

Baidauletov Dair, Salehin Fayjus

INTEGRATING MODERN FRONT-END METHODOLOGIES AND WORKFLOW IN

THE CONTEXT OF E-COMMERCE SYSTEMS

INTEGRATING MODERN FRONT-END METHODOLOGIES AND WORKFLOW IN

THE CONTEXT OF E-COMMERCE SYSTEMS

Baidauletov Dair, Salehin Fayjus
Bachelor’s Thesis
Spring 2020

 Information Technology
Oulu University of Applied Sciences

3

ABSTRACT (DAIR & FAYJUS)

Oulu University of Applied Sciences
Information Technology, Internet Services

Authors: Baidauletov Dair, Salehin Fayjus
Title of Bachelor´s thesis: Integrating Modern Front-End Methodologies and Workflow in the
Context of E-Commerce Systems
Supervisor: Teemu Korpela
Term and year of completion: Spring 2020 Number of pages: 97 + 2 appendix

This thesis investigates modern front-end development methodologies and workflow in the context
of e-commerce platforms. It aims to improve the development cycles in the agile team’s workflow
and overall quality and efficiency of delivering e-commerce solutions. The research was
commissioned by Vaimo Finland Oy, the omnichannel e-commerce solution provider. The company
has been looking for new technologies and tools that can help to build Progressive Web
Applications with support for the Magento platform.

The latest web development technologies, namely PWA, were integrated into the e-commerce
infrastructure. Vue Storefront was used as a PWA storefront solution with Magento in the back-
end. The benefits for clients and development teams were researched and assessed. The
development of the components, installation, and configuration of third-party modules, building and
deploying procedures were tested, documented and applied during the implementation of the
project. Potential improvements in the current workflow with the help of modern web technologies
were studied. Automated unit and functional testing, accessibility and performance evaluation, a
realization of the design system for creating sustainable component library were tested, and their
effects on the collaboration of developers, QA and UI/UX engineers were studied and compared
with traditional workflow.

The research resulted in a number of positive discoveries in favor of PWA storefronts. Benefits of
headless architecture improved the key performance metrics of the web application and separation
of concerns between front-end and back-end developers. The continuous integration time was
shortened to less than 10 minutes with the help of headless architecture and existing DevOps
practices. Automated web testing has proved to be helpful in improving quality engineering in the
development cycles, and developing design systems was found to be useful for improving the
collaboration between designers and front-end developers.

Keywords:

Front-end Development, E-commerce, Progressive Web Application, Headless Architecture,
Design System, Magento, Vue Storefront, PWA, Automated Web Testing

4

PREFACE

This thesis was carried out while we were working for Vaimo Finland. We would like to thank them

for giving us the opportunity and guiding us throughout the journey, especially our Front-End

Architect, Jani Maljanen, for all the technical guidance and our Team Lead, Eino Keskitalo, for

helping us organize the thoughts and keeping us on track.

We would also like to thank our thesis supervisor Teemu Korpela for his constant support and

guidance. We learned a lot about writing a thesis from our language teacher Kaija Posio. We have

acquired most of the technical knowledge reflected in this document over the time we studied at

the Oulu University of Applied Sciences, and the teachers made this journey of learning and

growing a valuable and memorable experience for us.

Oulu, 12.03.2020.

Dair Baidauletov & Fayjus Salehin.

5

CONTENTS

ABSTRACT (DAIR & FAYJUS)... 3

PREFACE ... 4

CONTENTS .. 5

TERMS AND ABBREVIATIONS ... 7

1 INTRODUCTION (DAIR) .. 8

2 OVERVIEW OF EXISTING METHODOLOGIES (DAIR) .. 11

2.1 Disadvantages of current technologies (Dair) ... 12

2.2 Disadvantages of current technologies for clients (Dair) ... 13

2.3 Disadvantages of current technologies for front-end developers and development

workflow (Dair) .. 14

2.4 Summary of disadvantages (Dair) ... 15

3 STATE OF MODERN WEB FRONT-END (FAYJUS) ... 17

3.1 Modern Web front-end architecture (Fayjus)... 18

3.1.1 Component-based architecture (Dair)... 20

3.1.2 State Management (Dair) ... 22

3.1.3 Headless architecture (Dair) ... 24

3.1.4 Routing (Fayjus) ... 24

3.1.5 Rendering (Fayjus) ... 25

3.1.6 Handling DOM (Fayjus) .. 26

3.1.7 Tooling (Fayjus) .. 27

3.2 Testing and design system (Dair) ... 31

3.2.1 Automated Web Testing (Dair) ... 31

3.2.2 Automated Web Accessibility Testing (Dair) ... 32

3.2.3 Design System Management (Dair) .. 33

3.3 Workflow optimization (Dair) ... 35

3.3.1 Workflow optimization with automated web testing (Dair)........................... 35

3.3.2 Workflow optimization with design systems (Dair) 35

3.4 Emerging E-commerce Platforms Based on Modern Web Front-end (Fayjus) 36

4 IMPLEMENTATION (FAYJUS) .. 39

4.1 Bootstrapping the Front-end (Fayjus).. 39

4.2 Elements of Vue Storefront Architecture (Fayjus) ... 47

6

4.2.1 State Management in Vue Storefront (Fayjus) .. 47

4.2.2 CSS Methodology in Vue Storefront (Fayjus) ... 49

4.3 Developing Reusable Components (Fayjus) ... 49

4.4 Reusing Existing Modules (Fayjus) ... 57

4.5 Publishing a Module (Fayjus) .. 62

4.6 CI/CD pipeline with Argo and Kubernetes (Dair) ... 63

4.6.1 Build and deploy procedures (Dair) .. 64

4.6.2 Improvement of the CI/CD speed with headless architecture (Dair) 67

4.7 Automated testing (Dair) ... 67

4.7.1 Unit testing with Jest (Dair) ... 68

4.7.2 E2E testing with Cypress (Dair) .. 71

4.8 Design system maintenance (Dair) ... 74

4.8.1 Creating component library with Storybook (Dair) 75

5 BENCHMARKING AND EVALUATION (FAYJUS) ... 79

6 FUTURE POSSIBILITIES (DAIR) ... 86

7 CONCLUSION (FAYJUS) .. 89

REFERENCES ... 91

APPENDICES... 98

7

TERMS AND ABBREVIATIONS

API

CBA

CDN

CSR

CI/CD

DOM

E2E

ES

FCP

K8S

MVC

NPM

PWA

QA

RAIL

SEO

SOA

SoC

SPA

SSR

TTFB

UI/UX

VSF

VSF-API

Application Program Interface

Component-Based Architecture

Content Delivery Network

Client-side rendering

Continuous Integration/Continuous Delivery

Document Object Model

End-to-end (testing)

ElasticSearch

First Contentful Paint

Kubernetes

Node Package Manager

Model-View-Controller

Progressive Web Application

Quality Assurance

Response, Animation, Idle, Load

Search Engine Optimization

Service-Oriented Architecture

Separation of Concerns

Single-Page Application

Server-side rendering

Time to first byte

User Interface/User Experience

Vue Storefront

Vue Storefront API

8

1 INTRODUCTION (Dair)

This thesis was commissioned by Vaimo Finland Oy, a part of the international full-service

omnichannel agency Vaimo. Their Finnish business unit, located in Oulu, Finland, specializes in

building and maintaining e-commerce solutions based on the Magento platform and providing other

e-commerce services for various enterprises.

Although tailored mainly towards enterprise-level e-commerce businesses, Magento holds the

leading position as the world’s most demanded e-commerce solution.[1] Despite its extensibility,

Magento is not equipped to deliver web technologies that are starting to gain more attention from

clients all over the globe. Mainly, the Progressive Web Application (later referred to as PWA), which

unites multiple new web features and design patterns, including offline access to a website, push

notifications, and faster loading. Businesses see the benefits in improving the speed of their

services and increasing engagement and conversion rates with these technologies.[2] The concept

of PWA was first proposed in 2007 by Steve Jobs,[3] while the term was established by the Google

Chrome developer Alex Russel and designer Frances Berriman in 2015.[4] Since then, building

Progressive Web Applications have turned into a dynamic and growing domain of web

development. Service workers, one of the principal features of PWA, can now be found on

approximately 15% of all page loads.[5] With leaders of the industry, namely Google, Microsoft, and

Apple, actively supporting the direction of modern web approaches, it is evident that e-commerce

will change in favor of PWA.[4]

This change in demand could result in a positive effect on the development of the applications,

allowing developers to create platform-agnostic solutions with a single codebase, along with

bringing native experiences to the web. The majority of PWA solutions available today are based

upon headless architecture, where the server-side and business logic are detached from the client-

side logic. This significant difference can ease the separation of concerns (SoC) among front-end

and back-end developers in the software development workflow. Most of the PWA storefront

solutions known today are powered by either React (Magento PWA Studio), Vue (Vue Storefront),

or Angular (Spartacus) and served with Node.js.[6] It enables developers to take full advantage of

the software technology stack, developer community, and maximize the efficiency of front-end

development with the help of GraphQL or open-source NPM packages, and without the

development being restricted by Magento’s front-end architecture. Magento and other PHP

9

frameworks are not capable of providing Single-Page Applications (SPA) by default. SPAs can

increase the productivity of front-end development. Current Magento front-end is firmly affected by

“building giant XML trees on the run” that requires both memory and the CPU.[7] Hence, “those

trees are built up from files on disk and on each request,” slowing the local development, especially

if the changes are only front-end specific. While the application’s business logic remains attached

to the platform of choice, it is now possible to expose specific API endpoints without the platform

or other vendors constraining and influencing the implementation of front-end.

Today several maintained frameworks facilitate building PWA e-commerce storefronts. They

include Deity Falcon, Front-commerce, Magento PWA Studio, Scandi PWA, and Vue Storefront,

with latter supporting most of the existing e-commerce platforms and holding the strongest

developer community.[8] Since creating a PWA solution from scratch can be expensive[9], it is in

businesses’ and service providers’ favor to implement one of the existing and maintained

technologies, most of which are integrable into multiple prevalent e-commerce platforms, such as

Magento, Prestashop, Shopware. Most of the known PWA storefront solutions have been

developed and found commercial use during the last quarter of the past decade. They can be

divided into two different types – the first one being the standalone PWA storefront (figure 1) for e-

commerce with an API connection to back-end of a chosen system (Vue Storefront, Deity Falcon

and FrontCommerce) and the second one being the suite of tools to help building PWA experiences

(Magento PWA Studio, Scandi PWA).[10]

FIGURE 1. Headless architecture in PWA solutions – Vue Storefront example.[11]

10

In this thesis, modern web development practices will be integrated into a complex e-commerce

platform with the help of PWA solutions gaining recognition in the field. Magento will serve as an

e-commerce platform, and Vue Storefront will be used as a PWA solution.

In the process of developing an e-commerce website, the efficiency and quality of front-end

deliverables will be assessed, along with the effect on the workflow within the development team.

The client’s satisfaction and webshop’s conformity to the latest technologies are the main aims of

the project, whereas introducing modern web solutions into an e-commerce company’s set of

provided services is the primary aim of the research. The supporting aim and point of investigation

includes workflow optimization in the e-commerce system’s development cycles through the

adapted technologies and additional tooling for automated testing and design improvements. The

effects of the Vue Storefront on the collaboration and independence of front-end and back-end

developers, QA and UI/UX engineers will be studied, analyzed, and compared to traditional

approaches.

11

2 OVERVIEW OF EXISTING METHODOLOGIES (Dair)

Magento is a monolithic application developed towards the total support of any business needs. It

brings together a centralized catalog, multi-lingual support, currency and tax rates, the high-end

Search Engine Optimization (SEO) engine, and many other features, making it one of the ultimate

choices for clients.[12] In addition to that, Magento is highly customizable. It empowers developers

to “reassign every single bit” of its core logic. However, the advantages of the monolith do not

always outweigh some of the subsequent drawbacks and limitations affecting both the resulting

product and development process. “As processes in a monolith are deeply interdependent, a bug

in any module can potentially bring down the whole system”.[13] When an application becomes

complex, the impact of new changes cannot always be guaranteed. As a result, new changes

require deploying the entire application and extensive manual testing.[13]

There are two alternatives to the monolithic architecture – headless and service-oriented

architecture (SOA).[13] In headless architecture, the front-end of the web application is decoupled

from the back-end and communicates via the aggregation layer – API. In this approach, which has

been adopted in most of the e-commerce PWA solutions, front-end is a standalone application that

runs on a separate instance and can be deployed and accessed even if the back-end is out of

reach. Service-Oriented Architecture is based on the decoupling of back-end logic into

microservices (figure 2). Since SOA addresses improvements for the business logic of the

application, its absence does not prevent the implementation of PWA with headless architecture

alone. Therefore, describing PWA solutions in the e-commerce systems built with microservices is

beyond the scope of this research.

FIGURE 2. Software architecture types based on modularity.[14]

12

2.1 Disadvantages of current technologies (Dair)

Most often, development on the Magento website is done by e-commerce agencies with technical

competence that is crucial in ensuring the proper execution of the project implementation and future

maintenance. Projects with no or little back-end customization can nevertheless be expensive to

launch, and front-end implementation may comprise the most substantial portion of the budget.

With growing codebase, maintenance of the completed projects becomes slow and cumbersome,

increasing costs for clients.[15]

According to Jisse Reitsma, the founder and developer at Yireo, the current Magento 2 front-end

is repulsive for front-end developers.[16] He implies that Magento projects “might have become more

expensive simply because the implementation of front-end is unnecessarily complex.” One of the

advantages of modern front-end built with React or Vue is the short learning curve and their

popularity. Developers with no or little experience with JavaScript frameworks can learn them in a

shorter amount of time. Nowadays, front-end developers are more likely to have experience with

React or Vue than with Magento 2, Knockout, or Require. This allows them to use already existing

knowledge when starting to work with PWA solutions. In contrast, learning Magento 2 front-end

requires finding and learning the Magento-specific knowledge.

MAGENTO MVC (DAIR)

Magento uses a configuration-based Model-View-Controller architecture (MVC).[17] Although MVC

enables simultaneous development by decoupling applications into smaller elements, it influences

the architecture of every module used in a project. Decomposition of every feature into three

artifacts and the resulting scattered code may affect flexibility in customizing the front-end. It is

often the case where front-end developers are expected to modify only the View layer. While MVC

helps to build loosely coupled modules and integrations, the elements within those modules can be

interdependent, i.e. the controllers invoke templates, and data is fetched with methods from the

controller.[18] Developers are also expected to know about working with all of the MVC elements

when building a feature, which might include modifying a database or business logic.[19] Headless

architecture decouples the front-end application from the back-end. It provides opportunities for a

better separation of concerns as front-end developers would rely exclusively on the data coming

from the API. A front-end application could have data handling and templating patterns that are not

13

restrained by an external logic, which means that the system could benefit from looser coupling,

and there is more control to the storefront of the e-commerce website.[18]

2.2 Disadvantages of current technologies for clients (Dair)

Some of the challenges that may hinder reaching e-commerce system’s full potential from the

client’s perspective include:[20]

• Maintenance. Maintenance costs increase as the application grows. It becomes more

time-consuming to modify the codebase.

• Speed. The size of the application and catalog might negatively affect the start-up time.

According to Web Almanac, only 23% of websites built on Magento take less than a second

to display a meaningful content, such as text or an image (First Contentful Paint). Almost

half of them take less than 3 seconds, and the rest 31% are ranked as slow.[21]

• Flexibility. Although easy in the early stages of development, monolithic systems have

difficulty in adopting the latest and advanced technologies.

It usually takes 3-6 months on average to develop a production-ready Magento store.[22] The

implementation costs highly depend on the number of dedicated developers, integrations,

extensions, SEO, and front-end customizations. In-house Magento developers are less common

than service providing agencies with expertise in digital commerce. Joining e-commerce may not

be a small investment for SMEs. While developing the website is essential to any client,

maintenance is of equal importance. When the website is deployed to production, clients may want

to create technical or functional spikes[23] or request performance profiling, cosmetic fixes, support

during campaigns, and guidance with technical issues. However, the expensive support costs and

slow modifications with a monolithic system may discourage both clients and service providers from

taking action. As a result, clients become dependent on costly support, even when they want to

make small front-end changes, such as fixing minor cosmetic issues or implementing a website

facelift. Reducing the time required for maintenance changes could have a positive impact on both

parties. Clients would feel more encouraged to make new requests, whereas service providers and

developers would benefit from the client’s determination and easiness of the system.

When implementing the front-end according to web design, it is a challenge to make the result

identical to the mockup, which leaves the client unhappy. Since the design is just a general

guideline, different scenarios and use cases should be considered during the development of UI to

14

prevent bugs. The lack of prototyping the resulting output on the code level is affecting the client’s

expectations in reality. An increasing collaboration between developers and designers could be

time-consuming and inefficient for the development teams.

2.3 Disadvantages of current technologies for front-end developers and development

workflow (Dair)

Front-end development is firmly affected by the following factors:

• Naturally not optimized for front-end development. Magento’s front-end makes use of

relatively old and deprecated JavaScript libraries, such as jQuery (v1.11) or Knockout.js,

prioritizing the browser support over simplicity and developer-friendliness. This slant and

other nuances, such as slow local development, result in inefficient and outdated front-end

practices.

• Lack of documentation. Magento has an active developer community. Despite that, there

is a lack of well-documented official sources and best practices which can improve the

learning curve or help beginners study effectively on their own.[24] On the other hand,

Magento has been actively in use through the past decade, and sources, such as GitHub,

Stack Overflow, are full of issues, guides, and commits related to different development

topics. The same cannot be said about Vue Storefront and other new PWA solutions.

• Cumbersome internal development. Developers need to redeploy the entire application

on every change. This inconvenience unnecessarily delays transitions in the agile

development workflow.

• Reliability. Even though the platform is modular and loosely coupled, the runtime is

interdependent. Error in any module can potentially bring down the entire process.

In the study of Web Almanac, it was discovered that nearly 10% of home pages visited on the

internet are built on an e-commerce platform, Magento adopting 1% of the total number.[21] With

monolithic architecture and other traditional software development procedures inherited in

Magento, developers may benefit from the modern web technology stack and JavaScript

frameworks. Nowadays, jQuery can be found on almost 85% of all desktop and 83% of all mobile

home pages.[21] According to data collected by the State of JavaScript Survey,[25] the popularity of

front-end frameworks and open-source libraries that make building single-page applications easier,

such as React, Vue, AngularJS, and Backbone.js, increased over the last couple of years.[26] These

frameworks have a strong and growing community and have a higher developer satisfaction.[27]

15

Switching from jQuery to a newer client-side library can take time, depending on how large the

application is, and many websites are built with jQuery combined with the newer client-side

libraries.

Development teams, including front-end and back-end developers, QA and UI/UX engineers, can

face different challenges when working with Magento. Magento architecture might dictate the way

user stories and technical stories are defined in the agile development model.[28] Magento MVC,

while enhancing the code structure, fails to entirely separate back-end from front-end due to tight

coupling.[19] Therefore, user story splitting might negatively affect the performance and collaboration

of developers. Given there are two tasks for one feature, separated into the back-end and front-

end part, it is likely they would end up blocking each other, forcing either an increased collaboration

or reassignment to one person. These issues are hard to identify during the planning phase. As a

result, it is easier to produce repeating code, whether it is related to styling or back-end functionality.

2.4 Summary of disadvantages (Dair)

Issues described above identify the main drawbacks of the current state of delivering e-commerce

solutions with Magento:

1. Clients may be unwilling to invest more due to the fact that small front-end changes are

expensive to implement.

2. Clients are not satisfied with the performance and speed of the website.

3. Clients are not satisfied with the look and feel of the user interface.

4. Front-end developers may be affected by outdated practices since modern technologies

are not easily integrable into Magento.

5. Front-end developers may be affected by imperfect segmentation of MVC patterns and

separation of concerns.

6. QA and UI/UX engineers may find it hard to integrate automated testing and design

systems into the infrastructure.

Magento, like any other monolithic application, is simple to deploy and easy to test. However, the

CI/CD operations take long since the application has to be reinstalled entirely, despite the size of

changes (see Magento architecture diagram in figure 3). One of the main aspects of agile

development is how people work together.[29] In the agile web development teams are expected to

collaborate with UI/UX engineers and refer to the specification. Besides, front-end developers are

16

expected to do code reviews to ensure best practices and prevent code repetition. QA engineers

or automated web testing are not capable of ensuring that the latest changes do not affect other

functionalities of the system.

Performance is one of the most important factors that support the change towards headless

architecture, PWA, and other modern web technologies. The most common and fast way to

measure key indicators of performance and other metrics of an individual website are tools, such

as WebPageTest or Google Lighthouse.[30] Google Lighthouse is an open-source tool for

generating automated website metrics and audits on performance, accessibility, SEO, best

practices, and PWA compliance.

To conclude, there is a strong demand to switch to PWA storefront solutions. Even Magento has

its own PWA solution released in beta. While the field might not be as mature, clients are ready to

invest in production-ready solutions like Vue Storefront.

FIGURE 3. Magento architecture.[31]

17

3 STATE OF MODERN WEB FRONT-END (Fayjus)

Front-end technology, tools, and methodologies have been evolving rapidly in recent years. Web

applications have progressed from simple static web pages to a very complex SPA and API first

systems. As a result of this phenomenon, it has become tough to continuously keep up with all the

changes and it might be considered overwhelming to developers.[32] Front-end architecture is a

collection of tools and processes that aims to improve the quality of front-end code while creating

a more efficient and sustainable workflow.[33] Therefore, the study and understanding of

architectural patterns available in contemporary modern web front-end systems is needed to plan,

design, and oversight a complex e-commerce system.

In order to discuss the state of modern web front-end and architectural patterns, it is crucial to

understand the environmental and situational changes that are driving their evolvement. One of the

most important driving forces for front-end architectural changes is the fact that the web has evolved

to support more than just desktop computers. Today the web is accessed from a variety of end-

user devices such as a mobile and a tablet. The mobile internet consumption has crossed the 50%

mark and is expected to grow more than twice by 2022.[34] At the beginning of past decade, Google

introduced its mobile-first strategy to address the growing web users using mobile devices. A

plethora of Web APIs, such as File System, Camera, PWA, Hardware sensors, has evolved in

order to provide a rich and uniform user experience across platforms.[35] Other notable driving

forces include the importance of user experience as a deciding factor when it comes to service

design[36] and upgrades in the network infrastructure.[37]

According to the web.dev platform maintained by Google, today’s web applications have the

following potentials: [38]

1. Achieving fast load times by optimizing front-end resources, setting a performance budget,

and building a performance culture so that the application is available to a larger set of

audience and maintains a higher conversion rate.

2. Making accessible applications and services by leveraging the semantic HTML for a

diverse set of users.

3. Providing a consistent, reliable performance regardless of the quality of the network by

using service workers and caching strategies for the offline or limited network usage.

18

4. Being immune to common web security vulnerabilities with security features such as

HTTPS and CORS.

5. Maintaining discoverability with the proper usage of SEO.

6. Turning the application into a PWA to deliver native-like capabilities, reliability through

building and enhancing them with modern APIs.

7. Constantly Measuring and optimizing user-centric performance metrics, namely First

Contentful Paint (FCP), Largest Contentful Paint (LCP), First Input Delay (FID), Time to

Interactive (TTI), Total Blocking Time (TBT), Cumulative Layout Shift (CLS).

In the book Frontend Architecture for Design Systems, it is mentioned that the four pillars of front-

end architecture are – code, process, testing, and documentation.[39] Throughout the Modern front-

end architecture section, these four pillars, along with relevant tools, technologies, and

methodologies, would be studied, compared, and analyzed so that e-commerce systems,

regardless of their chosen platform or complexity, could be developed and delivered leveraging the

potentials of modern web.

3.1 Modern Web front-end architecture (Fayjus)

FIGURE 4. Evolution of front-end technology. [14]

From Figure 4, it could be derived that technologies have been changing at a high rate lately and

have gone through a number of major revolutions. The technologies are estimated to continue this

19

evolving process since there is no sign of slowing down. It might seem overwhelming to keep track

of all the changes within the industry and next to impossible for a service provider to keep their

development teams up-to-date while still delivering solutions to clients at a satisfactory rate. Even

though each technology that is evolving is different from the other, they tend to share similar

elements that became stable in front-end architecture over time and could be counted as the

standards of modern web front-end. Some of these elements shown in figure 5 could be found in

almost all the variants of modern web application architecture.[40]

FIGURE 5. Elements of modern web front-end.

These elements comprise of methodologies and patterns that have the potential to solve complex

front-end problems that are elaborated individually in the upcoming sections. As mentioned in the

Introduction, there are a number of uprising e-commerce PWA solutions available today as

platforms. Each of these platforms have their front-end architecture which varies heavily from one

another. Nevertheless, they often share similar traits as the reference architecture drawn in figure

6.

Elements of Modern Web Front-end
Architecture

Client
Side

Routing
Server
Side

Rendering

State
Management

API Integration
with Headless

Back-end

DOM
Handling

Tooling

Component
Based

Architecture

20

FIGURE 6. The reference architecture for modern web front-end. [40]

3.1.1 Component-based architecture (Dair)

Most of the popular JavaScript frameworks follow either MVC (AngularJS, Ember.js) or component-

based architecture (React, Vue). In a component-based architecture (CBA) all the architectural

layers of the module, such as design, business logic and external services, are defined in one place

– component, similarly to feature-based architecture. CBA helps contain the logic within component

and reduce scattered code. Components are able to communicate with other components or

services independently. This makes them reusable, since it is easy to inject a component into

different segments of the interface or use multiple components simultaneously.[41]

In CBA responsibilities are sliced vertically, whereas in MVC they are sliced horizontally. This

means that the components deliver the whole feature, not just one architectural layer.[42] While CBA

refines modularity and decouples the application in a way that makes it easier for software

developers to reflect on a code, it may not work perfectly for each case. Code readability might

suffer since all logic is contained within components. In addition to that, it might be tempting for

21

developers to over-engineer simple features and treat every element of the UI as a component.

[41][43]

Below is the example of a Vue component implemented in Vue Storefront. The Logo component is

called to display website’s logo image. In the component’s template a route to the homepage is

defined which wraps the img tag:

 <template>

 <router-link :to="localizedRoute('/')" :title="$t('Home Page')" class="…">

 <img

 :width="width"

 :height="height"

 src="/assets/logo.svg"

 :alt="$t(defaultTitle)"

 >

 </router-link>

 </template>

And since the component is reusable, it accepts parameters for the width and height of the image

to match different use cases:

 props: {

 width: {

 type: [String, Number],

 required: true

 },

 height: {

 type: [String, Number],

 required: true

 }

 }

Components are easy to reuse since they contain all the required logic within them. The best

example of a reusable component is when it is fully documented, thoroughly tested and designed

to be as generic as possible, without any project-specific functionality.[44] CBA shortens the

production and delivery time. It also frees up the resources required to ensure a quality delivery.[45]

22

3.1.2 State Management (Dair)

State management – is a set of processes and techniques that help to keep the data of different UI

components synchronized.[46] For the state management to work, the application needs to have:

• a global state available to the entire application

• an ability to read and update it

State management is especially useful in single-page applications, where the UI content is

constantly updating on user request or on other background processes.[47] Complex applications

with interdependent components may suffer from poor data persistence, constant information flow

and input-output (I/O) operations. State management is aimed to solve the arising issues in modern

front-end development, by introducing a global store. For instance, state management unifies

properties stored in various components in the application that may depend on each other.

Components no longer have to depend on each other’s properties since they are stored in a global

state value.[48] This is especially convenient when components are not direct relatives in the

component tree.[49] With state management libraries the properties of the application reside in the

external store, available to all components in the application.

The implementations of Redux and Vuex, state management libraries for React and Vue, have

been inspired by Facebook’s Flux architecture, the original library for React state management. In

the Flux pattern user interactions (Actions) are provided to the dispatcher, which invokes the store

mutations. Store, in its turn, emits the change event causing components (View) to update state

values and re-render (figure 7).[50]

FIGURE 7. Flux data flow diagram. [50]

23

Vuex is a state management library for Vue. It is also used in Vue Storefront. Below is the example

of how global state of the application can be declared. The breakpoints object is defined in the

uiStore store which contains the state of different pieces of UI, such as overlay visibility, wishlist

visibility:[51]

 export const uiStore = {

 namespaced: true,

 state: {

 microcart: false,

 breakpoints: {

 small: 768,

 medium: 992,

 large: 1024

 },

 submenu: {

 depth: false,

 path: []

 }

 },

 mutations: {

 setMicrocart (state, action) {

 state.microcart = action === true

 state.overlay = action === true

 }

 },

 actions: {

 toggleMicrocart ({ commit, state }) {

 commit('setMicrocart', !state.microcart)

 }

 }

 }

The uiStore is then fetched in different components, such as product page, as the computed

property:

24

 computed: {

 breakpoints () {

 return this.$store.state.ui.breakpoints

 }

 }

State management libraries are designed to be flexible and not to restrict the structure of the

application. They work best when used in the project from the beginning since they are not easy to

integrate into the existing solutions.

3.1.3 Headless architecture (Dair)

As mentioned in the Overview of Existing Methodologies, headless architecture decouples front-

end into a separate application which communicates with the system via an aggregation layer (API).

This architecture is adapted in most of the popular PWA solutions. In this architecture front-end is

completely detached and can even be distributed via Content Delivery Systems (CDN).[18] The

headless architecture and the SPA enable a faster development, since the front-end application is

more lightweight to be served locally.

3.1.4 Routing (Fayjus)

For web applications, routing is the process of mapping a URL to specific page resources.[52] In

traditional MVC based architectures, routing was generally handled by the back-end part of an

application. With every new request with the URL, a new HTML file is generated and send to the

browser in server-side routing. This approach is not very efficient since the same assets are

requested and fetched with every new request. In Single Page Applications, routing is handled by

the client side of the application. Therefore, every time the client requests a new page, the front-

end router handle the request and update both data and the UI accordingly. In the modern web

front-end perspective, a router is a tool that synchronizes the currently displayed view with the

address bar. In other words, it is the component of a modern web application that triggers the

update for the view when there has been a change to the URL address.[53]

25

Modern UI frameworks usually provide either a built-in routing solution or a library. Angular has a

built-in module named Angular Router that could be used to navigate users from one view to

another. React has a separate library named react-router that provides extensive features such as

Dynamic, Nested, and Responsive routing. For Vue, the official routing solution is Vue Router.

Some of the advanced routing features available from libraries such as Vue Router are dynamic

route matching, nested routing, passing props to route components, HTML5 history mode,

navigation guards, transitions, data fetching, scroll behavior controlling and lazy loading routes.[54]

Furthermore, these features could also be integrated into front-end state management to create a

persistent navigation experience. The benefits of client-side routing over server-side routing is that

the routing libraries have these capabilities that could be used to create an advanced navigation

logic for delivering better user experiences.[55]

3.1.5 Rendering (Fayjus)

Rendering is the process by which contents are generated within an application. Rendering is one

of the crucial architectural decisions that developers need to take while building an application since

it impacts both the performance and discoverability of an application.

Server-side rendering (SSR) is the process of generating the HTML along with data on the server-

side of an application. This technique has been very popular with server-side programming

languages, e.g. Java, PHP and Python, where data is injected in HTML through a server-side

templating engine and then sent to the user. The benefits of this approach are the following:

1. Search Engine Optimization: Content is crawlable by search engines, so websites and

pages will appear in Google search results.

2. Social Media Optimization: When links are shared on social media, a preview will show up

with the page title, description, and image.

3. Performance: Server-side rendered pages will load faster because the content is available

to the browser immediately when it is reached.

4. User Experience: Similarly, to performance the content is available sooner, so the user is

not waiting around looking at blank pages or loading spinners.[56]

26

However, since the appearance of SPA frameworks, it has become a common practice to render

the front-end on the client-side, use AJAX requests to fetch data and content, and update the front-

end dynamically. Nevertheless, the downside of this approach is that it violates the four above

mentioned benefits of server-side rendering. Multiple new techniques of rendering have evolved,

such as SSR with hydration and client-side rendering (CSR) with pre-rendering to overcome these

shortcomings. The comparison between these rendering techniques are shown in figure 8.

FIGURE 8. Comparison between different rendering mechanism.[57]

3.1.6 Handling DOM (Fayjus)

Most browser screens today are refreshed at 60fps, which means in order to provide the end-user

with a smooth experience, the interaction and animations happening within the web application

should match up with the browser refreshing rate. Therefore, the application needs to go through

the pixel-to-screen pipeline (shown in figure 9) within a 10ms time budget for a smooth browsing

experience.[58]

FIGURE 9. Pixel-to-screen pipeline

Javascript Style Layout Paint Composite

27

One of the key benefits of using modern UI libraries, such as Angular, React or Vue, is that these

libraries or frameworks handle the communication between the DOM and data model of the

application. [59] With previous generation libraries, such as jQuery, the interaction with DOM API

was simplified, and developers had a direct control over DOM when building interactive web

features. However, in large scale applications, developers often tend to mix business logic with

DOM handling.[40] This kind of direct access and interaction with DOM API could turn out to be very

expensive, and an application of large scale could easily hit the FPS bottleneck and result in an

unreliable user experience.[60]

Modern UI frameworks, such as React and Vue, solve this issue by abstracting DOM handling with

the Virtual DOM and with an optimization process called reconciliation.[61] The Virtual DOM is a

JavaScript object that replicates an actual DOM of the HTML document. Every time data is changed

within the application, the nodes in the Virtual DOM are updated instead of the actual one. Later, it

is compared with the actual DOM, and specific changes are patched instead of refreshing the whole

tree.

With such abstraction in DOM handling provided by modern JavaScript frameworks, it is easier to

focus on the core business logic than optimizing performance, experience bottlenecks, and deliver

better performance and productivity.[59]

3.1.7 Tooling (Fayjus)

It is essential to use the proper tools for automating tedious tasks on behalf of developers. A good

set of tooling is another crucial architectural decision that could potentially impact all parts of the

development lifecycle. According to the Book of Modern Front-end Tooling, front-end tools could

be divided into sections depending on the part of the development lifecycle they are impacting, as

demonstrated in figure 10.[62]

28

FIGURE 10. Application development lifecycle and tooling

As depicted in the figure 10, the tools are firstly categorized into three sections, Scaffolding,

Dependency management, and Build System. Scaffolding or bootstrapping is the process where

the application structure and boilerplate are created. This could often be a painful experience for

developers since they might always not be aware of the best practices and decisions made during

this process which has a great impact on the application as it scales. The second section is labeled

as Dependency management. In large collaborative applications, developers often reuse work from

other projects or third-party modules to simplify the development process. The tools related to this

section handles the process of finding and adding these modules to the project and managing

versions automatically. The final section is the Build System. Tools that are categorized here

impacts the development and delivery workflow directly. During developments, tools could watch

source files, provide lint, and hint and live reload as the developers write the application. Moreover,

during the delivery, the code could be tested, build, and deployed automatically with the right tools.

In Table 1, A list of available tools in each of these sections, their objective, and impact area are

provided. The usage data for the tools are collected from Modern Front-end Tooling Survey 2019.

[63]

Table 1. Modern front-end tools, objective, usage and impact area

Section Subsection Objective Popular Tools

& Usage

Impact Area

Scaffolding Kickstarting new projects,

prescribing best practices,

and tools

Yeoman,

vue-cli,

create-react-app

Project

Management

29

Dependency

Management

JavaScript

Package

Manager

Managing and installing

dependencies

NPM

(65.39%),

Yarn

(29.78%)

Project

Management

Build

System

CSS

Preprocessor

CSS preprocessor is a

program that generates CSS

from the preprocessor's

unique syntax. Most CSS

preprocessors will add some

features that do not exist in

pure CSS, such as mixin,

nesting selector, inheritance

selector. These features

make the CSS structure

more readable and easier to

maintain.[64]

Sass (77.27%),

PostCSS

(28.72%),

Less

(14.04%)

Development

 Task runners

Automating tedious tasks

such as compiling template,

CSS and JavaScript, auto

prefixing, minifying files.

Optimize images.

NPM Scripts

(64.33%),

Gulp (18.54%),

Grunt

(2.53%)

Development,

Test,

Build,

Deploy &

Performance

 JavaScript

Module

Bundler

Providing a module system

to the application and

bundling multiple JavaScript

modules into a single

JavaScript file for the

browser to run

Webpack

(73.34%),

Parcel (2.83%),

RequireJS

(1.23%)

Development,

Build

 JavaScript

Linting

Checking code to make sure

it is error-free and adheres to

a particular style guide,

which eventually improves

overall readability and

consistency

ESLint (76.07%),

JSLint

(4.76%),

JSHint

(2.23%)

Development

30

 JavaScript

Testing

Creating and performing

automated Unit, Integration,

and Functional tests.

Jest (44.86%),

Jasmine

(19.47%),

Cypress

(12.58%)

Test

 Performance

Testing

Web Performance Testing is

executed to provide accurate

information on the readiness

of an application through

testing the website and

monitoring the server-side

application. This is done by

simulating load as close as

possible to the real

conditions in order to

evaluate if the application will

support the expected load.[65]

Lighthouse

(52.11%),

WebPageTest

(24.29%)

Performance

 Accessibility

Testing

Web accessibility testing is a

subset of usability testing

where the users under

consideration have

disabilities that affect how

they use the web. The end

goal, in both usability and

accessibility, is to discover

how easily people can use a

website and feed that

information back into

improving future designs and

implementations.[66]

Colour Contrast

Checker

(22.20%),

Screenreader

(15.44%),

WAVE (9.48%)

Accessibility

31

3.2 Testing and design system (Dair)

Other benefits of modern front-end architecture include creating easy and automated web testing

and accessibility audits written in JavaScript. This means that front-end developers will have the

ability to write unit and functionality tests by themselves, improving the quality engineering during

the development.

Likewise, component-based architecture facilitates developers to apply atomic design principles

and implementing design systems. This may result in an improved collaboration between UI/UX

engineers and front-end developers. UI/UX engineers are able to see, comment and advice the

improvements that will only require a change to a single entity and they can track the development

of components during the early stages.

3.2.1 Automated Web Testing (Dair)

Software testing is the activity of running a series of dynamic executions of software programs after

the software source code has been developed.[67] UI implementation and functionality are generally

of highest importance in web development testing. Testing is performed to uncover and correct as

many potential errors as possible before delivering features to the client. By testing, development

teams can make sure that the website is functioning properly, and features are production-ready.[68]

Testing can be divided into manual and automated. Manual testing requires manual execution of

test cases within the web application through a web browser. Manual execution is slow and can be

expensive, since it requires additional environments for testing and can be prone to human factor

as the tester might make typographical errors or omit steps in the test scenario.[69]

Nowadays, most of the testing methods can be automated. The most important automated test

types for the website include:

• Unit tests – individual functions, modules and components of the application. It is done by

supplying inputs and predicting output in the code.

• Integration tests – testing of the processes across multiple units (modules, components).

• Functional tests (end-to-end and smoke testing) – black-box testing which is performed in

the browser[70]

32

There is a significant amount of testing frameworks with a rich set of tools that are compatible with

Node.js. A web application may take a leverage of unit testing suites (Jest, Mocha, Jasmine) in

combination with end-to-end (E2E) testing tools (Puppeteer, TestCafe, Selenium, Cypress). Vue

Storefront uses Jest and Cypress by default, both considered to be most favored by developers in

terms of developer awareness, interest and satisfaction.[71]

While manual, exploratory testing and usability testing are not discouraged, automated tests help

identify scenarios that can break the system. Front-end developers working on the new functionality

can write tests themselves and include them in the code review phase, so that it can be checked

by other developers. This change can result in better testing and improvement of quality of the

deliverables.

3.2.2 Automated Web Accessibility Testing (Dair)

In addition to technical excellence and potential advantages for the development workflow, the

modern front-end technology stack can help improve web accessibility. Developing towards total

accessibility of the website is still a moral and ethical practice but the demand is growing. In Europe,

for example, EU Web Accessibility Directive was updated in 2018, making all public sector websites

and applications in EU member states to implement, enforce and maintain accessibility standards

or risk legal penalties.[72]

Accessibility of the web application does not exclusively imply users with physical disabilities, but

also the practice of making websites accessible for users with different external constraints –

whether it is a small screen resolution, an older browser or a slow network connection.[73] The

guidelines set by the World Wide Web Consortium’s (W3C) Web Content Accessibility Guidelines

(WCAG) can be followed to implement accessibility support in the web application. The guidance

focuses on four principals of web accessibility:

• Perceivable – information should be presented with alternatives, i.e. images should have

meaningful captions or other alternatives; elements of UI should be distinguishable.

• Operable – giving users enough time to take actions, make functionality work for devices

that function similarly to the keyboard. Applications should be easy to navigate.

• Understandable – dynamic changes happen in a predictable way and the application

assists users in taking decisions.

33

• Robust – compatibility with current and future assistive technologies (AT), such as screen

readers or alternative input devices (head pointers, eye tracking).[74][75]

There are many accessibility testing tools for evaluating websites. They include analyzing tools,

such as Axe Accessibility Testing – technology used in Google Lighthouse, color use evaluators,

screen readers (NVDA, Chrome Vox) and other assistive technology emulators.[76]

Web accessibility audits provide detailed assessments of the website and identify needed

improvements for the product to achieve compliance with standards, such as ADA, Section 508

and WCAG 2.0.[77] It benefits both creators and users of the website, since it helps writing semantic

HTML that improves accessibility, usability and SEO, demonstrates good ethics and morals and is

protected by law in some states.

3.2.3 Design System Management (Dair)

A design system is a collection of reusable components that can be integrated into the UIs of

multiple systems.[78] Major companies, e.g. Airbnb, Uber and IBM, were among the first to

incorporate their unique design systems. One of the core values of a working design system is a

single source of truth available for design teams when drafting a UI. This allows for a scalable UI

language and streamlined UX guidelines. Leveraging a single design source can assist in creating

consistent user experiences for the companies that aim to persist an identical user experience

among multiple services, for instance, cross-channel marketing, such as multichannel or

omnichannel. Building a library of design patterns, rules, and UX guidelines prevents

inconsistencies when shipping e-commerce products at a large scale.[79]

A style guide is a static document that describes the design system. It demonstrates the look and

feel of the UI components, describes use cases for UI patterns, correct typographic scales, and

other visual characteristics of the design components.[80] While style guides provide classification

of components, implementing and maintaining a design system is a complex process.[81] However,

style guides are a minimum requirement for a working design system. Maintaining a design system

encompasses pattern libraries, style guides, as well as any other artifacts, and serves as a rule

book for the development teams. Design systems direct designers to create designs in an

intentional way.[82]

34

ATOMIC DESIGN (DAIR)

Atomic design is a methodology, created by Brad Frost, which divides UI elements into five distinct

groups:[83]

1. Atoms – basic HTML elements (buttons, labels, inputs).

2. Molecules – relatively simple groups of UI elements functioning together as a unit (lists,

menu items, search box).

3. Organisms – relatively complex UI components composed of groups of molecules and/or

atoms and/or other organisms (header, footer, modal)

4. Templates – page-level objects that place components into a layout and articulate the

design’s underlying content structure (home page, category page, account page)

5. Pages – specific instances of templates that show what a UI looks like with real

representative content in place.

UI methodologies, such as atomic design, bring logic and structure to individual screens of the

application. In the open-source web one of the most popular solutions for implementing style guides

and project-specific component libraries is Storybook.[84] Storybook is the industry-standard

component explorer for developing UI components in isolation.[85] It has a rich add-on library for

assessing responsiveness, accessibility, different use cases, and various properties of the

components. It works with multiple JavaScript frameworks, namely React, Vue and Angular, and

has a support for design tool integrations such as InVision’s Design System Manager (DSM) and

Figma.[86] Storybook can serve as a bridge between designers and developers, allowing certain

level of control over the end result[87] via “design tokens”.[88]

Connecting design and development helps teams to identify edge cases before the actual issues

occur and respond to flaws during the early stages of development.[89] Neither developers nor

designers can predict each possible scenario of how the UI will look for every use case. Screen

resolutions or dynamic contents can break the design. Therefore, there is a need for developers

and UI/UX engineers to have a framework for collaborating during the implementation of design to

build more thoughtful and defensive UIs.[89]

35

3.3 Workflow optimization (Dair)

Headless architecture decouples front-end application from the back-end, making a way for a faster

delivery and better separation of concerns. This can positively affect the way user stories are

defined in agile development, improving the independence of related features. Front-end

development patterns, e.g. CBA and state management, allow building complex features without

producing sophisticated code. In addition to that, web testing and accessibility audit automation

and the possibility to implement fully functional design systems with modern open-source tools like

Storybook is of great value.

3.3.1 Workflow optimization with automated web testing (Dair)

In agile development, regular testing is an essential part of quality assurance. Testers (QA

engineers) usually belong to the team along with developers and continuously test every change

in the code.[90] Agile methodology helps to detect bugs and identify errors in the early stages of

development as well as to receive feedback from QA engineers iteratively.[91]

Automated tests can improve the continuous delivery of e-commerce projects and are crucial to

integrating continuous testing into the CI/CD pipeline.[92] They help detect bugs and keep track of

the system status on every deployment. In addition to that, developers writing unit and E2E tests

are involved in improving quality engineering, along with QA engineers. This shared responsibility

increases the value and time that development teams spend on improving the quality of front-end

deliverables.

Performance testing identifies technical limitations that may negatively affect different users.[93] The

developers should be able to prevent an outage, predict recovery time, and retrieve practical

information on the resources of the system. QA engineers can evaluate performance and request

performance profiling when needed.

3.3.2 Workflow optimization with design systems (Dair)

During development of the UI, lack of communication between developers and designers may

hinder the process and lead to various misunderstandings regarding the implementation.[94] When

36

design teams focus on building pages, without the atomic design principles, it affects the actual

implementation and results in UI inconsistency and bugs. In this case, design does not help

developers in defining how to break the UI down into smaller entities and build components in the

code level.

Benefits of implementing design systems for the workflow optimization are following:

1. Design systems allow designers to create a consistent UI/UX, which is fast to build and

develop due to the narrow focus on components and their reusability.

2. Components are built with different types and states of the program in mind, which reduces

bugs.

3. Components can be tested individually.

4. Practice of systematic design reduces time of iterative processes in the web development

teams. Designers have an opportunity to directly collaborate with developers in certain

matters.

3.4 Emerging E-commerce Platforms Based on Modern Web Front-end (Fayjus)

The exact architecture of a web front-end system might depend on specific project requirements.

Nonetheless, as presented in the Modern front-end architecture, some baseline architectural

patterns are common throughout most modern web front-end solutions. It might turn out a costly

and repetitive procedure to integrate modern front-end methodologies, tools, technologies, and

architect a solution from scratch for every different project developed by a solution provider. This

triggering concern led many service providers and developer communities to create their own

baseline modern PWA framework and platforms and making them open-sourced. A comparison

between all such front-end PWA based platforms for e-commerce that are available today is shown

in figure 11.

37

FIGURE 11. Comparison between emerging e-commerce front-end platforms leveraging modern
front-end.[95]

Since these solutions are still at an initial phase with growing communities and implementations, a

closer look at the community statistics as shown in Table 2 might also assist in deciding the baseline

solution.

Table 2. Community statistics for emerging e-commerce front-end platforms.[96]

 Angular
Storefront

Deity
Falcon

Front
Commerce

PWA
Studio

Scandiweb
PWA

Spartacus
SAP

Vue
Storefront

Community
Status

Small Small Selected
Partners

Strong Small Small Strong

GitHub Stars

- 313 - 420 35 192 4.903

Contributors

8 17 - 74 5 38 142

Accepted Pull
Requests

- 242 - 572 16 1.115 1.627

Number of forks
on GitHub

- 47 - 217 14 85 946

38

As it appears in Figure 11 And Table 2, among all the open-source front-end platforms available

today, Vue Storefront has the most significant number of live projects and the highest community

involvement. It is only outnumbered by Front Commerce when it comes to live projects, but as the

latter is not an open-source platform, it might not be an ideal platform for many solution providers.

The PWA studio provided by Magento also shows an active community status just as Vue

Storefront. However, PWA studio has support for only one payment provider so far, which should

be taken into account before moving forward with the framework.

39

4 IMPLEMENTATION (Fayjus)

The previous chapters of this thesis have established the following motivations for implementing a

design system and modern web front-end based e-commerce system:

1. The business and technological drawbacks of using outdated front-end systems in e-

commerce applications.

2. The shortcomings and experiences of existing solutions.

3. The availability of modern front-end methodologies, tools, workflow, and platforms and

their impact on developing and delivering performant applications.

The aim of this chapter is to document the implementation process of a modern e-commerce

storefront leveraging modern web front-end.

4.1 Bootstrapping the Front-end (Fayjus)

According to the investigation in Emerging E-commerce Platforms Based on Modern Front-

end (Ch. 3.2), Vue Storefront (VSF) has the most significant number of live projects and the

highest community involvement among the list of e-commerce PWA platforms as of today. It was

decided that VSF would be used as the base front-end platform among all the platforms introduced

and compared in the previous chapter. The architecture for setting up a VSF based e-commerce

application is shown in figure 12:

40

FIGURE 12. Vue Storefront Based Application Architecture.[97]

From the architecture, it can be derived that Magento 2 is still acting as the back-end of the e-

commerce application. The data from Magento 2 is pumped into an ElasticSearch (ES) – Elastic

data store, a NoSQL database. From there, the Vue Storefront API (VSF-API) application serves

the data to front-end, Vue Storefront. That is the most common flow for a VSF application. In some

specific cases, both VSF and VSF-API can also dynamically request and fetch data from Magento

REST API.

The bootstrapping and deployment process of Magento 2, Vue Storefront API and Elastic data

store would not be documented as it is out of scope of this thesis. So, only the process of

bootstrapping VSF would be described. A VSF application has three most important parts in its

project architecture and the SoC should be maintained while development:

• Vue Storefront Core (core): The core part of VSF is the section where most of the

business and data resolving logic resides, which contains all the entry points, SSR

behavior, build process, in-app libs, and helpers. The modification of the core files was

prohibited in the official VSF documentation during implementations in order to stay up-to

-date with its features and security.[98] During the implementation, this guideline was strictly

followed. In cases where core needs modification, it was overridden within a theme

following the guidelines

41

• Vue Storefront Module (core/modules and src/modules): The modules of VSF

contain the e-commerce business logic. Each module contains an encapsulated feature,

such as Cart, Wishlist, Category or third-part integration.

• Vue Storefront Themes (src/themes): This part of VSF is the actual store

implementation that contains the markup and style of the store. The business logic

implemented in core and modules could also be extended here. VSF comes with a default

theme out of the box that can be fully customized and extended. Figure 13. depicts SoC

between VSF Core and VSF themes and the flow of business logic from the core to the

components,

FIGURE 13. Vue Storefront – Connecting the core with theme.[99]

Apart from that the VSF application also contains a JSON configuration file as

config/default.json which is responsible for configuration such as the active theme, back-

end API addresses and multistore setup. The configurations determine the connection between

VSF and VSF-API.

In the official documentation, two methods for setting up VSF are provided, VSF comes with an

installer for a more user-friendly installing approach. However, a manual installation process has

been followed since it provides more control over the configurations. In order to get a VSF

application up and running in a local environment along with a custom theme, the following steps

were followed in compliance with the VSF version 1.11.0:

1. The step one of the installation process was to clone the official VSF repository:

42

 git clone https://github.com/DivanteLtd/vue-storefront.git test

 cd test

2. After that the default.json file was duplicated and renamed as local.json from

configuration folder. The default.json file contains the configurations for the

development and production environment. On the other hand, the local.json file was

created and intended to contain configurations for the local environment:

 cp config/default.json config/local.json

At this point, the API and ElasticSearch configuration could be considered the most crucial

step. VSF will throw the default error page upon landing, due to the unavailability or

misconfiguration of these options. The VSF-API and ElasticSearch instances could run

locally or remotely in theory. Nevertheless, during this implementation process, the local

API and ElasticSearch instances were used.

 "api": {

 "url": "http://localhost:8080"

 },

 "elasticsearch": {

 "httpAuth": "",

 "host": "/api/catalog",

 "index": "project_magento_en",

 "min_score": 0.02,

 "csrTimeout": 5000,

 "ssrTimeout": 1000,

 "queryMethod": "GET",

 "disablePersistentQueriesCache": true,

 "searchScoring": {

 "attributes": {

 "attribute_code": {

 "scoreValues": { "attribute_value": { "weight": 1 } }

 }

43

 },

 "fuzziness": 2,

 "cutoff_frequency": 0.01,

 "max_expansions": 3,

 "minimum_should_match": "75%",

 "prefix_length": 2,

 "boost_mode": "multiply",

 "score_mode": "multiply",

 "max_boost": 100,

 "function_min_score": 1

 },

 "searchableAttributes": {

 "name": {

 "boost": 4

 },

 "sku": {

 "boost": 2

 },

 "category.name": {

 "boost": 1

 }

 }

 },

Also, store configurations, e.g. multistore and store information were considered and

configured according to the documentation.

 "defaultStoreCode": "",

 "storeViews": {

 "multistore": true,

 "commonCache": false,

 "mapStoreUrlsFor": ["en","fi"],

 "en": {

 "storeCode": "en",

 "storeId": 1,

 "name": "English Store",

 "url": "/en",

44

 "appendStoreCode": true,

 "elasticsearch": {

 "host": "/api/catalog",

 "index": "purewaste_magento_en"

 },

 "tax": {

 "defaultCountry": "FI"

 },

 "i18n": {

 "fullCountryName": " Finland",

 "fullLanguageName": "English",

 "defaultCountry": "FI",

 "defaultLanguage": "US",

 "defaultLocale": "en-US"

 },

 "seo": {

 "defaultTitle": "Vue Storefront"

 }

 },

 "fi": {

 "storeCode": "fi",

 "storeId": 2,

 "name": "Finnish Store",

 "url": "/fi",

 "appendStoreCode": true,

 "elasticsearch": {

 "host": "/api/catalog",

 "index": "purewaste_magento_fi"

 },

 "tax": {

 "defaultCountry": "FI"

 },

 "i18n": {

 "fullCountryName": "Finland",

 "fullLanguageName": "Finnish",

 "defaultCountry": "FI",

 "defaultLanguage": "FI",

 "defaultLocale": "fi-FI"

 },

 "seo": {

45

 "defaultTitle": "Vue Storefront"

 }

 }

 },

3. After the configurations, the VSF application could be launched in the localhost, and the

development process could be started. There were two modes for launching the

application. In the Legacy mode, the application could be launched with yarn and without

any docker container. However, the Standard mode launches the application inside a

docker container. During this implementation process, the application was launched in the

Legacy mode since the development team did not have much docker expertise and the

differences in mode do not affect the local FE development or the CI/CD workflow designed

by the DevOps team. The following commands were needed to run the application locally

in the Legacy mode:

 yarn build

 yarn dev

4. The application was up and running in localhost:3000 at this point. The theme that was

visible is the default one shipped with VSF. Most projects may require a custom theme to

be developed to establish the visual identity from the design. All themes in VSF were found

under the src/themes folder. A new theme was created following the VSF

documentation by copying the default theme (default folder in src/themes) and

renaming it to the desired theme name. The result folder structure looked as it is in figure

14.

FIGURE 14. VSF themes folder structure

Next the name property in theme’s package. json was updated and configurations from

config/default.json and config/local.json were updated accordingly:

46

 {

 "name": "theme-custom",

 "version": "1.0.0",

 "description": "Default theme for Project X",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1",

 "dev": "cd ../../../ && node core/scripts/server"

 },

 "author": "Vaimo",

 "license": "MIT",

 "dependencies": {

 "bodybuilder": "2.2.13",

 "vue": "^2.6.6",

 "vue-carousel": "^0.6.9",

 "vue-no-ssr": "^0.2.2",

 "vue-progressbar": "^0.7.5",

 "vue-zoomer": "^0.3.6",

 "vuelidate": "^0.6.2",

 "vuex": "^3.0.1"

 },

 "publishConfig": {

 "access": "public"

 }

 }

 "theme": "theme-purewaste"

After making these changes, it was needed to run the yarn install command, so that

the newly created theme is found and installed.

47

4.2 Elements of Vue Storefront Architecture (Fayjus)

In this section, elements of Vue storefront architecture such as state management and CSS

methodology, would be investigated for a better understanding during development.

4.2.1 State Management in Vue Storefront (Fayjus)

VSF uses Vuex, a state management pattern library created specifically for Vue JS applications.

The state management pattern and its effectiveness in creating a modern web front-end have been

explained in detail in State Management (chapter 3.2.2). The state management pattern

implementation of VSF could be visualized from the figure 15.

FIGURE 15. State Management Pattern as in Vuex.[100]

The actions, mutations and states are usually stored inside VSF modules under the store

directory. For example, user related actions, mutations and states are stored inside

core/modules/user/store. Also, the VSF theme might also contain Vuex stores that is

relevant to determine the UI behavior. One such store is,

themes/{themeName}/store/ui.ts, where all the UI related actions, mutations and states

48

are defined. A list of all the states used in the application initially could be found in

core/state/index.ts and it is shown below.

 const state = {

 version: '',

 __DEMO_MODE__: false,

 config: {},

 cart: {},

 checkout: {},

 cms: {},

 compare: {},

 product: {},

 shipping: {},

 user: {},

 ui: {},

 newsletter: {},

 wishlist: {},

 attribute: {

 list_by_code: {},

 list_by_id: {},

 blacklist: [],

 labels: {}

 },

 category: {

 current_path: '',

 current_product_query: {},

 current: {

 slug: '',

 name: ''

 },

 filters: {}

 },

 stock: {

 cache: []

 },

 storeView: {},

 twoStageCachingDelta1: 0,

 twoStageCachingDelta2: 0,

 twoStageCachingDisabled: false,

49

 userTokenInvalidated: null,

 userTokenInvalidateAttemptsCount: 0,

 userTokenInvalidateLock: 0

 }

4.2.2 CSS Methodology in Vue Storefront (Fayjus)

VSF uses a combination of Atomic CSS methodology and Scoped CSS to implement all the CSS

rules in the default theme. The following guidelines were established to build the CSS technology

stack shown in Table 3:[101]

1. CSS should be easily maintainable to imply the smallest possible files footprint.

2. Flexbox and reusable atomic classes should be used to prevent the rapid growth of CSS

files.

3. Nesting of classes should generally be avoided (the maximum nesting level is 1) to

maintain understandability and to provide an easier debugging experience.

4. All CSS files should be put inside a src/themes/{theme_name}/css folder.

5. Atomic classes should be created on-demand to avoid unused CSS.

Table 3. CSS Technology Stack in VSF default theme.

Technology Solution

CSS Preprocessor SASS

Layout Flexbox

Methodology Atomic CSS, Scoped CSS

Automation PostCSS

4.3 Developing Reusable Components (Fayjus)

During the implementation process, a customized theme was implemented from the design. VSF

provided most of the components required for the custom theme as part of the default theme. So,

in order to make the custom theme look as it is in the design, it was mostly stylings that needed to

be changed in the cases where the business logic and structure are the same. Still, there were

50

some elements in the design for which custom components were needed to be created from

scratch. This section would describe the challenges and processes of such components.

VSF, by default, had a sidebar menu implemented in the default theme. However, as per the design,

the custom theme needed a horizontal menu for Desktop while keeping the sidebar for a mobile.

The design for the custom component is shown in figure 16.

FIGURE 16. Design for Horizontal Menu from Implementation.

The implementation had the following challenges that were needed to resolve:

1. Getting category data into the component to show the menu

2. Deciding whether to render the component conditionally or hiding it depending on the

breakpoint

3. Passing around an event from one component to another component

4. Keeping the component loosely coupled to make it reusable

In order to explain the origin of the category data that was needed for the FE implementation as

per the first challenge mentioned above, it was needed to dive a bit into the Magento and Elastic

data store side. In the Magento side, a module named Vaimo Menu is used to have a better

customization control on Category and Menu provided by default Magento. Initially, it seemed that

it would need API or Adapter level modifications from the VSF-API side to make it compatible with

Vaimo Menu. But the magento2-vsbridge-indexer module that was installed within Magento to

index magneto data to ES was dynamic enough to index custom category data into the ES store

without further modifications. So, after indexing was done by the magento2-vsbridge-indexer

module, the data given in figure 17 was already available for VSF-API to fetch and provide to VSF:

51

FIGURE 17. Example category data in ES for VSF-API to fetch and provide to VSF.

Since the data from Magento was already in ES, an inquiry at the VSF-API level was needed to

check the content of the data provided to VSF before proceeding to implementation. By default,

VSF-API extracts certain fields of a given entity from the Elastic data store and can ship them to

the front-end. The fields of an entity could be included or excluded from the VSF-API configuration

(config/default.json). For the category entity, the fields shown below are included by default

and could be fetched as the API response:

52

 "category": {

 "includeFields": ["children_data", "id", "children_count", "sku", "name", "is_active", "parent_id", "level",

"url_key", "menu_color", "image"]

 },

As the origin of data coming to the VSF front-end was understood, the actual front-end

implementation process was started. From the VSF part, the default category module found at

core/modules/catalog/ has all the business and data fetching logic already. Since the

application uses a state management pattern, the data fetching is done with an Action which is

found in core/modules/catalog/store/category/actions.ts. The action is named as

list and it would be needed inside the Horizontal Menu components to trigger the fetching of

category data. Also, inside the getter file,

core/modules/catalog/store/category/getter.ts, there is a function called

getCategories that would be used in the component to fetch data.

The first step taken towards the implementation consists of planning and sketching the composition

of the components, as the plan for this implementation is to make it also compliant with Atomic

Design principles described in Design System Management (section 3.1.10). The composition

shown in figure 18 and figure 19 was planned in order create the horizontal menu functionality.

FIGURE 18. Breaking down the design according to Atomic Design principle.

53

FIGURE 19. Planning the composition of components for Horizontal Menu

Since Vue and other modern frameworks support conditional rendering on the client-side, the

second challenge mentioned in the beginning has been solved by conditionally rendering a different

Menu component depending on the breakpoint instead of hiding the components with CSS. A third-

party module, vue-breakpoints, has been used to perform conditional rendering depending on

breakpoints. The wrapper component for the whole menu is the HorizontalMenu.vue

component that is needed to be called from the Header.vue components found in

source/themes/{themeName}/components/core/blocks/Header.vue.

A HorizontalMenu component was added there inside the show-at component provided by vue-

breakpoints to render the component conditionally:

 <show-at breakpoint="large">

 <HorizontalMenu />

 </show-at>

Furthermore, the hamburger icon responsible for opening the sidebar menu was needed to be

hidden from the desktop view and only shown on mobile and tab views. So, it was also wrapped

inside the show-at component:

 <show-at breakpoint="mediumAndBelow">

 <hamburger-icon class="p15 icon pointer" />

54

 </show-at>

At this point, the HorizontalMenu component was created and rendered. The HorizontalMenu and

subsequent components in the Horizontal Menu module has a template, logic, and style in the

same file as a Single File Component similar to most other components in VSF. A Single File

Component style composition may seem opposite to the idea of SoC, but it is a well-established

pattern used within a large scale of Vue based applications where an inherently coupled template,

logic and styles are collocated to make components more cohesive and maintainable.[102] The

following logic resolves the first challenge of getting data to the component:

 export default {

 name: 'HorizontalMenu',

 components: {

 HorizontalMenuItem

 },

 data () {

 return {

 baseLevel: 2

 }

 },

 computed: {

 ...mapGetters('category', ['getCategories']),

 getBaseLevelCategories () {

 return this.getCategories.filter((category) => {

 return category.level === this.baseLevel

 })

 }

 },

 methods: {

 ...mapActions('category', ['list'])

 },

 async created () {

 await this.list({level: this.baseLevel})

 }

 }

55

So, as shown in the snippet above, when the component was created, it executed the created

life cycle hook provided by Vue, within the created hooks the list function was called with

baseLevel provided as a parameter. In this case, the baseLevel was 2 and declared within the

Vue data function. The baseLevel could vary depending on the application. The list function does

not inherently belong to this component, but it is originated from the category action mentioned

earlier. Within Vue methods, the list action was mapped as a function of the component with the

mapActions function provided by Vuex. The Async Await feature from JavaScript was used since

Vuex Actions often contain asynchronous operations and the function was needed to be executed

upon creation before moving forward with other logic within the component.[103] After the list

function was executed, the data necessary for rendering the base level of Menu (level 2 in this

case) should already be in the state which could be further ensured by checking in the Vuex tab in

the Vue Devtools extension as shown in figure 20.

FIGURE 20. Category list is loaded after list action is called (from Vue Devtools)

56

After the data was successfully fetched and loaded in the Vuex state, the component used the

getCategories function that was mapped with the mapGetters function imported from the

Vuex library as the final step of getting the data to the component. The same pattern of data fetching

was also used when it was needed to fetch category level 2 and 3 data for rendering the

HorizontalMenuExtended component.

The third challenge in developing the component was passing around events from one component

to another. As per the implementation, HorizontalMenuExtendedItem was the component for

rendering each level 2 and level 3 category menu. HorizontalMenuExtended was the wrapper

responsible for rendering all HorizontalMenuExtendedItem through a loop. The challenge

appeared during the implementation process of the following feature – “the extended horizontal

menu is hidden when any horizontal menu item is clicked and redirected to the designated link”. It

is possible to use v-on directive provided by Vue for executing JavaScript when a DOM event is

triggered – in this case listening to the click event and executing logic accordingly seemed like a

solution:[104]

 <div @click="menuLinkClicked"></div>

The challenge, however, was executing a function in the parent component when a child

component triggers an event. Since, Vue also utilizes the One-way Data Flow pattern, which

restricts the passing of data from a children to parent component to prevent accidental mutation,

the only way to implement the feature was to pass an event.[105] The challenge could be mitigated

by using an Event bus.

The Event bus is used in Vue applications when a component needs to broadcast an event to the

rest of the application, and any other component within the application can subscribe and listen to

it.[106] In VSF, a global event bus was already created which could be accessed by components as

this.$bus. Thus, it was not needed to create a new one. The event bus has a property named

$emit, that is used for emitting an event to other components, while the $on property is used for

listening to a particular event. The following code snippets are used for passing an event from the

child component (HorizontalMenuExtendedItem) to its parent

(HorizontalMenuExtended):

57

 methods: {

 menuLinkClicked () {

 this.$bus.$emit('menu-link-clicked')

 }

 }

 async created () {

 this.$bus.$on('menu-link-clicked', this.onLinkClick)

 }

It was needed to make the components loosely coupled from the rest of the application to make

the implementation reusable. The components in the horizontal menu module had that

characteristic by design. All the template, logic, and style are self-contained inside the components.

Also, the data needed to render the component is stored in the Vuex global store. Thus, the

component used as the entry point to the module does not need any data to be passed down as

prop.

4.4 Reusing Existing Modules (Fayjus)

The implementation needed the integration of the Klarna payment service during the checkout step

of the application. Since there was no stable VSF module for Klarna available as of the time of the

implementation, it became a blocking issue to continue developing the checkout step in VSF. As a

solution to this problem, an existing VSF module named vsf-external-checkout was used to execute

the checkout step externally within Magento 2. When a user tries to enter the VSF checkout, the

module synchronizes the cart and user data with the Magento 2 instance. Later, the module

redirects the user to Magento CMS, as shown in figure 21.

58

FIGURE 21. VSF external checkout module functionality. [107]

Two different modules were needed to be installed to achieve the external checkout functionality-

one from the Magento side and the other from the VSF side. The installation process of the module

installed from the VSF side would be documented here to demonstrate the reusability of an existing

VSF module. It was not possible to install the vsf-external-checkout module through the yarn

package manager since the feature was not supported.[107] As part of the manual installation

process, the latest release (3.0.0) was downloaded and copied to the src/module folder. Next,

the configuration was updated in default.json and local.json from the config folder. Due

to a bug within the module, it was needed to provide CMS addresses for individual stores explicitly

despite the addresses being the same.[108] Also, it was checked that the cart synchronization is

enabled:

 "externalCheckout": {

 "cmsUrl": "https://magento.purewaste-dev.north1.vaimo.net/",

 "stores": {

 "en": {

 "cmsUrl": "https://magento.purewaste-dev.north1.vaimo.net/"

 },

 "fi": {

59

 "cmsUrl": "https://magento.purewaste-dev.north1.vaimo.net/"

 }

 }

 }

Within the src/module folder, there is a file named client.ts that is responsible for registering

all the modules used within the implementation. The external checkout module was also registered

there:

 import { ExternalCheckout } from './external-checkout'

 export function registerClientModules () {

 // other extensions

 registerModule(ExternalCheckout)

 }

The external checkout should have been working at this point, as described in the official

documentation of the module.[107] But since the implementation had multistore enabled and it

was not possible to assign defaultStorecode due to a VSF bug,[109] the module was not

working in the default store view. However, this issue was resolved by adding a fallback mechanism

in the beforeEach.ts file. beforeEach is a hook provided by vue-router that enables executing

the logic before each routing requests are handled. The logic is updated, so if the current store

code is missing vue-router redirects the checkout request to the default CMS address:

 if (storeCode in stores && to.name === storeCode + '-checkout') {

 window.location.replace(stores[storeCode].cmsUrl + '/vue/cart/sync/token/' + userToken + '/cart/' +

cartToken)

 } else if (storeCode in stores && to.name === 'checkout' && stores[storeCode].cmsUrl !== undefined) {

 window.location.replace(stores[storeCode].cmsUrl + '/vue/cart/sync/token/' + userToken + '/cart/' +

cartToken)

 } else if (to.name === 'checkout') {

 window.location.replace(cmsUrl + '/vue/cart/sync/token/' + userToken + '/cart/' + cartToken)

 } else {

 next()

60

 }

Despite manual installation and the issues found within the module, reusing existing modules such

as vsf-external-checkout, could still be considered a well-documented and easy process since it

requires only a couple of steps to integrate a module into the project. To get started with an external

module, getting the source code and then registering the module seems to be the only mandatory

step. Sometimes additional module-specific configuration within VSF or Magento 2 might also be

needed.

INSTALLING NOSTO RECOMMENDATIONS MODULE (DAIR)

Adding Nosto recommendations is another example of reusing existing modules in Vue

Storefront.[110] Nosto tagging is a third-party Magento 2 module that allows displaying personalized

product recommendations for users.[111] The product department of Vaimo has developed a generic

module for implementing Nosto recommendations in VSF – vsf-nosto-tagging.

After setting up Nosto from the Magento side, the recommendations have to be enabled from the

Nosto administration panel and the domain of VSF application has to be added to the list of “Other

hosts used by the website (one per line)” in the advanced settings section. The following

configuration has to be added to the config/local.json in the VSF:

 "nosto": {

 "id": "test-id",

 "enabled": true,

 "debugEnabled": true

 }

The module also supports a multistore setup:

 "nosto": {

61

 "en":{

 "enabled": true,

 "id": "test-id"

 },

 "fi":{

 "enabled": true,

 "id": "test-id"

 },

 "debugEnabled": true

 }

The debugEnabled option will allow logging Nosto API request results to the console. To add the

recommendation block to the Vue component or page, the required components need to be

imported and registered:

 import NostoWrapper from 'src/modules/nosto-tagging-module/components/NostoWrapper.vue'

 import VsProductListSlot from 'src/modules/nosto-tagging-

module/components/VsQueryList/VsProductListSlot'

Once that is done, a Nosto recommendation can be added from the template:

 <nosto-wrapper

 :page="'front'"

 :placement-ids="['frontpage-nosto-2']"

 :key="'front1'"

 :slot-element="slotElement"

 />

:placement-ids is the ID of the recommendation template. The example code above will render

the “Most Popular Right Now” block, which is synchronised to the products from the Magento 2

instance (figure 22). The tagging happens even when the user visits product pages from the VSF.

62

FIGURE 22. Nosto recommendations block in VSF.

4.5 Publishing a Module (Fayjus)

It is possible to create and publish a VSF module both manually and with CLI. The following steps

are recommended by the official VSF documentation to create a module manually,

1. All the modules created and used within the project should be under the src/modules

folder. Thus, the vsf-external-checkout module is placed under that directory. The modules

created within Vaimo, such as nosto-tagging-module could further be organized by putting

them in src/modules/Vaimo.

2. The next step is to create a file named index.ts within the directory. The module should

be exported from this file implementing the StorefrontModule interface provided by

Vaimo. As it could be seen from the core/lib/modules.ts file, the interface has the

following structure:

 export type StorefrontModule = (

 options: {

 app: Vue,

 store: Store<RootState>,

 router: VueRouter,

 moduleConfig: any,

 appConfig: any

 }

63

) => void

The purpose of using this interface is to access the store, router, configurations from the

newly created module. The content from the index.ts file from nosto-tagging-module is

shown below as a reference,

 import { isServer } from '@vue-storefront/core/helpers';

 import { StorefrontModule } from '@vue-storefront/core/lib/modules';

 import { afterRegistration } from './hooks/afterRegistration';

 import { module } from './store';

 export const KEY = 'nosto-tagging';

 export const NostoTagging: StorefrontModule = function ({store, router, appConfig}) {

 if (!isServer) {

 store.registerModule(KEY, module);

 afterRegistration(appConfig, store, isServer)

 }

 };

3. The next step is to register the module in the client.ts file as it is shown in the vsf-

external-checkout module installation process.

4. The module could be distributed as a package by introducing a package.json file inside

the directory. For Vaimo specific modules, a naming convention has been set by the

Product Department. As per the convention VSF module should be prefixed with vue-

(example: vaimo/vsf-nosto-tagging).

4.6 CI/CD pipeline with Argo and Kubernetes (Dair)

One of the benefits of headless architecture is the ability to build and deploy storefront, API and

the back-end separately from each other. As each service is an independent stand-alone

application, it could be developed, maintained and deployed as such.[13] This allows for independent

(external) teams, continuous deployment, hassle-free extensibility and unlimited scalability per

service. Front-end developers could only build the PWA to deploy their changes, as opposed to

64

building and reinstalling the whole Magento platform. This change results in faster builds, and better

continuous deployment, improved SoC. Hosting can be tweaked and scaled per service.[13]

In Vaimo the CI/CD is done with Argo – a container-native workflow engine for Kubernetes

(K8S).[112] VSF and VSF-API require Docker by default to run ElasticSearch, Redis and Kibana.[113]

Argo CD is used for handling deployments in the GitOps fashion, meaning that Kubernetes cluster

“mirrors everything from the git repositories” of the projects.[114]

4.6.1 Build and deploy procedures (Dair)

To initiate a build of VSF with argo, the following command needs to be run:

 argo submit workflow.yaml

This will build the master branch by default. It is possible to provide other branches or git revisions

as arguments, for example “dev” branch:

 argo submit -p revision=dev workflow.yaml

Argo will build the master branch of the VSF repository by default, which can be seen in the

workflow.yaml – revision argument:

 spec:

 entrypoint: main

 ttlSecondsAfterFinished: 7200

 arguments:

 parameters:

 - name: repo

 value: vaimo/project_purewaste_vsf

 - name: revision

 value: master

65

Build is done based on the templates defined in workflow.yaml (shortened example):

 spec:

 templates:

 - name: build

 container:

 image: eu.gcr.io/vaimogcr/magento-base-php70:latest

 command: ["/bin/sh", "-c"]

 resources:

 requests:

 cpu: 900m

 memory: 1300Mi

 volumeMounts:

 - name: composer-cache

 mountPath: /var/www/.composer/cache

 - name: npm-cache

 mountPath: /var/www/.npm

Once the build has been started, developer can watch the progress with the argo watch

command. When the build is finished, the output parameters, containing the new revision tag for

the K8S configuration, will be generated (figure 23).

FIGURE 23. Finished build.

66

kustomization.yaml, the configuration file for K8S objects, should be modified for the Argo CD

to spot the latest changes. kustomization.yaml contains the information about images used

within the project and newTag represents the current revision of the application. It can be either

branch, revision or tag:

 images:

 - name: magento

 newName: eu.gcr.io/vaimogcr/purewaste

 newTag: SNAPSHOT-feature_PUREW-50_water_saved_to_email-8d6ef26

 - name: vsf-api

 newName: eu.gcr.io/vaimogcr/purewaste-vsf-api

 newTag: 0.0.10

 - name: vsf

 newName: eu.gcr.io/vaimogcr/purewaste-vsf

 newTag: SNAPSHOT-dev-8fdf4d7

When the newTag is changed, it has to be also synchronized with Argo CD. When everything is

up-to-date, every service will be displayed as synced from the internal Argo CD web interface. On

figure 24, the network graph for the application is displayed. It can be seen that all pods are

synchronised, and vsf pod is in the containercreating state, whereas the magento pod is in

the podinitializing state.

67

FIGURE 24. Argo CD web interface. Network graph of the project.

4.6.2 Improvement of the CI/CD speed with headless architecture (Dair)

Due to the decoupled front-end and lightweight PWA, the time to build the latest front-end changes

has been decreased to the average of 9 minutes with VSF, compared to the average 14 minutes

of building the Magento 2 platform. The slower the building time, the more it is likely that the

productivity of the development teams, and therefore the productivity of the company suffers.[115]

The older projects with a greater number of customizations, integrations and installed modules may

sometime take half an hour to build. Headless architecture helps to prevent the increase of the

build time, since the logic is split between three independent applications.

4.7 Automated testing (Dair)

Vue Storefront makes use of Jest for unit testing and Cypress for the E2E testing.

68

A unit is the smallest testable part of the software. The goal of unit testing is to validate that each

unit of the software performs as designed. Unit tests usually have one or multiple inputs and a

single output. In object-oriented programming, the smallest unit is a method of the class. Unit testing

frameworks are used to assist in unit testing.[116]

E2E testing ensures that the flow of an application right from the start to the finish is behaving as

expected. It helps identifying system dependencies and consistency of data integrity between

various system components and systems. The entire application is tested for critical functionalities,

such as communicating with the other systems, interfaces, database, network, and other

applications.[117]

4.7.1 Unit testing with Jest (Dair)

By default, unit tests are triggered by a pre-commit hook. This hook is configured with Husky, a tool

for integrating various actions into git hooks.[118] There are currently only two hooks defined – “pre-

commit”, which runs an ESLint command on the files that are staged for the commit, and “pre-

push”, which runs all unit tests inside the core folder:

 const tasks = arr => arr.join(' && ')

 module.exports = {

 'hooks': {

 'pre-commit': tasks([

 'lint-staged'

]),

 'pre-push': tasks([

 'yarn test:unit'

])

 }

 }

There is a total of 104 test suites and 610 tests for the VSF core files. From the results in figure 25,

it can be seen that it takes around 14 seconds to run all of the tests.

69

FIGURE 25. Running unit tests with Jest. Output.

It is possible to either modify existing tests, add new tests for existing modules and components or

create tests for new modules and components. Below is the example of a custom test for the VSF

core helper – alphanumeric validator:

 import { unicodeAlpha, unicodeAlphaNum } from '@vue-storefront/core/helpers/validators'

 jest.clearAllMocks()

 describe('Alphanumeric validator', () => {

 it('Test alphanumeric validators', () => {

 expect(unicodeAlpha('asdf')).toBe(true)

 expect(unicodeAlpha('12')).toBe(false)

 expect(unicodeAlpha('asdf123')).toBe(true)

 expect(unicodeAlphaNum('123')).toBe(true)

 expect(unicodeAlphaNum('asdf123')).toBe(true)

70

 })

 })

The test simply evaluates the outputs of two validation functions. After adding this test, the time to

run all unit tests has increased to approximately 1 second with the last test taking more than 10

seconds (figure 26). However, the time has moved back to normal on the second run.

FIGURE 26. After adding new test.

Jest can also create test coverage reports. Test coverage helps developers to see which parts of

the code are not tested. The data is divided into statement (has each statement in the program

been executed), function (has each function or subroutine in the program been called), branch (has

each decision path, e.g., if-else clause, been tested) and line (has each line in the source file been

executed) coverage.[119] The report takes into account every JavaScript file under the directories

defined in the test/unit/jest.conf.js:

 testMatch: [

 '<rootDir>/src/modules/**/test/unit/**/*.spec.(js|ts)',

 `<rootDir>/src/themes/**/*.spec.(js|ts)`,

 '<rootDir>/core/**/test/unit/**/*.spec.(js|ts)'

]

71

The coverage command will also generate a visual HTML report which can be found in the

coverage/lcov-report folder (figure 27).[120] As seen from the report, default Vue Storefront unit

tests cover 20% of statements, 13% of branches, 12% percent of functions and 19% of code lines

from the core files. The unit test for validators, which was written manually, can be seen on the

bottom of the list. It has a 100% coverage thanks to its simplicity.

FIGURE 27. HTML report for test coverage.

Test coverage gives the overall idea about the test distribution in the project. A low coverage does

not require writing unit tests for every component or helper function. For instance, developers may

find it hard to write unit tests for presentational components with no or very little logic.[121] Instead,

they might find creating snapshot tests more useful. In the snapshot tests the application renders

a UI component, takes a snapshot, then compares it to a reference snapshot file stored alongside

the test. If the two snapshots do not match, the test will fail, meaning that either the change was

unexpected or the reference snapshot needs to be updated to the new version of the

component.[122]

4.7.2 E2E testing with Cypress (Dair)

Cypress is a JavaScript-based framework that runs and evaluates end-to-end tests in the browser.

It has features like waiting for the DOM tree generation, real-time reloads and debugging the

snapshots taken at any step of the execution. It enables writing generic tests that are not affected

by the technology of the web application and it integrates automated testing processes in the

72

development cycles.[123] Cypress takes a snapshot of each step allowing developers to experience

the system at different points of test execution.

VSF comes equipped with Cypress and a number of default integration tests for the demo VSF

instance. Test scripts are simple JavaScript files with commands to the browser, and conditions for

the expected result. Below is the example test script for Cypress:

 describe('login path', () => {

 it('should fill the login form without error', () => {

 cy.visit('/')

 cy.get('[data-testid=accountButton]').click()

 cy.get('[name=email]').type('test@test.com')

 cy.get('[name=password]').type('Password123')

 cy.get('#remember').check({ force: true })

 cy.get('[data-testid="errorMessage"]').should('not.exist')

 })

 })

When Cypress test is launched, a browser is opened displaying the test execution. The console

window on the left side lists each step in the test and displays information about the commands

executed. The actual view of the webpage on the right side of the window renders the actual UI of

the website, which end users will see. The login-path.js test which was executed in the screenshot

has taken 2.97 seconds to run, with every actions resulting in success (figure 28).

73

FIGURE 28. A successful Cypress E2E test

When hovering over the execution steps, the inline frame containing the webpage is updated to the

corresponding snapshot, allowing the user to inspect the system at that moment with the familiar

debugging tools such as Developer Tools (figure 29).[124] The icon with the crossed eye on the right

of the execution log indicates that the element is not visible on the page, and the number indicates

the number of elements with the corresponding selector.

74

FIGURE 29. Cypress E2E test snapshot

Cypress is a developer-friendly and robust framework. It helps writing easy and fast E2E tests with

a natural-language programming syntax and an interactive output. It can be easily integrated into

existing projects and used on a website that is not built with JavaScript. It is easy to setup and

install and it does not require an in-depth programming knowledge for QA engineers to write custom

test cases.[125] Cypress, in combination with Jest, creates a durable testing foundation for web

projects built with the modern web technology stack. It encourages developers to prioritize quality

when designing and implementing the software units, it improves testing efficiency with

thoroughness in testing and earlier detection of software defects. Automated tests can be reused

due to their repetitive nature, which may result in improved security practices since they are usually

independent from the test and live project databases.[126]

4.8 Design system maintenance (Dair)

E-commerce projects may face severe changes to the design during the implementation. If there

is a need for a design system, then every modification or addition, at first, should be included to the

style guide, so the developers can work on it. Component-based architecture enables applying

75

changes only once to modify all the instances of the component in the code. The design system

needs to adapt to feedback. It should be constantly iterated on and be able to evolve alongside the

products it serves.[127] To create a design system that takes a root and becomes an essential part

of the organization’s workflow, an increased collaboration between UI/UX engineers and

developers is required. Necessary tools and practices for supporting the design systems

implementation have to be decided on and utilized.

Storybook creates an environment for centralizing the implementation of every UI component from

the style guide individually or within a group (molecules, organisms). Components are maintainable

since they are using the same code base for the actual storefront implementation. Components are

developed without any back-end implementation and they can be divided into multiple groups

forming e.g. atoms, molecules or organisms.

Storybook is served as a separate instance, separate from the actual application. Designers can

access the Storybook to test and see the implemented UI components and how they function in

different scenarios, whereas QA engineers can evaluate components with the help of installed add-

on libraries and give feedback on component-level issues, such as accessibility, during the early

stages of development.[127]

4.8.1 Creating a component library with Storybook (Dair)

Storybook has a support for Vue by default. It was installed to the theme of the project with yarn:

 yarn add @storybook/vue --dev

Three add-ons were tested during the investigation of the Storybook: “Source” – to see the source

code of the components, “Knobs” – to dynamically interact with component values, and “A11Y” –

for the accessibility evaluation.[76] After installing the add-ons, they have to be manually added to

.storybook/main.js, as follows:

76

 module.exports = {

 stories: ['../../../**/*.stories.[tj]s'],

 addons: [

 '@storybook/addon-knobs/register',

 '@storybook/addon-a11y/register',

 '@storybook/addon-storysource'

]

 }

Storybook can then be started:

 yarn start-storybook

The list of components, also known as “stories”, on the left panel currently does not have any logical

structure in the given implementation (figure 30), but it can be organized to indicate atomic design

groups and component types, similarly to the Storefront UI implementation.[128] The left panel is a

browser of components with a multi-layered navigation for different component types and a search

box. The right panel renders the components and has controls for zooming, color blindness

emulation, responsive web tools, and many other, depending on the installed add-ons. On the

figure 30 the Tabs component is rendered with a test data given below:

FIGURE 30. Storybook example

77

The control panel on the bottom of the window (figure 31) displays the tabs for the add-ons installed

earlier – “Source”, “Knobs” and “A11Y”[76]. The accessibility add-on “A11Y”[76] gives information

about the currently active component’s compliance with accessibility guidelines set by W3C’s Web

Content Accessibility Guidelines.

FIGURE 31. Storybook control panel

The Tabs component passes all 5 of the accessibility tests generated by “A11Y” add-on.[76] The

first test simply checks if the inline text spacing can be adjusted with custom stylesheets, so that it

is easier for people with cognitive disabilities to track the new lines after the line break.[129] The

second test evaluates the color contrast ratio for users with a low vision.[130] The last three tests are

about the semantically correct usage of HTML.[131]

Source code for the example story:

 import Vue from 'vue';

 import Tabs from './Tabs.vue';

 import Tab from './Tab.vue';

 import { withKnobs, text } from '@storybook/addon-knobs';

 import { withA11y } from '@storybook/addon-a11y';

 export default {

 title: 'Tabs',

 decorators: [withA11y, withKnobs]

 };

78

 export const TabsComponent = () => ({

 components: { Tabs, Tab },

 props: {

 text: {

 default: text('Text', 'Hello, Storybook')

 }

 },

 template:

 `<tabs>

 <tab name="Test 1" :selected="true">{{text}}</tab>

 <tab name="Test 2">{{text}}</tab>

 <tab name="Test 3">{{text}}</tab>

 <tab name="Test 4">{{text}}</tab>

 </tabs>`

 })

Storybook comes with Vue Storefront’s de facto component library Storefront UI, which is currently

under development.[128] Integrating Storybook into the projects was found to have the following

positive effects for developers:[132]

1. It allows developing components in an isolated manner.

2. It encourages components to have a self-sufficient layout and styles. Components are

presented individually in the Storybook, and they will not be able to rely on the styling of

other components to render properly.

QA and UI/UX engineers may find it easier to test different scenarios on the component level due

to the increased control over the components and make necessary modifications to the

specification or design. Storybook was found to serve well as a single reference for QA engineers,

UI/UX engineers and front-end developers of the current state of the development, and as a good

testing playground for creating new pages.

79

5 BENCHMARKING AND EVALUATION (Fayjus)

Performance is a crucial factor to consider that can impact retention, conversion, and overall

experience of an e-commerce application. During this chapter of the thesis, the implementation

would be benchmarked along with other e-commerce applications developed inside and outside of

Vaimo. There are several models and paid services for measuring a web performance, such as

GTMatrix, Webperformance, LoadImpact, Pingdom. However, as the scope of this research is

limited to front-end of e-commerce applications, the guidelines from the RAIL (Response,

Animation, Idle, Load) performance measuring model would be used since it is a user-centric model

that could be executed with free-to-use tools, such as Chrome DevTools, Lighthouse, and

WebPageTest.[133] The projects that would be compared include the implementation built with VSF

during this thesis, the demo VSF application from Divante, other PWA solutions developed inside

and outside of Vaimo and a traditional Magento front-end based application built by Vaimo. In the

Table 4, the list of projects that would be used for benchmarking are shown along with related

information.

Table 4. List of projects used for benchmarking

Project Front-end

Platform

Back-end

Platform

Hosting Description

Thesis

Implementation

VSF Magento 2 GCP (dev) The project that was built during

this thesis.

Demo VSF VSF Magento 2 Storefront

Cloud

 The official demo website of

VSF build and maintained

Divante.[134]

Kubota VSF - - A case study of live project from

VSF. [135]

ScandiPWA

Demo

ScandiPWA Magento 2 - The Official demo website of

ScandiPWA.[136]

Deity Falcon

Demo

Deity Falcon Magento 2 - The Official demo website of

Deity Falcon.[137]

80

Front-

commerce

Demo

Front-

commerce

Magento 2 - The Official demo website of

front-commerce.[138]

Inchoo PWA Studio Magento 2 - The PWA Studio demo website

build by Inchoo.[139]

PWA Studio

project

PWA Studio Magento 2 GCP A PWA studio-based project

developed by Vaimo

Traditional M2

project

Magento 2 Magento 2 GCP A traditional Magento 2 front-

end based project by Vaimo

As instructed in the RAIL performance measuring model and in accordance with the earlier

research during this thesis, the performance, accessibility, best practices, SEO, and PWA features

for the above-mentioned projects have been audited with Lighthouse. [133] The data from the audits

would be used for a further analysis (shown in APPENDIX 1).

FIGURE 32. Performance benchmarking with Lighthouse

Figure 32 contains the performance scores audited by Chrome Lighthouse. The thesis

implementation has the second lowest score in comparison to all the other solutions mentioned.

After the initial investigation, the reasoning has been established for this unexpectedly low-

25

22

68

44

20

13

86

86

79

86

76

68

100

100

43

32

27

33

0 10 20 30 40 50 60 70 80 90 100

IMPLEMENTATION (MOBILE)

IMPLEMENTATION (DESKTOP)

DEMO VSF (MOBILE)

DEMO VSF (DESKTOP)

KUBOTA (MOBILE)

KUBOTA (DESKTOP)

SCANDIPWA DEMO (MOBILE)

SCANDIPWA DEMO (DESKTOP)

DEITY FALCON DEMO (MOBILE)

DEITY FALCON DEMO (DESKTOP)

FRONT-COMMERCE DEMO (MOBILE)

FRONT-COMMERCE DEMO (DESKTOP)

INCHOO (MOBILE)

INCHOO (DESKTOP)

PWA STUDIO PROJECT (MOBILE)

PWA STUDIO PROJECT (DESKTOP)

TRADITIONAL M2 PROJECT (MOBILE)

TRADITIONAL M2 PROJECT (DESKTOP)

Performance

81

performance score. Since the implementation was hosted within a development environment, it

was not equipped with a performant server. The first opportunity to increase the score that was

suggested by Lighthouse is to reduce the server response time or “time to first byte” (TTFB). From

the front-end of the application, there is no potential action that could resolve this issue. However,

the following actions could be taken from the server-side for a better TTFB.

1. Optimizing the server’s application logic to prepare pages faster. The server frameworks

usually provide recommendations for this.

2. Optimizing server queries for databases or migrating to faster database systems.

3. Upgrading server hardware to have more memory or CPU. [140]

The VSF demo application built and maintained by the creator of the platforms has also less than

an average performance score comparing to demo applications provided by other modern front-

end based e-commerce PWA which means that the possible score that could be reached by the

implementation was also throttled. The performance opportunity that was common in all the VSF

based solutions was to minimize the main thread work, which means reducing the time spent

parsing, compiling, and executing JS. The PWA Studio project developed by Vaimo is hosted in

the live environment. Its performance score resides in the second quartile and also fails to reach

the PWA studio potential set by project Inchoo. The last project in the figure is a traditional Magento

2 project developed by Vaimo and hosted in the live environment, which also has a score under

the second quartile.

82

FIGURE 33. Accessibility benchmarking with Lighthouse

VSF has the third-highest accessibility score among all the demo PWAs from figure 33. During the

implementation, it was possible to maintain the potential of the demo VSF application in this aspect.

Both the PWA studio and traditional Magento 2 project developed by Vaimo have a lower score

than the implementation in this category. The following issue, “[user-scalable="no"] is used

in the <meta name="viewport"> element or the [maximum-scale] attribute is less than 5”,

is common in all the VSF based solutions. Furthermore, another issue that is specific to the

implementation is that “Background and foreground colors do not have a sufficient contrast ratio.”

If these issues could be addressed, the implementation could reach the highest possible

accessibility score.

90

82

90

82

82

88

93

93

100

89

100

89

100

100

70

62

79

85

0 10 20 30 40 50 60 70 80 90 100

IMPLEMENTATION (MOBILE)

IMPLEMENTATION (DESKTOP)

DEMO VSF (MOBILE)

DEMO VSF (DESKTOP)

KUBOTA (MOBILE)

KUBOTA (DESKTOP)

SCANDIPWA DEMO (MOBILE)

SCANDIPWA DEMO (DESKTOP)

DEITY FALCON DEMO (MOBILE)

DEITY FALCON DEMO (DESKTOP)

FRONT-COMMERCE DEMO (MOBILE)

FRONT-COMMERCE DEMO (DESKTOP)

INCHOO (MOBILE)

INCHOO (DESKTOP)

PWA STUDIO PROJECT (MOBILE)

PWA STUDIO PROJECT (DESKTOP)

TRADITIONAL M2 PROJECT (MOBILE)

TRADITIONAL M2 PROJECT (DESKTOP)

Accessibility

83

FIGURE 34. Best Practices benchmarking with Lighthouse

The implementation shares a similar score range with the project Kubota and PWA studio project,

as observed in figure 34. For all the demo PWAs other than the demo VSF the best practices score

is 93. To reach the potential score of demo VSF project, following issues are needed to be resolved

within the implementation,

1. Uses document.write()

2. Browser errors were logged to the console

The common issue for both Demo VSF and the implementation is that they do not use HTTP/2 for

all of their resources.

79

79

86

86

79

79

93

93

93

93

93

93

93

93

71

79

0

0

0 10 20 30 40 50 60 70 80 90 100

IMPLEMENTATION (MOBILE)

IMPLEMENTATION (DESKTOP)

DEMO VSF (MOBILE)

DEMO VSF (DESKTOP)

KUBOTA (MOBILE)

KUBOTA (DESKTOP)

SCANDIPWA DEMO (MOBILE)

SCANDIPWA DEMO (DESKTOP)

DEITY FALCON DEMO (MOBILE)

DEITY FALCON DEMO (DESKTOP)

FRONT-COMMERCE DEMO (MOBILE)

FRONT-COMMERCE DEMO (DESKTOP)

INCHOO (MOBILE)

INCHOO (DESKTOP)

PWA STUDIO PROJECT (MOBILE)

PWA STUDIO PROJECT (DESKTOP)

TRADITIONAL M2 PROJECT (MOBILE)

TRADITIONAL M2 PROJECT (DESKTOP)

Best Practices

84

FIGURE 35. SEO benchmarking with Lighthouse

As shown in figure 35, The implementation has achieved the highest possible SEO score in both a

mobile and a desktop device. Achieving a perfect score in SEO is a common characteristic for most

demo PWA websites from the table. Thus, it could be considered a standard. Although they are not

perfect, the SEO scores for other projects from Vaimo also hover in the fourth quartile.

100

100

98

100

100

100

100

100

100

90

97

100

100

100

89

89

83

80

0 10 20 30 40 50 60 70 80 90 100

IMPLEMENTATION (MOBILE)

IMPLEMENTATION (DESKTOP)

DEMO VSF (MOBILE)

DEMO VSF (DESKTOP)

KUBOTA (MOBILE)

KUBOTA (DESKTOP)

SCANDIPWA DEMO (MOBILE)

SCANDIPWA DEMO (DESKTOP)

DEITY FALCON DEMO (MOBILE)

DEITY FALCON DEMO (DESKTOP)

FRONT-COMMERCE DEMO (MOBILE)

FRONT-COMMERCE DEMO (DESKTOP)

INCHOO (MOBILE)

INCHOO (DESKTOP)

PWA STUDIO PROJECT (MOBILE)

PWA STUDIO PROJECT (DESKTOP)

TRADITIONAL M2 PROJECT (MOBILE)

TRADITIONAL M2 PROJECT (DESKTOP)

SEO

85

FIGURE 36. PWA benchmarking with Lighthouse

Since most of the platforms mentioned in the benchmarking table market themselves as PWAs, it

is essential to examine whether the aspects of PWA are well implemented within them. As seen in

figure 36, most of the demo PWA applications have a perfect score in this category, except the

project Inchoo. Despite having outstanding scores in all the other sections, the project Inchoo could

still not be considered a PWA fully as it did not register a service worker and provide offline browsing

support. Both the thesis implementation and the PWA studio project were missing out on one

aspect of being a PWA- “Page load is not fast enough on mobile networks”, which is a direct

consequence of their low TTFB. In the future, more research should be carried out on this issue to

understand whether it could be resolved by optimizing a server response or whether a further front-

end optimization would be needed.

The speed of the local development has been positively affected by the Hot reload feature of the

vue-loader package.[141src] When editing a component file with hot reload enabled, all instances

of the component are swapped in without the page reload. The module preserves the current state

of the application. This dramatically improves the development experience for front-end developers.

Combined with the Vue Devtools, the Vue framework proves to be fast and convenient for the front-

end development on the local instances.

12

12

13

13

12

12

13

13

13

13

13

13

10

10

12

12

5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

IMPLEMENTATION (MOBILE)

IMPLEMENTATION (DESKTOP)

DEMO VSF (MOBILE)

DEMO VSF (DESKTOP)

KUBOTA (MOBILE)

KUBOTA (DESKTOP)

SCANDIPWA DEMO (MOBILE)

SCANDIPWA DEMO (DESKTOP)

DEITY FALCON DEMO (MOBILE)

DEITY FALCON DEMO (DESKTOP)

FRONT-COMMERCE DEMO (MOBILE)

FRONT-COMMERCE DEMO (DESKTOP)

INCHOO (MOBILE)

INCHOO (DESKTOP)

PWA STUDIO PROJECT (MOBILE)

PWA STUDIO PROJECT (DESKTOP)

TRADITIONAL M2 PROJECT (MOBILE)

TRADITIONAL M2 PROJECT (DESKTOP)

PWA Features

86

6 FUTURE POSSIBILITIES (Dair)

Vue Storefront proves to be the production-ready solution with a long list of features that keeps

growing continually.[142] It has one of the broadest platform support, the most convenient

NoSQL/ElasticSearch database back-end and SSR. The community is strong with many active

contributors, and the solution is open-source and free for the commercial use.

Nonetheless, like any other PWA solution in the market, the technology is not mature enough to

have a total support for every kinds of business needs. The small number of payment providers,

incomplete documentation and missing Magento 2 features[143] need time to be developed which

makes the Vue Storefront repelling for the clients who favor reliable and well-tested solutions, such

as Magento. Poor performance optimization and inability to install VSF as a dependency package

are one of many improvement areas for VSF. Continuation of stable development and releases can

help to change this situation with time.

In the case of Vaimo and other service providers, the best strategy would be to continue supporting

and using the PWA. Developing generic modules and defining the best practices inside the

company will help to establish a robust technical baseline for PWA solutions. The benefits for the

clients, developers, and development teams discovered in this document can be integrated into the

workflow and improved.

ROADMAP FOR THE PROJECT

Since the module vsf-external-checkout is a temporary workaround for the unsupported payment

options, the project can find an advantage in adapting the Klarna payment module for VSF, when

it will be released or implemented.

There were no major API modifications done during the implementation of the project, described in

this document. However, if the situation changes or if other projects will have the customizations of

API extensions, the VuePress can be used to create the API or project documentation.

87

PWA FEATURES

One of the main advantages of PWA to regular websites is the native support for the device

hardware, e.g. microphone or camera, although not as powerful as it is in native applications.

Despite that, in typical implementations of e-commerce systems, what PWA offers will be enough.

Augmented Reality (AR) is forecasted to be one of the revolutionary methods of how e-commerce

retail will be shaped in the near future.[144]

Most popular arguments in favor of native applications include better access to device resources,

offline access, smooth UX, and the ability to store user settings (as well as payment information),

whereas web applications are best known for the instant access, platform-agnosticism, and the

ability to push new content without application updates.[145]

A proof for the closing technology gap in web technologies is also justified by the technologies that

enable running non-JavaScript code in the web browser. WebGL and WebAssembly are the most

famous examples.

With the rise of AR, features, like virtual trials, can reshape the way users shop online.

Augmentations may be used on product pages, social media, and advertising. Developers of the

e-commerce experience will not be expected to write AR-specific code since it will be distributed

as a library. However, products will require to have 3D models.

CONTINUOUS TESTING

Integrating the automated testing to the CI/CD is known as continuous testing. Specifically, it is the

practice in which tests are run as part of the build pipeline so that every check-in and deployment

is validated. In VSF, with frameworks like Jest and Cypress, this will ensure the success of every

test case and identify that changes can be deployed into production while preserving the high

quality of the changes.[146]

DESIGN SYSTEMS IN MULTICHANNEL AND OMNICHANNEL RETAIL

Design systems may help clients to scale their e-commerce solutions to more than a single

touchpoint and make each of the consumer interactions unified by the same UX. Even though the

channels of the retailers may have no logical or business connections with one another

88

(multichannel), the UI may need to be copied or reused from existing solutions to create a smooth

and recognizable user experience for the consumers. Design systems and a component library

may be useful for scaling the design among multiple systems.[147] Additionally, the Web

Components is considered to be a safe and future-proof technology for the projects that want to

reuse the UI components across multiple platforms.[src]

89

7 CONCLUSION (Fayjus)

The purpose of this thesis was to improve the overall quality and efficiency of developing the front-

end of e-commerce services by integrating modern methodologies and workflow. During the thesis,

the purpose and the related aims were approached both theoretically and practically. The list of

tasks that were carried out during the thesis is provided in APPENDIX 2.

The benefits of technologies, such as PWA, Headless Architecture, Design System, Automated

Web Testing and other modern practices, were researched and assessed to the benefits for both

clients and development teams. The potential of modern web front-end has been investigated, and

a reference architecture has been established to actualize that potential. It was found that most

uprising e-commerce front-end platforms have some shared characteristics and elements within

their architecture, which makes them both developer-friendly and fast for development. These

elements and their impact on the front-end development and workflow have been further

investigated before the implementation was attempted.

The implementation reflected the theoretical discoveries of the thesis. It was one of the first

headless architecture based PWA solutions developed within Vaimo Finland Oy and the first to use

the Vue Storefront platform. Vue Storefront was found to be the most active among all the PWA

solutions discovered and compared during the thesis, which are compatible with Magento 2. Since

it contained almost every element of the modern web front-end architecture, the development

resulted in an easy and straightforward experience, compared to the development with Magento.

As a result of headless architecture and atomic design principles, it was possible to create a

reusable front-end component that was not dependent on any other component and that has

already been reused within another VSF project. The development process of this component also

demonstrates the simplicity of data flow achieved with state management and custom events.

One downside of using emerging platforms, such as VSF, is that the ecosystem revolving around

it has not matured enough to provide custom integration solutions in many cases. The failure of

Klarna integration within the VSF checkout step is one such scenario that occurred during the

implementation. A module that could execute the checkout step externally within Magento was

used as a workaround. Although the issue was mitigated by using the module, the process violates

90

both the headless architecture and design system approach. However, the installation of the vsf-

external-checkout and a vsf-nosto-tagging module established the fact that reusing modules within

VSF is not a complicated procedure. The module installation and management would have been

easier for developers if it could have been installed with the package manager, a feature that VSF

does not fully support at the moment. The process of publishing a VSF module has been

researched, although no modules were produced during this thesis.

The benefits of headless architecture to increase the overall development speed, as well as the

speed of CI/CD operations have been studied. The advantages of integrating automated testing

and design systems were listed and tested in practice. The development workflow optimization

techniques have been documented and proved to be easy and quick to setup. Future plans and

possibilities were analyzed and listed as an inspiration for other implementations and

understanding of technology.

During the benchmarking and evaluation process, it was discovered that despite having excellent

accessibility, best practices, SEO, and PWA scores, VSF and the solutions built upon it lacks in

performance compared to the demo projects from its competitors. Since the platform itself throttles

the potential of achieving a high-performance score, it could be highly recommended for future

projects to start with an initial performance budget.

Front-end technologies and platforms are evolving rapidly, and it is hard to determine the

architecture and practices that would work best in the future. Technologies and concepts that are

popular lately – Web Assembly, HTTP/2, Svelte, and Web Components – have the potential to

change the way developers think about front-end. This thesis is a snapshot of the capabilities of

modern web front-end within the context of e-commerce. The Implementation chapter has helped

to establish that it is possible to integrate today’s front-end methodologies into traditional e-

commerce systems and adapt to proven workflow practices that have the potential to amplify

satisfaction for both clients and development teams.

91

REFERENCES

[1] Hosting Tribunal, ‘25 Magento Statistics You Need in 2020 to Boost Your Online Business’ [Web

blog post]. Cited 15.2.2020 from https://hostingtribunal.com/blog/magento-statistics

[2] Magezine Team, 2019, ‘Why is the PWA Technology such a Big Deal in 2019?’, Magezine, no.

2, p. 14, ‘What technologies does PWA use?’.

[3] ScandiPWA [Web log post], July 19, 2019. ‘History of Progressive Web Apps’, ‘Was Steve Jobs

the first to introduce the concept of PWAs?’. Cited 15.2.2020 from

https://medium.com/progressivewebapps/history-of-progressive-web-apps-4c912533a531

[4] ScandiPWA [Web log post], July 19, 2019. ‘History of Progressive Web Apps’, ‘Google

introduces “Progressive Web Apps”’. Cited 15.2.2020 from

https://medium.com/progressivewebapps/history-of-progressive-web-apps-4c912533a531

[5] Tom Steiner, Jeff Posnick, 2019. ‘PWA’, ‘Service workers – Service worker registrations and

installability’. Cited 15.2.2020 from https://almanac.httparchive.org/en/2019/pwa#service-worker-

registrations-and-installability

[6] Aleksandra Kwiecień [Web log post], June 27, 2019. ‘What PWA solutions are available for

eCommerce?’, ‘How to compare PWA solutions? – Technology & integrations. Cited 15.2.2020

from https://divante.com/blog/pwa-solutions-for-ecommerce-comparison

[7] Storm, Alan [answer to Stack Overflow question], October 29, 2009. ‘Why is Magento so slow?’

[closed]. Cited 15.2.2020 from https://stackoverflow.com/questions/1639213/why-is-magento-so-

slow

[8] Aleksandra Kwiecień [Web log post], June 27, 2019. ‘What PWA solutions are available for

eCommerce?’, ‘How to compare PWA solutions? – Community’. Cited 15.2.2020 from

https://divante.com/blog/pwa-solutions-for-ecommerce-comparison

[9] Magezine Team, 2019, ‘Why is the PWA Technology such a Big Deal in 2019?’, Magezine, no.

2, p. 14, ‘What technologies does PWA use?’.

[10] Magezine Team, 2019. ‘Who will win the PWA battle? Selected solutions overview’, Magezine,

no. 2, p. 16, para. 3.

[11] Aleksandra Kwiecień [Web log post], November 27, 2018. ‘Vue Storefront, a powerful PWA

frontend for various eCommerce platforms’. Cited 18.12.2019 from https://divante.com/blog/vue-

storefront-integrated-platforms/

[12] Adam McCombs & Robert Banh, January 27, 2011. ‘The Definitive Guide to Magento’. Apress,

p. 5. ISBN 9781430272281.

https://hostingtribunal.com/blog/magento-statistics
https://medium.com/progressivewebapps/history-of-progressive-web-apps-4c912533a531
https://medium.com/progressivewebapps/history-of-progressive-web-apps-4c912533a531
https://almanac.httparchive.org/en/2019/pwa#service-worker-registrations-and-installability
https://almanac.httparchive.org/en/2019/pwa#service-worker-registrations-and-installability
https://divante.com/blog/pwa-solutions-for-ecommerce-comparison
https://stackoverflow.com/questions/1639213/why-is-magento-so-slow
https://stackoverflow.com/questions/1639213/why-is-magento-so-slow
https://divante.com/blog/pwa-solutions-for-ecommerce-comparison
https://divante.com/blog/vue-storefront-integrated-platforms/
https://divante.com/blog/vue-storefront-integrated-platforms/

92

[13] Jamie Maria [Web log post], January 9, 2020. ‘Next Level Commerce: Monoliths, Headless

and Service Oriented Architectures’. Cited 15.2.2020 from https://dev.to/jamiemarias/next-level-

commerce-service-oriented-architectures-5023

[14] Giamir Buoncristiani [Web log post], October 3, 2018. FrontendOps. Cited 17.12.2019 from

https://giamir.com/frontendops

[15] Reema Oamkumar [Web log post], March 5, 2018. Software Developer India. Cited 15.2.2020

from https://www.software-developer-india.com/advantages-and-disadvantages-of-magento/

[16] Reitsma, Jisse, 2019. ‘How will Magento extensions fit into PWA?’, Magezine, no. 2, p. 21.

[17] Storm, Alan. (n.d.) ‘Magento for Developers: Part 1 – Introduction to Magento’. Cited

17.12.2019 from https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-1.html#2

[18] Sam Saltis [Web log post], November 9, 2019. ‘Headless Commerce Explained in 5 Minutes’.

Cited 15.2.2020 from https://www.coredna.com/blogs/headless-commerce

[19] Model–view–controller. (n.d.) In Wikipedia. Cited 15.2.2020 from

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

[20] Siraj ul Haq [Web log post], May 2, 2018. ‘Introduction to Monolithic Architecture and

MicroServices Architecture’. Cited 15.2.2020 from https://medium.com/koderlabs/introduction-to-

monolithic-architecture-and-microservices-architecture-b211a5955c63

[21] Sam Dutton, Alan Kent, 2019. ‘E-commerce – First Contentful Paint (FCP)’. Cited 15.2.2020

from https://almanac.httparchive.org/en/2019/ecommerce#first-contentful-paint-fcp

[22] Johnson, Carele [answer to Quora question], June 14, 2017. ‘How long does it take to build an

eCommerce website with magento with features like a shopping cart and search engine and

managing user accounts?’ Cited 15.2.2020 from https://www.quora.com/How-long-does-it-take-to-

build-an-eCommerce-website-with-magento-with-features-like-a-shopping-cart-and-search-

engine-and-managing-user-accounts

[23] Spike (software development). (n.d.) In Wikipedia. Cited 15.2.2020 from

https://en.wikipedia.org/wiki/Spike_(software_development)

[24] Salvatore Zappalà [Web log post], April 22, 2015. ‘Magento: why complex doesn’t mean good

– Complete lack of documentation’. Cited 15.2.2020 from

https://medium.com/@salvoadriano/magento-why-complex-doesn-t-mean-good-1f15992202de

[25] Raphaël Benitte, Sacha Greif, Michael Rambeau, 2019. Cited 15.2.2020 from

https://stateofjs.com/

[26] Raphaël Benitte, Sacha Greif, Michael Rambeau, 2019. ‘Front End Framworks’. Cited

15.2.2020 from https://2019.stateofjs.com/

https://dev.to/jamiemarias/next-level-commerce-service-oriented-architectures-5023
https://dev.to/jamiemarias/next-level-commerce-service-oriented-architectures-5023
https://giamir.com/frontendops
https://www.software-developer-india.com/advantages-and-disadvantages-of-magento/
https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-1.html#2
https://www.coredna.com/blogs/headless-commerce
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://almanac.httparchive.org/en/2019/ecommerce#first-contentful-paint-fcp
https://www.quora.com/How-long-does-it-take-to-build-an-eCommerce-website-with-magento-with-features-like-a-shopping-cart-and-search-engine-and-managing-user-accounts
https://www.quora.com/How-long-does-it-take-to-build-an-eCommerce-website-with-magento-with-features-like-a-shopping-cart-and-search-engine-and-managing-user-accounts
https://www.quora.com/How-long-does-it-take-to-build-an-eCommerce-website-with-magento-with-features-like-a-shopping-cart-and-search-engine-and-managing-user-accounts
https://en.wikipedia.org/wiki/Spike_(software_development)
https://medium.com/@salvoadriano/magento-why-complex-doesn-t-mean-good-1f15992202de
https://stateofjs.com/
https://2019.stateofjs.com/

93

[27] Hlebowitsh, Nadia [Web log post], June 10, 2019. ‘2019 Stats on Top JS Frameworks: React,

Angular & Vue’. Cited 15.2.2020 from https://www.tecla.io/blog/2019-stats-on-top-js-frameworks-

react-angular-and-vue/

[28] Badri, Ajay [Web log post]. (n.d.) Cited 15.2.2020 from https://seilevel.com/requirements/user-

stories-technical-stories-agile-development-productmanagement

[29] Hubert Baumeister, Horst Lichter, et al., 2017. ‘Agile Processes in Software Engineering and

Extreme Programming: 18th International Conference, XP 2017, Cologne, Germany, May 22-26,

2017, Proceedings’. p. 223. ISBN 978-3-319-57633-6. Cited 15.2.2020 from

https://books.google.fi/books?id=RtpCDwAAQBAJ&pg=PA223&lpg=PA223&dq=software+is+not

+designed+to+support+agile&source=bl&ots=W_jE3BQypn&sig=ACfU3U3tdIvJBgaKbNCXyEKra

LW8YHiPGg&hl=en&sa=X&ved=2ahUKEwjqvPz9977mAhVSxosKHcYWA0AQ6AEwCnoECAkQ

AQ#v=onepage&q=software%20is%20not%20designed%20to%20support%20agile&f=false

[30] Gash, Dave [Web log post], February, 12, 2019. ‘Measuring Performance’. Cited 15.2.2020

from https://developers.google.com/web/fundamentals/performance/get-started/measuringperf-2

[31] Weicot.com. ‘Architectural diagrams’. Cited 18.12.2019 from

http://www.weicot.com/dev/guides/v2.0/architecture/archi_perspectives/arch_diagrams.html

[32] Kyle Vermeulen, April 9, 2015. ‘How do you keep up’. Cited 03.02.2020 from

https://www.sitepoint.com/how-do-you-keep-up/

[33] Micah Godbolt, February 2016. ‘Frontend Architecture for Design Systems’ O'Reilly Media,

Inc, Ch. 1. ISBN: 9781491926789.

[34] Hosting Tribunal, ‘What percentage of Internet Traffic is Mobile in 2020’ [Web blog post]. Cited

03.2.2020 from https://hostingtribunal.com/blog/mobile-percentage-of-traffic/#gref

[35] ‘Official Mozilla documentation on Web API’. (n.d.). Cited 15.02.2020 from

https://developer.mozilla.org/en-US/docs/Web/API

[36] Andy Parker, June 27, 2019. ‘5 Reasons Why UX Matters Now More Than Ever’. Cited

03.02.2020 from https://themanifest.com/web-design/5-reasons-why-ux-matters-now-more-ever

[37] Ann Bednarz, March 24, 2016. ‘The networked world’ Cited 03.02.2020 from

https://www.networkworld.com/article/3046457/the-networked-world.html

[38] ‘Web Dev site’. (n.d.). Cited 15.02.2020 from https://web.dev/

[39] Micah Godbolt, February 2016. ‘Frontend Architecture for Design Systems’ O'Reilly Media,

Inc, Ch. 3. ISBN: 9781491926789.

[40] Harshal Patil, September 05, 2019. ‘Contemporary Front-end Architectures’. Cited 10.2.2020

from https://blog.webf.zone/contemporary-front-end-architectures-fb5b500b0231

https://www.tecla.io/blog/2019-stats-on-top-js-frameworks-react-angular-and-vue/
https://www.tecla.io/blog/2019-stats-on-top-js-frameworks-react-angular-and-vue/
https://seilevel.com/requirements/user-stories-technical-stories-agile-development-productmanagement
https://seilevel.com/requirements/user-stories-technical-stories-agile-development-productmanagement
https://books.google.fi/books?id=RtpCDwAAQBAJ&pg=PA223&lpg=PA223&dq=software+is+not+designed+to+support+agile&source=bl&ots=W_jE3BQypn&sig=ACfU3U3tdIvJBgaKbNCXyEKraLW8YHiPGg&hl=en&sa=X&ved=2ahUKEwjqvPz9977mAhVSxosKHcYWA0AQ6AEwCnoECAkQAQ#v=onepage&q=software%20is%20not%20designed%20to%20support%20agile&f=false
https://books.google.fi/books?id=RtpCDwAAQBAJ&pg=PA223&lpg=PA223&dq=software+is+not+designed+to+support+agile&source=bl&ots=W_jE3BQypn&sig=ACfU3U3tdIvJBgaKbNCXyEKraLW8YHiPGg&hl=en&sa=X&ved=2ahUKEwjqvPz9977mAhVSxosKHcYWA0AQ6AEwCnoECAkQAQ#v=onepage&q=software%20is%20not%20designed%20to%20support%20agile&f=false
https://books.google.fi/books?id=RtpCDwAAQBAJ&pg=PA223&lpg=PA223&dq=software+is+not+designed+to+support+agile&source=bl&ots=W_jE3BQypn&sig=ACfU3U3tdIvJBgaKbNCXyEKraLW8YHiPGg&hl=en&sa=X&ved=2ahUKEwjqvPz9977mAhVSxosKHcYWA0AQ6AEwCnoECAkQAQ#v=onepage&q=software%20is%20not%20designed%20to%20support%20agile&f=false
https://books.google.fi/books?id=RtpCDwAAQBAJ&pg=PA223&lpg=PA223&dq=software+is+not+designed+to+support+agile&source=bl&ots=W_jE3BQypn&sig=ACfU3U3tdIvJBgaKbNCXyEKraLW8YHiPGg&hl=en&sa=X&ved=2ahUKEwjqvPz9977mAhVSxosKHcYWA0AQ6AEwCnoECAkQAQ#v=onepage&q=software%20is%20not%20designed%20to%20support%20agile&f=false
https://developers.google.com/web/fundamentals/performance/get-started/measuringperf-2
http://www.weicot.com/dev/guides/v2.0/architecture/archi_perspectives/arch_diagrams.html
https://www.sitepoint.com/how-do-you-keep-up/
https://hostingtribunal.com/blog/mobile-percentage-of-traffic/#gref
https://developer.mozilla.org/en-US/docs/Web/API
https://themanifest.com/web-design/5-reasons-why-ux-matters-now-more-ever
https://www.networkworld.com/article/3046457/the-networked-world.html
https://web.dev/
https://blog.webf.zone/contemporary-front-end-architectures-fb5b500b0231

94

[41] Elgabry, Omar [Web log post], April 1, 2019. ‘Component Based Architecture’. Cited 15.2.2020

from https://medium.com/omarelgabrys-blog/component-based-architecture-3c3c23c7e348

[42] Kremic, Ned [Web log post]. (n.d.) ‘Horizontal and Vertical User Stories - Slicing the Cake’.

Cited 15.2.2020 from https://www.deltamatrix.com/horizontal-and-vertical-user-stories-slicing-the-

cake/

[43] Shapiro, Dan. June 16, 2016. ‘Understanding Component-Based Architecture’. Cited

15.2.2020 from https://medium.com/@dan.shapiro1210/understanding-component-based-

architecture-3ff48ec0c238

[44] Component-based software engineering. (n.d.) In Wikipedia. Cited 15.2.2020 from

https://en.wikipedia.org/wiki/Component-based_software_engineering

[45] Afonso, Francisco, September 4, 2019. ‘Component-Based Architecture: What Is And Why

You Should Care’. Cited 15.2.2020 from https://www.outsystems.com/blog/3-reasons-invest-

component-based-architecture.html

[46] Neville-O'Neill, Brian [Web log post], July 8, 2019. ‘State management pattern in JavaScript:

Sharing data across components’. Cited 15.2.2020 from https://dev.to/bnevilleoneill/state-

management-pattern-in-javascript-sharing-data-across-components-2gkj

[47] Biton, Yaron [Web log post], February 27, 2017. ‘Who needs state management anyways?’.

Cited 15.2.2020 from https://medium.com/@vyaron/who-needs-state-management-anyways-

55e6d1c74239

[48] Polevoi, Robert [answer to Quora question], August 11, 2017. ‘What does state-management

even mean and why does it matter in Front End Web Development with frameworks like React or

Vue?’. Cited 15.2.2020 from https://www.quora.com/What-does-state-management-even-mean-

and-why-does-it-matter-in-Front-End-Web-Development-with-frameworks-like-React-or-Vue

[49] Crawford, Charlie [Web log post], August 24, 2016. ‘What the Flux? An Overview of the React

State Management Ecosystem’. Cited 15.2.2020 from https://thenewstack.io/flux-overview-react-

state-management-ecosystem/

[50] In-Depth Overview. (n.d.) In Flux docs. Cited 15.2.2020 from

https://facebook.github.io/flux/docs/in-depth-overview/

[51] Working with UI Store (Interface state). (n.d.) In Vue Storefront docs. Cited 15.2.2020 from

https://docs.vuestorefront.io/guide/core-themes/ui-store.html

[52] ‘Routing with PWA Studio’. (n.d.) In Magento PWA Studio docs. Cited 15.2.2020 from

https://magento.github.io/pwa-studio/peregrine/routing/

[53] Jordan Irabor, June 19, 2019. ‘Router options compared: Vue Router, Voie, Vue-routisan and

Vue-route’. Cited 12.02.2020 from https://blog.logrocket.com/router-options-compared/

https://medium.com/omarelgabrys-blog/component-based-architecture-3c3c23c7e348
https://www.deltamatrix.com/horizontal-and-vertical-user-stories-slicing-the-cake/
https://www.deltamatrix.com/horizontal-and-vertical-user-stories-slicing-the-cake/
https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://www.outsystems.com/blog/3-reasons-invest-component-based-architecture.html
https://www.outsystems.com/blog/3-reasons-invest-component-based-architecture.html
https://dev.to/bnevilleoneill/state-management-pattern-in-javascript-sharing-data-across-components-2gkj
https://dev.to/bnevilleoneill/state-management-pattern-in-javascript-sharing-data-across-components-2gkj
https://medium.com/@vyaron/who-needs-state-management-anyways-55e6d1c74239
https://medium.com/@vyaron/who-needs-state-management-anyways-55e6d1c74239
https://www.quora.com/What-does-state-management-even-mean-and-why-does-it-matter-in-Front-End-Web-Development-with-frameworks-like-React-or-Vue
https://www.quora.com/What-does-state-management-even-mean-and-why-does-it-matter-in-Front-End-Web-Development-with-frameworks-like-React-or-Vue
https://thenewstack.io/flux-overview-react-state-management-ecosystem/
https://thenewstack.io/flux-overview-react-state-management-ecosystem/
https://facebook.github.io/flux/docs/in-depth-overview/
https://docs.vuestorefront.io/guide/core-themes/ui-store.html
https://magento.github.io/pwa-studio/peregrine/routing/
https://blog.logrocket.com/router-options-compared/

95

[54] ‘Official Vue Router documentation’. (n.d.). Cited 15.02.2020 https://router.vuejs.org/

[55] Marco Botto, July 08, 2016. ‘Front-end JavaScript single page application architecture’. Cited

12.02.2020 from https://marcobotto.com/blog/frontend-javascript-single-page-application-

architecture/

[56] Sunny Singh, January 20, 2019. ‘The benefits and origins of Server Side Rendering’. Cited

12.02.2020 from https://dev.to/sunnysingh/the-benefits-and-origins-of-server-side-rendering-4doh

[57] Jason Miller, Addy Osmani, February 2019. ‘Rendering on the Web’. Cited 12.02.2020 from

https://developers.google.com/web/updates/2019/02/rendering-on-the-web

[58] Paul Lewis, February 12, 2019. ‘Rendering Performance’. Cited 12.02.2020 from

https://developers.google.com/web/fundamentals/performance/rendering

[59] Chris Minnick, April 19, 2016. ‘The Real Benefits of the Virtual DOM in React.js’. Cited

12.02.2020 from https://www.accelebrate.com/blog/the-real-benefits-of-the-virtual-dom-in-react-js/

[60] Areknawo, February 14, 2019. ‘DOM performance case study’. Cited 12.02.2020 from

https://areknawo.com/dom-performance-case-study/

[61] ‘Official React documentation on reconciliation’. (n.d.). Cited 15.02.2020

https://reactjs.org/docs/reconciliation.html

[62] Zeno Rocha, May 15, 2014. ‘Book of Modern Front-end Tooling’. Cited from

http://zenorocha.github.io/book-of-modern-frontend-tooling/

[63] Ashley Nolan, November 12, 2019. ‘The Front-End Tooling Survey 2019 - Results’. Cited

20.02.2020 from https://ashleynolan.co.uk/blog/frontend-tooling-survey-2019-results

[64] MDN contributors, February 24, 2020. ‘MDN Web Docs Glossary: Definitions of Web-related

terms - CSS preprocessor’. Cited 20.02.2020 from https://developer.mozilla.org/en-

US/docs/Glossary/CSS_preprocessor

[65] Bortz, Robin. (n.d.) ‘Web Performance Testing’. Cited 15.2.2020 from

https://www.qualitestgroup.com/white-papers/web-performance-testing/

[66] Accessibility testing. (n.d.) In W3. Cited 15.2.2020 from

https://www.w3.org/wiki/Accessibility_testing

[67] William E. Lewis, June, 2017. ‘Software Testing and Continuous Quality Improvement, 3rd

Edition’, ‘Chapter 1. A Brief History of Software Testing’. ISBN: 9781351722209. Cited 15.2.2020

from

https://learning.oreilly.com/library/view/software-testing-

and/9781351722209/xhtml/ch01.xhtml#ch01

[68] Web Application Testing Complete Guide (How To Test A Website). (n.d.) In Sofware Testing

Help. Cited 27.2.2020 from https://www.softwaretestinghelp.com/web-application-testing/

https://router.vuejs.org/
https://marcobotto.com/blog/frontend-javascript-single-page-application-architecture/
https://marcobotto.com/blog/frontend-javascript-single-page-application-architecture/
https://dev.to/sunnysingh/the-benefits-and-origins-of-server-side-rendering-4doh
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://developers.google.com/web/fundamentals/performance/rendering
https://www.accelebrate.com/blog/the-real-benefits-of-the-virtual-dom-in-react-js/
https://areknawo.com/dom-performance-case-study/
https://reactjs.org/docs/reconciliation.html
https://ashleynolan.co.uk/blog/frontend-tooling-survey-2019-results
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://www.qualitestgroup.com/white-papers/web-performance-testing/
https://www.w3.org/wiki/Accessibility_testing
https://learning.oreilly.com/library/view/software-testing-and/9781351722209/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/software-testing-and/9781351722209/xhtml/ch01.xhtml#ch01
https://www.softwaretestinghelp.com/web-application-testing/

96

[69] Pittet, Sten [Web log post]. (n.d.) ‘The different types of software testing’. Cited 27.2.2020 from

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

[70] Zaidman, Vitali. February 18, 2019. ‘An Overview of JavaScript Testing in 2019’. Cited

27.2.2020 from https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2019-

264e19514d0a

[71] Raphaël Benitte, Sacha Greif, Michael Rambeau, 2019. ‘Testing. Cited 27.2.2020 from

https://2019.stateofjs.com/testing/

[72] Kim Krause Berg [Web log post], January 9, 2019. ‘Website Accessibility & the Law: Why Your

Website Must Be Compliant’. Cited 27.2.2020 from https://www.searchenginejournal.com/website-

accessibility-law/285199/

[73] What is accessibility? (n.d.) In MDN web docs. Cited 27.2.2020 from

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility

[74] Assistive Technology. (n.d.) In Yale University – Usability & Web Accessibility. Cited 27.2.2020

from https://usability.yale.edu/web-accessibility/articles/assistive-technology

[75] WCAG 2.1 at a Glance. (n.d.) In W3.org. Cited 27.2.2020 from

https://www.w3.org/WAI/standards-guidelines/wcag/glance/

[76] Resources. (n.d.) In The A11Y Project. Cited 27.2.2020 from

https://a11yproject.com/resources/

[77] Web Accessibility Audit. (n.d.) In Interactive Accessibility. Cited 27.2.2020 from

https://www.interactiveaccessibility.com/services/accessibility-audit

[78] Fanguy, Will [Web log post], June 24, 2019. ‘A comprehensive guide to design systems’. Cited

27.2.2020 from https://www.invisionapp.com/inside-design/guide-to-design-systems/

[79] Thoms, Jess [Web log post], November 21, 2017. ‘Designing at scale: How industry leaders

leverage design systems’. Cited 27.2.2020 from https://www.invisionapp.com/inside-design/scale-

design-systems/

[80] Rutherford, Zack [Web log post], September 29, 2017. ‘Design Systems vs. Pattern Libraries

vs. Style Guides – What’s the Difference?’ Cited 27.2.2020 from

https://www.uxpin.com/studio/blog/design-systems-vs-pattern-libraries-vs-style-guides-whats-

difference/

[81] Serizer, Inès [Web log post], March 3, 2019. ‘What the heck is a design system?’ Cited

27.2.2020 from https://uxdesign.cc/what-the-heck-is-a-design-system-c89a8ea73b0d

[82] Kahn, Tarif [Web log post], July 11, 2019. ‘Inside a Design System: What You Need to Know

and Why’ Cited 27.2.2020 from https://uxplanet.org/inside-a-design-system-what-you-need-to-

know-and-why-198ab645d5a3

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2019-264e19514d0a
https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2019-264e19514d0a
https://2019.stateofjs.com/testing/
https://www.searchenginejournal.com/website-accessibility-law/285199/#close
https://www.searchenginejournal.com/website-accessibility-law/285199/#close
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility
https://usability.yale.edu/web-accessibility/articles/assistive-technology
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://a11yproject.com/resources/
https://www.interactiveaccessibility.com/services/accessibility-audit
https://www.invisionapp.com/inside-design/guide-to-design-systems/
https://www.invisionapp.com/inside-design/scale-design-systems/
https://www.invisionapp.com/inside-design/scale-design-systems/
https://www.uxpin.com/studio/blog/design-systems-vs-pattern-libraries-vs-style-guides-whats-difference/
https://www.uxpin.com/studio/blog/design-systems-vs-pattern-libraries-vs-style-guides-whats-difference/
https://uxdesign.cc/what-the-heck-is-a-design-system-c89a8ea73b0d
https://uxplanet.org/inside-a-design-system-what-you-need-to-know-and-why-198ab645d5a3
https://uxplanet.org/inside-a-design-system-what-you-need-to-know-and-why-198ab645d5a3

97

[83] Frost, Brad, November 28, 2016. ‘Atomic Design’. Cited 27.2.2020 from

https://atomicdesign.bradfrost.com/chapter-2/

[84] Build bulletproof UI components faster. (n.d.) In Storybook. Cited 27.2.2020 from

https://storybook.js.org/

[85] Build UI components. (n.d.) In Learn Storybook. Cited 27.2.2020 from

https://www.learnstorybook.com/design-systems-for-developers/react/en/build/

[86] Shilman, Michael [Web log post], January 14, 2020. ‘Storybook 5.3’. Cited 27.2.2020 from

https://medium.com/storybookjs/storybook-5-3-83e114e8797c

[87] Introduction to design systems. (n.d.) In Learn Storybook. Cited 27.2.2020 from

https://www.learnstorybook.com/design-systems-for-developers/react/en/introduction/

[88] Rendle, Robin [Web log post], April 3, 2019. ‘What Are Design Tokens?’. Cited 27.2.2020 from

https://css-tricks.com/what-are-design-tokens/

[89] Nguyen, Dominic [Web log post], November 25, 2019. ‘Storybook for design’. Cited 27.2.2020

from https://medium.com/storybookjs/storybook-for-design-3ff761c579bf

[90] Agile testing. (n.d.) In Wikipedia. Cited 27.2.2020 from

https://en.wikipedia.org/wiki/Agile_testing

[91] Mayeur, Paul [Web log post], October 6, 2016. ‘What Does “Quality Assurance” Mean in an

Agile World?’. Cited 27.2.2020 from https://medium.com/appian-engineering/what-does-quality-

assurance-mean-in-an-agile-world-d0b5bb78479b

[92] Continuous testing. (n.d.) In Wikipedia. Cited 27.2.2020 from

https://en.wikipedia.org/wiki/Continuous_testing

[93] Web Performance Testing. (n.d.) In Qualitest group. Cited 27.2.2020 from

https://www.qualitestgroup.com/white-papers/web-performance-testing/

[94] BCG Digital Ventures [Web log post], March 20, 2019. ‘Working in Harmony: Using Design

Systems for Better Collaboration’. Cited 27.2.2020 from https://medium.com/bcgdv-

engineering/working-in-harmony-using-design-systems-for-better-collaboration-57a5dae53d65

[95] Magezine Team, 2019. ‘Who will win the PWA battle? Selected solutions overview’, Magezine,

no. 2, p. 20

[96] Aleksandra Kwiecień, June 27, 2019. ‘What PWA solutions are available for eCommerce?’.

Cited 15.02.2020 from https://divante.com/blog/pwa-solutions-for-ecommerce-comparison/

[97] ‘Official Vue Storefront documentation on how it connects with backed platforms’. (n.d.). Cited

15.02.2020 from https://docs.vuestorefront.io/guide/general/introduction.html#how-does-it-

connect-with-backend-platforms

https://atomicdesign.bradfrost.com/chapter-2/
https://storybook.js.org/
https://www.learnstorybook.com/design-systems-for-developers/react/en/build/
https://medium.com/storybookjs/storybook-5-3-83e114e8797c
https://www.learnstorybook.com/design-systems-for-developers/react/en/introduction/
https://css-tricks.com/what-are-design-tokens/
https://medium.com/storybookjs/storybook-for-design-3ff761c579bf
https://en.wikipedia.org/wiki/Agile_testing
https://medium.com/appian-engineering/what-does-quality-assurance-mean-in-an-agile-world-d0b5bb78479b
https://medium.com/appian-engineering/what-does-quality-assurance-mean-in-an-agile-world-d0b5bb78479b
https://en.wikipedia.org/wiki/Continuous_testing
https://www.qualitestgroup.com/white-papers/web-performance-testing/
https://medium.com/bcgdv-engineering/working-in-harmony-using-design-systems-for-better-collaboration-57a5dae53d65
https://medium.com/bcgdv-engineering/working-in-harmony-using-design-systems-for-better-collaboration-57a5dae53d65
https://divante.com/blog/pwa-solutions-for-ecommerce-comparison/
https://docs.vuestorefront.io/guide/general/introduction.html#how-does-it-connect-with-backend-platforms
https://docs.vuestorefront.io/guide/general/introduction.html#how-does-it-connect-with-backend-platforms

98

[98] ‘Official Vue Storefront documentation on how it works’. (n.d.). Cited 15.02.2020 from

https://docs.vuestorefront.io/guide/general/introduction.html#how-does-it-work

[99] ‘Official Vue Storefront documentation on building themes’. (n.d.). Cited 20.02.2020 from

https://docs.vuestorefront.io/guide/general/introduction.html#building-themes-in-vue-storefront

[100] ‘Official Vuex documentation’. (n.d.). Cited 20.02.2020 from https://vuex.vuejs.org/

[101] ‘Official Vue Storefront documentation on working with core styles’. (n.d.). Cited 15.02.2020

from https://docs.vuestorefront.io/guide/core-themes/stylesheets.html

[102] ‘Official Vue documentation on separation of concern’. (n.d.). Cited 15.02.2020 from

https://vuejs.org/v2/guide/single-file-components.html#What-About-Separation-of-Concerns

[103] ‘Official Vue documentation on Actions’. (n.d.). Cited 20.02.2020 from

https://vuex.vuejs.org/guide/actions.html

[104] ‘Official Vue documentation on Events’. (n.d.). Cited 20.02.2020 from

https://vuejs.org/v2/guide/events.html

[105] ‘Official Vue documentation on One-way data flow’. (n.d.). Cited 20.02.2020 from

https://vuejs.org/v2/guide/components-props.html#One-Way-Data-Flow

[106] Joshua Bemenderfer, January 09, 2017. ‘Creating a Global Event Bus with Vue.js’. Cited

22.02.2020 from https://alligator.io/vuejs/global-event-bus/

[107] ‘GitHub repository for Vue Storefront external checkout module’. (n.d.). Cited 02.03.2020 from

https://github.com/Vendic/vsf-external-checkout

[108] ‘Issue 12 from Vue Storefront external checkout module’s GitHub Repository’. (n.d.). Cited

02.03.2020 from https://github.com/Vendic/vsf-external-checkout/issues/12

[109] ‘Issue 3881 from Vue Storefront’s GitHub Repository’. (n.d.). Cited 02.03.2020

https://github.com/DivanteLtd/vue-storefront/issues/3881

[110] Onsite Product Recommendations. (n.d.) In Nosto. Cited 12.3.2020 from

https://www.nosto.com/products/product-recommendations/

[111] Nosto Magento 2 module. (n.d.) In Github. Cited 12.3.2020 from

https://github.com/Nosto/nosto-magento2

[112] Wadher, Pratik [Web log post], August 31, 2017. ‘Introducing Argo — A Container-Native

Workflow Engine for Kubernetes’. Cited 12.3.2020 from https://blog.argoproj.io/introducing-argo-a-

container-native-workflow-engine-for-kubernetes-55c0b4b76fac

[113] Installing on Linux/MacOS. (n.d.) In Vue Storefront docs. Cited 12.3.2020 from

https://docs.vuestorefront.io/guide/installation/linux-mac.html

[114] Ceunen, Bouwe [Web log post], June 5, 2019. ‘CI/CD With Argo On Kubernetes’. Cited

12.3.2020 from https://medium.com/axons/ci-cd-with-argo-on-kubernetes-28c1a99616a9

https://docs.vuestorefront.io/guide/general/introduction.html#how-does-it-work
https://docs.vuestorefront.io/guide/general/introduction.html#building-themes-in-vue-storefront
https://vuex.vuejs.org/
https://docs.vuestorefront.io/guide/core-themes/stylesheets.html
https://vuejs.org/v2/guide/single-file-components.html#What-About-Separation-of-Concerns
https://vuex.vuejs.org/guide/actions.html
https://vuejs.org/v2/guide/events.html
https://vuejs.org/v2/guide/components-props.html#One-Way-Data-Flow
https://alligator.io/vuejs/global-event-bus/
https://github.com/Vendic/vsf-external-checkout
https://github.com/Vendic/vsf-external-checkout/issues/12
https://github.com/DivanteLtd/vue-storefront/issues/3881
https://www.nosto.com/products/product-recommendations/
https://github.com/Nosto/nosto-magento2
https://blog.argoproj.io/introducing-argo-a-container-native-workflow-engine-for-kubernetes-55c0b4b76fac
https://blog.argoproj.io/introducing-argo-a-container-native-workflow-engine-for-kubernetes-55c0b4b76fac
https://docs.vuestorefront.io/guide/installation/linux-mac.html
https://medium.com/axons/ci-cd-with-argo-on-kubernetes-28c1a99616a9

99

[115] Anastasov, Marko [Web log post], March 2, 2017. ‘What is Proper Continuous Integration?’.

Cited 12.3.2020 from https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-

integration.html

[116] Unit Testing. (n.d.) In Software Testing Fundamentals. Cited 12.3.2020 from

http://softwaretestingfundamentals.com/unit-testing/

[117] End-to-End Testing. (n.d.) In Tutorials Point. Cited 12.3.2020 from

https://www.tutorialspoint.com/software_testing_dictionary/end_to_end_testing.htm

[118] Husky. (n.d.) in Github. Cited 12.3.2020 from https://github.com/typicode/husky

[119] Singhal, Krishankant [Web log post], February 6, 2019. ‘How to read Test Coverage report

generated using Jest.’ Cited 12.3.2020 from https://medium.com/@krishankantsinghal/how-to-

read-test-coverage-report-generated-using-jest-c2d1cb70da8b

[120] Gagliardi, Valentino [Web log post], February 2, 2020. ‘Jest Tutorial for Beginners: Getting

Started With JavaScript Testing’. Cited 12.3.2020 from https://www.valentinog.com/blog/jest/

[121] Shevlin, Kyle [Web log post], February 23, 2017. ‘Renderless Components or How Logic

Doesn't Always Need a UI’, ‘Presentational Components’. Cited 12.3.2020 from

https://kyleshevlin.com/renderless-components

[122] Snapshot Testing. (n.d.) In Jest. Cited 12.3.2020 from https://jestjs.io/docs/en/snapshot-

testing

[123] Who uses Cypress? (n.d.) In Cypress docs. Cited 12.3.2020 from

https://docs.cypress.io/guides/overview/why-cypress.html#Who-uses-Cypress

[124] Our mission. (n.d.) In Cypress docs. Cited 12.3.2020 from

https://docs.cypress.io/guides/overview/why-cypress.html#Our-mission

[125] Corker, Seth [Web log post], December 8, 2018. ‘Why Cypress is the best way to test’. Cited

12.3.2020 from https://medium.com/front-end-field-guide/why-cypress-is-the-best-way-to-test-

64ec0d394bae

[126] Hiren Tanna [Web log post], February 17, 2017. ‘Top 10 Benefits of Test Automation’. Cited

12.3.2020 from https://dzone.com/articles/top-10-benefits-of-test-automation

[127] Frost, Brad, November 28, 2016. ‘Atomic Design’. Cited 27.2.2020 from

https://atomicdesign.bradfrost.com/chapter-5/

[128] StorefrontUI - Customization-first component library. (n.d.) In Storefront-UI Storybook. Cited

12.3.2020 from https://storybook.storefrontui.io/

[129] Inline text spacing must be adjustable with custom stylesheets. (n.d.) In Deque University.

Cited 12.3.2020 from https://dequeuniversity.com/rules/axe/3.3/avoid-inline-spacing

https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html
https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html
http://softwaretestingfundamentals.com/unit-testing/
https://www.tutorialspoint.com/software_testing_dictionary/end_to_end_testing.htm
https://github.com/typicode/husky
https://medium.com/@krishankantsinghal/how-to-read-test-coverage-report-generated-using-jest-c2d1cb70da8b
https://medium.com/@krishankantsinghal/how-to-read-test-coverage-report-generated-using-jest-c2d1cb70da8b
https://www.valentinog.com/blog/jest/
https://kyleshevlin.com/renderless-components
https://jestjs.io/docs/en/snapshot-testing
https://jestjs.io/docs/en/snapshot-testing
https://docs.cypress.io/guides/overview/why-cypress.html#Who-uses-Cypress
https://docs.cypress.io/guides/overview/why-cypress.html#Our-mission
https://medium.com/front-end-field-guide/why-cypress-is-the-best-way-to-test-64ec0d394bae
https://medium.com/front-end-field-guide/why-cypress-is-the-best-way-to-test-64ec0d394bae
https://dzone.com/articles/top-10-benefits-of-test-automation
https://atomicdesign.bradfrost.com/chapter-5/
https://storybook.storefrontui.io/
https://dequeuniversity.com/rules/axe/3.3/avoid-inline-spacing

100

[130] Text elements must have sufficient color contrast against the background. (n.d.) In Deque

University. Cited 12.3.2020 from https://dequeuniversity.com/rules/axe/3.2/color-contrast

[131] Semantics. (n.d.) In MDN web docs. Cited 12.3.2020 from https://developer.mozilla.org/en-

US/docs/Glossary/Semantics

[132] Nedrich, Matt [Web log post], January 24, 2018. ‘Should You Use React Storybook?’ Cited

12.3.2020 from https://spin.atomicobject.com/2018/01/24/react-storybook/

[133] Meggin Kearney, Addy Osmani, Kayce Basques, Jason Miller, February 12, 2019. ‘Measure

Performance with the RAIL Model’. Cited 12.02.2020 from

https://developers.google.com/web/fundamentals/performance/rail

[134] Divante. (n.d.). ‘The demo Vue Storefront Store’. Cited 05.03.2020 from

https://demo.vuestorefront.io/

[135] ‘Kubota Web store’. Cited 05.03.2020 from https://kubotastore.pl/

[136] ScandiPWA. (n.d.). ‘The demo ScandiPWA store’. Cited 05.03.2020 from

https://demo.scandipwa.com/

[137] Deity Falcon. (n.d.). ‘The demo Deity Falcon store’ cited 05.03.2020 from

https://demo.deity.io/

[138] Front Commerce. (n.d.). ‘The demo Front Commerce store’. Cited 05.03.2020 from

https://magento2.demo.front-commerce.com/

[139] Inchoo. (n.d.). ‘The demo PWA studio store’ cited 05.03.2020 from https://inchoopwa.com/

[140] Web Dev, May 02, 2019. ‘Reduce server response times (TTFB)’. Cited 05.03.2020 from

https://web.dev/time-to-first-byte/?utm_source=lighthouse&utm_medium=devtools

[141] Hot Reload. (n.d.) In Vue Loader docs. Cited 17.3.2020 from https://vue-

loader.vuejs.org/guide/hot-reload.html

[142] Vue Storefront unique features. (n.d.) In Vue Storefront docs. Cited 12.3.2020 from

https://docs.vuestorefront.io/guide/basics/feature-list.html#vue-storefront-unique-features

[143] Magezine Team, 2019. ‘Who will win the PWA battle? Selected solutions overview’,

Magezine, no. 2, p. 18.

[144] Rath, Manish [Web log post], August 8, 2019. ‘Here are the 3 ways AR is changing the

eCommerce industry’. Cited 12.3.2020 from https://medium.com/scapic/here-are-the-3-ways-ar-is-

changing-the-ecommerce-industry-9abf6b54a214

[145] Iram, Sivan [Web log post], July 7, 2017. ‘Why Web Apps Are The Future Of Augmented

Reality’. Cited 12.3.2020 from https://medium.com/arjs/why-web-apps-are-the-future-of-

augmented-reality-c503e796a0c5

https://dequeuniversity.com/rules/axe/3.2/color-contrast
https://developer.mozilla.org/en-US/docs/Glossary/Semantics
https://developer.mozilla.org/en-US/docs/Glossary/Semantics
https://spin.atomicobject.com/2018/01/24/react-storybook/
https://developers.google.com/web/fundamentals/performance/rail
https://demo.vuestorefront.io/
https://kubotastore.pl/
https://demo.scandipwa.com/
https://demo.deity.io/
https://magento2.demo.front-commerce.com/
https://inchoopwa.com/
https://web.dev/time-to-first-byte/?utm_source=lighthouse&utm_medium=devtools
https://vue-loader.vuejs.org/guide/hot-reload.html
https://vue-loader.vuejs.org/guide/hot-reload.html
https://docs.vuestorefront.io/guide/basics/feature-list.html#vue-storefront-unique-features
https://medium.com/scapic/here-are-the-3-ways-ar-is-changing-the-ecommerce-industry-9abf6b54a214
https://medium.com/scapic/here-are-the-3-ways-ar-is-changing-the-ecommerce-industry-9abf6b54a214
https://medium.com/arjs/why-web-apps-are-the-future-of-augmented-reality-c503e796a0c5
https://medium.com/arjs/why-web-apps-are-the-future-of-augmented-reality-c503e796a0c5

101

[146] Auerbach, Adam [Web log post], August 3, 2015. ‘Part of the Pipeline: Why Continuous

Testing Is Essential’. Cited 12.3.2020 from https://www.techwell.com/techwell-

insights/2015/08/part-pipeline-why-continuous-testing-essential

[147] Moffat, Branwell [Web log post]. (n.d.) ‘Omnichannel vs. multichannel: What’s the difference

and who is doing it?’ Cited 12.3.2020 from https://www.the-future-of-

commerce.com/2017/09/13/omnichannel-vs-multichannel/

[148] Google Chrome Developers, June 18, 2019. ‘Web Components: The Secret Ingredient

Helping Power The Web’. Cited 17.3.2020 from https://www.youtube.com/watch?v=YBwgkr_Sbx0

https://www.techwell.com/techwell-insights/2015/08/part-pipeline-why-continuous-testing-essential
https://www.techwell.com/techwell-insights/2015/08/part-pipeline-why-continuous-testing-essential
https://www.the-future-of-commerce.com/2017/09/13/omnichannel-vs-multichannel/
https://www.the-future-of-commerce.com/2017/09/13/omnichannel-vs-multichannel/
https://www.youtube.com/watch?v=YBwgkr_Sbx0

102

APPENDIX APPENDIX 1

Project Device Performance Accessibility Best

Practices

SEO PWA

Implementation Mobile 25 90 79 100 12

Implementation Desktop 22 82 79 100 12

Demo VSF Mobile 68 90 86 98 13

Demo VSF Desktop 44 82 86 100 13

Kubota Mobile 20 82 79 100 12

Kubota Desktop 13 88 79 100 12

ScandiPWA

Demo

Mobile 86 93 93 100 13

ScandiPWA

Demo

Desktop 86 93 93 100 13

Deity Falcon

Demo

Mobile 79 100 93 100 13

Deity Falcon

Demo

Desktop 86 89 93 90 13

Front-commerce

Demo

Mobile 76 100 93 97 13

Front-commerce

Demo

Desktop 68 89 93 100 13

Inchoo Mobile 100 100 93 100 10

Inchoo Desktop 100 100 93 100 10

PWA Studio

project

Mobile 43 70 71 89 12

PWA Studio

project

Desktop 32 62 79 89 12

Traditional M2

project

Mobile 27 79 - 83 5

Traditional M2

project

Desktop 33 85 - 80 5

103

APPENDIX APPENDIX 2

Task Scope

Investigating and documenting the drawbacks of existing solutions Theory

Investigating and documenting the potentials of modern front-end –

Methodologies, architectures and tools

Theory

Investigating and documenting the potentials of modern front-end –

Workflow Optimization

Theory

Comparing available e-commerce platforms based on modern front-end Theory

Installing VSF and integrating with a Magento 2 instance Implementation

Creating a new VSF theme Implementation

Understanding VSF structure and architecture Implementation

Developing custom reusable components in VSF (HorizontalMenu) Implementation

Publishing components Implementation

Reusing existing modules (VSF External Checkout) Implementation

Reusing existing modules (Nosto) Implementation

Documenting the CI/CD process Implementation

Writing automated front-end tests Implementation

Establishing component maintenance procedure Implementation

Benchmarking the application and comparing with existing solutions Implementation

Investigating current limitations & future possibilities Theory

	Abstract (Dair & Fayjus)
	Preface
	Contents
	Terms and Abbreviations
	1 Introduction (Dair)
	2 Overview of Existing Methodologies (Dair)
	2.1 Disadvantages of current technologies (Dair)
	2.2 Disadvantages of current technologies for clients (Dair)
	2.3 Disadvantages of current technologies for front-end developers and development workflow (Dair)
	2.4 Summary of disadvantages (Dair)

	3 State of Modern Web Front-End (Fayjus)
	3.1 Modern Web front-end architecture (Fayjus)
	3.1.1 Component-based architecture (Dair)
	3.1.2 State Management (Dair)
	3.1.3 Headless architecture (Dair)
	3.1.4 Routing (Fayjus)
	3.1.5 Rendering (Fayjus)
	3.1.6 Handling DOM (Fayjus)
	3.1.7 Tooling (Fayjus)

	3.2 Testing and design system (Dair)
	3.2.1 Automated Web Testing (Dair)
	3.2.2 Automated Web Accessibility Testing (Dair)
	3.2.3 Design System Management (Dair)

	3.3 Workflow optimization (Dair)
	3.3.1 Workflow optimization with automated web testing (Dair)
	3.3.2 Workflow optimization with design systems (Dair)

	3.4 Emerging E-commerce Platforms Based on Modern Web Front-end (Fayjus)

	4 Implementation (Fayjus)
	4.1 Bootstrapping the Front-end (Fayjus)
	4.2 Elements of Vue Storefront Architecture (Fayjus)
	4.2.1 State Management in Vue Storefront (Fayjus)
	4.2.2 CSS Methodology in Vue Storefront (Fayjus)

	4.3 Developing Reusable Components (Fayjus)
	4.4 Reusing Existing Modules (Fayjus)
	4.5 Publishing a Module (Fayjus)
	4.6 CI/CD pipeline with Argo and Kubernetes (Dair)
	4.6.1 Build and deploy procedures (Dair)
	4.6.2 Improvement of the CI/CD speed with headless architecture (Dair)

	4.7 Automated testing (Dair)
	4.7.1 Unit testing with Jest (Dair)
	4.7.2 E2E testing with Cypress (Dair)

	4.8 Design system maintenance (Dair)
	4.8.1 Creating a component library with Storybook (Dair)

	5 Benchmarking and Evaluation (Fayjus)
	6 Future possibilities (Dair)
	7 Conclusion (Fayjus)
	References

