. ESCs are selected based on the maximum
current drawn by the motors. It can be seen in the motors specifications (Table
2), that each motor can draw a maximum of 23.2 amperes of current while pro-
ducing a thrust of 850g. As our vehicle is not aimed for racing and it is very light,
there will be hardly an event in which we need the maximum thrust resulting mo-
tors to draw 23.2 amps. Considering these factors 20A ESCs (Figure 9) are se-
lected to control the motors. Table 4 presents the specifications of the selected
ESCs.

Table 4. ESC's Specifications

Current Draw 20A Continuous

Voltage Range 2-4s Lipoly

Motor wire/plugs 18AWG/Female 2mm

Input Freq 1KHz

Firmware afro_nfet.hex

Discharge wire/plugs 18AWG/Male 2mm

Weight 10.7g (Included wire, plug, heat
shrink)

Size 25 x 20 x 6.5mm

22

Figure 9. Afro Racing Spec 20A ESC (HobbyKing 2019a)

3.5 Battery

Batteries have a significant effect on the flight of a quadcopter, such as flight time,
speed and thrust. Selecting more powerful battery will certainly improve the
above-mentioned flight characteristics. However, it is always important to use
recommended batteries (Table 2) for the selected motors, as more powerful bat-
teries can cause overheating of motor, finally burning the motors. Despite of the
fact that LiPo batteries are fragile and sensitive to overcharging and over-dis-
charging, three to four cell LiPo batteries are quite popular among the hobbyists
because of high discharge rate and reasonable weight for long and smooth flight.
A battery is chosen based on the maximum current the quadcopter can draw. A
three cells LiPo battery (Figure 10) is selected for this project to meet the power
requirements of the quadcopter. This battery provides 11.1 V with a continuous
discharge rate of 66 amps which can provide a subsequent amount of power to
the quadcopter. (Pro Maker 2016.)

Figure 10. Three Cells LiPo Battery (HobbyLinna 2019)

23

3.6 Transmitter

A transmitter is a way of communication between a pilot and a drone. The trans-
mitter converts the human commands to signals for the vehicle, for different flight
operations. While selecting a transmitter the most important thing to be consid-
ered is the number of channels. For this project the minimum amount of trans-
mission channels needed is four to perform basic roll, pitch, yaw and take-off
operations.

Figure 11. TURNIGY TGY i6S Transmitter (HobbyKing 2019e)

TURNIGY TGY i6S Transmitter (Figure 11) is selected for this project. This is a
6 channel (PWM) or a 10 channel (PPM) radio transmitter with 2.4GHz
transmitting frequency.

3.7 Receiver

A receiver receives the radio signal from a transmitter and converts it into the
electrical signal for the microcontroller. The number and type of channels are the
main things to be considered in the selection of the receiver. A TURNIGY 6 chan-
nel receiver (Figure 12) provided with the transmitter is used in this project. (Pro
Maker 2016.)

Figure 12. TURNIGY 6S Channel Receiver (HobbyKing 2019e)

24

3.8 Flight Controller

A flight controller is the most important component of the quadcopter, it is consid-
ered as brain of the vehicle. A flight controller receives data from sensors and
performs calculations, designed in control strategy to control the behaviour of the
vehicle while performing different maneuvers. An Arduino based flight controller
is used in this project consisting of Arduino mega 2560 and an Adafruit BNO055
Inertial Measurement Unit (IMU). Controller is built following the schematics in
Figure 13. IMU and MCU transfer data by I2C communication. (Circuit Basics
2016.)

Figure 13. Flight Controller Schematics

3.8.1 Inertial Measurement Unit (IMU)

IMU is an electrical device, which estimates the orientation of the body by meas-
uring the forces of acceleration and angular velocity acting on the small parts of
the body (Technaid 2019). An Adafruit BNO055 IMU with 9-DOF is used in this
project (Figure 14). BNO055 is a 9-axis absolute orientation sensor with sensor
fusion and raw sensor data (Adafruit 2019).

Figure 14. Add a Fruit BNO 055 IMU (Adafruit 2019)

25

Most of the IMUs (MEMS) consist of a gyroscope, an accelerometer and a mag-
netometer to estimate orientation, acceleration and angular rates. An accelerom-
eter measures the acceleration by measuring the change in capacitance. A mi-
crostructure consisting of some mass is suspended between the electrically
charged plates when a force is exerted in a certain direction the mass moves in
that direction changing the capacitance between the plates (Figure 15).

Figure 15. IMU Accelerometer (How to mechatronics 2016)

Similar to accelerometer, a gyroscope also measures the change in capacitance
to give angular rate, using Coriolis Effect. External angular rate on a moving body
results in a change in capacitance to measure angular rate (Figure 16). A mag-
netometer measures the change in the magnetic field using Hall Effect. (How to
mechatronics 2016.)

Figure 16. IMU Gyroscope (How to mechatronics 2016)

26

3.8.2 Arduino Electronics Platform and Microcontroller Unit (MCU)

Electronics platform used in this project is an Arduino board based on ATmega
2560 microcontroller (Figure 17). ATmega 2560 is a low-power 8-bit
microcontroller based on the AVR enhanced RISC architecture. Arduino was cho-
sen, because it’s easy to use for beginners, material support on internet and com-
patibility with different operating systems.(ARDUINO 2019.)

A microcontroller is an integrated circuitry to perform different operations. Micro-
controllers usually consists of processors, memory, ram etc. They can also be
programmed (TECTARGET 2019).

Figure 17. Arduino Mega 2560 (ARDUINO 2019)

3.8.3 I2C Communication

I2C communication can connect single master to multiple slaves and multiple
master to single or multiple slaves (Figure 18). To establish I2C communication
between MCU and IMU only two wires are needed, SCL and SDA. All data is
transferred through one wire SDA in the form of bits, while SCL synchronize the
data with the clock signal which is always controlled by master.(Circuit Basics
2016.)

Figure 18. I2C Schematics (Circuitdigest 2019)

27

3.8.4 Quadcopter Schematics

The quadcopter electrical connections are made following the schematics in Fig-
ure 19. The connections are made by soldering and jumper wires are used to
make connections to the Arduino.

Figure 19. Quadcopter Electrical Connections Schematics (Electronobs 2019)

After connecting all of the mechanical and electrical components and making
electrical connections the Quadcopter looks as follows (Figure 20).

Figure 20. Quadcopter

28

4 Simulink Modelling

4.1 Plant Model

Now we have started building the simple plant model of the vehicle in Simulink
depending on the non-linear equations. A subsystem for the plant modelling is
created with x, y, h or z, and Ψ as outputs and M1, M2, M3 and M4 as inputs
(Figure 21). Plant model subsystem will have several subsystems to represent
different parameters depending on their equations. The purpose is to create a
model consisting of all the dynamic equations of the vehicle and then build a
control system for the model.

Figure 21. Plant Model Subsystem

On opening the plant model subsystem, it looks as follows (Figure 22).

Figure 22. Plant Model Subsystem Opened

29

4.1.1 Orientation and Motors

Orientation and Motors is a subsystem (Figure 23) under Plant Model subsystem.
It depends on the moment equation 12, 13, and 14 for the specific orientation of
the vehicle, the quadcopter has two orientations + and X. We have derived equa-
tions for X orientation of our vehicle.

Figure 23. Orientation and Motors Subsystem

The Orientation and Motors subsystem looks as follows on opening (Figure 24).
This subsystem takes the motor commands and converts them to moments to
control the vehicles orientation and altitude. Omega is the total angular velocity
of the quadcopter; the propellers rotate in the opposite direction to balance the
total angular velocity.

Figure 24. Orientation and Motors Subsystem Inside

30

4.1.2 Rotational Dynamics

This subsystem (Figure 25) is based on equation 33, 34 and 35 in which motors
thrust is converted into angular rates. It takes U2, U3, U4 and omega from motors
subsystem and outputs p, q and r. While U1 is fed straight to the next subsystem,
as U1 is the total thrust of all motors in the Z direction.

Figure 25. Angular Acceleration Subsystem

Angular acceleration subsystem has three more subsystems to control roll, pitch
and yaw acceleration separately, containing the equations. Subsystems can be
opened to see the equations and their arrangement (Figure 26).

Figure 26. Angular Acceleration Subsystem Inside

31

Figure 27. Roll Angle Acceleration Subsystem

Figure 28. Pitch Angle Acceleration Subsystem

32

Figure 29. Yaw angle Subsystem

4.2 Linear Dynamics

The angular rates from the previous subsystem are converted into angles using
integrators. Now the linear acceleration subsystem (Figure 30) converts angles
into the linear acceleration in the inertial frame depending on navigation coordi-
nate equations 36, 37 and 39. To navigate the vehicle in the inertial coordinate
frame.

Figure 30. Linear Acceleration Subsystem

33

Linear acceleration subsystem also has three subsystems for x, y and z acceler-
ation separately, containing equations for each (Figure 31, 32, 33 and 34).

Figure 31. Linear Acceleration Subsystem Inside View

Figure 32. X-Acceleration Subsystem

34

Figure 33. Y-Acceleration Subsystem

Figure 34. Z-Acceleration Subsystem

4.3 Constraints

Now, we have complete model representing our vehicle, but simulation does not
consider real world effects, so we introduce some limitations in our model to have
real world effects in our simulation. First of all, the h is limited by introducing zero
as lower limit in the integrator which converts z velocity into z position as the

35

vehicle cannot go below the earth's surface. Motors speeds are limited by
saturators which eliminates the negative signals to avoid rotation in the opposite
of the selected direction. In some quadcopters rotors can rotate in both directions
to perform flips and to fly upside down, which is not the focus in our case. Roll,
pitch and yaw angles are also limited between pi and -pi. (Ferry 2017.)

4.4 Model Verification

The Simulink model represents the quadcopter obeying real world limits. We can
verify the model by simply applying motor speed inputs. Simulink scope block is
used for the visualization instead of plotting the data in MATLAB, as it is more
convenient and time saving. Altitude, phi, theta and psi are plotted in the same
scope for comparison and to observe the change in behavior. First thrust is pro-
vided by rotating all the motors at the same speed. Vehicle response is shown in
Figure 35. It can be seen that the altitude is changed while roll, pitch and yaw
angles remain same.

Figure 35. Model Verification Altitude

Changing M2 and M4 or M1 and M3 speeds at the same time will cause the
change of pitch angle. Similarly, changing M1 and M2 or M3 and M4 speeds at
the same time will cause roll angle change. For verification M2 and M4 are in-
creased, results in affecting pitch angle theta (Figure 36). Changing all 4 motors
speed accordingly affects the yaw angle psi. This verifies that the model is built
correctly and works properly.

36

Figure 36. Model Verification Theta

37

5 PID Controller

Controller is very important for a vehicle to work properly. Without a controller the
quadcopter will be unstable. There are many control strategies and algorithms
but for this project, a feedback control system comprising PID controllers is uti-
lized.

A PID (Proportional Integral and Derivative) controller has three control terms
(Figure 37). The input to the PID controller is an error signal (difference between
actual and desired value), which is multiplied by PID gains to acquire the control
of the plant or process. Proportional term compares desired and actual value and
simply multiply the error value to a constant. Integral term removes steady state
error by integrating the error value over time until it reaches zero. Derivative term
estimates about the future error and removes it. It estimates the error by the rate
of change of error with time and multiply it with derivative constant. (Bright Hub
Engineering 2019.)

Figure 37. PID Controller (Bright Hub Engineering 2019)

5.1 Plant Model Controller

We are familiar with the basic working principle of the PID controller and have
verified the plant model obeying the real-world constraints. The purpose of the
project is to control the attitude of the copter, but a controller for the altitude is
also used because it is necessary to control the altitude to tune the attitude (roll,
pitch and yaw) controllers. A PID controller can be built by using simple gains in
Simulink and there is also a built-in PID block in Simulink. Built-in PID blocks are
utilized in the controller building of the vehicle. A PID based controller is applied
to control the actual values obtained from the plant model according to the de-
sired input values. In total, we have four PIDs for altitude, roll, pitch and yaw.
Then, the output of the PID controllers’ splits into motor commands for x orienta-
tion of the quadcopter. The plant model with controller looks as follows (Figure
38 and 39).

38

Figure 38. Input commands and Controller

Figure 39. Controller with Plant Model

39

5.2 Controller Tuning

A PID controller can be tuned manually or using auto-tuning function in Simulink.
Each of the PID is tuned individually for each of the desired input control. While
tuning a PID controller manually, a simple procedure can be followed but still the
process can take a very long time and can be iterative.

5.3 Tuning Process

5.3.1 Altitude PID Tuning

The process is to tune the P gain first, while I and D gains are zero, and keep
increasing the gain value until the actual value overshoots the desired value (Fig-
ure 40). But this is not the tuned value for P gain, it just indicates the range of the
gain value, which might be adjusted when tuning I and D gains. Again, we are
using scope for the visualization, as it saves time.

Figure 40. Altitude P Gain tuning

After P we tune D gain, it predicts and removes future errors. Increase the gain
value slightly and observe its effect on the results. It will remove the future error,
which will result in decreasing the oscillations in the simulation, resulting in
smoothing the response (Figure 41).

40

Figure 41. Tuning Altitude D Gain

Now, the actual value response is very smooth, and overshooting is negligible
but there is the continuous error, and the actual response value is not the same
as the desired value. This continuous error can be removed by the integrator,
which accumulates the error value over time and tries to reach the desired value.
It can be observed in figure 42 how I gain decrease the steady state error.

Figure 42. Altitude I Gain Tuning

After doing some adjustments and fixings, the fully tuned PID gave the following
results (Figure 43). The results are quite satisfying, the quadcopter is stabilizing
at an altitude of 5 m in less than 10 seconds. Same goals can be achieved in
even less time, but the behavior of the vehicle will be very aggressive.

41

Figure 43. Tuned Altitude PID Controller Response

Figure 44 gives a more realistic representation of the vehicle behavior. Previously
(Figure 43), 5 m altitude command was given to the vehicle from the beginning
of the simulation which is unlikely to happen, contrary to this in the real world a
pilot will take off rather slowly, to mimic this in simulation a ramp block (Figure
45) is used as an altitude command, signal starts from zero and keeps increasing
with a slope of 1.5. It can be seen (Figure 44), that in the beginning for about
three seconds the quadcopter does not take-off because the signal is insufficient.
After three seconds it takes-off very smoothly and stabilizes itself according to
the continuously increasing altitude command signal within 10 seconds. Table 5
represents the PID gains of tuned altitude PID controller.

Figure 44. Tuned Altitude Real World Behaviour

42

Ramp is a Simulink block to create a signal, that can be started at desired time in
the simulation and can be changed at a specific rate (MathWorks 2019d).

Figure 45. Ramp Block

Table 5. Altitude PID gains

P 4.3

I 4.5

D 2

PID controllers for roll, pitch and yaw are also tuned, following the same proce-
dure.

5.3.2 Roll (Phi) and Pitch (Theta) PID Tuning

Roll and pitch PIDs have same gain values and the same responses, as they
work on the same principle. Figure 46 shows the roll or pitch response of the
vehicle, when the desired angle is 12 degrees and the vehicle is trying to attain
the altitude of 1m at the same time. Table 6 shows the PID gains of tuned roll and
pitch PID controller.

43

Figure 46. Roll and Pitch PID Controllers Tuned Response

Table 6. Roll and Pitch PID Gains

P 0.006

I 0.000009

D 0.013

5.3.3 Yaw (Psi) PID Tuning

Yaw PID values differ from roll and pitch, needed to be turned separately. It is
difficult to tune for the yaw PID, as it depends on torque produced by all four
rotors. Figure 47 shows the tuned response of the yaw controller, when the de-
sired yaw rate is 12 degrees and the vehicle altitude command is 1 m at the same
time. Table 7 gives the gains values of a tuned yaw PID controller.

44

Figure 47. Tuned Yaw Controller Response

Table 7. Yaw PID Gains

P 0.01

I 0.0002

D 0.03

So far, all the PIDs of the controller are tuned, which works fine in the simulation,
but implementation on real hardware may need to change these values slightly,
because with these gain values the quadcopters response to each command will
be a bit aggressive.

45

6 Trajectory

A trajectory is planned using a signal-builder block (Figure 48) in Simulink, to
visualize the performance of the vehicle, when over one signal is applied at the
same time. The inertial trajectory is random, because roll, pitch and yaw are con-
trolled in body coordinate system, instead of X, Y and Z in inertial coordinate
system. Different signal commands and simulation responses to those com-
mands are as follows (Table 8). Simulation is run for 60 seconds and altitude
command is a ramp signal (Figure 45) with a slope of 1.5.

Table 8. Signal Commands and Simulation Responses

46

A Group of signals can be generated, using signal builder block in Simulink.
Signals are piecewise linear and interchangeable (MathWorks 2019f).

Figure 48. Signal Builder Block

It can be seen that the vehicle is responding to the commands very well (Table
8), verifying that the PID’s are tuned properly. Response graphs (Table 8 and
Figure 44), make sure that the controller is working and vehicle should fly obeying
the commands, but we do not know, how the quadcopter will behave in the real
world, to see this vehicle’s trajectory is plotted in 3D (Figure 49) and an animation
is created (Figure 50).

47

Figure 49. Quadcopter's 3D Trajectory

Animation (Figure 50) can be animated, in the word file by right click and then
play from dropdown menu. The Video (Figure 50) has no sound.

Figure 50. Trajectory Animation Video

7 Implementation

The entire simulation model is not uploaded on the hardware, as the quadcopter
model based on the dynamic equations mimics the vehicle in the simulation, to
develop the controller for it, so just the controller part of the Simulink model is
uploaded on the real hardware. The implementation model looks as follows (Fig-
ure 51).

48

Figure 51. Implementation Model

7.1 Simulink Receiver Model

We are moving from software to real world, need an algorithm to represent the
receiver model in Simulink. Receiver model will receive and process the trans-
mitter signals to control the vehicle. An RC receiver model developed by Math-
Works is used to meet the needs. The model is downloaded with the supporting
files and a compiler is also downloaded for the configuration of the block. The
block is developed to read four channels of the transmitter, used to control roll,
pitch, yaw and throttle signal. The block is used with minute changes in the exist-
ing one (Figure 52). (Scharler 2018.)

Figure 52. RC Receiver Block (Scharler 2018)

49

7.2 Controller

The controller subsystem of the implemented model on the real hardware looks
as follows (Figure 53). It contains PIDs from the simulation model to control the
vehicle and motor mixing algorithm, which control the rotor’s speed according to
the command signals.

Figure 53. Implementation Model Controller Subsystem Inner View

Arduino Adafruit IMU Block

The Simulink BNO055 Arduino block (Figure 54) reads the data from the BNO055
IMU sensor attached to the hardware. The block operates in fusion and non-fu-
sion mode, that can be selected from the block parameters window. In fusion
mode block outputs calibrated values of Euler angles, Quaternions, linear accel-
eration, gravity vector and sensor status, while in non-fusion mode the output
data is in raw form. (MathWorks 2019b.)

50

Figure 54. BNO055 IMU in Simulink

Figure 55 shows the default orientation of the IMU sensor.

Figure 55. BNO055 Default Orientation (MathWorks 2019)

We can get calibrated values in fusion mode, we need not to filter the data. An-
gular rates are used to provide the attitude signal to the controller.

7.3 Scaling

Brushless Direct Current (BLDC) motors are usually controlled by electronic
speed controllers (ESCs), because BLDC motors are three-phase motors. An

51

ESC has two wires on one end for voltage and ground, three wires on the other
end to control the three-phase motor. Another set of wires in ESCs is to connect
with the electronic-board’s signal wire and ground. ESCs use same signal which
is used to control servos, a 50HZ PWM signal with the pulse width varying from
1 to 2 milliseconds.(How to mechatronics 2019.)

So, instead of using PWM output pins (0-255 range) with different output fre-
quency, we use standard servo write (Figure 56) pins (0-180 range) output fre-
quency 50HZ to control BLDC motors via ESCs (MathWorks 2019c) (MathWorks
2019g). Same 50HZ PWM signal is received from receiver block in the Simulink
varying from 1000 to 2000 microseconds (1 to 2 milliseconds), where 1000 and
2000 representing 0% and 100% of pulse width respectively. When this signal
passes through the controller and motor mixing algorithm, it gets multiplied with
PID gains. It changes range from the default value, which is not acceptable by
the ESCs, so we rescaled it to make the motors working.

Figure 56. Standard Servo Write in Simulink

Receiver Signal Scaling

An ESC can use 1000 to 2000 pulse width range to control the motor, when it is
directly connected to the actual receiver in hardware, but in our case it is con-
nected to the receiver via micro-controller (ATmega 2560), using standard servo
write pins with acceptable signal value range from 0 to 180. So, we mapped the
motor mixing output values from 0 to 180 using 1-D lookup tables (Figure 57).1-
D lookup table uses one-dimensional array data as input and outputs the mapped
values accordingly in the mapping range. The block looks up or interpolate a table
of values defined in the block parameters to map input values to output values.
(MathWorks 2019a.)

52

Figure 57. 1-D Outlook Block in Simulink

Theoretically, it should work. But in reality, it was not true. ESCs were not cali-
brating at the same time and the motors were not running at the same speed,
which is useless for this project application. Output values were mapped and
tested again and again varying the range between 0 and 180. Finally, a sweet
spot was found, where all the motors were calibrating at the same time and all
the rotors started rotating at the same time with same speed. The signal value
from 1000 to 2000 is mapped between 35 to 178 considering the experimental
experience to be on the safe side. Figure 58 shows the 1D lookup table data and
explicit values used for the mapping.

53

Figure 58. Lookup Table Explicit Values and Break Points

Values can exceed the mapped range leading to an error, burned out ESCs,
overheated motors and unpredictable behavior of the vehicle. Depending on the
input signal and state of the vehicle, signal value can go below 1000 (35 after
mapping) and above 2000 (178 after mapping), to avoid this saturation blocks
(Figure 59) are used which limit signal values with a lower limit 35 and upper limit
178 (MathWorks 2019e).

Figure 59. Saturation Blocks for Limiting Signals Values

54

7.4 Implementation Model Tuning

Even though, we have tuned controller for our plant model. The gain values are
not working on the real hardware as expected, this could be because of signal
scaling, different range of input values, Arduino output pins fixed range of ac-
ceptable signal values and gust factor. So, we have to tune PIDs again for our
actual hardware, while the controller is running on the hardware. This is done by
running a real time simulation. The tuning process is the same as discussed be-
fore. Different methods are applied to tune the PIDs, while the program is running
on the quadcopter some of them are shown in Figure 60 and 61 below.

Figure 60. Tuning Roll and Pitch

We fixed the quadcopter on a stick, so it cannot fly, the stick allows the
quadcopter to rotate around the axis of the stick. We fixed the quadcopter on the
stick for both roll and pitch orientation and tried to tune the PIDs while the program
was running on the hardware (Figure 60).

Then we fixed the quadcopter with ropes from below and above, so it cannot fly,
but it can rotate around the axis of its body. This way we tried to tune the PID for
yaw control (Figure 61).

55

Figure 61. Yaw Tuning

Sometimes the quadcopter could take-off, but with a very poor control. Controller
needs more tuning for better control of the vehicle.

56

8 Conclusion

Quadcopters with accelerating industry are an interesting platform to perform dif-
ferent control strategies. The goal of the project was to develop a PID based
Simulink controller and its implementation on the real hardware to control the
attitude of the vehicle.

The vehicle was built successfully using the selected components, compatible to
each other. The vehicle’s Simulink model was made, based on derived differential
equations of motion. Simulink model simulated perfectly and was verified by giv-
ing the motors RPM commands to confirm that the model is depicting the vehi-
cle’s dynamics. A PID based controller was designed and tuned for the quadcop-
ter’s Simulink model, comprising of a separate PID controller block for each var-
iable to be controlled. A 3D trajectory animation was created for visualization.

The controller was modified for real world implementation according to the se-
lected electronics platform and was implemented on the hardware to check its
performance. Signals from the radio receiver were scaled so, that they were
within the acceptable signal ranges of input and output pins, of electronics plat-
form, while having the frequency acceptable by ESCs. All the ESCs were cali-
brated at the same time, which was very important to meet other goals of the
project.

A simulink based controller worked on the hardware, but because of signals scal-
ing and the different range of input signal values to the ESCs the controller needs
to be tuned again. Because of unreliable real-time data visualization, hardware
limitations and lack of time, PIDs are not tuned properly. In an existing condition
the quadcopter can take off from the ground, but it is not very stable and keeps
moving in random directions.

57

9 Future Work

Better control can be achieved, with some advancements in the existing Simulink
model of the vehicle and controller. Equations for propellers and BLDC motors
can be derived instead of using constants. The existing Simulink model of the
vehicle can be optimized, by introducing the propellers and motors Simulink mod-
els, to get dynamic behavior of the model closer to vehicle behavior in the real
world. Further a control strategy can be used to control the BLDC motors, de-
pending on the equations derived for motors to get precise control of the motors.
Existing Simulink controller for the vehicle can also be made more effective by
adding more PID controller blocks. The IMU sensors’ data can be filtered using
Kalman filter to get more accurate data from sensors. PID controllers’ gains can
be tuned more to get better results.

An ESP8266 WI-FI module can be connected with Arduino to observe real-time
data with safety, or an Arduino with built in Wi-Fi module can be used to meet the
same purpose. This will help in tuning gains of PIDs easily maintaining a safe
distance from the vehicle. The micro-controller can be replaced with raspberry-pi
or ArduCopter with better processing power and storage Static Random-Access
Memory (SRAM).

The above-mentioned improvements would be enough to meet the main goals of
this project. A lot can be done in this project to achieve different objectives. We
can introduce a camera, navigation control or any other sensor and equipment
depending on the aim.

58

Appendices 1

A.1 Weight of The Vehicle

Weight of the vehicle can be estimated by adding weight of all of the hardware
components.

• Arduino mega=37g

• BNO055 IMU=5g

• Brad Board=10g

• LIPO Battery=208.2g

• RX Receiver=9.8g

• 4 ESCs=42.8g

• Frame=405g

• 4 Motors=280g

• 4 Propellers=20g

Total weight of the vehicle=m=992.8g=0.9928Kg

A.2 Inertia of the Vehicle

Moment of inertia estimation is very important to control the vehicle it limits the
amount of torque to produce angular acceleration around an axis. Moment of
inertia can be estimated in various ways. One way is to calculate the moment of
inertia of each component separately and then add the moment of inertia of com-
ponents to get moment of inertia for X, Y and Z orientation of the vehicle. Here
we have used a rather simple approach we know the mass of the vehicle and we
have assumed that the vehicle is rigid and uniform so we can simply distribute
the mass equally for each arm of the quadcopter to find moment of inertia of each
arm which can be added accordingly to find moment of inertia for X, Y and Z
orientation of the quadcopter.

A.2.1 Yaw Moment of Inertia

Moment of inertia in Z direction can also be called as yaw moment of inertia as it
will resist the yaw moment. It is simply the sum of moment of inertia of all four
arms of the quadcopter (Ferry 2017).

• Mass of the vehicle =M=0.9928kg

• Length of the arm=L=0.24m

59

• Moment of inertia=Izz

𝐼zz = g
1
3 × 𝑚𝑙

%i			(40)

𝐼zz = g
1
3 ×

0.9928
4 × 0.24%i × 4			(41)

𝐼zz = 0.019𝑘𝑔𝑚%			(42)

A.2.2 Roll and Pitch Moment of Inertia

Moment of inertia in X and Y direction is same as the vehicle is symmetrical It
can be found using the same equation as above the only thing changed in this is
the length of the arm instead of using the length of the arm we use perpendicular
distance of the motors from the center of the vehicle.

𝐼|| = 𝐼{{ = 0.00963𝑘𝑔𝑚%			(43)

A.3 Propeller Moment of Inertia

Propellers moment of inertia is taken from Tomas Jiinec’s master thesis. As he
has calculated the moment of inertia of the same propellers 10x4 as we are using
in our project. He has estimated the moment of inertia by dividing the propeller
into small sections and then calculating the moment of inertia by using parallel
axis theorem.(Selby 2019.)

𝑏 = 0.04439𝑘𝑔𝑚%			(44)

A.4 Thrust Coefficient

Thrust coefficient depends on weight of vehicle, motor RPM and propeller pitch
and diameter. Thrust coefficient can be obtained by analyzing the thrust value at
different RPMs of the motor. It is simpler to calculate the thrust coefficient when
the quadcopter is hovering. When quadcopter is hovering the thrust of all four
rotors is equal to the weight of the vehicle. So, thrust of one rotor is a quarter of
the weight of the quadcopter.(Selby 2019.)

Thrust=thrust coefficient x motor rotation speed

𝑏 =
𝑚𝑔
4 ÷ (𝑜𝑚𝑒𝑔𝑎)%			(45)

As we do not have the omega value at hovering for our vehicle, so we have esti-
mated the omega value from a model developed for another quadcopter. In which
same propellers are used as in our project with different weight of the vehicle.
The estimated omega for our rotor is around 260.

𝑏 =
0.9928 × 9.8

4 ÷ (260)%			(46)

𝑏 = 3.59 × 10¢£𝑘𝑔𝑚			(47)

60

A.5 Drag Torque Coefficient

Drag coefficient depends on the Inertia of the vehicle, motor RPM and propellers
pitch and diameter. Drag coefficient is estimated as a percentage of the drag
coefficient of another model with same propellers but different moment of inertia.

𝑑 = 2.0810 × 10¢¤
𝑘𝑔𝑚%

𝑠% 			(48)

A.6 Air Resistance

Measuring the air resistance is extremely difficult so a simple estimated value is
used which do not affect the behavior of the quad significantly in closed environ-
ment. (Ferry 2017.)

𝑑 = 0.1
𝑘𝑔
𝑠 			(49)

61

Figures

Figure 1. Six-Degrees of Freedom (Wikipedia 2019) .. 8

Figure 2. Inertial and Body Frames of References (Tytler 2017b) 9

Figure 3. Euler Angles (Tytler 2017a) ... 10

Figure 4. Propellers Distance from centre of gravity (CG) (Tytler 2017b) 13

Figure 5. Motors rotation direction for yaw moment (Black Tie Aerial 2014) 14

Figure 6. S500 Quadcopter Frame (HobbyKing 2019c) 19

Figure 7. Propellers 10x4.5 (HobbyKing 2019b) ... 19

Figure 8. TURNIGY 950Kv BLDC Motor (HobbyKing 2019d) 21

Figure 9. Afro Racing Spec 20A ESC (HobbyKing 2019a) 22

Figure 10. Three Cells LiPo Battery (HobbyLinna 2019) 22

Figure 11. TURNIGY TGY i6S Transmitter (HobbyKing 2019e) 23

Figure 12. TURNIGY 6S Channel Receiver (HobbyKing 2019e) 23

Figure 13. Flight Controller Schematics .. 24

Figure 14. Add a Fruit BNO 055 IMU (Adafruit 2019) 24

Figure 15. IMU Accelerometer (How to mechatronics 2016) 25

Figure 16. IMU Gyroscope (How to mechatronics 2016) 25

Figure 17. Arduino Mega 2560 (ARDUINO 2019) ... 26

Figure 18. I2C Schematics (Circuitdigest 2019) .. 26

Figure 19. Quadcopter Electrical Connections Schematics (Electronobs 2019)
 .. 27

Figure 20. Quadcopter .. 27

Figure 21. Plant Model Subsystem ... 28

Figure 22. Plant Model Subsystem Opened ... 28

Figure 23. Orientation and Motors Subsystem .. 29

Figure 24. Orientation and Motors Subsystem Inside 29

Figure 25. Angular Acceleration Subsystem ... 30

62

Figure 26. Angular Acceleration Subsystem Inside .. 30

Figure 27. Roll Angle Acceleration Subsystem ... 31

Figure 28. Pitch Angle Acceleration Subsystem ... 31

Figure 29. Yaw angle Subsystem ... 32

Figure 30. Linear Acceleration Subsystem ... 32

Figure 31. Linear Acceleration Subsystem Inside View 33

Figure 32. X-Acceleration Subsystem ... 33

Figure 33. Y-Acceleration Subsystem ... 34

Figure 34. Z-Acceleration Subsystem ... 34

Figure 35. Model Verification Altitude ... 35

Figure 36. Model Verification Theta .. 36

Figure 37. PID Controller (Bright Hub Engineering 2019) 37

Figure 38. Input commands and Controller ... 38

Figure 39. Controller with Plant Model .. 38

Figure 40. Altitude P Gain tuning .. 39

Figure 41. Tuning Altitude D Gain ... 40

Figure 42. Altitude I Gain Tuning .. 40

Figure 43. Tuned Altitude PID Controller Response ... 41

Figure 44. Tuned Altitude Real World Behaviour .. 41

Figure 45. Ramp Block .. 42

Figure 46, Roll and Pitch PID Controllers Tuned Response 43

Figure 47. Tuned Yaw Controller Response ... 44

Figure 48. Signal Builder Block ... 46

Figure 49. Quadcopter's 3D Trajectory ... 47

Figure 50 Trajectory Animation Video ... 47

Figure 51. Implementation Model .. 48

Figure 52. RC Receiver Block (Scharler 2018) ... 48

63

Figure 53. Implementation Model Controller Subsystem Inner View 49

Figure 54. BNO055 IMU in Simulink ... 50

Figure 55. BNO055 Default Orientation (MathWorks 2019) 50

Figure 56. Standard Servo Write in Simulink .. 51

Figure 57. 1-D Outlook Block in Simulink .. 52

Figure 58. Lookup Table Explicit Values and Break Points 53

Figure 59. Saturation Blocks Limiting Signals Values 53

Figure 60. Tuning Roll and Pitch ... 54

Figure 61. Yaw Tuning .. 55

64

Tables

Table 1. Variables ... 11

Table 2. Components .. 18

Table 3. Table of Motors Specifications .. 20

Table 4. ESC's Specifications ... 21

Table 5. Altitude PID gains .. 42

Table 6. Roll and Pitch PID Gains ... 43

Table 7. Yaw PID Gains .. 44

Table 8. Signal Commands and Simulation Responses 45

65

References

Adafruit (2019) BNO055 Absolute Orientation Sensor.
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/
Accessed in June 2019.

AGENCY, D. A. R. P. (2017) Fast Lightweight Autonomy (FLA).
https://www.darpa.mil/program/fast-lightweight-autonomy
Accessed in June 2019.

ARDUINO (2019) ARDUINO MEGA 2569.
https://store.arduino.cc/arduino-mega-2560-rev3
Accessed in June 2019.

Black Tie Aerial (2014) The Physics of Quadcopter Flight.
https://blacktieaerial.com/the-physics-of-quadcopter-flight/
Accessed in June 2019.

Bright Hub Engineering (2019) PID Controller Tuning.
https://www.brighthubengineering.com/robotics/119653-pid-loop-tuning-
methods-for-robotics/
Accessed in August 2019.

ÇAMLICA, F. B. (2004) DEMONSTRATION OF A STABILIZED HOVERING
PLATFORM FOR. MIDDLE EAST TECHNICAL UNIVERSITY.
http://citeseerx.ist.psu.edu/
Accessed in June 2019.

Circuit Basics (2016) BASICS OF THE I2C COMMUNICATION PROTOCOL.
http://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
Accessed in July 2019.

Circuitdigest (2019) I2C Communication.
https://circuitdigest.com/microcontroller-projects/arduino-i2c-tutorial-
communication-between-two-arduino
Accessed in July 2019.

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (2017) Smart
Quadcopters Find their Way without Human Help or GPS.
https://www.darpa.mil/news-events/2017-06-28
Accessed in June 2019.

Electronobs (2019) Arduino Multiwii flight controller.
https://www.electronoobs.com/eng_robotica_tut5_3.php
Accessed in July 2019.

Ferry, N. (2017) Quadcopter Plant Model and Control System Development
With MATLAB/Simulink Implementation. Rochester Institute of Technology.
http://www.ritravvenlab.com
Accessed in June 2019.

66

Fiaz, U. A. and Mukarram, A. (2018a) Altitude Control of a Quadcopter.
Pakistan Institute of Engineering & Applied Sciences.
https://www.researchgate.net/publication/309486306_Altitude_Control_of_a_Qu
adcopter

Fiaz, U. A. and Mukarram, A. (2018b) Altitude Control of a Quadcopter.
Pakistan Institute of Engineering and Applied Sciences (PIEAS).
https://www.researchgate.net/publication/309486306_Altitude_Control_of_a_Qu
adcopter

HobbyKing (2019a) Afro 20A Race Spec Mini ESC Opto.
https://hobbyking.com/en_us/afro-race-spec-mini-20amp-opto-multi-rotor-
speed-controller.html
Accessed in June 2019.

HobbyKing (2019b) HobbyKing Slowfly Propeller 10x4.5 Black (CW/CCW)
(4pcs). https://hobbyking.com/en_us/10x4-5-sf-props-2pc-cw-2pc-ccw-
green.html
Accessed in June 2019.

HobbyKing (2019c) S500 Glass Fiber Quadcopter Frame 480mm - Integrated
PCB Version.
https://hobbyking.com/en_us/s500-glass-fiber-quadcopter-frame-480mm-
integrated-pcb-version.html
Accessed in June 2019.

HobbyKing (2019d) Turnigy D2836/9 950KV Brushless Outrunner Motor.
https://hobbyking.com/en_us/turnigy-d2836-9-950kv-brushless-outrunner-
motor.html
Accessed in June 2019.

HobbyKing (2019e) Turnigy TGY-i6S Digital Proportional Radio Control System.
https://hobbyking.com/en_us/i6s-afhds-2a-white-mode2-6ch-radio-with-colour-
box.html?___store=en_us
Accessed in June 2019.

HobbyLinna (2019) Li-Po Battery 3S 11,1V 2200mAh 30C T-Connector.
https://www.hobbylinna.fi/product/li-po-11-1v-2200mah-30c-dean-
air/VPLP020FD/
Accessed in June 2019.

How to mechatronics (2016) MEMS Accelerometer Gyroscope Magnetometer &
Arduino.
https://howtomechatronics.com/how-it-works/electrical-engineering/mems-
accelerometer-gyrocope-magnetometer-arduino/
Accessed in July 2019.

How to mechatronics (2019) Arduino Brushless Motor Control Tutorial | ESC |
BLDC. https://howtomechatronics.com/tutorials/arduino/arduino-brushless-
motor-control-tutorial-esc-bldc/
Accessed in July 2019.

67

Markets, M. (2018) Unmaned Aerial Vehicle (UAV) Market. Hadapsar, Pune-
411013, India.
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-
vehicles-uav-market-662.html
Accessed in June 2019.

MathWorks (2019a) 1-D Lookup Table.
https://se.mathworks.com/help/simulink/lookup-tables.html
Accessed in August 2019.

MathWorks (2019b) BNO055 IMU Sensor.
https://se.mathworks.com/help/supportpkg/arduino/ref/bno055imusensor.html
Accessed in August 2019.

MathWorks (2019c) PWM.
https://se.mathworks.com/solutions/power-electronics-control/pulse-width-
modulation.html
Accessed in July 2019.

MathWorks (2019d) Ramp.
https://se.mathworks.com/help/simulink/slref/ramp.html?searchHighlight=Ramp
&s_tid=doc_srchtitle
Accessed in August 2019.

MathWorks (2019e) Saturation.
https://se.mathworks.com/help/simulink/slref/saturation.html
Accessed in August 2019.

MathWorks (2019f) Signal Builder.
https://se.mathworks.com/help/simulink/slref/signalbuilder.html
Accessed in August 2019.

MathWorks (2019g) Standard Servo Write.
https://se.mathworks.com/help/supportpkg/arduino/ref/standardservowrite.html
Accessed in July 2019.

Pro Maker (2016) DIY Drone: How to Build a Quadcopter.
https://maker.pro/custom/projects/diy-quadcopter-tutorial
Accessed in July 2019.

Scharler, H. (2018) R/C Controller for Arduino and Simulink, MIT.
https://www.hackster.io/matlab-makers/r-c-controller-for-arduino-and-simulink-
be5aee
Accessed in June 2019.

Selby, W. (2019) Model Verification.
https://www.wilselby.com/research/arducopter/model-verification/
Accessed in July 2019.

Technaid (2019) IMU Working Principles.
https://www.technaid.com/support/research/imu-working-principles/
Accessed in July 2019.

68

Technical University of Munich (2014) Micro Aerial Vehicles (MAVs).
https://vision.cs.tum.edu/research/quadcopter
Accessed in June 2019.

TECTARGET (2019) MICROCONTROLLER.
https://internetofthingsagenda.techtarget.com/definition/microcontroller
Accessed in August 2019.

Tytler, C. (2017a) Modeling Vehicle Dynamics – Euler Angles.
https://charlestytler.com/modeling-vehicle-dynamics-euler-angles/
Accessed in July 2019.

Tytler, C. (2017b) Modeling Vehicle Dynamics – Quadcopter Equations of
Motion. https://charlestytler.com/quadcopter-equations-motion/
Accessed in July 2019.

VBROADCAST LIMITED (2019) Drones Applications at Present and Future,
Wondershare.
https://filmora.wondershare.com/drones/drone-applications-and-uses-in-
future.html
Accessed in June 2019.

Wikipedia (2019) Six degrees of freedom.
https://en.wikipedia.org/wiki/Six_degrees_of_freedom
Accessed in June 2019.

