

Huong Nguyen

DESIGN AND IMPLEMENTATION OF A PET CARE SYSTEM

DESIGN AND IMPLEMENTATION OF A PET CARE SYSTEM

 Huong Nguyen
 Bachelor’s Thesis
 DIN15SP

Degree Programme in Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Huong Nguyen
Title of the bachelor’s thesis: Design and implementation of a pet care system
Supervisor: Anne Keskitalo
Term and year of completion: Spring 2020 Number of pages: 49

The objective of this thesis was to build a Pet Care System using the trendiest
technologies from both the Internet of Things and the Web development and to analyse
different aspects of this approach.

To build a pet feeding machine, a food dispenser, a servo, and a configured Raspberry
Pi were connected. The pet’s food could be released from the food dispenser as a result
of Raspberry Pi triggering the servo to rotate the spinner. A progressive web application
for remotely manipulating the pet feeding machine was developed using ReactJS. As
important as that, a web server for receiving control signals from the web app was built
and deployed in Raspberry Pi using NodeJS.

As a result, a Pet Care System was made, it includes the pet feeding machine and the
web application for remote control feeding activities. Core features, such as immediate
feed and scheduling feed were implemented in this system. The analysis and evaluation
of the project were also written to give more knowledge of the system.

Keywords: Raspberry Pi, progressive web app, React.js, Node.js, servo, pet care, smart
pet feeder

 4

PREFACE

This bachelor thesis was written at Oulu University of Applied Sciences as part of the
curriculum of Degree Programme in Information Technology. This project was made
under the supervision of Anne Keskitalo and Kaija Posio, who guided and supported the
author a lot by providing helpful advice as well as resources.

Oulu, 30.1.2020
Huong Nguyen

 5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

VOCABULARY 7

1 INTRODUCTION 8

2 APPLIED TECHNOLOGY 9

2.1 Hardware technology 9

2.1.1 Raspberry Pi 9

2.1.2 Servo 11

2.1.3 Other relevant devices 12

2.2 Software technology 13

2.2.1 ReactJS 13

2.2.2 React Bootstrap 16

2.2.3 Progressive Web App 16

2.2.4 Node.js 16

2.2.5 Express.js 18

2.2.6 Node-schedule 18

2.2.7 Pigpio 19

3 DEVELOPMENT PROCEDURE 20

3.1 Project plan 20

3.2 Project requirements 20

4 ARCHITECTURE AND DESIGN 22

4.1 System architecture 22

4.2 UI design 23

5 PRODUCT DEVELOPMENT 26

5.1 Hardware installation 26

5.2 Environment establishment 27

5.2.1 Backend 27

5.2.2 Frontend 30

5.3 Feature development 31

 6

5.3.1 Backend 31

5.3.2 Frontend 34

6 EVALUATION 45

6.1 Project evaluation 45

6.2 Evaluation of possible future development 45

7 CONCLUSION 47

REFERENCES 48

 7

VOCABULARY

AJAX Asynchronous JavaScript and XML

DIY Do it yourself

DOM Document Object Model

GPIO General-purpose input/output

HTML Hypertext Markup Language

JS Javascript

JSX JavaScript XML

LAN Local Area Network

SSH Secured Shell

UI User Interface

PWM Pulse Width Modulation

8

1 INTRODUCTION

Nowadays, owning a pet becomes more challenging for people due to the fact that pet

health is affected by feeding schedule, while people cannot always stay at home to feed

their dear friends. Although the urge to have an automatic pet feeder at home has

raised significantly worldwide, it is not yet popular and affordable in many countries at

the time. As a result, a DIY Pet Care System can be an excellent choice for people who

are not able to purchase an automatic pet feeder.

The purpose of this thesis was to study and offer an approach to the mentioned

problem: developing a pet care machine using Raspberry Pi as the main component

and a web application used for remotely control the machine.

In this thesis, one of the main tasks was studying the development of the pet care

system. That included different aspects, such as design, architecture, component

installation and feature development.

Another main task was studying the technologies used to build a pet care system,

explain them generally, as well as analyse them in relation to this specific system.

The mentioned tasks were all crucial and constructive in providing readers with an

insight into popular and trending technologies in both web development and the IoT.

9

2 APPLIED TECHNOLOGY

2.1 Hardware technology

2.1.1 Raspberry Pi

“The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer

monitor or TV, and uses a standard keyboard and mouse.” [1]

“The Raspberry Pi is a series of small single-board computers” [2]

Basically, Pi can be expected to do anything a desktop can such as browsing the

Internet, playing music or acting as a game console. Pi can be used as a web server as

well since it uses Debian – a Linux based operating system.

In Pi, important components which are responsible for a computer's operation, such as

a microprocessor, a memory and ports, are all present in one single board. It is made

not only useful but also convenient.

It is undeniable that Raspberry Pi may not be as powerful as a desktop computer; Pi,

however, is still a perfect option for projects which do not require significant strong

processing power. [3]

There are a number of Raspberry Pi models which can be chosen: Model A, Model B,

Model Zero and Model Compute. There are some certain strengths and weaknesses in

each model; for example, model Zero is the cheapest option but the Internet connection

is not supported. While the price is higher than that of other models, Model B is

considered to be the most powerful. [4]

In this project, Raspberry Pi 3 Model B was selected for product development. FIGURE

1 shows the structure of Raspberry Pi 3 Model B.

10

FIGURE 1. Raspberry Pi 3 Model B [5]

According to the official website [6], Raspberry Pi Model B has below specifications:

● Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

● 1GB RAM

● BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

● 100 Base Ethernet

● 40-pin extended GPIO

● 4 USB 2 ports

● 4 Pole stereo output and composite video port

● Full size HDMI

● CSI camera port for connecting a Raspberry Pi camera

● DSI display port for connecting a Raspberry Pi touchscreen display

● Micro SD port for loading your operating system and storing data

11

● Upgraded switched Micro USB power source up to 2.5A

2.1.2 Servo

“A Servo is a small device that incorporates a two-wire DC motor, a gear train, a

potentiometer, an integrated circuit, and an output shaft.” [7] FIGURE 2 below shows a

servo’s components.

The servo can be controlled by having GPIO pins turned on and off at a dramatically

fast rate. The direction of the servo is controlled by a pulse width, which is the length of

the pulses, while the frequency is kept constant. These signals are known as Pulse

Width Modulation (PWM). [8]

Because Raspberry Pi does not have a clock system for PWM signal generation, it is a

must to use software to generate PWM signals. Pigpio is a helpful library for that

purpose.

Usually, a servo has a 3-pin plug connector which includes 3 wires of different colours:

The black wire is for ground signal, the red one is for the power supply (at 5.5V) and the

yellow one is for the control signal.

12

FIGURE 2. Servo's components [9]

2.1.3 Other relevant devices

A food dispenser with a silicone spinner is one of the most important items to build this

pet care system. It can be made or bought easily in the local market. This food

dispenser is for storing the pet’s food; the spinner is made so that the food is released

whenever the user rotates a button which leads the spinner to rotate. In this project, the

food dispenser was bought as many important tools and materials could not be found.

FIGURE 3 below shows the appearance of the food dispenser.

Tools, such as a wooden hanger and a piece of glue or tape, are required. They are

used to attach the servo with the food dispenser.

13

FIGURE 3. Food dispenser

2.2 Software technology

2.2.1 ReactJS

ReactJS is a Javascript library which is designed for user interface development. One of

the features which make React special is JSX. JSX is an XML like syntax extension for

JavaScript. Traditionally, logic (JavaScript) and markup (HTML) are written separately.

JSX, however, combines both logic and markup – HTML elements can be added to

JavaScript and appended to the DOM without DOM methods.

Below is an example of JSX:

 const element = <h1>Hello, world!</h1>;

The DOM, or the Document Object Model, has been known as a crucial part of a

website; therefore, how to control it effectively is always a controversial issue in the

14

developer community. Nevertheless, the DOM’s updating speed is usually slow in most

JavaScript frameworks, as the whole DOM tree is updated every time there is a tiny

change. ReactJS is known for the excellent ability to update only the DOM parts that

have new changes, thus increasing the speed significantly. This feature of React is

called Virtual DOM.

React creates the virtual DOM by creating a copy of the original DOM. Whenever there

is a change detected, the whole virtual DOM is updated. React compares the updated

virtual DOM with the original one; thus, the difference is rapidly identified and the

changed part in the original DOM is updated in no time. [10]

In React, the UI is divided into multiple parts called “components”. These components

can work independently and they can be reused many times. Thanks to this feature,

repeated codes can be avoided and DRY (Don’t Repeat Yourself), which is an important

principle for web developers to remember, can be made use of.

One-way data binding is another special feature of React. It means that data only flows

in a single direction. Data can only be passed from the parent component to the child

through props. If data needs to be passed from the child component to the parent, a

callback function should be made to update the state [10].

”A single-page application is a web application or web site that interacts with the user by

dynamically rewriting the current page rather than loading entire new pages from a

server” [11]. Single-page applications have become popular nowadays, and React is a

powerful tool for building them.

Because only the view layer of the application is handled by React, additional libraries

and plugins are usually used in complex applications requiring some non-UI frontend

features, such as API interactions and state management. This, at the same time, gives

React more flexibility than other competitors in the market.

15

React and the competition

During recent years, the question about which frontend framework or library developers

should use has been a controversial topic. ReactJS, AngularJS and VueJS are

mentioned the most in multiple tech articles.

FIGURE 4 The number of downloads for popular Javascript frameworks in the past 2

years [12]

In terms of popularity, it is shown in the graph above (FIGURE 6) that ReactJS has

always had the highest number of downloads, compared to AngularJS and VueJS.

Regarding the performance, the virtual DOM has made use of both React and Vue,

which means that they are faster than Angular. Bidirectional data-binding is used in

Angular, which is also a factor making it slower than React.

Both VueJS and ReactJS are significantly less lightweight compared to Angular. Even

though Angular is heavy, more features ,such as templates and testing utilities, are

offered.

As mentioned earlier, flexibility is React’s strength because only the user interface part

is handled by React. Additional frameworks and libraries can be used for specific

demands, depending on the characteristics and requirements of each application.

16

In summary, if a fully equipped frontend framework is in need, Angular can be

considered; in contrast, if a lightweight, flexible and fast option is prefered, React may

be the best choice.

2.2.2 React Bootstrap

Nowadays, a responsive and mobile-first UI is a key factor in many modern web

applications. React Bootstrap, which is a combination of React and Bootstrap

components – the best UI libraries, can be an excellent option when it comes to building

such web applications.

Usually, Bootstrap often comes with some dependencies such as jQuery or bootstrap.js,

which affect the DOM directly. With React Bootstrap, however, Bootstrap works on the

virtual DOM together with React to provide a more stable solution.

2.2.3 Progressive Web App

Progressive Web App is one of the most trendy technologies nowadays due to the fact

that it offers a high performance and a mobile app-like experience without requiring the

user to install it. It can be developed using HTML, CSS and JavaScript – the same

languages with a normal web. The benefits PWA offers include a fast response, less

data consumption, a push notification and an offline use. When it comes to building a

PWA, React.js is one of the best choices as it is always easy and fast

2.2.4 Node.js

According to the Node.js official document:

“Node.js is a platform built on Chrome's JavaScript runtime for easily building fast and

scalable network applications. Node.js uses an event-driven, non-blocking I/O model

that makes it lightweight and efficient, perfect for data-intensive real-time applications

that run across distributed devices.” [13]

Traditionally, servers use a thread-based networking model, which means that a new

thread is created every time a request comes in. A number of troubles can be caused

by this mechanism. The fact that Node.js is an asynchronous event-driven JavaScript

17

runtime makes it possible to maintain multiple connections at the same time. Whenever

there is a request is sent to a Node.js server, a callback is fired. Thus, concurrent

requests can create multiple callbacks which are able to work independently in a single

thread.

One of the reasons why Node.js is popular is that it is significantly fast and scalable.

The ability to handle requests based on single-thread with event looping mentioned

above makes it extremely fast and lightweight. The number of loops is never limited and

there is usually no blocking, Node is well-known for its scalability.

FIGURE 5. Node.js features [14]

Node.js is the solution for many kinds of applications. FIGURE 5 shows the typical

applications which often make use of node. For example, in data streaming or real-time

applications, it is very important that the speed is high and concurrent requests can be

handled with little latency. Node.js servers perform effectively in such cases.

Node.js works consistently with a package manager called npm. Npm is the largest

open source library which offters various dependencies for developing different

features. Npm is helpful for package managing activities such as install or uninstall

dependencies

18

2.2.5 Express.js

Express.js is a web framework for Node.js. A set of powerful features that are beneficial

for building websites and mobile applications are offered. Middlewares being used for

handling HTTP requests are also included in Express.js. Routing tables used for

different actions with HTTP methods and URL can be defined. Especially, HTML

rendering based on passing arguments to templates is allowed in Express.js. [15]

In this project, Express.js was necessary for the server to deal with HTTP requests.

Routing also became easier with Express.js, while the middlewares it offered reduce the

number of packages needed to be installed.

2.2.6 Node-schedule

Scheduling tasks in Node.js has become easier thanks to a Node module called Node-

schedule. A task’s execution time and the rule of its repetition can be set. There is only

a single timer being made use of, and no upcoming jobs re-evaluation will be done.

It is crucial to distinguish time-based and interval-based scheduling. Interval-based

scheduling should be used when the task requires repetition after a certain period. For

example, running a chore every ten minutes is an interval-based scheduling task. The

JavaScript function setSchedule() or similar functions can be applied for such a task. On

the other hand, a time-based scheduling task, such as running a chore at a specific time

every day, can be done easily with the help of Node-schedule.

In term of this specific project, Node schedule was applied because it was healthier for

the pet to be fed at a specific time every day.

Node Schedule is fired when the schedule() method is called in a manually created job

object. Another option is to call scheduleJob(). This convenient function will help node

automatically create a scheduling job and run it.

19

2.2.7 Pigpio

Pigpio is a library written in C for Raspberry Pi. It allows General Purpose Input Outputs

(GPIO) manipulation. GPIO is a way Pi can communicate with the outside world by

being connected to electronic circuits. [16]

In this project, the server was built using Node.js. As a result, a wrapper for Pigpio was

installed for the servo control.

Two methods for controlling the servo are servoWrite(pulseWidth) and

getServoPulseWidth(). Among them, servoWrite(pulseWidth) was used in the

prototype’s code. This method is for adding the pulse width, which leads to the servo

movement.

20

3 DEVELOPMENT PROCEDURE

3.1 Project plan

Generally, the product development process could be divided into these steps:

1. Environment setup. This step included Raspberry Pi, its OS setup and SSH

configuration; All the required files and modules were installed and set up in the

server and the client to prepare for the development step.

2. Feature development. During this step, the features mentioned in the project

requirements were developed.

3. Testing. The features were tested based on the requirements aligned in the

Project requirements part. The audit with Lighthouse could be performed to test

the PWA. However, there was no automated testing since the scope of this

project was narrow.

3.2 Project requirements

It was planned that a feature which allowed the user to run the pet feeding machine

immediately would be developed in the pet feeding application. This included a “Feed

now” button which sent a signal to the server to run the servo when the user clicked on

it.

The feature Scheduling the next feed was also expected to be completed in this project.

This feature included a “Schedule” button which would open a modal containing a date-

time picker. This component would allow the user to pick the next feeding time. It should

be possible for the user to save that time or cancel/ close the modal. When the user

clicked on “Save”, a request would be sent to the server to trigger the machine to run at

the specified time.

Feedbacks should be shown to allow the user to know if the action was successful. This

was achieved by showing a modal or pop-up with the message received from the

server.

21

The application must fulfil PWA requirements. This would be tested by using Lighthouse

audit. Some PWA features were installability, offline use and responsiveness.

The application was expected to be a single page application. It means that no page

refreshment would be required to load new content. Obviously, REST API should be

taken advantage of to do that.

The UI of the application should be simple and responsive. Given that only two

functionalities were developed, it would not be necessary to include eg. a menu bar or

sidebar. However, it was required that the UI looks good and simple in different screen

resolutions.

The servo should be strong and firm enough to manipulate the spinner of the food

dispenser. It was also important that the servo would be attached to the food dispenser

strong enough to make the whole machine stay stable. In reality, the food dispenser

could be repaired so that the servo and Raspberry Pi were totally hidden behind it and

out of the pet’s touch.

22

4 ARCHITECTURE AND DESIGN

4.1 System architecture

FIGURE 6 describes how this Pet Care System worked. As can be seen, running

signals were sent by Raspberry Pi to control the servo and the food dispenser. Pi was a

small size computer with Raspbian OS installed, so it could work as a web server. As a

result, the client, which could be a web browser or a PWA, could communicate with Pi

by sending HTTP requests or responses.

FIGURE 6. System's architecture

Client-side rendering was applied to this project and it means that the website was

rendered on the client-side with a browser and JavaScript. The reason for that was the

23

scenario that the user would use a browser or mobile app to control the feeding

machine remotely. Additionally, a single page application with client-side rendering was

considered to be faster and more effective in this case. Client-side rendering made it

possible for the client to only load the page once; the communication with the server

after that was handled with AJAX.

In this project, the client and the server were made separately. The server was

developed and saved in Pi via SSH. The logic for handling HTTP requests and

controlling the servo was written in file app.js. FIGURE 7 shows app.js location in a

React application project.

On the other hand, the client was a React.js application and it was developed in the

author’s computer before it was exported as a production version and then transferred

to a host. In the React.js project, most logic was written in src/App.js.

FIGURE 7. React.js app project structure [17]

4.2 UI design

Two UI mockups were drawn to show the author’s design ideas. The first one (FIGURE

8) showed the main screen of the application. Two buttons with different levels of

importance were shown. “Feed now” was the primary button, while “Schedule” was the

secondary button. A pet’s image was shown above the buttons. There could also be a

header showing the pet’s name above the pet’s image.

24

FIGURE 8. Main page mockup

The second mockup (FIGURE 9) showed what the user would see after she or he

clicked on the “Schedule” button. A popup or modal would be shown and it overlayed

the main screen. This popup would show a time picker and two buttons for saving and

closing. Both these buttons should have colours based on the level of importance.

25

FIGURE 9. Date time picker mockup

26

5 PRODUCT DEVELOPMENT

5.1 Hardware installation

The first step was to power on Pi and connect it to the Internet by using an Ethernet

cable. When Pi worked, a red light was shown. When Pi was connected to the Internet,

a green light under the Ethernet port blinked.

As mentioned before, the servo included three leads which could be used to connect

with Pi through some Male-to-female wires. It was important that these wires were

plugged correctly to the specified GPIO pins on Pi. The red wire must be connected to

pin 2 (5V pin), the yellow (signal wire) and black (ground) ones must be connected to

pin 19 and 20. FIGURE 10 below demonstrates how the servo should be connected

with Pi.

FIGURE 10. Raspberry Pi is connected with servo

The next step was to attach the servo to the food dispenser. The servo arm must be

correctly attached to the food dispenser’s button so that the centre of the servo arm

would match the centre of the button. This is important because it made the servo

stable and unmoved.

27

Another option for attaching the servo to the food dispenser was that the servo arm

could be attached to the back of the food dispenser. As long as the centre of the servo

arm and the centre of the silicone spinner were on the same axis, the movement would

be consistent. FIGURE 11 shows how the servo and Pi are attached to the food

dispenser.

FIGURE 11. Pet feeding device

5.2 Environment establishment

5.2.1 Backend

There are various ways of setting up a Raspberry Pi. The easiest way is to connect a

monitor, a keyboard and a mouse with Pi. However, those components were not

available when this prototype was developed. As a result, a headless setup was applied

on this prototype. With this arrangement, Raspberry Pi was remotely controlled from the

author’s computer via SSH.

A prerequisite for SSH login was SSH activation in Raspbian. This was done by

inserting Pi’s SD card into a computer, then creating a file called “ssh” without an

28

extension. When the SD card was inserted back to Raspberry Pi, SSH would be

enabled without difficulty.

For the environment testing purpose, a simple app.js file could be created with the

sample code from the NodeJS official document. This file could be written in a PC and

then transferred to Pi by WinSCP – a file transfer supporting software.

The first step of headless setup was to look up Raspberry Pi’s IP address. Usually, Pi’s

address is decided by the router, so it could be easily found when the author logged in

to the router’s admin panel from the computer and checked the list of connected

devices. FIGURE 12 shows the connected device list of the author’s router. The second

row in this FIGURE shows Pi’s IP, which is what was needed in the first step.

FIGURE 12. Router's connected device list

The next step was to use PuTTY – an SSH client – to log in to Pi. Pi’s credential

information was needed in this step. A welcoming message was shown when the author

successfully logged in to Pi.

After accessing to Raspberry Pi, necessary tools for running the server and controlling

the servo could be installed.

The first tool was NodeJS:

sudo apt-get install -y nodejs

In order to keep the server alive and avoid downtime, PM2 was used:

Sudo npm install pm2

29

Library Pigpio should be installed for servo manipulation:

Sudo npm install pigpio

All Raspberry Pi ports were closed by default; thus, it was necessary to open a port for

public use. Therefore, Nginx could be used in the development as a Reverse Proxy

Server:

sudo apt install nginx

After that, nginx’s default configuration file was edited by using a command

sudo vim /etc/nginx/sites-available/default

This file was then saved and Nginx was restarted:

server {

 listen 80 default_server;

 listen [::]:80 default_server;

 root /var/www/html;

 index index.html index.htm index.nginx-debian.html;

 server_name _;

 location / {

 proxy_pass http://192.168.0.0.1:3000;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection 'upgrade';

30

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 }

}

Other utilities were installed including Express.js – Node.js web framework; cors – a

Node.js module for cross-origin resource sharing and node-schedule – a Node.js

scheduler:

Sudo npm install express

Sudo npm install cors

Sudo npm install node-schedule

5.2.2 Frontend

In order to quickly set up a development environment for the application, a create-react-

app command was applied:

npx create-react-app my-app

Axios – a library which supports HTTP request creation – was installed.

Sudo npm install axios

React Bootstrap and React-datetime-picker were installed to enhance the user

experience.

Sudo npm install react-bootstrap bootstrap

Sudo npm install react-datetime-picker

31

5.3 Feature development

5.3.1 Backend

The first step was to set up a working server. In order to do that, a js file was created for

server code (app.js). All necessary modules were imported to this file via a function

require. The basic structure of app.js is shown in FIGURE 13 below.

Whenever a client’s connecting request is accepted, Express’s method app.listen()

binds the server and the client. After that, changes are detected and listened on the

specified port and host. This method is the same with Node’s http.Server.listen().

HTTP requests could also be made easily with the help of Express.js. For testing

purpose, a simple HTTP request was created to show that the server was working and

that it was able to respond to the client’s request:

app.get('/', (req, res) => res.send('server is running'));

The author then browsed to the address http://localhost:8080/ and saw the message

“server is running”.

http://localhost:8080/

32

FIGURE 13. Basic server code

The first two lines of FIGURE 14 shows how to use Pigpio’s method Gpio to set up

GPIO 10 to an output. This was important as Raspberry Pi’s default mode of the GPIO

was an input, which obviously could not control the servo.

The function feedNow() played an important role in this file because it manipulated the

servo’s movement. As mentioned in the theory part, a servo move is a result of the

change in its pulse width. feedNow() made the servo work by looping the code block

inside setInterval() every 500 milliseconds. This code block includes:

● servoWrite(pulseWidth) started servo pulses at 50Hz on GPIO 10 at the most

anti-clockwise position (pulseWidth is 500).

● if statement increased the pulseWidth gradually to 2500 (most clockwise) and

then decreased it.

33

FIGURE 14. Servo controlling code

Two routes were needed for two major features which were Feed and Schedule. In

FIGURE 15, Express’s methods app.get() was used for the feature Feed considering

the context that the pet should be fed immediately. The method feedNow() in the

callback function of this route would trigger the servo to run as soon as the route with

the path “/feed” was called.

app.post() was used for the feature Schedule instead of app.get() because the feeding

time needed to be provided by the user. This information should be stored in the HTTP

request’s body; therefore, the method POST was a suitable choice.

In the callback function of this POST route, a Date object was created from the provided

time taken from the request body. This object was then used as a parameter in

scheduleJob() . As mentioned earlier, scheduleJob() is a method of node-schedule

which allows users to automatically create a job object and execute it at the specified

time.

34

In both callback functions, feedNow() was called. The difference was that it was

executed at a different time. The messages sent together with the response were also

different.

FIGURE 15. Server handles HTTP requests get and post

5.3.2 Frontend

First of all, all the necessary components and modules, such as React Bootstrap

components Row, Col, Button, Image should be imported.

It is popular in many programming languages and frameworks that a constructor is the

first part to be set up, so does React. As a rule, a constructor initializes the local state of

the component; event handler binding also happens in the constructor. Below the

screenshot (FIGURE 16) indicates how the constructor in App.js was made:

● super() called the constructor of the parent class, which was the constructor of

React.Component in this case

● Property values of the state were set. Feedback was set to a string and it would

be filled up with a meaningful sentence when the state changed. isShowingFeed

and isShowingSchedule were used for showing or hiding the corresponding

modals and they were set to false, which means that the modals were hidden by

default. Date was a JavaScript date object, it would be used for recording the

date which was selected by the user when a feeding schedule was set.

35

● Event handlers handleShowFeed, handleCloseFeed , handleShowSchedule and

handleCloseSchedule were bound in the last four lines of the constructor.

FIGURE 16. app's constructor

The next step was to define the event handlers.

Regarding the first four lines of FIGURE 17, handleShowFeed() was called when the

user clicked on “Feed now”. A promise was returned which then did two tasks if it was

fulfilled: sent an HTTP request to the server so that it triggered the pet feeding device to

run; then feedback was updated with a new message receiving from the server and

isShowingFeed switched to a value true, which means that the modal containing the

feedback would be shown. Axios was applied in this function to make it shorter and

more effective.

handleCloseFeed() , handleShowSchedule() and handleCloseSchedule() are similar to

each other. They triggered the modals to show or hide by changing the state.

Regardless of modal visibility, changeDate(), on the other hand, received a parameter

date and set a property date to the new value.

36

FIGURE 17. Event handlers

As shown in FIGURE 18, the method setSchedule() was used to set time for the next

feeding turn as well as giving feedback on the completed action. This function could

send a request with the affix “/schedule” and parameter time collected from the state’s

property date to the server using the HTTP method POST.

As mentioned in the backend development part, the HTTP method POST was used for

setting a schedule because the parameter time needed to be sent together with the

request. Using POST was recommended in this case as it enhanced the security level

of the server.

37

FIGURE 18 Function setSchedule()

In React Bootstrap, the same grid system with Bootstrap was used. The grid system

made the page responsive in different screen resolutions. It included a set of containers,

rows and columns used for the content layout and alignment.

FIGURE 19 indicates how the main page of pet care application was created based on

the React Bootstrap grid system. This page included a container containing three rows

which were used for the page’s title, pet’s image and buttons. Container, Row, Col,

Image and Button were built-in components that can be applied to develop this UI.

FIGURE 20 shows the result of the codes in FIGURE 19.

As mentioned before, it is always faster and shorter to use these React Bootstrap built-

in components instead of using the traditional Bootstrap, CSS, jQuery and React.js

together. The reason for that is that React Bootstrap manipulates React’s virtual DOM

while jQuery events occur on the real DOM.

As shown in line 78 and 81 of the same FIGURE, event handlers, such as

handleShowFeed or handleShowSchedule were easily called by using a built-in onClick

event. In contrast, it would take more effort to trigger this event with jQuery since a

selector, such as $(‘button’), must be chosen and a separated jQuery code block must

be written.

38

FIGURE 19. App’s main page code

FIGURE 20. Application's main page

Two React Bootstrap’s modals were made use of to show feedbacks and the time

picker. Feedback is necessary in web applications as it tells the user whether the action

is successful or failed. The time picker is for the user to pick the next feeding time. The

39

reason for using modals for these functionalities was the fact that the modal helped the

user to focus on just the content inside them instead of other components on the

application’s main page. There could be buttons on the modal for closing or saving,

which could be convenient and logical. It was also clearer that the modal had header –

body – footer structure. FIGURE 21 shows how a React Bootstrap modal looks like.

FIGURE 21. Feedback popup

The React Bootstrap modal has some built-in attributes for showing and hiding itself

,such as show and onHide. show can be set to either true or false, which corresponds to

showing or hiding the modal. onHide, on the other hand, accepts a function and runs it

when the event occurs. As shown in line 87 and line 93 of FIGURE 22,

handleCloseFeed() was used with onHide and onClick events to change the value of

the state property isShowingFeed, which made the modal disappear.

40

FIGURE 22. Feedback modal codes

Similarly, the modal of feature Schedule next feed was shown and hidden in the same

way with the feedback modal. As shown in line 105 to 108 of FIGURE 23, a simple

DateTimePicker component from the React-datetime-picker could be applied in the

Modal’s body to build a time picker. This component was developed with a variety of

attributes that could be beneficial for different puposes. In FIGURE 23, DateTimePicker

detected changes in the input value and called a function changeDate to update the

state. The HTTP request for setting a schedule was sent to the server only when the

user clicked on the button “Save”, which triggered the function setSchedule. FIGURE 24

shows the result of the codes in FIGURE 23.

41

FIGURE 23. Time picker codes

FIGURE 24. Time picker

42

The final task before exporting a production version for use was to make the application

a progressive web app. Manifest.json should be modified as below to define the app’s

appearance (FIGURE 25).

FIGURE 25. manifest.json

The browser would show an “Add to home screen” option if a manifest file existed.

However, it should be linked in the public/index.html file with this first:

<link rel="manifest" href="%PUBLIC_URL%/manifest.json" />

A service worker is a script running in the browser’s background and supports features

that do not need a web page or user interaction. Those features may include push

notification and caching, for example. React.js provides a file called serviceWorker.js in

the folder src/ which has preloaded code for handling service worker’s lifecycle. It must

be registered in index.js:

43

serviceWorker.register();

Finally, a command sudo npm run build could be used to export the final product.

Google’s Lighthouse is a popular choice for performing a PWA audit. FIGURE 26 shows

how the Lighthouse audit performed on the application. This was done by opening the

browser’s DevTools and running the audits with a “Progressive Web App” option.

FIGURE 27 indicates that the web app could be installed.

FIGURE 26. Lighthouse audit

44

FIGURE 27. Web app meets installability requirement

45

6 EVALUATION

6.1 Project evaluation

When this project started, several challenges were highlighted. However, the author

faced more difficulties than expected during the development phase.

For example, it was planned at the beginning that the food dispenser would be a hand-

made product. Nevertheless, some components and materials could not be found. In

addition, it was not easy to use tools to cut perfect pieces as more skills and machines

were required.

It should not be forgotten that the project scope is limited, and the prototype therefore

cannot be developed as complete as a production version. It means that, for instance,

much attention to error handling was not paid. Features such as scheduling repeated

feed were not developed.

Although there were a few difficulties and limitations, most project requirements were

fulfilled and the final result is satisfying. The prototype was made and it worked perfectly

in the local network.

An experience of trendy technologies such as React.js, Node.js and Raspberry Pi was

gained. Non-IT knowledge was also acquired including mechanical and electronic skills.

Some errors happened during the development phase, but once they were solved,

lessons were learned and knowledge was improved.

6.2 Evaluation of possible future development

First of all, a feature which allows the user to set a schedule for repeated feeds can be

implemented. It should not be a heavy work because node-schedule has some built-in

methods for recurrence rule scheduling which can be applied. For example, a method

RecurrenceRule() can be used with options, such as hour, minute, to set the recurrence

rule for the schedule job.

46

Another feature which can be developed is a live streaming camera system. This will be

a helpful tool for pet owners to observe their pets and assure that their pets are healthy

and eat well. In order to do this, a camera should be connected to Pi and a Raspberry

Pi Camera module should be enabled. A Node module, such as raspivid-stream, can be

applied to effectively achieve the purpose.

It is also possible to include a notification mechanism. For example, user can be

reminded that the pet’s vaccine appointment is coming soon. If this is the case, a

database, such as MongoDB, may be necessary to save information. It is also essential

to set up a connection between it and the NodeJS server.

It is even better if the user interface is re-designed as well as improved so that it

becomes more beautiful and has more widgets: A customized date-time picker for the

recurrence schedule, a separated thread for video streaming and a menu which

includes user’s account information, notification and settings.

The pet feeding device should be improved also. It is a fact that pet can be playful

sometimes and he or she can destroy the device accidentally, so it is better to take this

into account when installing the feeding device. The device can be put on a shelf out of

the pet’s touch and the food can go through a long pipe to reach the pet’s bowl, for

instance. A stronger glue and nails can also be applied for a better attachment.

47

7 CONCLUSION

The purpose of this project was to create a working Pet Care System with the most

trendy technologies and analyze that approach. In addition, different skills could be

practiced and improved.

In this thesis, the author’s study on the applied technologies was revealed; the system

design and implementation were described in detail and further development was also

discussed.

During the project development, several problems arised out of expectation. A few of

them could not be solved due to some objective factors. Although there were still some

drawbacks in the prototype, most requirements were fulfiled and the final product

worked perfectly.

The author encountered many difficulties, mostly because the technical stack was

considerably new and the author did not have experience on these technologies.

Nevertheless, valuable lessons were learned from those problems and difficulties; new

knowledge was gained.

After the project, the author’s interest with the IoT increased. It is also promising that

more projects which combine the IoT and the web development will be smoothly

developed in the future.

48

REFERENCES

[1] Raspberry Pi official website. What is a Raspberry Pi. 2019. Date of

retrieval 10.01.2020 https://www.raspberrypi.org/help/what-%20is-a-

raspberry-pi/.

[2] Wikipedia. Raspberry Pi. Date of retrieval 12.01.2020

https://en.wikipedia.org/wiki/Raspberry_Pi.

[3] Raspberry Insider. How Raspberry Pi is different from a desktop computer.

2019. https://raspberryinsider.com/how-raspberry-pi-is-different-from-a-

desktop-computer/.

[4] Maker.io staff. How to pick the right Raspberry Pi. 05.02.2018.

https://www.digikey.com/en/maker/blogs/2018/how-to-pick-the-right-

raspberry-pi.

[5] Newark.com. Date of retrieval 15.01.2020

https://www.newark.com/raspberry-pi/raspberrypi3-modb-1gb/sbc-

raspberry-pi-3-mod-b-1gb-ram/dp/77Y6520.

[6] R. P. official document R. P 3 model B. Date of retrieval 18.01.2020

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

[7] Servocity. What is a servo. 2019. Date of retrieval 20.01.2020

https://www.servocity.com/what-is-a-servo.

[8] R. P. o. website. Grandpa scarer. 2019. Date of retrieval 22.01.2020

https://projects.raspberrypi.org/en/projects/grandpa-scarer/4.

49

[9] Pinterest. Data of retrieval 22.01.2020

https://fi.pinterest.com/pin/350506783496828638/.

[10] Jamsheer K, "ReactJS features," 22.08.2019. Date of retrieval 22.01.2020

https://acowebs.com/react-js-features/.

[11] Wikipedia. Single page application. 2019. Date of retrieval: 23.01.2020

https://en.wikipedia.org/wiki/Single-page_application.

[12] Npm trends. Date of retrieval 25.01.2020

https://www.npmtrends.com/angular-vs-react-vs-vue.

[13] NodeJS official document. 2018.Date of retrieval 25.01.2020

https://NodeJS.org/en/.

[14] Codebust.io. Date of retrieval 28.01.2020. https://codeburst.io/all-about-

node-js-you-wanted-to-know-25f3374e0be7.

[15] Tutorialspoint. Node.js - Express Framework. 2019. Date of retrieval

29.01.2020

https://www.tutorialspoint.com/NodeJS/NodeJS_express_framework.htm.

[16] The Pi Hut. Turning on an led with your Raspberry Pi gpio pins. 2019. Date

of retrieval 29.01.2020. https://thepihut.com/blogs/raspberry-pi-

tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins.

[17] Jpolanco. Hello world with ReactJS. 2018. https://steemit.com/utopian-

io/@jpolanco/hello-world-with-react-js.

[18] Milton Abe. Demystifying React. Date of retrieval 30.01.2020

https://www.codemag.com/Article/1809041/Demystifying-React.

