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Abstract 

Humankind currently faces an unstoppably increasing energy demand and scarcity of 

resources. The associated problems of climate change and global warming have inten-

sified the role of renewable energies, especially of wind energy, in today’s energy sup-

ply. However, a critical disadvantage of renewables is their intermittent availability, 

which complicates the reliability of supply. As a result, energy storage technologies 

have become more and more important in recent times to overcome periods, when 

renewables do not provide power to the electrical grid. 

Among the various storage methods, a research team at the University of Applied Sci-

ences of Saarland focuses on a particularly sustainable and environmentally friendly 

storage solution: The decentralised storage of excess wind energy with pressurised air. 

Here, purely pneumatic (i.e. compressed air energy storage, CAES) and hydraulic-

pneumatic storage systems are considered simultaneously. Both systems are de-

signed, dimensioned and modelled in separate scientific studies for the research pro-

ject by ensuring comparability. This work deals with the hydraulic-pneumatic approach 

whereby hydro accumulators are utilised to store the surplus energy. 

Within the research scope, important theoretical and physical basics are illustrated for 

the storage concept. A first approach is provided for the dimensioning of the hydro ac-

cumulator system, which can serve as a starting point for the design of a prototype. For 

the dimensioned storage system, several basic models are created and simulated for 

evaluation and comparison purposes with the software tool AMESim. The simulation 

results are consistent with the outcome of the dimensioning and allow first statements 

about the system’s efficiency and performance. The comparison with the purely pneu-

matic system shows that achievable energy densities of hydraulic accumulators are 

much lower. However, CAES systems have to challenge comparably high thermal 

losses during the storage process. Hydraulic accumulators are therefore most likely to 

achieve better efficiencies, which CAES systems could only achieve by laboriously 

reusing the waste heat. At the current research stage, more precise statements cannot 

be made, since idealised conditions have been assumed for initial simulations. For this 

reason, the scientific paper is structured in a way that the research team can use the 

provided models and collected data as a foundation for further investigations and opti-

misations. 
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1 Introduction 

1.1 Background – Energy demand & climate change 

The earth is in a phase of rapid change. The population density of humans is increas-

ing rapidly and the worldwide demand for energy with it. In Germany, the total energy 

demand for electricity in 2018 was 599TWh. To get an impression, with around 83 mil-

lion inhabitants (Statistisches Bundesamt 2019), this corresponds to an annual per 

capita electricity demand of 7217kWh. Considering the primary energy consumption, 

i.e. additionally the energy consumption and losses of industry, traffic, trade and the 

energy sector itself, the primary energy consumption amounts to 2500TWh in 2018 

(Hartbrich 2020). Europe-wide, around 18000TWh of primary energy was consumed in 

2018 (Eurostat 2018). 

Somehow, these immense amounts of energy must be produced. Conventional energy 

sources, such as coal, oil or nuclear power, fall out of favour due to their poor environ-

mental footprint and restricted availability. However, with a share of 81.1% (2018) they 

still constitute a major part of the energy mix in Europe (Eurostat 2020). Therefore, 

humankind competes with the increasing energy demand, which in the near future can 

no longer be covered by conventional energy sources. This competition has a direct 

influence on the Earth's climate. 

For this reason, climate change is one of the central issues of our time. The abatement 

of greenhouse gas emissions and other harmful environmental influences is omnipres-

ent. Environmental activists, such as the movement “Fridays for Future” and the con-

sumer trend towards “green” products, highlight society’s growing environmental 

awareness (UBA 2019a). At the same time, politicians attempt to reduce the influence 

of humanity on the ecological balance by adopting comprehensive packages of 

measures such as the "European Green Deal". The aim is to make Europe the first 

continent to become climate-neutral by 2050 (European Commission 2019, p. 2). In 

response, today’s industry tries to meet the changing consumer interests and the more 

stringent requirements by a strategical orientation towards sustainability. In this con-

text, the electrification of the automotive sector is one of the major topics. However, 

there is a general acknowledgement that the energy transition, needed to curb climate 

change, is lagging behind at the present time. 

The serious impact of the climate change on the Earth’s ecosystem cannot be denied. 

In 2019, the average temperature of 10.3°C was the second highest record in Germany 

since 1881 (Kaspar & Friedrich 2020). The European climate change service “Coperni-

cus” recently declared the January 2020 the warmest January in Europe compared to 
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the 1981-2010 average (Euronews 2020). Overall, the global average temperature ris-

es continuously (UBA 2019b). Direct consequences are, in particular, melting polar 

caps and rising sea levels. Weather extremes, such as droughts and floods, are be-

coming more frequent and do not only threaten the biodiversity and the habitat of thou-

sands of animals and plants, but also humanity’s life quality. A current example are the 

bush fires that have raged in Australia since September 2019 due to extreme drought 

and heat. The uncontrollable flames destroyed 12 million hectares of land, killed at 

least 29 people and forced millions to billions of animals to death (Tagesschau.de 

2020). 

The previously described situation has led to an increasing international interest in de-

carbonisation and therefore to a strong focus on renewable energies in recent dec-

ades. Comparing, for instance, the share of renewable energies in the energy mix in 

Germany in 2000 and 2017, it can be stated that the share had more than quintupled, 

from 6% to around 33%. According to the Renewable Energy Sources Act, 40 to 45 per 

cent of the electricity consumed in Germany should come from renewable energy 

sources by 2025 (FMEAE 2020). The figure below illustrates the German energy mix 

for gross electricity generation in 2017. 

Figure 1: Gross electricity generation (in TWh) in Germany in 2017 

 

Source: FMEAE last updated 2018 

Having a closer look on the renewables, it can be seen that wind energy takes a crucial 

role in the energy transition with a total share of 16.3%. This is due to its abundant, 

free, and environmentally friendly characteristics. 
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In 2018, wind turbines already provided around 110TWh of energy, with 90.5TWh gen-

erated onshore and 19.5TWh generated offshore (FMEAE 2020). But also other re-

newables, like photovoltaics, experience a steep upward trend in shares in the energy 

portfolio. A similar positive development can be observed in other countries around the 

world, like China, Japan and Scandinavian countries, in order to sustainably cover fu-

ture energy requirements. Nevertheless, the increasing energy supply through renewa-

ble sources is accompanied by difficulties. 

The electrical grid needs to be operated on a delicate balance between demand and 

supply (EPA 2018). According to a spokesperson of the VGB Powertech Service 

GmbH in a report of the VDI newspaper, grid stability is only provided, when power 

generation covers the electricity demand completely and continuously (Wilming 2019, 

pp. 12-13). The consumer’s power demand varies considerably within the day. That is 

why conventional power plants are designed to be capable of supplying peak-time de-

mands and therefore operate with a security buffer on an adjustable constant rate 

(Shnaid, Weiner & Brokman 1996, p. 5). However, renewable energies are never avail-

able continuously, they are characterised by fluctuation and intermittency. Consequent-

ly, the power supply becomes more variable and thus more complex by increasing the 

share of renewables. The key challenge in the energy transition is to control this varia-

bility. To accomplish this, the electricity grid requires high flexibility, i.e. matching fluc-

tuating generation with fluctuating demand in real time (ISEA 2012, p. 1). This flexibility 

can be provided by integrating energy storage systems (ESS) into the power transmis-

sion system. They are capable of storing amounts of energy during times of high avail-

ability and feed it back into the grid when renewable energy supply is low. Consequent-

ly, energy storage technologies will play a major role to keep the balance in the energy 

market and to challenge the issues of climate change and rising energy demands. 

For this reason, the team of the research project “WESSPA” at the University of Ap-

plied Sciences of Saarland (htw saar) is looking for environmentally friendly solutions to 

store surplus wind energy decentralised. Within this framework, this scientific paper 

deals with the following task. 
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1.2 Task and motivation of this scientific paper 

As part of the research project WESSPA, this work deals with the conception, model-

ling and dimensioning of a storage system for wind energy with hydro accumulators. 

Consequently, performed tasks during the scientific work are the following. 

In the first step, a comprehensive research on the existent energy storage solutions, 

including their characteristics and working principles, provides important information 

regarding the current state of technology. The second chapter comprises fundamental 

knowledge concerning the hydro accumulator system and concept to be able to under-

stand the subsequent simulations. Therefore, the basics of hydraulics, the working 

principle, types and application areas of hydro accumulators, the underlying thermody-

namics of the energy storage process as well as the remaining hydraulic system com-

ponents are examined. After this common knowledge base is built, the key components 

of the storage system are dimensioned according to a defined framework. The out-

come is used as a basis to model and simulate the hydro accumulator system with the 

software tool AMESim. The results are documented, evaluated and compared with the 

findings of Jan Molter’s scientific work, which deals with the purely pneumatic system. 

The goal is to receive first insights in the storage’s performance characteristics, tech-

nical feasibility and potential areas of application in the renewable energy sector. 

Moreover, the thesis provides important basic knowledge concerning the hydro accu-

mulator technology. The results can be used in further steps of the WESSPA project 

including, for instance, the construction of a prototype and the investigation of experi-

mental setups. The contribution to the development of an innovative storage solution to 

tackle the multi-layered problems, which were illustrated in the first part of the introduc-

tion, is the prior motivation of the author. 
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1.3 Research project WESSPA 

The abbreviation “WESSPA“ is an acronym for "Wind Energy Storage System with 

Pressurized Air". Therefore, the research project at htw saar is dedicated to the devel-

opment of (hydro-) pneumatic ESS, especially, for the application in wind turbines. The 

initial idea is to modify the unused space in the tower of the wind turbine to a local stor-

age reservoir for air. The air is compressed either with compressors or by integrating 

hydraulic components. After that, it gets stored and is used on demand to drive a gen-

erator to produce electricity in the final step (Hübner 2019, p. 2). 

The project is being carried out in cooperation with a working group of the htw saar 

(consisting, inter alia, of Prof. Dr.-Ing. Dirk Hübner and Prof. Dr.-Ing Frank Ulrich 

Rückert), Dr. Karsten Kühn (Festo Lernzentrum Saar GmbH), the "Institut Physikali-

sche Prozess Technik" (htw saar) and the "WI Institut" (htw saar). The project is 

scheduled in several stages. The initial phase, at the time of this thesis, comprises the 

conception, modelling and comparison of different WESSPA concepts using the soft-

ware AMESim. In the second step, the most promising storage concept will be realised 

in a prototype. It will be analysed and measured in combination with a prototype of a 

wind turbine which is currently under construction. The measurements will be carried 

out in the wind tunnel of the htw saar. Based on these data, a profitability analysis will 

be conducted and the practicability in large-scale applications will be investigated. The 

results of the project will be documented and published in form of a scientific work 

(Hübner 2019, pp. 8-9). 

To tackle the theoretical and practical questions, the project is mainly executed at the 

wind laboratory of the htw saar. Particularly, the 75KW “Göttinger wind tunnel”, which 

has been installed in 2015, plays an important role for the examination of the prototype 

(Labor Windenergietechnik htw saar n.d). With it, detailed data can be obtained in real-

istic settings, which can then be compared with the previous simulations results. Figure 

2 illustrates the initial idea of the research project as well as the wind tunnel. 

As already mentioned in the task section, this thesis investigates the energy storage by 

utilising hydro accumulators. For this reason, the labelled components, responsible for 

energy conversion and recovery, vary depending on the storage concept (cf. Figure 2). 

For example, in case of a hydro accumulator system, hydraulic components like a 

pump or a hydraulic motor would replace the pneumatic engine. 
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Figure 2: WESSPA concept and wind tunnel at htw saar 

 

Source: Hübner 2019, p. 7 & Labor Windenergietechnik htw saar n.d. 

1.4 State of energy storage technologies 

Energy storage represent the process of energy conversion from mostly electrical en-

ergy to a storable form, reserving it in various mediums and converting it back into 

electrical energy when needed (Luo et al. 2015, p. 511). To guarantee a proper evalua-

tion of ESS, the following question needs to be answered: “What characterises good 

energy storage solutions?” Despite their ability to smooth supply fluctuations, good 

ESS should operate on a long-lasting and sustainable base. The aim is not only to pro-

duce “green” energy but also to store this energy environmentally friendly. High effi-

ciencies of the storage system, quick response times, adequate energy to power ratio, 

as well as a good storage capability, defined by energy and power density, are other 

indicators for attractive storage solutions (Sabihuddin, Kiprakis & Mueller 2015, pp. 

175-176; ISEA 2012, pp. 10-11). In the best case, the installation and operation hap-

pens on low maintenance and costs. Further, decentralised utilisation, e.g. coupling the 

storage technology directly to the wind turbine, improves the interaction between re-

newables and the grid (Bocklisch 2014, p. 63). 

Because of that, ESS have multiple value propositions by offering a subset of support-

ive activities. For instance, the storage technology can provide frequency or voltage 

control when fluctuations endanger the system’s balance. After a system failure, the 

ESS can provide energy to restart the system (black start capability). Furthermore, 

peaks can be shaved and loads can be levelled through the utilisation of ESS (Europe-

an Commission 2017, pp. 6-7; ISEA 2012, pp. 4-5). These so called ancillary services, 

i.e. all services needed to ensure the integrity and the stability of the electrical grid, can 

increase the overall systems efficiency (ISEA 2012, p. 3). 
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There is already a large number of different ESS in use and under development today. 

Basically, they can be distinguished by the type of energy that is stored (e.g. mechani-

cal, chemical, electrical energy). Figure 3 illustrates a possible classification scheme of 

known storage solution at the present time. 

Figure 3: Classification of energy storage technologies 

 

Source: Luo et al. 2015, p. 514 

According to the International Renewable Energy Agency (IRENA), the total installed 

storage worldwide was approximately 176 gigawatts (GW) of power in 2017. Almost 

half (48%) of it was installed in only 3 countries – China (32.1 GW), Japan (28.5 GW) 

and the United States (24.2 GW). Among this, Pumped Hydro Storage (PHS) still has 

by far the largest share with 169 GW, accounting for 96% of the total power capacity 

(2017, pp. 21&29). To get an understanding of the different storage concepts, a tech-

nology brief is provided in the following section. 

Mechanical Energy Storage 

Pumped Hydro Energy Storage (PHES), already commercialised in the 1890s, is the 

most mature large-scale ESS. Energy is stored as gravitational potential energy by 

pumping water between two reservoirs with different heights (IRENA 2017, p. 50). Hav-

ing a long lifetime and reasonable efficiency (70-80%), the main application areas for 

PHES are bulk energy storage and energy shift during peak and off-peak periods 

(Rehman, Al-Hadhrami & Alam 2015, pp. 588-589). Detrimental is, however, the low 

energy density and more important the geographical dependence as well as the seri-

ous interference with nature (IRENA 2017, p. 52; ISEA 2012, p. 19). Moreover, increas-

ing shares of renewables force the conventional PHS to become less rigid. Recently, 

the Max Bögl Wind AG, for instance, integrated water reservoirs into wind parks as a 

pilot project in Germany, having a storage capacity of 70 MWh, in order to provide flex-

ible and decentralised grid support (Max Bögl 2017). 
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Figure 4: Working principle of mechanical energy storage technologies 

 

Source: Luo et al. 2015, pp. 514-516 & ISEA 2012, p. 21 

Another way to store mechanical energy is in form of rotational kinetic energy. Flywheel 

Energy Storage (FES) systems accelerate and brake a rotating mass and thus store 

energy dependent on the rotary speed and moment of inertia. A motor-generator unit 

either charges the flywheel or discharges it and uses the delivered torque to provide 

direct current (DC) (IRENA 2017, p. 58). FES systems are characterised by high effi-

ciencies (~90%), short response times and high power density (Arani et al. 2017, pp. 9-

12). Nevertheless, the main disadvantage is a high discharge rate due to friction losses 

which makes FES primarily applicable for short-term and high power supplies (ISEA 

2012, pp. 24-25). 

Compressing air stores energy in form of potential elastic energy. Compressed Air En-

ergy Storage (CAES) systems take advantage of this phenomenon by utilising com-

pressors that store the energised air into a natural or manmade reservoir (e.g. salt cav-

erns or pressure vessel). The pressurized air can then be reused to drive an air or gas-

air turbine and hence generate electricity (Shnaid, Weiner & Brokman 1996, p. 5). To-

day’s mostly known CAES concepts are either diabatic or adiabatic. While diabatic sys-

tems do not harness waste heat that is generated during air compression, adiabatic 

CAES store this heat in thermal storages and reuse it at the expansion step (where the 

air significantly cools down) with the aim to increase overall efficiency (up to 70%). 



 

9 

Hence, conventional CAES systems generally use fossil fuel to reheat the air in a com-

bustion chamber to drive the turbine while adiabatic systems operate emission-free 

(IRENA 2017, p. 54; Wang et al. 2017, p. 6). Currently, there are two large-scale CAES 

plants connected to the grid: a 321MW plant in Huntorf (Germany) and an 110MW 

plant in McIntosh (US). Both run diabatically with a round trip efficiency of around 40-

55% (Wang et al. 2017, p. 10; Uniper SE n.d.). Adiabatic CAES, however, is still under 

development. First pilot projects, like the ADELE-project in Staßfurt (cancelled 2015) 

(RWE Power 2010) or the Swiss ALACAES in Biasca (Geissbühler et al. 2018; Jorio 

2016) have been enrolled to investigate the technical feasibility. Nevertheless, thermal 

storage remains the major challenge for reasonable commercial use. The advantages 

of CAES are mainly the freely available storage medium, a sophisticated level of 

knowledge for used sub-components and above all the excellent ecological footprint. 

Furthermore, the space requirements are significantly lower than for PHES systems 

(Wang et al. 2017, p. 3; ISEA 2012, p. 23). Nevertheless, further development, with the 

focus on decentralisation and an increase in efficiency and flexibility, is necessary to 

find serious benefits for the changing needs of energy transition. 

Electrochemical Energy Storage 

Commonly known as batteries (i.e. primary batteries) or accumulators (i.e. secondary 

or rechargeable batteries), electrochemical energy storages are probably the most 

popular but also most multifaceted storing solutions. Specific requirements led to the 

development of many different types, like lead-acid, sodium-sulphur and lithium-ion 

batteries, whereby the main difference lies in the material selection of the basic com-

ponents of the battery: the electrodes (i.e. anode and cathode), the separator and the 

electrolyte (IRENA 2017, p. 65). In general, accumulators use the electrical potential 

difference between the anode and cathode to store and release energy through chemi-

cal oxidation and reduction reactions between the electrodes and the electrolyte (Liu, 

Neale & Cao 2016, p. 110). Compared to other battery technologies, lithium-ion accu-

mulators (LIA) have the advantage of simultaneously great power and energy density 

characteristics. Furthermore, LIA have an excellent lifetime and efficiency (IRENA 

2017, p. 64). That is why LIA experienced an immense development over the past few 

years. The enhanced performance on decreasing costs made the accumulator tech-

nology economically attractive, not only for conventional portable electronic devices, 

but also for stationary and automobile application fields. Besides the dominance in the 

electric vehicle market, accumulators are likely to play an important role in the stabilisa-

tion of the power transmission system fed by renewables (Chang 2019, p. 1; IRENA 

2017, p. 71). However, the major disadvantage remains the poor ecological footprint 

compared to other ESS. The mining of required raw materials, like lithium and cobalt, 

the production process as well as the recycling is still premature and environmentally 
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questionable. For instance, a study by a Swedish research group mentioned that a 

100kWh accumulator, as used for electric cars, has caused 15-20 tons of carbon diox-

ide (CO2) before its first use (Leiva 2017). 

It should be mentioned that flow batteries (e.g. vanadium redox flow batteries) also 

count to the electrochemical ESS. They basically differ from conventional batteries by 

having the electro-active material dissolved in electrolyte solutions .The electrolytes are 

stored in tanks separated by a cell stack (i.e. reaction unit), which is responsible for 

electricity generation (IRENA 2017, p. 86). While the power and energy capacity is 

coupled in “normal” accumulators, flow batteries have the advantage that energy ca-

pacity and power is independently scalable by varying the storage tank volume and by 

adjusting the reaction unit. Overall, this defines an ideal characteristic for long-term 

storage of surplus energy (Park et al. 2016, p.1; ISEA 2012, p. 38). 

Chemical Energy Storage 

Storing chemical energy is mostly associated with Power to Gas (P2G) concepts, 

which is one of the major topics in the energy transition these days. In the VDI report 

“Dauerbrenner”, Stephan Eder and his colleagues call the year 2020 “the year of hy-

drogen” (Eder, Hartbrich & Reckter 2020a, p. 1). Using surplus renewable power to 

break down water into hydrogen and oxygen (i.e. electrolysis) and therefore having a 

green and versatile energy carrier, makes hydrogen a highly potential alternative for 

the climate protection (Ogawa, Takeuchi & Kajikawa 2018, pp. 1-2). Mainly discussed 

application areas are the long-term storage of renewable energies, the direct combus-

tion of hydrogen to provide heat for domestic or industrial needs (e.g. replacement of 

coking coal in the steel industry) as well as the inversion of the chemical reaction via 

fuel cells, which provides electricity for all kinds of energy consumption like gird sup-

port, transportation, etc. (Eder, Hartbrich & Reckter 2020b, pp. 20-21; IRENA 2018, p. 

7). Moreover, hydrogen allows the interconnection between the electricity, gas and fuel 

infrastructure (Wraneschitz 2020, p. 11; ISEA 2012 p. 36). For example, hydrogen, 

produced with renewables, can be directly fed into the natural gas grid to a certain ex-

tend. Furthermore, it can also be processed to methane (“methanation” process) by 

adding carbon dioxide. Then, it can be fed into the gas grid without limitation or be al-

ternatively stored as synthetic natural gas (SNG) for later use (IRENA 2018, pp. 16-17; 

Schaaf et al. 2014, p. 3). Research and development focuses on ways to store the val-

uable energy source safely (solid/liquid storage, LOHC, etc.), to improve efficiencies of 

the conversion chain (currently only ~40%) and to speed up the expansion and integra-

tion of the P2G solution (Bocklisch 2014 pp. 65-66; IEA 2005, pp. 71-77). 
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Electrical Energy Storage 

Exceptional high power demands can be covered with short-term electrical storage 

solutions like Supercapacitors or Superconducting Magnetic Energy Storage (SMES) 

devices. Both technologies are mainly applied to maintain power quality and uninter-

ruptible power supply (Sabihuddin, Kiprakis & Mueller 2015, pp. 201-202; ISEA 2012, 

p. 26; Tixador 2008, pp. 9-10). The reason for this is their characteristically high power 

density but low energy density combined with short response times. Typically, high 

costs of materials or peripheral devices lead to high energy installation costs, i.e. price 

per installed energy (€/kWh) (ISEA 2012, pp. 27-29; Tixador 2008, p. 5). SMES sys-

tems store energy in a magnetic field by connecting a current source to a supercon-

ducting coil. The superconductive state is achieved with expensive cyro-cooling to very 

low temperatures (-249°C – -138°C). In direct contrast, supercapacitors apply a voltage 

source in order to store energy in a static-electric field between electrodes and the ions 

in an electrolyte (ISEA 2012, p. 26; Tixador 2008, pp. 1-2). 

Thermal Energy Storage (TES) 

Generally, thermal energy can be stored in three different ways. Sensible heat TES 

stocks thermal energy by heating (or cooling) a liquid or solid storage medium (e.g. 

water, concrete). Less common but emerging is energy storage as latent heat (e.g. 

from solid state to liquid state) and through chemical reactions (IEA-ETSAP & IRENA 

2013, p. 3). TES systems can be utilised to store energy for heating and cooling appli-

cations as well as for power generation. Particularly, waste heat from industrial pro-

cesses or from renewable power plants can efficiently be reused with TES, which con-

sequently help minimising process losses and environmental impacts (IEA-ETSAP & 

IRENA 2013, p. 1). Especially, the concentrating solar power is an important driving 

sector for TES-power applications, where almost all new plants are equipped with TES 

solutions (IEA-ETSAP & IRENA 2013, p. 18). Here, thermal storage is mostly based on 

molten salt where solar power heats a pre-liquefied salt mixture up to 550°C and there-

fore stores sensible energy that can later be used to generate steam which drives a 

turbine to produce electricity (Pfleger et al. 2015, p. 1488). However, other ESS can 

also benefit from TES like the adiabatic CAES. Major barriers related to TES are the 

costs and efficiencies of the storage medium and heat insulations as well as the com-

plexity and controllability of the storage process, which is especially high for latent heat 

and chemical reaction TES systems (IEA-ETSAP & IRENA 2013, pp. 14&18). 

To sum up, chapter 1.4 provides an overview of existent ESS, which are predominantly 

in focus when talking about the integration of renewable energies. Since this thesis 

deals with hydro accumulators as a storage technology, the concept of this storage 

system is illustrated separately in chapter 2. 



 

12 

2 Hydro accumulator system and concept 

Basically, a hydro accumulator system is a hydraulic-system. A system can be defined 

as a group of multi-domain components which are interacting in predefined system 

boundaries and are therefore generating outputs dependent on the system’s attributes 

(i.e. system’s characteristics, inputs). These outputs may then affect the system’s sur-

rounding (Roddeck 2016, pp. 26-27). Hydraulic systems consist of a set of components 

(e.g. pumps, motors, pipes, turbines), allowing the system the transmission of signals, 

forces and energy by the use of hydraulic liquids. The transmission is realised by pres-

surising the liquid (hydrostatic) or by using the kinematic energy of the liquid (hydrody-

namic) (Matthies & Renius 2014, p. 2). The hydro accumulator system belongs to the 

hydrostatic approach. The two main parameters of hydraulic systems are, on the one 

hand, the volume flow 𝑄 and, on the other hand, the pressure 𝑝. Today, hydraulic sys-

tems are mainly distinguished in stationary, mobile and aerospace hydraulics depend-

ent on diverse system requirements such as power to weight ratio (Murrenhoff 2014, 

pp. 15-20). The high power density, the easy and reliable overload protection as well 

as the good controllability of the dynamics facilitate the implementation of hydraulic 

systems in various areas, e.g. the machine and plant engineering, the aerospace and 

automobile industry. However, challenges like hydraulic resistances, friction and leak-

age leading to efficiency losses still require continuous development of the described 

systems (Murrenhoff 2014, p. 27). 

Chapter 2 provides basic knowledge concerning the underlying system with its most 

important characteristics and components, as well as the thermodynamic essentials to 

understand the storage process. This is necessary to be able to model and simulate on 

an appropriate level of expertise in the following step. 

2.1 Hydro accumulators 

Hydraulic accumulators or hydro accumulators, as the key component of the storage 

system, are already well understood and applied in various operation fields (Korkmaz 

1982, pp. 5-9; Bauer 2016, p. 197). This chapter provides an overview of the working 

principle, the most common types as well as an insight in conventional and novel appli-

cation areas. 

The general working principle and function of a hydro accumulator can be summarised 

as follows. The hydro accumulator is a system component that is able to hold a limited 

volume of liquid under pressure and release it back into the hydraulic system when 

required (Murrenhoff 2014, p. 305). Due to the poor compressibility of liquids, the hy-

draulic liquid itself is not a suitable energy carrier. Therefore, a second material is used 

to store the system’s energy. The hydraulic accumulator is charged by pumping the 
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liquid into the accumulator, displacing the material that is responsible for holding the 

performed work, and is discharged by allowing the liquid to exit the accumulator (Wat-

ter 2017, p. 166; Bauer 2016, p. 197; Korkmaz 1982, p. 1). In other words, by applying 

a hydro accumulator in a system, excess energy can be temporarily stored for later use 

through work exchange between the liquid and the storage material. This makes hydro 

accumulators attractive regarding the application as an energy storage device integrat-

ed in a wind power system. 

2.1.1 Types of hydro accumulators 

Today, there are various types of hydro accumulators available. Figure 5 depicts how 

the existent technologies can be classified. 

Figure 5: Classification of hydro accumulators 

 

Source: based on Cosford 2014; Korkmaz 1982, p. 10 

Hydro accumulators can basically be sub-divided in mechanical accumulators and hy-

dro-pneumatic accumulators. Mechanical accumulators can operate either mass-

loaded or spring-loaded. 

Mass-loaded accumulators utilise a large mass to pressurise the fluid by taking ad-

vantage of the gravity force (Cosford 2014). Although, the mass-loaded accumulator is 

the only hydro accumulator that is able to operate at constant pressure, this type of 

accumulator is rather bulky and the required mass takes up much space. Consequent-

ly, this accumulator configuration is barely used these days (Bauer 2016, p. 198). 

Spring-loaded accumulators store energy as potential energy by compressing a spring. 

Poor energy to spring-mass ratios and the unintended settle-effect of springs deterio-

rate the storage quality and stability which is the reason why spring-loaded accumula-

tors are also rarely used (Bauer 2016, p. 198; Korkmaz 1982, p.10). 
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The described disadvantages of mechanical accumulators mainly shifted the research 

and development to the hydro-pneumatic accumulators which are by far the most im-

plemented hydro accumulators in modern industries (Bauer 2016, p. 199). Hence, the 

mechanical hydro accumulators will not be further considered, but only the hydro-

pneumatic accumulators. 

Hydro-pneumatic accumulators (further simply referred to as hydro accumulators) gen-

erally comprise a pressure resistant housing (shell) having a dry side, i.e. gas chamber, 

which contains the pre-stressed gas (mostly nitrogen) and a wet side, i.e. liquid cham-

ber, containing the hydraulic liquid (Cosford 2014; Murrenhoff 2014, p. 305). The liquid 

side is connected to the hydraulic line while the pressurised gas provides the compres-

sive force on the liquid. During the charging step, the hydraulic liquid is pumped in the 

liquid chamber and compresses the gas even further. Thus, hydro accumulators are 

able to store energy quantities into a gas as potential energy to release them in times 

of demand through the exchange of work between gas and liquid (Carr 1975, p. 4). 

Hydro accumulators are further distinguished in accumulators with or without a separa-

tor. Separators are applied to avoid mixing of the gas and the liquid during operation. 

Dependent on the hydraulic liquid and gas in use, appearing dissolving effects, cf. Hen-

ry’s Law (Watter 2017, p. 17), can contaminate the hydraulic liquid and therefore dis-

turb the storage process. The most common hydro accumulators, distinguished by the 

used separator, are illustrated in the figure below. 

Figure 6: Types of hydro accumulators with separator 

 

Source: Cosford 2014 
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The bladder accumulator separates its two chambers with an open or closed bladder 

usually made out of synthetic rubber, such as Nitrile. This type of accumulator operates 

fast responding and on low-maintenance but has restrictions regarding the operating 

pressures due to the durability of the elastomer (Murrenhoff 2014, p. 305; Korkmaz 

1982, p. 14). The bladder is fixed into a cylindrical shell with hemispherical caps at ei-

ther end. A poppet prevents the bladder to get pushed through the fluid port when the 

accumulator gets fully discharged. Bladder accumulators operate with pressure ratios 

not higher than 3 or 4, with total volumes between 0.2l and 450l and a flow rate of up to 

140l/s (Murrenhoff 2014, pp. 305-306). 

Similar to the bladder accumulator, the diaphragm accumulator or membrane accumu-

lator utilises a flexible diaphragm to separate the liquid and the gas. The shape of the 

housing can be cylindrical or spherical with either welded or screwed halves. Screwed 

bladder accumulators compress the membrane between the top and the bottom shell, 

whereas the welded type has a diaphragm bonded in the middle. The threaded con-

struction has the advantages that maintenance is possible (e.g. separator exchange) 

and higher pressures (<750bar) can be applied. Due to the fixation of the membrane, 

the welded construction only allows medium pressures (<250bar). Furthermore, a 

welded design does not allow maintenance but comes with a significant cost advantage 

compared to the threaded type. Diaphragm accumulators are characterised by much 

lower total volumes (<2l) but higher pressure ratios (up to 10:1) than bladder accumula-

tors. They tend to have a long service life and high energy densities because of the 

spherical shape (Cosford 2014; Murrenhoff 2014, p. 306, Korkmaz 1982, pp. 17-18). 

In a piston accumulator, gas and liquid are separated by a "flying piston" that moves 

freely in a honed cylinder capped on both ends. The pressure ratio is not restricted by 

the deformation of the bladder or diaphragm, so that higher ratios can be realised (Mat-

thies & Renius 2014, p. 177). Moreover, the piston accumulator is able to operate at 

high pressures (<800bar) and large storage volumes (<1200l) (Murrenhoff 2014, p. 

306). However, the dynamics of the piston accumulator are worse than of the two other 

designs because of the piston’s mass and friction (Bauer 2016, p. 199). Slowly moving 

and short pistons are vulnerable to the “stick-slip-effect”. For this reason, the piston of 

the generic type must be relatively long compared to its diameter and the flow rate of 

the liquid must be calculated so that the piston moves with approximately 2 to 3.5 m/s. 

The piston design requires high maintenance efforts and is the costliest compared to 

the other accumulator types (Runkel 2014, p. 6; Murrenhoff 2014, pp. 306-307). 
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2.1.2 Operational parameters and system requirements 

The following illustration shortly demonstrates the typical operational parameters and 

states of charge of the hydraulic accumulator, using the piston type as an example: 

Figure 7: Operation of hydro accumulators 

 

Source: based on Murrenhoff 2014, p. 309 

At state 0, the accumulator is fully discharged. The gas has the maximum volume 𝑉଴ at 

a defined pre-charge pressure 𝑝଴. The operating state 1 defines the lower operating 

pressure 𝑝ଵ in the hydraulic component with 𝑉ଵ as the related volume. The highest op-

erating pressure 𝑝ଶ by the gas volume 𝑉ଶ, represents a fully charged hydro accumula-

tor (state 2). There might also be a state 3 determining the system pressure 𝑝ଷ, where 

a safety valve opens in order to prevent damage. The operating pressure range is giv-

en by ∆𝑝 ൌ 𝑝ଶ െ 𝑝ଵ and the operating pressure ratio by 𝑝ଶ/𝑝ଵ. During compression, an 

effective volume of ∆𝑉 ൌ 𝑉ଶ െ 𝑉ଵ (indices reversed for expansion) can be added to or 

taken from the accumulator (Murrenhoff 2014, p. 310). Dividing the highest operating 

pressure 𝑝ଶ by the pre-charge pressure 𝑝଴ defines the accumulator’s maximum pres-

sure ratio. Examined temperatures can be distinguished into the temperature of the gas 

and the temperature of the surrounding (e.g. the hydraulic liquid). The temperature at 

state i is expressed with 𝑇௜ or with the Greek letter 𝜃௜ (“Theta”). 𝜃௠௔௫ and 𝜃௠௜௡ deter-

mine the maximum and the minimum operating temperature, which is mainly restricted 

through material properties and the application area (Korkmaz 1982, p. 21). 

The most important requirements of the hydro accumulator are high energy densities, 

low maintenance, high reliability and good dynamics regarding the volume flow (Mat-

thies & Renius 2014, p. 176). Moreover, safety regulations are mandatory since operat-

ing with high pressures and power densities devote attention in order to prevent acci-

dents (Murrenhoff 2014, p. 307). In Europe, the pressure device guideline 97/23/EG is 

authoritative for design, construction and dimensioning of hydro accumulators as a 

pressure device (Watter 2017, p. 173; Murrenhoff 2014, p. 307). 
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2.1.3 Conventional and novel application areas 

Conventional hydro accumulators, for small-scale hydraulic circuits, are technically 

mature. Primarily, they are utilised in hydraulic systems to take on supportive tasks. 

Typical assignments are in particular (Watter 2017, pp. 167-168; Murrenhoff 2014, p. 

305; Matthies & Renius 2014, p. 175): 

 emergency supply during system breakdown 

 reduction of pulsation by damping pressure surges 

 compensation of leakages 

 hydro-pneumatic vehicle suspension 

 coverage of temporarily high power demands 

 energy absorption during recuperation (e.g. braking vehicles) 

However, the turnaround in energy policy and the increased demand of flexible energy 

storage solutions opened up new application opportunities for hydro accumulators. 

In the years 2009 to 2016, the companies Robert Bosch GmbH and PSA Groupe 

(Peugeot and Citroën) developed a pneumatic hybrid prototype “PSA Air Hybrid” that 

was able to store braking energy by compressing gas (nitrogen) in a 20 litre pressure 

tank. Figure 8 shows a picture of the prototype and the general working principle. 

Figure 8: PSA – Hybrid air prototype and working principle 

 

Source: PSA Groupe 2016 & Wiesinger 2015 

Two hydraulic pumps were in operation to compress the nitrogen up to 350bar leading 

to a total power of the hydraulic drive of around 41HP. Hypothetically, the vehicle was 

able to drive 400m with 60km/h just by using the hydro accumulator as an energy 

source. Especially for intercity use, the hydro accumulator technology tends to be high-
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ly promising to lower fuel consumption and therefore the environmental impact of hy-

brids. In fact, PSA claims that the hybrid achieves up to 80% zero-emission-operation 

in city traffic, reducing the CO2 emissions by almost 50%. Unfortunately, the project 

was discontinued in 2016 and the hydro accumulator was replaced by an electric hy-

brid drive (Gomoll 2014; Grünweg 2014). 

Recently, experts try to figure out ways to utilise hydro accumulators for large scale 

storages. Especially for offshore renewables, the hydro accumulator seems to have 

high potential by using freely available water as the hydraulic liquid. In fact, the hydro 

accumulator competes with several other open-loop hydraulic storage concepts. Ex-

amples are “Buoyant Energy Storage” (University of Innsbruck n.d.), “Ocean Renewa-

ble Energy Storage (ORES)” (Slocum et al. 2013) and “Energy Bags for underwater 

CAES” (Pimm, Garvey & Jong 2014), which are widely discussed in the open literature, 

but not described in more detail in this paper. The major challenges are the integration 

in the existent power transmission system, the construction of large scale pressure 

reservoirs and the interface between the hydraulic circuit and fluctuating power source. 

As an example, Buhagiar and Sant try to face the challenge of pressure variations de-

pendent on the state of charge of the hydro accumulator (2017, p. 283). They investi-

gate and model a novel hydro-pneumatic accumulator of a wind turbine for large-scale 

offshore energy storage. The model consists of a compressed air chamber, integrated 

into the tension leg platform of the power plant, which functions as an absorber of 

pressure fluctuations to keep the pressure of the gas during the (dis-) charging process 

nearly constant. The buffer is connected to the hydro accumulator which is located in 

the gravity foundation of the wind turbine. By pumping seawater into or allowing the 

seawater to exit the accumulator, energy is stored and released decentralised under 

relatively constant conditions (Buhagiar & Sant 2017, pp. 283-286). 

Figure 9: Novel hydro-pneumatic accumulator for offshore energy storage 

 

Source: Buhagiar & Sant 2017, p. 286 



 

19 

Another example, published in the journal “Applied Sciences”, shows how Liejiang Wei 

et al. model and simulate a closed hydraulic wind turbine system with an integrated 

bladder accumulator to validate efficiency and performance during fluctuations of wind 

power. They implement a control scheme that provides constant electrical power output 

regardless of wind speed and load power. The simulation results indicate that hydro 

accumulators can significantly support the integration and control of intermittent wind 

power (2018, pp. 1&16). But also several other works deal with initial findings regarding 

the control and storage of wind energy through hydraulic transmission systems (i.e. 

hydraulic wind turbines) including hydro accumulators (Liu et al. 2017; Fan, Mu & Ma 

2016; Vaezi & Izadian 2014). 

It can be concluded that the potential of hydro accumulators is identified. Scientists are 

concentrating on creating important foundations for the large-scale practical implemen-

tation. However, summarising the current state of development, it can be said that 

large-scale hydro accumulator systems are still in their initial stages. Theoretical inves-

tigations are made but wide range practical use remains open. Consequently, much 

more research and development is required to make the hydro accumulator technology 

commercially available for this type of application. Therefore, the research project 

WESSPA is an opportunity to gain more insights of the process parameters and ap-

plicability of hydro accumulator systems. It is important to mention that hydro accumu-

lators, combined with small-scale renewable power plants (wind turbines, photovolta-

ics, etc.), have also the potential to be utilised in domestic areas. These storage sys-

tems would have much smaller dimensions and could provide supportive activities on 

site to lower the energy demand from the electrical grid. In the best case, the integra-

tion of hydro accumulators leads to self-sufficient and self-sustaining households, 

which are independent of the grid’s power. 

2.2 Thermodynamics of the storage process 

The investigation of a hydraulic accumulator from the thermodynamic point of view 

permits detailed insights into the energy storage process. Moreover, basic thermody-

namic principles allow the calculation and specification of various parameters of inter-

est, like the maximum amount of energy that the accumulator is able to store or the 

development of pressure and temperature. The following section illustrates the underly-

ing thermodynamic aspects in order to get a deeper understanding for the simulation. 

The change and the interrelation of the state variables (pressure, volume, tempera-

ture), as well as the process variables, i.e. the volumetric change work (𝑊௩) and the 

thermal energy (𝑄ு) are taken into account and exemplified with a short calculation. 
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The gas side of the hydro accumulator can be seen as a closed thermodynamic system 

(Korkmaz 1982, p. 26). Cerbe & Wilhelms define a closed system as a system with 

predefined boundaries where no mass transfer occurs. Therefore, the system is char-

acterised by a fixed quantity of substance (2013, p. 46), i.e. the mass of the storage 

medium (gas) remains the same. The system is able to exchange work and heat with 

its surrounding as well as storing it (Korkmaz 1982, p. 26). The hydraulic liquid and the 

gas perform work on each other, by following the first law of thermodynamics, during 

the energy storage process: 

 𝑑𝑈 ൌ 𝑑𝑄ு ൅ 𝑑𝑊௧௢ ൌ 𝑑𝑄ு ൅ 𝑑𝑊௩ ൅ 𝑑𝑊ௗ௜௦௦ 2.2-1 

Here 𝑑𝑈 is the change of the internal energy of the system when it absorbs or releases 

energy as heat 𝑑𝑄ு or as work 𝑑𝑊௧௢. Energies supplied to the system are counted 

positive, discharged energies are counted as negative (Stierstadt 2018, p. 71). The 

total change of work 𝑑𝑊௧௢ consist of the change of volumetric change work 𝑑𝑊௩ and 

the change of dissipation work 𝑑𝑊ௗ௜௦௦. While 𝑑𝑊௩ determines the reversible amount of 

usable energy, 𝑑𝑊ௗ௜௦௦ considers occurring friction and other system immanent losses. 

Dissipation work is always counted positive and represents the unusable (irreversible) 

amount of the total work (Cerbe & Wilhelms 2013, pp. 53-54). 

During the charging process, the liquid performs work on the gas by compressing it 

which means energy is stored as 𝑊௩ in the gas. During discharging, the gas expands 

and releases the stored energy and therefore performs work on the hydraulic liquid. 

Furthermore, heat transfer occurs when the temperature of the gas deviates from the 

ambient temperature. A higher temperature of the gas than the temperature of the sur-

rounding components (e.g. hydraulic fluid or storage tank) would result in a heat trans-

fer 𝑄ு, meaning an energy exchange, from the hot gas to the colder components, for 

instance. 

In order to keep the calculation of the thermodynamics lucid, a few simplifying assump-

tions have to be made. 

Assumptions 

The first assumption is that ideal behaviour is assumed for the gas of the hydro accu-

mulator. Under this condition the thermal equation of state of the ideal gas can be ap-

plied (Cerbe & Wilhelms 2013, p. 33): 

 𝑝 𝑉 ൌ 𝑚 𝑅௜ 𝑇 2.2-2 
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Equation 2.2-2 can also be displayed volume specific: 

 𝑝 𝑣 ൌ 𝑅௜ 𝑇 2.2-3 

 𝑝 pressure of the gas [Pa or N/m2], 1 bar ≙ 105 Pa ≙ 105 N/m2 

 𝑉 volume of the gas [m3] 

 𝑣 specific volume of the gas [m3/kg] 

 𝑚 mass of the gas [kg] 

 𝑅௜ specific gas constant [J/kgK] 

 𝑇 temperature of the gas [K] 

The thermal equation of state is only accurate for state changes within low pressure, 

small specific volume and normal temperature ranges. That means, for example, the 

equation becomes less accurate in changes of state with high pressures and low tem-

peratures. Hence, the assumption of an ideal gas might be extended in further steps by 

adding a compressibility factor 𝑧 to avoid gross calculation errors (Watter 2017, p. 168; 

Korkmaz 1982, p. 42). 

 𝑧 ൌ
𝑝 𝑉

𝑚 𝑅 𝑇
2.2-4 

By introducing the compressibility factor, the thermal equation of state still can be used 

to describe real gas behaviour. The factor depends on pressure and temperature, can 

mostly be obtained from scientific tables and can be set equal to “1” for low pressures 

(≙ ideal gas) (Watter 2017, p. 168). 

Second, the hydraulic liquid, used in the hydraulic system, is assumed to be incom-

pressible. That means that the volume remains constant with different pressures. Con-

sequently, the gas is the only substance that stores potential energy. This assumption 

is based on the ideal liquid, which can be described as massless, frictionless and in-

compressible (Murrenhoff 2014, p. 29). 

 𝐶௅௜ ൌ
𝑑𝑉
𝑑𝑝

ൎ
∆𝑉
∆𝑝

ൌ
𝑉
𝐸

ൌ 𝑉 ∙ 𝛽 ൌ 𝟎 2.2-5 

 𝐶௅௜ capacity of the liquid [m3/(N/m2) or l/bar] 

 ∆𝑉 volume difference [m3
 or l] 

 ∆𝑝 pressure difference [N/m2 or bar] 

 𝐸 bulk modulus [N/m2 or bar] 

 𝛽 compressibility coefficient [m2/N or 1/bar] 

(Watter 2017, p. 69; Murrenhoff 2014, p. 60) 

In real hydraulic applications the utilised high pressure ranges often do not allow the 

assumption of incompressibility so that the hydraulic capacity needs to be taken into 

account. Furthermore, the friction and mass of the liquid have an additional impact on 
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the performance of a hydraulic system and should be included in further calculations. 

However, these impacts are not considered for this moment. 

Another prerequisite is the pressure equality between the gas side and the liquid side 

of the hydro accumulator. Depending on the type of the hydro accumulator this is not 

always the case. For instance, the piston in the piston accumulator underlies friction 

and mass inertia during motion, which leads to pressure differences between liquid and 

gas (Korkmaz 1982, p. 12). 

From the thermodynamic point of view, the preceding assumptions define that energy 

is not converted into dissipation energy (𝑊ௗ௜௦௦ ൌ 0) in the closed system during the 

energy storage process. In other words, the hydro accumulator operates without fric-

tion, having the volumetric change work and the thermal energy as the only way to 

convert energy (reversible process). 

The final assumptions are made in relation to the changes of state of the storage medi-

um. The different states of a storage process and its operational parameters were al-

ready described in the previous chapter (cf. Chapter 2.1.2). The energy storage pro-

cess can be visualised in a p-V-diagram (Figure 10). 

Figure 10: p-V-diagram of the charging process 

 

Source: based on Murrenhoff 2014, p. 309 

The performance of a hydro accumulator depends on the underlying change of state of 

the gas (Murrenhoff 2014, p. 310). With the assumption of an ideal gas (2.2-2), the 

compression (or the expansion) can be generalised by the polytropic equation: 

 𝑝𝑉௡ ൌ 𝑐𝑜𝑛𝑠𝑡. 2.2-6 
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By setting the polytropic exponent 𝑛 according to the following values, the different 

changes of state can be represented (Bauer 2016, p. 200; Matthies & Renius 2014, p. 

178; Cerbe & Wilhelms 2013, p. 110): 

𝑛 ൌ 1 With 𝑝𝑉ଵ ൌ 𝑐𝑜𝑛𝑠𝑡. the change of state is isothermal. The accumulator is op-

erated over a long time period, giving enough time for a complete heat ex-

change between the gas and its environment. As a result, the gas tempera-

ture remains constant while energy is exchanged. 

𝑛 ൌ 𝜅 With  𝑝𝑉఑ ൌ 𝑐𝑜𝑛𝑠𝑡. the change of state is isentropic. In this case, the (dis-) 

charging process happens quickly, so that no heat exchange and dissipation 

occur (adiabatic & reversible change of state). 

𝑛 ൌ ∞ With 𝑝𝑉ஶ ൌ 𝑐𝑜𝑛𝑠𝑡. the volume remains constant. Isochoric change of state 

occurs, for instance, when a charged accumulator is shut off from the system, 

followed by a longer rest period during which partial or complete temperature 

equalisation with the environment takes place. 

The isentropic exponent 𝜅 (“kappa”) depends on the pressure, temperature and type of 

the gas. For example, the isentropic exponent of air or nitrogen under standard condi-

tions is 𝜅 ൌ 1.4 (Cerbe & Wilhelms 2013, pp. 103&517). In the context of this thesis, 

kappa is assumed to be constant during the storage process. 

Isothermal and isentropic are idealistic changes of state. In fact, the change of state 

takes place between both with 1 ൏ 𝑛 ൏ 𝜅, resulting in a polytropic change of state. That 

means heat is neither completely given off nor completely hold in the system during the 

storage process. Figure 11 visualises the different changes of state. 

Figure 11: Changes of state of hydro accumulators 

 

Source: based on Korkmaz 1982, p. 27 
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The following calculation example helps to understand the different impacts of the pos-

sible changes of state on the storage results. The main parameters of interest are: 

First, the amount of (volumetric change) work of the hydro accumulator, further de-

clared as 𝑊௩ଵଶ (Cerbe & Wilhelms 2013, p. 53): 

 𝑊௩ଵଶ ൌ െ න 𝑝 𝑑𝑉

ଶ

ଵ

2.2-7 

It specifies the amount of usable energy that the accumulator is able to store or, in oth-

er words, the amount of work that the accumulator is able to perform due to stored en-

ergy. The area underneath the line of the different changes of state in the p-V-diagram 

represents the volumetric change work 𝑊௩ଵଶ (cf. Figure 10). 

Second, the amount of replaceable effective volume that the hydro accumulator is able 

to provide (Korkmaz 1982, p. 30): 

 
during compression:    ∆𝑉 ൌ 𝑉ଶ െ 𝑉ଵ 

or expansion:               ∆𝑉 ൌ 𝑉ଵ െ 𝑉ଶ

2.2-8 

The effective volume is used to drive a pump or a hydraulic motor reusing the stored 

energy for generating electricity. The higher the provided volume, the better is the po-

tential energy yield. 

2.2.1 Calculation example 

To keep it simple, the pre-charge state 0 is set to the lower operating state 1 in the fol-

lowing calculation (cf. Chapter 2.1.2). Consequently, the accumulator has only two op-

erating states: discharged (i.e. pre-charge state 1) and charged (state 2). An accumula-

tor with a volume of V୅ୡୡ ൌ 1mଷ is used. Air at ambient temperature (Tଵ ൌ 293K ൌ 20°C) 

will be compressed by the hydraulic liquid up to the higher operating pressure of 

𝑝ଶ ൌ 200𝑏𝑎𝑟. The volume of the gas at the pre-charge stage is set equal to the accu-

mulator volume (Vଵ ൌ V୅ୡୡ ൌ 1mଷ). Questions that will be answered are: 

 How much energy can be stored through work exchange in case of an 

isothermal and isentropic change of state (𝑊௩ଵଶ)? 

 How much effective volume can be provided in the case of an isother-

mal and isentropic change of state (∆𝑉)? 

The pre-charge pressure 𝑝ଵ should be set to get a maximum of the volumetric change 

work and a maximum of the effective volume. 
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Isothermal change of state 

The equation for the volumetric change work in case of an isothermal compression 

(𝑇ଵ ൌ 𝑇ଶ) is given with (Cerbe & Wilhelms 2013, p. 99): 

 𝑊௩ଵଶ ൌ െ න 𝑝 𝑑𝑉 ൌ 𝑝ଵ𝑉ଵln ൬
𝑝ଶ

𝑝ଵ
൰

ଶ

ଵ

2.2.1-1 

It can be seen that the maximum of 𝑊௩ଵଶ depends on the size of the storage tank and 

the applied pressures. In order to find the maximum of the volumetric change work the 

following differential equation, with respect to 𝑝ଵ, needs to be solved: 

 
𝑑𝑊௩ଵଶ

𝑑 ቀ
𝑝ଶ
𝑝ଵ

ቁ
ൌ 0 2.2.1-2 

 

⇔ 𝑉ଵ ln ൬
𝑝ଶ

𝑝ଵ
൰ െ 𝑝ଵ𝑉ଵ

1

ቀ
𝑝ଶ
𝑝ଵ

ቁ

pଶ

pଵ
ଶ ൌ 𝑉ଵ ln ൬

𝑝ଶ

𝑝ଵ
൰ െ 𝑉ଵ

𝑝ଵ
ଶ

𝑝ଶ

𝑝ଶ

𝑝ଵ
ଶ ൌ 0 

⇔ 𝑉ଵ ቀ ln ቀ௣మ

௣భ
ቁ െ 1ቁ ൌ 0   | Vଵ ൌ const. 

 

 ⇔ ln ൬
𝑝ଶ

𝑝ଵ
൰ ൌ 1 ⇔

𝑝ଶ

𝑝ଵ
ൌ 𝑒 ൌ 𝜋௢௣௧ 2.2.1-3 

It is illustrated that for an isothermal change of state, the maximum volumetric change 

work can be absorbed / released with an optimum pressure ratio of 𝜋௢௣௧ ൌ 𝒆 ൎ 𝟐. 𝟕𝟏𝟖. 

In this case the optimal pre-charge pressure 𝑝ଵ of the hydro accumulator is: 

 𝑝ଵ ൌ
𝑝ଶ

𝜋௢௣௧
ൌ

𝑝ଶ

𝑒
ൌ

200𝑏𝑎𝑟
2.718

ൎ 𝟕𝟑. 𝟓𝟖𝒃𝒂𝒓  

ሺ73.58𝑏𝑎𝑟 ൌ 73.58 ∙ 10ହ 𝑁
𝑚ଶ ൌ 73.58 ∙ 10ହ 𝐽

𝑚ଷሻ 

With 𝑉ଵ ൌ 1𝑚ଷ, the volumetric change work for the isothermal compression is equiva-

lent to (2.2.1-1& -3): 

 
𝑊௩ଵଶ ൌ 𝑝ଵ𝑉ଵ ln൫𝜋௢௣௧൯ ൌ 73.58 ∙ 10ହ 𝐽

𝑚ଷ ∙ 1𝑚ଷ ∙ lnሺ𝑒ሻ ൎ 7.36 𝑀𝐽

≙ 𝟐. 𝟎𝟒𝒌𝑾𝒉 

 

2.2.1-4 

 𝑊௩ଵଶ ൌ
1
𝑒

𝑝ଶ𝑉ଵ ൎ 𝟎, 𝟑𝟔𝟖 ∙ 200 ∙ 10ହ 𝑁
𝑚ଷ ∙ 1𝑚ଷ ൎ 7.36 𝑀𝐽 2.2.1-5 

(1𝐽 ൌ 1𝑊𝑠 ൌ 0.001𝑘𝑊
ଵ

ଷ଺଴଴
ℎ ൌ

ଵ

ଷ.଺∙ଵ଴ల 𝑘𝑊ℎ ൎ 2.78 ∙ 10ି଻𝑘𝑊ℎ ⇒  1𝑀𝐽 ൌ 0.278 𝑘𝑊ℎ) 
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For better comparability, the stored energy can also be declared as volumetric energy 

density, i.e. the amount of energy stored per unit volume. In this case, the result is the 

same since the storage volume is 1m3: 

 𝑊ᇱ ൌ
𝑊௩

𝑉
2.2.1-6 

 𝑊ᇱ volumetric energy density [kWh/m3] 

 

Therefore, 𝑊ᇱ for isothermal change of state yields (2.2.1-4& -5& -6): 

 𝑊ᇱ ൌ
𝑊௩ଵଶ

𝑉ଵ
ൌ 𝑝ଵ ln൫𝜋௢௣௧൯ ൌ

1
𝑒

𝑝ଶ 2.2.1-7 

 ⇒ 𝑊ᇱ ൌ
2.04𝑘𝑊ℎ

1𝑚ଷ ൌ 𝟐. 𝟎𝟒
𝒌𝑾𝒉
𝒎𝟑   

Concerning the calculation above, the results show that with an optimal pressure ratio 

and a final pressure of 200bar, the hydro accumulator with 1m3 storage volume ab-

sorbs around 2.04kWh of energy. This would be the same amount of energy that could 

be released during expansion in an ideal system. To get a first impression, that would 

roughly be the amount of energy that is necessary to run a vacuum cleaner for two 

hours which seems not much. To improve the volumetric change work, either the sys-

tem’s storage pressure or storage volume must be increased. Higher storage pres-

sures can be realised by choosing an appropriate accumulator type. 

Common piston accumulators, for instance, are able to realise pressures up to 800bar 

(cf. Chapter 2.2.1). Another opportunity is to increase the storage volume by connect-

ing multiple hydro accumulators and integrate them into a modular system and hence 

adding up the volumetric change work. 

The replaceable effective volume can be calculated with equation 2.2-8, the polytropic 

equation 2.2-6 and 𝑛 ൌ 1 for isothermal change of state: 

 
𝑝ଵ𝑉ଵ ൌ 𝑝ଶ𝑉ଶ ⇔  𝑉ଶ ൌ

1
𝑒

 ∙ 𝑉ଵ ൌ
1𝑚ଷ

𝑒
ൎ 𝟎. 𝟑𝟔𝟖𝒎𝟑

∆𝑉 ൌ 𝑉ଶ െ 𝑉ଵ ൌ 0.368𝑚ଷ െ 1𝑚ଷ ൎ െ0.632𝑚ଷ ൌ െ𝟔𝟑𝟐 𝒍 

 

The volume of the gas is reduced by 632 litres. This is the volume which is taken by the 

hydraulic liquid. In this ideal system, the hydro accumulator would be able to provide 

632 litres of working liquid, to operate a hydraulic motor during the discharging pro-

cess. 
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The heat exchange during the charging process is given with the first law of thermody-

namics (cf. 2.2-1, with 𝑑𝑇 ൌ 0 → 𝑑𝑈 ൌ 0) (Cerbe & Wilhelms 2013, p. 100): 

 𝑄ு,ଵଶ ൌ  െ 𝑊௩ଵଶ ൌ െ 𝑝ଵ𝑉ଵ ln ൬
𝑝ଶ

𝑝ଵ
൰ ൎ െ 𝟐. 𝟎𝟒 𝒌𝑾𝒉 2.2.1-8 

Consequently, the released (or absorbed) heat is equivalent to the volumetric change 

work during the energy storage process. In this case, isothermal compression transfers 

2.04kWh of thermal energy from the gas to its surrounding (“-“≜ released energy / 

heat). Especially the hydraulic liquid can support heat removal because of its charac-

teristically high specific heat capacity (Murrenhoff 2014, p. 95). 

Isentropic change of state 

The equation for the volumetric change work in case of an isentropic compression 

(𝑄ு,ଵଶ ൌ 0, 𝑊ௗ௜௦௦,ଵଶ ൌ 0, 𝑛 ൌ 𝜅) is given with (Cerbe & Wilhelms 2013, p. 105): 

 𝑊௩ଵଶ ൌ  െ න 𝑝 𝑑𝑉 ൌ
𝑝ଵ𝑉ଵ

𝜅 െ 1
൭൬

𝑝ଶ

𝑝ଵ
൰

఑ିଵ
఑

െ 1൱

ଶ

ଵ

2.2.1-9 

Solving the differential equation 2.2.1-2 for 2.2.1-9 returns the optimal pressure ratio for 

the isentropic change of state (Watter 2017, p. 170): 

 𝜋௢௣௧ ൌ
𝑝ଶ

𝑝ଵ
ൌ 𝜅ሺ

఑
఑ିଵሻ

2.2.1-10 

With air having 𝜅 ൌ 1.4 as an ideal isentropic exponent, 𝜋௢௣௧ is: 

 𝜋௢௣௧ ൌ
𝑝ଶ

𝑝ଵ
ൌ 𝜅ሺ

఑
఑ିଵሻ ൌ 1.4ሺ

ଵ.ସ
ଵ.ସିଵሻ ൎ 𝟑. 𝟐𝟒𝟕 2.2.1-11 

Hence, the maximum volumetric change work for an isentropic change of state can be 

reached with an optimum pressure ratio of 𝜋௢௣௧ ൎ 𝟑. 𝟐𝟒𝟕. 

In this case, the optimal pre-charge pressure 𝑝ଵ of the hydro accumulator is: 

 𝑝ଵ ൌ
𝑝ଶ

𝜋௢௣௧
ൌ

200𝑏𝑎𝑟
3.247

ൎ 𝟔𝟏. 𝟔𝒃𝒂𝒓 ൌ 61.6 ∙ 10ହ 𝐽
𝑚ଷ  

With 𝑉ଵ ൌ 1𝑚ଷ, the volumetric change work for the isentropic compression is equivalent 

to (2.2.1-9& -11): 

 𝑊௩ଵଶ ൌ
𝑝ଵ𝑉ଵ

𝜅 െ 1
൬𝜋௢௣௧

఑ିଵ
఑ െ 1൰ ൌ

61.6 ∙ 10ହ 𝐽
𝑚ଷ ∙ 1𝑚ଷ

1.4 െ 1
൬ሺ3.247ሻ

ଵ.ସିଵ
ଵ.ସ െ 1൰

ൎ 6.16 𝑀𝐽 ≙ 𝟏. 𝟕𝟏 𝒌𝑾𝒉

 

2.2.1-12 

 𝑊௩ଵଶ ൌ
1

3,247
 𝑝ଶ𝑉ଵ ൎ 𝟎, 𝟑𝟎𝟖 ∙ 200 ∙ 10ହ 𝑁

𝑚ଷ ∙ 1𝑚ଷ ൎ 6.16 𝑀𝐽 2.2.1-13 
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2.2.1-12& -13 can be displayed as volumetric energy density according to 2.2.1-6: 

 𝑊ᇱ ൌ
𝑊௩ଵଶ

𝑉ଵ
ൌ

𝑝ଵ

𝜅 െ 1
൬𝜋௢௣௧

఑ିଵ
఑ െ 1൰ ൌ

1
3,247

𝑝ଶ 2.2.1-14 

 ⇒ 𝑊ᇱ ൌ
1.71 𝑘𝑊ℎ

1𝑚ଷ ൌ 𝟏. 𝟕𝟏
𝒌𝑾𝒉
𝒎𝟑   

In comparison to the isothermal compression, it can be seen that the maximum volu-

metric change work is lower with an isentropic change of state. More precisely, the 

maximum amount of energy that can be stored is around 19.3% higher with an iso-

thermal change. Therefore, the aim should be to configure the hydro accumulator sys-

tem so that it operates slowly, i.e. isothermally, in order to store or release more energy 

(Murrenhoff 2014, p. 314). 

Likewise the isothermal case, the replaceable effective volume can be calculated with 

the equation 2.2-8, the polytropic equation 2.2-6 and 𝑛 ൌ 𝜅 ൌ 1.4 for the isentropic 

change of state: 

 
𝑝ଵ𝑉ଵ

఑ ൌ 𝑝ଶ𝑉ଶ
఑ ⇔  𝑉ଶ ൌ ቆ

1
𝜋௢௣௧

ቇ

ଵ
఑

∙ 𝑉ଵ ൌ ൬
1

3.247
൰

ଵ
ଵ.ସ

∙ 1𝑚ଷ ൎ 𝟎. 𝟒𝟑𝟏𝒎𝟑 

∆𝑉 ൌ 𝑉ଶ െ 𝑉ଵ ൌ 0.431𝑚ଷ െ 1𝑚ଷ ൎ െ0.569𝑚ଷ ൌ െ𝟓𝟔𝟗 𝒍 

 

The isentropic change of state results in a volume reduction of the gas of only 569 litres 

(632 litres in the isothermal change of state). Consequently, the replaceable effective 

volume is roughly 10% lower than the volume provided by isothermal compression. 

Since the heat exchange 𝑄ு,ଵଶ during isentropic compression is zero, the temperature 

of the air rises according to the following equation (Cerbe & Wilhelms 2013, p. 104): 

 
𝑇ଵ

𝑇ଶ
ൌ ൬

𝑉ଶ

𝑉ଵ
൰

఑ିଵ

 2.2.1-15 

 ⇒  𝑇ଶ ൌ 𝑇ଵ ൬
𝑉ଵ

𝑉ଶ
൰

఑ିଵ

ൌ 293𝐾 ∙ ቆ
1𝑚ଷ

0.431𝑚ଷቇ
ଵ.ସିଵ

ൎ 410.3𝐾 ൌ 𝟏𝟑𝟕. 𝟑°𝑪  

The fast isentropic compression leads to a temperature rise of the gas of around 

117°C. The faster the charging process, the closer is the change of state to the isen-

tropic which leads to more heat that remains in the system over short time periods. As 

a consequence, the material durability or the process stability could be diminished. For 

instance, if water is used as hydraulic liquid and the temperature of the gas is far over 

100 degrees, the water might evaporate close to the separator having an adverse im-

pact on the stability of the system parameters. This also applies to the discharging pro-

cess, where the gas temperature can drop to very low values, which would also have 
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negative effects on system components and the overall storage process. Consequent-

ly, the system should be designed so that temperature extremes are avoided. 

If the hydro accumulator is shut off from the system, the system balances through tem-

perature equilibrium. As mentioned in section 2.2, this change of state can be defined 

as isochoric. In the example, the air has the following state variables after the isentrop-

ic compression step: 

𝑇ଶ ൎ 410𝐾, 𝑝ଶ ൌ 200𝑏𝑎𝑟,        𝑉ଶ ൎ 0.43𝑚ଷ 

The parameter of interest is the final pressure 𝑝ଷ of the air after it has reached the am-

bient temperature: 

𝑇ଷ ൎ 293𝐾, 𝑉ଶ ൌ 𝑉ଷ ൌ 0.43𝑚ଷ,        𝑝ଷ ൌ? 

The following equation provides the solution (Cerbe & Wilhelms 2013, p. 91): 

 
𝑝ଶ

𝑝ଷ
ൌ

𝑇ଶ

𝑇ଷ
 2.2.1-16 

 ⇒  𝑝ଷ ൌ 𝑝ଶ ൬
𝑇ଷ

𝑇ଶ
൰ ൌ 200𝑏𝑎𝑟 ∙ ൬

293𝐾
410𝐾

൰ ൎ 𝟏𝟒𝟐. 𝟗𝒃𝒂𝒓  

The pressure of the air after the isochoric equalisation is roughly 57bar lower than right 

after the isentropic compression. That means the hydro accumulator is able to perform 

less work which reduces the efficiency of the full storage cycle. 

The volumetric change work released from the hydro accumulator would be, in the 

case of an isothermal expansion back to the pre-charge pressure (𝑝ସ ൌ 𝑝ଵ ൌ 61.6𝑏𝑎𝑟) 

(2.2.1-1): 

 
𝑊௩ଷସ ൌ 𝑝ଷ𝑉ଷ ln ൬

𝑝ସ

𝑝ଷ
൰ ൌ 142.9 ∙ 10ହ 𝐽

𝑚ଷ ∙ 0.43𝑚ଷ ∙ 𝑙𝑛 ൬
61.6𝑏𝑎𝑟

142.9𝑏𝑎𝑟
൰

ൎ െ5.17𝑀𝐽 ≙ െ𝟏. 𝟒𝟒𝒌𝑾𝒉

 

The calculation shows that only 1.44kWh (“-“≜ released work) can be “restored” for 

energy generation after the isochoric system balancing, while charging the accumulator 

consumed 1.71kWh of energy. The amount of reusable energy would be even lower for 

an isentropic expansion (ൎ -3.28MJ ≙ -0.91kWh). The result is an “energy loss” of 

roughly 16% (or even 47% for isentropic expansion) comparing input and output of the 

volumetric change work. These results highlight again that it is more efficient to operate 

hydro accumulators over longer time periods, i.e. isothermal operation. 

The calculation example helps to understand the physical basics of the hydro accumu-

lator’s storage process on the easiest basis. The following chapter shortly describes 

the remaining system components of the hydro accumulator system. It is the last step 

to have an overall understanding of the storage concept and system. 
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2.3 Further system components 

The hydro accumulator, as the key component of the investigated storage system, was 

already described in detail in section 2.1. However, there are other important compo-

nents involved in the process. Their main working principle and role for the hydro ac-

cumulator system will be illustrated by following the energy conversion process: 

Figure 12: General setup of the hydro accumulator system 

 

When wind is blowing, the rotor blades of the wind turbine are accelerated and convert 

the kinematic energy of the wind into mechanical energy, i.e. rotational energy of the 

shaft (Hau 2016, p. 85). This mechanical energy is the input for the hydro accumulator 

system (directly or indirectly). It is used to drive a pump; the first system component. 

Hydrostatic pumps are displacement machines and enable the transformation of me-

chanical energy into hydraulic energy (Murrenhoff 2014, p. 153). They energise the 

hydraulic liquid by displacing it from the low-pressure suction side of the pump (pump 

inlet) to the high-pressure side (pump outlet). Therefore, the increase of hydraulic en-

ergy is manifested as the difference of the liquid’s pressure and velocity before and 

after the pump (Watter 2017, p. 92). Pumps exist in various designs. Examples are the 

gear, diaphragm, piston and vane pump (Watter 2017, pp. 92-96). One key parameter 

of the pump is the volumetric displacement 𝑉஽, which defines the amount of liquid that 

a pump is able to deliver per revolution (Watter 2017, p. 96). Dependent on the design, 

the pump can provide a variable or fixed volume flow 𝑄, i.e. a specific amount of liquid 

per time, to the hydraulic system (Bauer 2016, p. 75). Besides hydro pumps, there are 

also continuous-flow machines (e.g. turbine) which can provide the hydraulic energy. In 

contrast to hydrostatic displacement machines, these components operate with much 

higher flow rates and on lower pressures (Bauer 2016, p. 73). Since high pressures are 
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required for the hydro accumulator system, flow machines are not taken into considera-

tion in the remainder of the study. 

The hydraulic liquid, responsible for energy transmission in the system, is also called 

the working medium. Further, the liquid takes on other tasks, like the lubrication of 

bearing areas or the dissipation of heat (Bauer 2016, p. 49). Its characteristics signifi-

cantly influence the system’s performance. Especially the liquid’s viscosity, density and 

temperature resistance determine factors like friction, leakage and heat development 

(Murrenhoff 2014, pp. 103-109). The majority of hydraulic systems are operated with 

mineral oils (Murrenhoff 2014, p. 96). However, using water as an alternative working 

medium seems attractive for sustainable energy storage because it is almost freely 

available, non-hazardous, can be applied in open-loop systems and is economically 

degradable. Hence, water is initially utilised as the hydraulic liquid in this thesis. If it 

turns out that this selection leads to problems (e.g. dissolving effects), the water can 

still be replaced by oil in later steps. 

After passing the pump, the energised liquid is distributed through the hydraulic system 

via hydraulic pipes or hoses, which interconnect, for instance, the pump with the hydro 

accumulator. Pipes are rigid connecting elements, while hoses are made of elastic ma-

terials (i.e. flexible connection). Further, the word “pipe” is used as a substitute for both 

types of connecting elements. The length, shape, diameter and the material of the 

pipes affect the pressure and velocity of the liquid. For example, the pipe friction, i.e. 

friction between the pipe wall and the liquid, results in internal pressure losses, which 

reduce the hydraulic energy (Bauer 2016, pp. 13-15). 

To control the power flow, several valves need to be utilised in the hydro accumulator 

system. ‘Valves are components to influence the direction and amount of flow and of 

pressure.’ (Murrenhoff 2014, p. 221). The following valves are integrated into the stor-

age system: 

Figure 13: Types of integrated valves 

 

Source: Siemens Industry Software NV 2017 
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Table 1: Types and function of integrated valves 

Valve Function 

Check Valve The check valve restricts the liquid to flow in only one direction. It is gener-

ally located after the pump outlet since liquid might flow from the high-

pressure side back into the pump. That would drive the pump in the oppo-

site direction and could cause serious damage (Wei et al. 2018, pp. 5-6). 

Pressure Relief 

Valve (PRV) 

The PRV is a pressure control valve. It is applied as a safety valve because 

it limits the maximum working pressure in the system. It is, for instance, 

installed in bypass to the pump, in order to release amounts of liquid when 

pressures become too high (Wei et al. 2018, p. 7; Murrenhoff 2014, p. 254). 

Directional Con-

trol Valve (DCV) 

DCVs control the direction of flow of the liquid in the hydraulic system by 

open and block specific flow paths. They can be distinct by the number of 

ports and switching positions that are available (Murrenhoff 2014, p. 243). 

DCVs are applied to separate the charging and discharging lines. 

 

Besides the valves, several sensors are integrated into the storage system to monitor, 

steer and regulate important system variables such as pressure, shaft velocity and vol-

ume flow. Somehow, the required liquid must be supplied and excess liquid must be 

stored in the hydraulic system. For this purpose, a liquid tank is applied. It can simply 

be a closed metal tank or, for example, an open liquid reservoir for large-scale applica-

tions (Bauer 2016, p. 67). 

While the liquid transfers the energy through the system, the gas in the hydro accumu-

lator is responsible for the energy storage. The properties of the storage gas affect the 

outcome of the storage process. As mentioned before, conventional hydro accumula-

tors mainly use nitrogen. For first examinations, dry air (further referred to as air) is 

used as the storage medium because it has several advantages that are illustrated at 

the end of this chapter. “Dry” means that solved water contents are excluded from con-

sideration, which normally affect the air’s characteristics during operation. Dry air is a 

mixture of several gases including 78% nitrogen, 21% oxygen and 1% other different 

gases of which argon is the main component (Hering, Martin & Stohrer 2017 p. 447). 

When the accumulator discharges, the potential energy of the gas converts back to 

hydraulic energy, which then gets carried via the liquid to the hydraulic motor. The mo-

tor unit, as the final component of the hydraulic storage system, works according to the 

same principles as the pump but the other way around. That means hydraulic energy is 

converted back to mechanical energy which, in the next step, can be used to drive a 

generator and, consequently, create electricity. As it is for pumps, there are many dif-
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ferent designs available for hydraulic motors. It is also possible to have a device that 

works bidirectional, i.e. as pump and as motor (Murrenhoff 2014, p. 155). 

Classification of the hydro accumulator system 

Comparing the hydro accumulator system with the storage technologies that were illus-

trated in the introduction, it can be seen that the storage concept is similar to CAES. In 

both cases, pressurised air is used as the fundamental storage medium. Thus, hydro 

accumulators can be classified as a “sub-concept” of CAES. However, in CAES sys-

tems, air is used both as a working and storage medium, whereas hydro (-pneumatic) 

accumulator systems utilise a liquid as the working medium (Wietschel et al. 2015, p. 

217). This allows the hydraulic systems to transmit higher forces with high efficiency, 

compared to solely pneumatic systems, because gases have comparably low densities 

and are therefore much more compressible (Bauer 2016, p. 5; Wietschel et al. 2015, p. 

217). Pneumatic systems, like CAES, also have to challenge high amounts of thermal 

energy generated during compression and expansion. Using a liquid as the working 

medium has the advantage that heat can be managed more easily. On the one hand, 

the heat capacity of water is much higher than the heat capacity of air, which reduces 

temperature changes when energy is absorbed or released (see Chapter 3.2.1 for 

more details). On the other hand, hydro accumulators can be (dis-) charged over long-

er time periods so that heat can be exchanged more continuously with the environment 

(Wietschel et al. 2015, p. 217). 

As a roundup of the theoretical background, the advantages and disadvantages of the 

hydro accumulator system are summarised in the table below. 

Table 2: Advantages and disadvantages of the hydro accumulator system 

Advantages Disadvantages 

 characteristics of the storage & working 

medium (air & water): 

o (nearly) free & limitless availability 

o non-hazardous & non-toxic 

o economically degradable 

 very low ecological footprint  environ-

mentally friendly ESS 

 most system components are technically 

mature  wide range of choice 

 direct & decentralised integration in re-

newable power generation units (like wind 

 low volumetric energy density  small 

amount of energy stored per volume 

 space-consuming for large storage ca-

pacities 

 hydro accumulators are still immature for 

large scale-applications 

 discontinuity of the (dis-)charging process 

due to pressure variations over time 

 challenges in system regulation and 

control 
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Advantages Disadvantages 

turbines) possible  high potential for the 

energy transition 

 versatile application areas: small- to 

large-scale, bulk energy storage, ancillary 

services, etc. 

 scalable storage capacity (modular de-

sign)  flexibility & adaptability 

 no irreversible capacity losses (cf. con-

ventional accumulators) 

 long-lasting ESS (with regular mainte-

nance) 

 high maintenance efforts and costs de-

pendent on the type of the accumulator 

 

At this point of the thesis, the overall hydro accumulator system is well understood re-

garding its functionality, its components, its main characteristics and its state of devel-

opment. The following chapter investigates the system taking more practical perspec-

tives into consideration. 
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3 Dimensioning & simulation of a hydro accumulator system 

3.1 Introduction of the LMS AMESim Software 

LMS AMESim is a simulation software (student edition of the Simcenter Amesim) pro-

vided by Siemens Industry Software Inc. It represents a multi-domain platform that co-

vers the entire development process of mechatronic systems. The software enables 

engineers to quickly model, analyse, asses and optimise the performance of technical 

solutions in early stages of the design cycle (Siemens Industry Software Inc. 2019). 

Figure 14: Architecture of AMESim 

 

Source: Siemens Industry Software NV 2017 

The programme is handeled through an intuitive grafical user interface with four 

general working modes (cf. Figure 15): 

 Sketch mode 

 Submodel mode 

 Parameter mode 

 Simulation mode. 

With the sketch mode, the user builds up the model for the desired system by making 

use of an extensive library, which contains pre-defined components as icons for differ-

ent physical domains (e.g. mechanical, electrical and hydraulic). The components are 

linked by connecting the inputs of one icon to the outputs of another icon. 
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Figure 15: Graphical user interface of AMESim 

 

Source: Siemens Industry Software NV 2017 

When the model is created, the user has to select the underlying equations of the com-

ponents in the submodel mode. Thus, the selected submodel defines the dynamic be-

haviour of a component and the superior system during the simulation. For example, a 

hydraulic pipe can be used to connect a fluid tank and a pump. As a submodel, a direct 

connection could be selected which would represent an ideal dimensionless connection 

between the two other components. Furthermore, the hydraulic line could be submod-

eld by taking realistic compressibility and friction characteristics of the used liquid into 

account. In this case, corresponding hydraulic equations are selected for the pipe to 

consider pressure losses and flow behaviour. 

Subsequently, the parameter mode feeds the model with realistic values by defining 

the size and characteristics of the used components in more detail. For the pipe, the 

dimensions can be selected in terms of length, diameter, wall thickness, etc. 

Figure 16: AMESim: Parameter setting and plotting of simulation results 

 

Source: Siemens Industry Software NV 2017 
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After the parameter setting is finished, a simulation run is initiated in the simulation 

mode. The result is a detailed calculation of the system’s behaviour and its parameters 

over a defined time period. Graphs can be plotted to visualise the results to optimise 

the model iterative (cf. Figure 16) 

Additionally, the program offers a wide range of extra functions and features. Analysis 

tools like animation, table editor or dashboard support the assessment process. Soft-

ware interfaces allow data transfer and interaction with other simulation and engineer-

ing tools like CAD, CFX, MATLAB, etc. Numerous solvers and simulator scripting func-

tions enable a professional usage for high standard industrial needs. 

3.2 Framework and observed parameters 

3.2.1 Framework for the dimensioning & simulation 

The basic model of the hydro accumulator system is set up according to a predefined 

framework. The framework is the application environment, where the storage system 

operates with a set of initial assumptions. 

More precisely, this is the interface between the power supply and demand of the sys-

tem. As the power source, the wind turbine prototype of the WESSPA project is used. 

Furthermore, an electric load, i.e. a generator, determines the power demand during 

discharging. Both are initially seen as constant power source and consumer, having the 

following characteristics: 

Table 3: Characteristics of the system’s power source and consumer 

Wind Turbine Prototype 
(at optimal operating point) 

Generator 

Power Pwt (Pin) [W] 500 Power Pg (Pout) [W] 500 

Rotational speed nwt [rev/min] 300 Frequency fg [1/s; Hz] 50 

 

Thus, the hydro accumulator system has a constant power input during the charging 

step and a constant power demand during discharging. While the constant power de-

mand is a realistic assumption, the constant power input remains an initial simplifica-

tion. Normally, the provided power varies with the intermittent wind speed. Hence, the 

model should be extended by a variable input in further steps of the research project. 

Nevertheless, for initial examinations of the storage system, it is more transparent to 

keep the input values constant. Besides the interfaces, there are additional specifica-

tions made for the hydro accumulator system, which are described in the following. 
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The charge time 𝑡௖ of the storage system is set to 30min. That is assumed to be long 

enough to have a nearly isothermal process, i.e. isothermal change of state of the stor-

age medium (air). In the hydro accumulator, the higher operating pressure 𝑝ଶ, i.e. stor-

age pressure, is aimed to be 100bar. According to the optimal pressure ratio for iso-

thermal change of state (2.2.1-3), the lower operating pressure is nearly 37bar. Gener-

ally, it is recommended to have a gas pre-charge pressure that is 10% lower than the 

lower operating pressure (Korkmaz 1982, p. 20). Therefore, the pre-charge pressure 𝑝ଵ 

of the air will be equal to 35bar. For the sake of simplicity, this pressure will also be the 

initial pressure in the hydraulic system, so there is no need to distinct the pre-charge 

state and the lower operating state of the hydro accumulator (cf. Chapter 2.2.1). Fur-

ther, the assumption of pressure equality between working and storage medium is 

maintained. Consequently, the air pressure is always equal to the pressure at the high 

pressure-side of the hydraulic system. 

The pump and the motor of the hydraulic system are ideal fixed displacement units 

which are controlled torque-dependent with a mechanical gear box (cf. Chapter 3.4.1). 

Ideal means that an efficiency of 100% is assumed (Murrenhoff 2014, p. 218): 

 𝜂௧ ൌ 𝜂௩௢௟ ∙ 𝜂௛௠ ൌ 𝟏 3.2.1-1 

 𝜂௧ total efficiency of the displacement unit 

 𝜂௩௢௟ volumetric efficiency 

 𝜂௛௠ hydraulic-mechanical efficiency 

The volumetric efficiency takes volumetric losses like internal and external leakage into 

account, while hydraulic-mechanical losses are determined by various friction phenom-

ena (Murrenhoff 2014, pp. 213&216). This assumption can be replaced with more real-

istic values in later steps of the simulation. Furthermore, the pressure at the low-

pressure side of these units is, at first, set to zero. Normally, low static pressures 

should be avoided in hydraulic systems since this can cause solved air to escape from 

the liquid and form cavities, which implode when the pressure suddenly increases (Ka-

lide 2005, p. 35). This phenomenon is called “cavitation”. 

‘Consequences are a faulty behaviour of transport, noise generation as well as in-

creased wear with insufficient lubrication.’(Murrenhoff 2014, p. 113). In later steps of 

the project, the low-pressures should be adapted in a way that cavitation is prevented. 

The working and storage medium, applied in the storage system, are water and dry air. 

The advantages of this selection were already highlighted in section 2.3. Both have an 

initial temperature equivalent to the ambient temperature: 𝑇௪௔,ଵ ൌ 𝑇௔௜௥,ଵ ൌ 293𝐾 ሺ20°𝐶ሻ. 

The water is assumed to be incompressible (as it was done in Chapter 2.2). This is 

close to reality, considering that water has a bulk modulus of around 20,000bar. 
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That refers to a volume change of only 1% when it gets pressurised from 1bar up to 

200bar (Sigloch 2017, p. 6). When applying higher pressures or changing the liquid, 

the compressibility might be taken into account. Besides, other parameters of interest, 

necessary for the simulation, are the liquid’s density and (dynamic) viscosity. In reality, 

these parameters are a function of the liquid’s temperature and pressure (Murrenhoff 

2014, pp. 44&108). However, these values are assumed to be constant (cf. Table 4). 

The initial supposition of ideal gas behaviour is maintained (cf. Chapter 2.2). The prop-

erties for the air, applied in the hydro accumulator, are initially selected according to the 

standard conditions: ambient temperature (20°C) and pressure (1bar). Important values 

are the specific heat capacity at constant volume (𝑐௩,௔௜௥) and the specific gas constant 

(𝑅௔௜௥). The gas constant is required to determine the state variables (e.g. volume and 

pressure) of the air during operation (cf. 2.2-2). The specific heat capacity is an im-

portant parameter regarding the heat development at the accumulator. It depends on 

and rises with the temperature of the gas. That is why an average value for the existent 

temperature range during operation should normally be applied (𝑐௩௠|௧భ

௧మ) (Cerbe & Wil-

helms 2013, pp. 75-76). Since almost isothermal state change is assumed, it is not 

necessary to calculate an average and 𝑐௩,௔௜௥ is set according to standard conditions: 

718J/kgK (Sigloch 2017, p. 463). This means that 718J of energy is required to raise 

the temperature of 1kg of air by 1K. In other words, the smaller the heat capacity of a 

medium, the higher the change of temperature for the same amount of added energy. 

In comparison, water has a much greater heat capacity of 4187J/kgK (Sigloch 2017, p. 

463), which makes it capable of storing high amounts of energy without significant 

temperature changes. 

The properties of interest for the water and the air are summarised in the table below 

(according to previous specifications). 

Table 4: Properties of the applied working and storage medium 

Water Air 

Temperature Twa,1 [K] 293 Temperature Tair,1 [K] 293 

Density ρwa [kg/m3] 1,000 
Specific heat capacity 
cv,air [J/kgK] 

718 

Bulk Modulus Ewa [bar] 20,000* Gas constant Rair [J/kgK] 287 

Dynamic viscosity ηwa [cP] 1.002 Isentropic exponent κ 1.4 

(η [Pa∙s, Ns/m2], 1cP = 1”centipoise” = 10-3 Pa∙s) 

*can be used without notable influences on the simulation results 

Source: Sigloch 2017, pp. 6, 454, 455, 463 
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The predefinitions, made in the framework, will be used as the basis for the dimension-

ing of the key components (Chapter 3.3). Assumptions for design parameters will be 

made as realistic as possible, so that the simulation model and the correlation of sev-

eral system parameters can be examined properly. In later steps, the basic model can 

be varied, optimised and scaled up to greater dimensions. 

To ensure comparability with other storage technologies and proper assessment of the 

simulation model, the following parameters of interest will be in focus. 

3.2.2 Observed parameters 

Discharge time td 

Contrary to the charge time, which is set to 30min, the discharge time depends on the 

amount of requested power and on the actual amount of energy that is stored in the 

hydro accumulator before discharging. It defines the time period where the hydro ac-

cumulator discharges from the higher operating pressure back to pre-charge pressure. 

The more energy is available, the longer the storage system will be able to drive the 

constant generator unit at defined power. The amount of stored energy is reduced by 

losses, occurring during operation, which consequently reduce the discharge time. 

 𝑡௖ charge time [s] (with 𝑡௖ ൌ 30𝑚𝑖𝑛 ൌ 1800𝑠) 

 𝑡ௗ discharge time [s] 

Efficiency ηs 

The total efficiency of a system is the ratio of energy output to energy input of one stor-

age cycle: 

 𝜂௦ ൌ
𝐸௢௨௧

𝐸௜௡
ൌ

𝑃௢௨௧ ∙ 𝑡ௗ

𝑃௜௡ ∙ 𝑡௖
3.2.2-1 

 𝜂௦  total efficiency of one storage cycle 

 𝐸௢௨௧ & 𝐸௜௡ energy output and energy input [kWh] 

 𝑃௢௨௧ & 𝑃௜௡ power output and power input [W] 

 𝑡ௗ & 𝑡௖  discharge time and charge time [s] 

The higher the efficiency, the better the storage technology is capable of storing and 

releasing amounts of energy without losses (e.g. waste heat, hydraulic and mechanical 

friction, etc.). The efficiency can also be determined for the charging step by putting the 

stored energy in relation to the input energy, after the hydro accumulator is charged. 

Respectively, the efficiency of the discharging step can be calculated by the ratio of 

energy output and stored energy. 
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 𝜂௖ ൌ
𝐸௦௧

𝐸௜௡
, 𝜂ௗ ൌ

𝐸௢௨௧

𝐸௦௧
3.2.2-2 

 𝜂௖ efficiency of the charging process 

 𝜂ௗ efficiency of the discharging process 

 𝐸௦௧ stored energy [kWh] 

Volumetric energy density W’ 

The volumetric energy density was already defined in chapter 2.2.1 (2.2.1-6). It is the 

stored energy per volume, which allows the comparison with other storage technolo-

gies. It also can be used to scale up the observed ESS. 

Due to the simplifications and assumptions for the basic model, the mentioned parame-

ters may be less meaningful for first simulations. In the further course of the project, 

however, they can be complemented and used for comparison purposes. 

3.3 Dimensioning of the key components 

This chapter provides the basics for the dimensioning of the key components of the 

hydro accumulator system dependent on the framework, which was illustrated in chap-

ter 3.2.1. The results will be used to feed the basic simulation models with appropriate 

parameters in the next step. 

3.3.1 Dimensioning of the pump and motor 

The input power serves as a starting point for the dimensioning of the pump. The proto-

type of the wind turbine provides 500W, which is the mechanical power that the pump 

is able to convert into hydraulic power in the (assumed) best case (𝑃௪௧ ൌ 𝑃௣). The pow-

er of a hydrostatic displacement machine can be calculated as follows (Murrenhoff 

2014, p. 35): 

 𝑃 ൌ 𝜔 ∙ 𝑇 ൌ 𝑄 ∙ ∆𝑝 ൌ 𝑉஽ ∙
𝑛

60
∙ ∆𝑝 3.3.1-1 

 𝑃 power [W] 

 𝜔 angular velocity [1/s] 

 𝑇 torque [Nm] 

 𝑄 volume flow [m3/s] 

 ∆𝑝 pressure difference between inlet 𝑝௜ and outlet 𝑝௢ [N/m2] 

 𝑉஽ volumetric displacement [m3/rev] 

 𝑛 rotational speed [rev/min] 

(rev/min = rpm; rev = revolution = 1; the stated SI units are used for the calcula-

tion. However, the pressure is usually displayed in [bar], the volume flow in 

[l/min] and the volumetric displacement in [cm3/rev]) 
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Consequently, the power of the pump is: 

 𝑃௣ ൌ 𝜔௣ ∙ 𝑇௣ ൌ 𝑄௣ ∙ ∆𝑝 ൌ 𝑉஽,௣ ∙
𝑛௣

60
∙ ∆𝑝 ൌ 𝟓𝟎𝟎𝑾 3.3.1-2 

For the basic model, a fixed displacement pump will be integrated. The volumetric dis-

placement must be determined so that the pump operates within a proper speed range 

by a given storage pressure. On the one hand, operation at too low speed results in 

low efficiency and can cause problems regarding self-lubrication and overheating 

(Murrenhoff 2014, p. 218). Too high speeds, on the other hand, can cause damage to 

the mechanics of the pump. Manufacturers usually recommend rotational speeds 

above 150-700rpm dependent on the pump design (Bosch Rexroth AG 2019, Moog 

Inc. 2016). Thus, the minimum speed of the applied pump is set to 750rpm for the sim-

ulation (𝑛௣,௠௜௡ ൌ 750
௥௘௩

௠௜௡
). 

The minimum speed of the pump appears at the highest operating pressure. Hence, 

the volumetric displacement at 100bar can be calculated according to 3.3.1-2. As men-

tioned before, the pressure at the pump inlet is assumed to be zero, so that ∆𝑝 ൌ 𝑝ଶ ൌ

𝑝௢ ൌ 100𝑏𝑎𝑟: 

 

𝑃௣ ൌ 𝑉஽,௣ ∙ ∆𝑝 ∙
𝑛௣

60
⇔ 𝑉஽,௣ ൌ

𝑃௣

∆𝑝 ∙
𝑛௣
60

⇒ 𝑉஽,௣ ൌ
500𝑊

100 ∙ 10ହ 𝑁
𝑚ଶ ∙  

750
𝑟𝑒𝑣
𝑚𝑖𝑛

60

ൌ 𝟒 ∙ 𝟏𝟎ି𝟔 𝒎𝟑

𝒓𝒆𝒗
ൌ 𝟒

𝒄𝒎𝟑

𝒓𝒆𝒗
 

 

With the volumetric displacement, the maximum pump speed at the pre-charge pres-

sure state can be determined according to 3.3.1-2 (∆𝑝 ൌ 𝑝ଵ ൌ 𝑝௢ ൌ 35𝑏𝑎𝑟ሻ: 

 

𝑃௣ ൌ 𝑉஽,௣ ∙ ∆𝑝 ∙
𝑛௣,௠௔௫

60
⇔ 𝑛௣,௠௔௫ ൌ

𝑃௣ ∙ 60
∆𝑝 ∙ 𝑉஽,௣

⇒ 𝑛௣,௠௔௫ ൌ
500𝑊 ∙ 60

35 ∙ 10ହ 𝑁
𝑚ଶ ∙ 4 ∙ 10ି଺ 𝑚ଷ

𝑟𝑒𝑣

ൎ 𝟐𝟏𝟓𝟎
𝒓𝒆𝒗
𝒎𝒊𝒏

 
 

It can be seen that the pump operates in an appropriate speed range between 750 and 

2150rpm. The maximum speed of the pump results in a maximum volume flow of 

(Murrenhoff 2014, p. 35): 

 
𝑄 ൌ 𝑛 ∙ 𝑉஽ ⇒ 𝑄௣,௠௔௫ ൌ 𝑛௣,௠௔௫ ∙ 𝑉஽,௣ ൌ 2150

𝑟𝑒𝑣
𝑚𝑖𝑛

∙ 4
𝑐𝑚ଷ

𝑟𝑒𝑣
ൌ 8600

𝑐𝑚ଷ

𝑚𝑖𝑛

ൌ 𝟖. 𝟔
𝒍

𝒎𝒊𝒏
ൎ 𝟏𝟒𝟑 ∙ 𝟏𝟎ି𝟔 𝒎𝟑

𝒔

 

3.3.1-3 

Respectively, the minimum volume flow at the minimum speed yields: 𝑄௣,௠௜௡ ൌ 𝟑
𝒍

𝒎𝒊𝒏
. 
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It is assumed that the hydraulic motor has the same dimensions as the pump. This 

makes sense regarding the variability of the system. Having the same characteristics 

for both, the pump and the motor, allows replacing both components with one pump-

motor unit. If deviations during the discharging process occur, which affect the motor in 

a way that the dimensions become unrealistic, adjustments can still be made after-

wards. 

Consequently, the dimensions of the power components, i.e. the pump and the hydrau-

lic motor, can be summarised as follows: 

Table 5: Dimensions of the pump and the motor of the basic model 

Pump and motor of the basic model 

Power: Pp, Pm [W] 500 

Volumetric displacement: VD,p, VD,m [cm3/rev] 4 

Speed range: nmin – nmax [rev/min] 750-2150 

Volume flow range : Qmin – Qmax [l/min] 3-8.6 

 

There is the opportunity to replace the fixed displacement units by variable displace-

ment units. They allow the adjustment of the volumetric displacement (e.g. manual, 

electric or hydraulic adjustment) (Bauer 2016, pp. 75&102-103). Consequently, the 

provided volume flow can be regulated with a higher level of flexibility in combination 

with the torque-dependent control (cf. Chapter 3.4.1), which then can increase the 

overall efficiency of the system. For example, the Krisch-Dienst GmbH Fluidtechnik 

offers different kinds of “Janus” variable axial piston pumps and motors. They solely 

run with water, operate up to 160bar and displace between 1 and 70.3cm3/rev depend-

ent on their design (Krisch-Dienst GmbH Fluidtechnik n.d.). This might be a potential 

supplier for the implementation of a prototype. However, for the basic model this thesis 

initially stays with the fixed displacement units. 

3.3.2 Dimensioning of the hydro accumulator 

The first value of interest is the storage size of the hydro accumulator. According to the 

framework, the accumulator is charged for 30min with an ideally power input of 500W. 

That corresponds to an energy input of (𝐸௜௡ ൌ 𝑊௖, 𝑃௪௧ ൌ 𝑃௣): 

 𝑊௖ ൌ 𝑃௣ ∙ 𝑡௖ ൌ 500𝑊 ∙ 1800𝑠 ൌ 900000𝐽 ൌ 𝟎. 𝟐𝟓𝒌𝑾𝒉  

Referring to the volumetric energy density, calculated for the ideal isothermal change of 

state (Chapter 2.2.1), the storable amount of energy with 200bar storage pressure was 

2.04kWh/m3 (2.2.1-7). With 100bar storage pressure, this value is halved: 1.02kWh/m3. 
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Hence, the air in the accumulator will store 1.02kWh of energy per cubic metre in the 

best case (𝑊′). Together with 𝑊௖, the required volume of the storage medium can be 

derived: 

 𝑉௔௜௥ ൌ ሺ𝑊′ሻିଵ ∙ 𝑊௖ ൌ
1𝑚ଷ

1.02𝑘𝑊ℎ
∙ 0.25𝑘𝑊ℎ ൎ 𝟎. 𝟐𝟒𝟓𝒎𝟑 ൌ 𝟐𝟒𝟓𝒍  

Since the isothermal storage process is idealistic, the actual amount of storable energy 

per volume (𝑊′) will be lower. Thus, the air volume is slightly increased for the simula-

tion and the total accumulator volume is set according to the following assumption: 

 
𝑉௔௖௖ ൌ 𝟐𝟓𝟎𝒍 

𝑉௔௜௥ ൌ 𝑉௔௖௖ െ 1𝑙 ൌ 𝟐𝟒𝟗𝒍 
 

As a potential component, a standard bladder accumulator from HYDAC (Type SB330-

200) could be selected. This accumulator has a slightly lower storage volume of 200l 

but can operate with pressures up to 330bar (HYDAC INTERNATIONAL GmbH n.d.). 

Thus, HYDAC’s accumulator has roughly the same characteristics as the hydro accu-

mulator defined in this thesis. It is used as a reference for some parameters, which are 

needed in the following section. 

The thermal time constant is another important parameter that has to be determined. It 

allows the consideration and modelling of heat exchange processes between the hydro 

accumulator and its surrounding. It is defined as the ratio of heat storage capacity and 

heat exchange capacity of the storage gas and can be described by the following equa-

tion (Rotthäuser 1993, p. 46): 

 𝜏 ൌ
𝑚௚ ∙ 𝑐௩

𝛼௚ ∙ 𝐴௚
3.3.2-1 

 𝜏 thermal time constant [s] 

 𝑚௚ mass of the gas [kg] 

 𝑐௩ gas specific heat capacity at constant volume [J/kgK] 

 𝛼௚ overall heat transfer coefficient [W/m2K] 

 𝐴௚ thermal exchange area of the gas [m2] 

(𝛼௚ ≙ combination of heat conduction through the surface area and heat con-

vection between the gas and the hydro accumulator and the hydro accumulator 

and its surrounding) 

With the assumption of ideal gas behaviour (2.2-2) at pre-charge state, the mass of the 

gas can be replaced as follows: 

 𝜏 ൌ
𝑝ଵ ∙ 𝑉ଵ ∙ 𝑐௩

𝑇ଵ ∙ 𝑅௚ ∙ 𝛼௚ ∙ 𝐴௚
3.3.2-2 
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The exact calculation of 𝜏 is laborious and very complex, since it is related to various 

parameters, like the design of the accumulator, the storage medium, applied pressures, 

etc. (Rotthäuser 1993, p. 66; Korkmaz 1982, p. 29). Additionally, some influencing fac-

tors, like the heat transfer coefficient and the effective thermal exchange area, change 

during operation (Pourmovahed & Otis 1990, p. 117). This is the reason why the ther-

mal time constant is usually determined experimentally in practice (cf. Pourmovahed & 

Otis 1990). 

For the sake of simplicity, the thermal time constant is, therefore, only roughly calculat-

ed. It can serve as a reference for later investigations. Referring to the values defined 

in the framework and the dimensioning section, the state variables as well as the prop-

erties of the air are already known: 

𝑝ଵ ൌ 35𝑏𝑎𝑟, 𝑉ଵ ൎ 250𝑙, 𝑇ଵ ൌ 293𝐾, 𝑅௔௜௥ ൌ 287 𝐽
𝑘𝑔𝐾ൗ , 𝑐௩,௔௜௥ ൌ 718 𝐽

𝑘𝑔𝐾ൗ  

In order to calculate the thermal time constant, two parameters are missing: 𝛼௚, 𝐴௚. 

Actually, the total heat transfer coefficient 𝛼௚ depends on various parameters. These 

include, for instance, the material properties (e.g. viscosity of the air, thermal conductiv-

ity characteristics of the water, the pressure vessel and the separator, etc.) as well as 

the flow and convection characteristics of the air (cf. Cerbe & Wilhelms 2013, pp. 371-

380). For this calculation, only the heat transfer coefficient (i.e. the heat exchange be-

tween the gas and the surface area) is taken into account. A practical approximate val-

ue for gases is provided by Cerbe & Wilhelms (2013, p. 530): 𝛼௚ ൎ 𝟒𝟓 𝑾 𝒎𝟐𝑲⁄ . 

The thermal exchange area 𝐴௚ (i.e. surface area where heat transfer occurs) depends 

on the accumulator type, shape and state of charge. For the calculation, the surface 

area will be simplified assumed to be constant. The bladder accumulator SB330-200 

from HYDAC serves as a reference to calculate 𝐴௚. Since the air volume was assumed 

to be nearly the accumulator volume in pre-charge state (𝑉௔௜௥ ൌ 𝑉௔௖௖ െ 1𝑙), the shape 

and size of the flexible bladder is close to the actual accumulator’s shape and size 

(𝐴௔௖௖ ൎ 𝐴௚, 𝑉௔௖௖ ൎ 𝑉௚ ൌ 𝑉ଵሻ. Consequently, the form of the bladder can be simplified as 

a cylinder, which is capped at both ends with a half-sphere (cf. Figure 6). Thus, the 

surface area yields (geometric formulas: Hering, Martin & Stohrer 2017, p. 25): 

 

𝐴௚ ൌ 𝐴௖ ൅ 2𝐴௛௦ ൌ 𝐴௖ ൅ 𝐴௦

⇒ 𝐴௚ ൌ 2𝜋 ∙ 𝑟 ∙ ℎ ൅ 4𝜋 ∙ 𝑟ଶ

 

3.3.2-3 

The height ℎ of the cylindrical part is assumed to be 10 times the radius 𝑟, which is 

acceptable when comparing the radius and the height of the SB330-200: 𝑟 ൌ  205𝑚𝑚,

ℎ ൎ 2100𝑚𝑚. Hence, equation 3.3.2-3 can be simplified as follows. 
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 𝐴௚ ൌ 2𝜋 ∙ 𝑟 ∙ 10 ∙ 𝑟 ൅ 4𝜋 ∙ 𝑟ଶ ൌ 24𝜋 ∙ 𝑟ଶ 3.3.2-4 

In order to reach the defined volume of 250l (𝑉௚), the values of the referenced accumu-

lator need to be slightly adapted for the hydro accumulator used in this thesis. 

 

𝑉௚ ൌ 𝑉௖ ൅ 𝑉௦ ൌ 𝜋 ∙ 𝑟ଶ ∙ ℎ ൅
4
3

𝜋 ∙ 𝑟ଷ ൌ 10𝜋 ∙ 𝑟ଷ ൅
4
3

𝜋 ∙ 𝑟ଷ ൌ
34
3

𝜋 ∙ 𝑟ଷ 

⇔ 𝑟 ൌ ඨ
3 ∙ 𝑉௚

34𝜋

య

      ⇒ 𝑟 ൌ ඨ
3 ∙ 0.25𝑚ଷ

34𝜋
ൎ

య

0.19𝑚 ൌ 𝟏𝟗𝟎𝒎𝒎 

3.3.2-5 

 

3.3.2-6 

As a result, the thermal exchange area of the hydro accumulator (with the dimensions: 

𝑟 ൌ 190𝑚𝑚 & ℎ ൌ 1900𝑚𝑚) yields (3.3.2-4): 

 𝐴௚ ൌ 24𝜋 ∙ 𝑟ଶ ൌ 24𝜋 ∙ ሺ0.190𝑚ሻଶ ൎ 𝟐. 𝟕𝟐𝟐𝒎𝟐  

By inserting all previously defined values in equation 3.3.2-2, the thermal time constant 

can finally be calculated (based on the set of assumptions): 

 𝜏 ൌ
𝑝ଵ ∙ 𝑉ଵ ∙ 𝑐௩

𝑇ଵ ∙ 𝑅௚ ∙ 𝛼௚ ∙ 𝐴௚
ൌ

35 ∙ 10ହ 𝑁
𝑚ଶ ∙ 0.25𝑚ଷ ∙ 718

𝐽
𝑘𝑔𝐾

293𝐾 ∙ 287
𝐽

𝑘𝑔𝐾 ∙ 45
𝑊

𝑚ଶ𝐾 ∙ 2.772𝑚ଶ
ൎ 𝟔𝟎𝒔  

A thermal time constant with the above value means that the gas temperature reaches 

63.2% of the system’s final temperature after 60s (Pourmovahed & Otis 1990, p. 118). 

Based on practical measurements made by Rupprecht, the thermal time constant can 

also be approximated with the following equations (cf. Rupprecht 1988): 

Table 6: Approximation equations for the thermal time constant 

Bladder accumulator Piston accumulator 

𝜏 ൌ 1.338 ∙ 𝑝 ∙ 𝑉଴.ଷଵଷ 𝜏 ൌ 0.3 ∙ 𝑝 ∙ 𝑉଴.ଶଶ ൅ 86.2 ∙ 𝑉଴.ସଽ 

𝑝 [bar] at 20°C,   𝑉 [m3] 

 

Using these equations results in a thermal time constant of either 30s (bladder-type) or 

51s (piston-type) for the dimensioned hydro accumulator. The real value for 𝜏 will lie 

somewhere in between the calcualtion results of this section. Consequently, an initial 

thermal time constant of 𝜏 ൌ 𝟓𝟎𝒔 is sufficiently accurate for the simulation. It is also the 

practice-oriented default value of the software AMESim. 

The comparison of the (dis-) charge time with the thermal time constant allows the 

characterisation of the change of state. For example, utilising charge times, which are 

much shorter than the thermal time constant (𝑡௖ ≪ 𝜏), results in a rather isentropic 

change of state. On the other hand, much longer charging (𝑡௖ ≫ 𝜏) result in a nearly 
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isothermal change of state (Korkmaz 1982, p. 29). The charge time for the simulation is 

predefined with 1800s which is, by far, greater than the thermal time constant. There-

fore, the assumption of nearly isothermal operation is entirely justified. 

The specification of the inlet of the hydro accumulator is the final step of this dimen-

sioning. During the storage process, flow resistances occur at the inlet. For example, 

the poppet at the bladder accumulator (cf. Figure 6), necessary to prevent the bladder 

to get pushed out, restricts the volume flow and leads to pressure losses. Consequent-

ly, inlet behaviour and losses can be modelled with the orifice law, which represents a 

narrowing of the cross section between connecting pipe and hydro accumulator 

(Murrenhoff 2014, p. 51): 

 𝑄 ൌ 𝛼஽ ∙ 𝐴଴ඨ
2 ∙ ∆𝑝

𝜌
3.3.2-7 

 𝛼஽ flow coefficient (depends on geometry) 

 𝐴଴ orifice cross section [m2] 

 𝜌 density of the liquid [kg/m3] 

However, orifice effects only gain importance when high flow rates are utilised. Since 

the volume flows are very low for this storage system, resulting losses will be marginal 

and can be neglected in the first step. Hence, the required orifice parameters (𝛼஽& 𝐴଴ሻ 

can be assumed as follows for the simulation: 

 𝛼஽ ൌ 𝟎. 𝟕 (≙ reference value according to Murrenhoff 2014, p. 52) 

 𝐴଴ ൌ
஺೛೔೛೐

ଶ
, with 𝑑଴ ൌ  

ௗ೛೔೛೐

ଶ
ൌ 𝟏𝟎𝒎𝒎 (cf. Chapter 3.3.3) 

The results of the dimensioning of the hydro accumulator are summarised in table 7. 

Table 7: Dimensions of the hydro accumulator of the basic model 

Hydro accumulator of the basic model 

Accumulator volume Vacc [l] 250 

Thermal time constant τ [s] 50 

Orifice diameter d0 [mm] & flow coefficient αD 10 & 0.7 

Storage medium (air) 

Pre-charge volume V1 [l] 249 

Pre-charge pressure p1 [bar] 35 

Higher operating pressure p2 [bar] 100 

Pre-charge temperature T1 [K] 293 
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3.3.3 Dimensioning of further components 

Hydraulic pipes 

At first, the dimensioning of the hydraulic pipe is limited to its diameter and its wall 

thickness. Additional specifications, like the pipe length and the surface roughness, can 

be added in further steps. While the flow rate is the parameter that determines the nec-

essary diameter, the maximum operating pressure determines the required wall thick-

ness (Murrenhoff 2014, p. 301). 

To find an appropriate pipe diameter for the basic model, the Reynolds number plays 

an important role. The dimensionless number 𝑅𝑒 marks the point at which the flow be-

haviour of fluids changes from laminar to turbulent (Murrenhoff 2014, p. 50). Generally, 

laminar flows are preferred because, in this case, the pressure losses along the pipe 

only increase linearly with the volume flow (quadratic increase for turbulent flows) 

(Bauer 2016, pp. 15-16). For liquids, 𝑅𝑒 is defined as follows (Bauer 2016, p. 13): 

 𝑅𝑒 ൌ
𝑣 ∙ 𝑑௛௬ௗ

𝜈
3.3.3-1 

 𝑣 average flow velocity [m/s] 

 𝑑௛௬ௗ hydraulic diameter [m] 

 𝜈 kinematic viscosity (“ny”) of the fluid [m2/s] 

The hydraulic diameter is equivalent to the internal diameter of the pipe (𝑑௛௬ௗ ൌ 𝑑௜௡ሻ 

(Bauer 2016, p. 13). With some transformations, the Reynolds number of hydraulic 

pipes can be displayed as (Bauer 2016, p. 14): 

 𝑅𝑒 ൌ
𝑣 ∙ 𝑑௜௡

𝜈
, 𝑄 ൌ 𝑣 ∙ 𝐴 ൌ 𝑣 ∙ 𝜋 ∙

𝑑௜௡
ଶ

4
 

 ⇒  𝑅𝑒 ൌ
𝑄 ∙ 𝑑௜௡

𝜈 ∙ 𝐴
ൌ

4 ∙ 𝑄 ∙ 𝑑௜௡

𝜈 ∙ 𝜋 ∙ 𝑑௜௡
ଶ ൌ

4 ∙ 𝑄
𝜈 ∙ 𝜋 ∙ 𝑑௜௡

 3.3.3-2 

 𝑄 flow rate / volume flow [m3/s] 

 𝐴 cross section of the pipe [m2] 

 𝑑௜௡ internal diameter of the pipe [m] 

The diameter should be defined, so that a critical Reynold number 𝑅𝑒௖௥ is not exceed-

ed, i.e. the flow type remains laminar. For pipes, the critical value lies between 2300-

2400 (Sigloch 2017, p. 456). This value is likely to be surpassed with high volume 

flows. 
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Consequently, the operating state, at which the maximum volume flow occurs, is the 

reference point (cf. Chapter 3.3.1): 𝑄௠௔௫ ൌ 8.6
௟

௠௜௡
, 𝑝ଵ ൌ 35𝑏𝑎𝑟,  𝑇ଵ ൌ 293𝐾. By using 

these values, the kinematic viscosity of water can be approximated according to a table 

provided by Herbert Sigloch (2017, p. 454): 𝜈௪௔ ൎ 𝟏. 𝟎𝟎𝟐 ∙ 𝟏𝟎ି𝟔 𝒎𝟐

𝒔
. 

By selecting the lower value 𝑅𝑒௖௥ ൌ 2300, the diameter of the pipe can now be calcu-

lated: 

 𝑅𝑒௖௥ ൐
4 ∙ 𝑄

𝜈௪௔ ∙ 𝜋 ∙ 𝑑௜௡
⇔ 𝑑௜௡ ൐

4 ∙ 𝑄
𝜈௪௔ ∙ 𝜋 ∙ 𝑅𝑒௖௥

3.3.3-3 

 ⇒ 𝑑௜௡ ൐
4 ∙ 143 ∙ 10ି଺ 𝑚ଷ

𝑠

1.002 ∙ 10ି଺ 𝑚ଶ

𝑠 ∙ 𝜋 ∙ 2300
ൎ 0.079𝑚 ൌ 𝟕𝟗𝒎𝒎  

It can be seen that the internal diameter should be bigger than around 8cm in order to 

have laminar flow in the pipe. This is a pretty high value, which is not technically sensi-

ble for such a small-scale system. The reason for the large diameter is the characteris-

tically low kinematic viscosity of water. 

As a comparison, the use of HLP 46, a standard hydraulic oil with a viscosity of 

46mm²/s at 40°C (Bauer 2016, p. 50), would result in a minimum diameter of only 

1.7mm under the same conditions. Consequently, laminar flows are difficult to realise 

when utilising water as the hydraulic liquid in small-scale systems. 

Choosing a different approach provided by Murrenhoff, the required pipe diameter can 

be calculated as follows (2014, p. 301): 

 𝐴 ൌ 𝜋 ∙ 𝑟௜௡
ଶ ൌ 𝜋 ∙

𝑑௜௡
ଶ

4
ൌ

𝑄
𝑣

⇔ 𝑑௜௡ ൌ ඨ
4 ∙ 𝑄
𝜋 ∙ 𝑣

3.3.3-4 

 𝐴 cross section of the pipe [m2] 

 𝑟௜௡ internal radius of the pipe [m] 

 𝑑௜௡ internal diameter of the pipe [m] 

 𝑄 flow rate / volume flow [m3/s] 

 𝑣 average flow velocity [m/s] 
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With 𝑄 ൌ 𝑄௠௔௫ ൌ 143 ∙ 10ି଺ ௠య

௦
 and a recommended average flow velocity of around 

4m/s for operation pressures between 50 and 100bar (Murrenhoff 2014, p. 301), the 

internal diameter is given with (3.3.3-4): 

 𝑑௜௡ ൌ ඨ
4 ∙ 𝑄
𝜋 ∙ 𝑣

ൌ ඩ
4 ∙ 143 ∙ 10ି଺ 𝑚ଷ

𝑠
𝜋 ∙ 4

𝑚
𝑠

ൎ 0.00675𝑚 ൌ 𝟔. 𝟕𝟓𝒎𝒎  

The result shows a recommendation for the pipe diameter of around 6.75mm. This is 

comparably small regarding the previous calculation and would result in a Reynolds 

number of around 27,000, which represents by far a turbulent flow. Fortunately, the 

lengths of the pipes, utilised for the prototype, are rather short. This means that occur-

ring pressure losses remain low despite turbulent flow. 

As a consequence, the pipe’s initial diameter can be set to an appropriate mean value 

of 20mm (ൎ 3/4inch) for the basic model. This value can be adapted in later steps to 

minimise efficiency losses in the connecting elements. The wall thickness can be de-

termined according to the DIN EN 10305. For example, seamless steel pipes with an 

internal diameter of 20mm and a wall thickness of 1mm allow operating pressures up 

to 128bar (safety factor 1.5, temperature range: -40°C െ +120°C), which would be a 

convenient component for the prototype system (Bauer 2016, p. 204). 

Valves and sensors 

For the basic model, the valves and the sensors of the hydro accumulator system are 

dimensioned in a way that they just provide their functionality and have no negative 

impact on the storage process. Thus, the dynamic characteristics of the named com-

ponents are being ignored for convenient analysing and modelling. For example, the 

check valve only restricts the direction of flow without causing any pressure losses due 

to friction. These impacts can be taken into account in further steps of the project. 

At this stage, the framework for the simulation of the basic model is set and the dimen-

sioning of the utilised components is done according to a subset of initial assumptions. 

This allows the setup and investigation of the basic model with AMESim, which is done 

in the following chapter. 
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3.4 Setup of the basic simulation model 

In order to understand the results of further simulations, the model of the hydro accu-

mulator system will initially be subdivided into the charging and discharging process. 

The separated models will be illustrated and their functionality will be explained. Sub-

sequently, the simulation of the models will be executed, evaluated and checked 

against the results of the dimensioning. 

3.4.1 Setup and simulation of the basic charging model 

Figure 17 shows the AMESim basic model of the charging process of the hydro accu-

mulator system. The green icons represent the input interface, the red icons the control 

scheme and the blue icons illustrate the system’s storage components. More details 

are provided in the HTML report of the charging model (Appendix A). 

 

Figure 17: Setup of the basic charging model 
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Input Interface 

Since the input of the wind turbine is assumed to be constant (𝑛௪௧ ൌ 300𝑟𝑒𝑣/𝑚𝑖𝑛,

𝑃௪௧ ൌ 500𝑊), it can be represented in a simplified way with a constant-speed motor 

which applies the same characteristics. A variable wind input can replace the motor in 

later steps. Furthermore, the wind turbine and the hydraulic pump are coupled mechan-

ically. For the simulation model, an ideal (i.e. efficiency of 100%) stepless mechanical 

gearbox (MGB) is implemented. Stepless MGBs provide continuously variable trans-

mission (CVT). Normally, these MGBs operate with a maximum efficiency of 90 to 95% 

(Ruan, Zhang & Walker 2015, p. 2; AïtTaleb, Chaâba & Sallaou 2013, p. 156). Howev-

er, for the practical implementation in the WESSPA project the translation of power is 

most likely done electrically with a generator and frequency converter, since electrical 

transmission components are cheaper and improve the regulation flexibility by having 

comparable efficiency. Consequently, the MGB is only applied to provide its key func-

tion: To control the power at the interface by providing the (lossless) conversion of 

torque and speed. Thus, the MGB maintains the power equality at its input and output 

ports. More precisely, the wind turbine is only able to provide a specific amount of 

power to the storage system (500W). The MGB regulates the pump’s speed via the 

gear ratio alpha (𝛼) so that the pump also operates with 500W of power during the 

charging process. The underlying control scheme is illustrated below. 

Control scheme 

The base equation for the control of the charging process is the power equality at the 

input interface: 

 
𝑃௪௧ ൌ 𝑃௣

𝜔௪௧ ∙ 𝑇௪௧ ൌ 𝜔௣ ∙ 𝑇௣

 

3.4.1-1 

 𝑃௪௧ Power of the wind turbine [W] 

 𝑃௣ Power of the pump [W] 

 𝜔௪௧ angular velocity of the wind turbine [1/s] 

 𝑇௪௧ torque of the wind turbine [Nm] 

 𝜔௣ angular velocity of the pump [1/s] 

 𝑇௣ torque of the pump [Nm] 

(with 𝜔 ൌ 2𝜋 ∙ 𝑓 ൌ 2𝜋 ∙
௡

଺଴
; frequency 𝑓 [1/s], rotational speed 𝑛 [1/min]) 

The gear ratio 𝛼 is the ratio of speed or of torque, which is needed as an input for the 

MGB: 

 𝛼 ൌ
𝑇௪௧

𝑇௣
ൌ

𝜔௣

𝜔௪௧
3.4.1-2 
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In the applied control scheme, the gear ratio is calculated with the torque of the wind 

turbine and the torque of the pump. The torque of the wind turbine is given with 3.4.1-1, 

whereby the actual speed is captured with a speed sensor: 

 𝑇௪௧ ൌ
𝑃௪௧

𝜔௪௧
ൌ

𝑃௪௧

2𝜋 ∙
𝑛௪௧
60

ൌ
30
𝜋

∙
𝑃௪௧

𝑛௪௧
3.4.1-3 

According to 3.3.1-2, the torque of the pump is stated with: 

 𝑇௣ ൌ
𝑉஽ ∙ ∆𝑝

2𝜋
ൌ

𝑉஽ ∙ ሺ𝑝ଶ െ 𝑝ଵሻ
2𝜋

3.4.1-4 

The volumetric displacement 𝑉஽ is a fixed value (cf. Chapter 3.3.1), while the pressure 

difference ∆𝑝 is variable and thus recorded with two pressure sensors. During the 

charging process, the pressure of the air and consequently the pressure in the hydrau-

lic system continuously increase. This results in an increasing resistance, which re-

stricts the volume flow provided by the pump. As a consequence, the torque at the 

pump rises simultaneously with the increasing ∆𝑝 over time. To maintain power equali-

ty, the speed of the pump must be reduced accordingly (cf. 3.4.1-1), which is done with 

the MGB by feeding the torque ratio 𝑇௪௧
𝑇௣

൘  as the gear ratio. 

Storage 

The simulation of the loading process is conducted according to the specifications es-

tablished in the framework and dimensioning section. The hydro accumulator, with a 

volume of 250l and a pre-charge pressure of 35bar, is loaded under ambient tempera-

ture conditions for 30 minutes with 500W. The hydraulic power is provided by a pump 

which displaces 4cm3 of water per revolution (see Chapter 3.2 & 3.3 or Appendix A for 

the remaining values). A check valve restricts the liquid to flow back into the pump. The 

liquid icon determines the water’s properties (cf. Chapter 3.2.1) and the tank, as an 

idealised infinite liquid source, provides the required amounts of water. 

The execution of the simulation allows the validation of the control method and illus-

trates the working process of the ESS. 

Simulation results of the input interface and the pump 

Figure 18 summarises the simulation results of the input interface and the pump. The 

graph on the bottom right displays the constant torque of around 16Nm, which is pro-

vided by the wind turbine. The results for the pump show that the implemented control 

scheme works correctly. The pump’s shaft torque rises during the charging process 

(from roughly 2 to 6 Nm). Consequently, the gear ratio permanently reduces the pumps 

shaft speed to maintain the system’s power. 



 

54 

Figure 18: Simulation results of the input interface & pump (charging model) 

 

The pump operates in a speed range between 760 and 2140 rev/min, which is very 

close to the speed range determined in the dimensioning section (cf. Chapter 3.3.1). 

The initial speed of 2140rev/min is derived from the pre-charge pressure of 35bar in the 

system. Under real conditions, the pump would adequately be accelerated up to the 

operating speed before the charging starts. The resulting impacts on the hydro accu-

mulator are illustrated in the following graphs. 

Simulation results of the hydro accumulator 

Figure 19 summarises the simulation results of the hydro accumulator. The volume 

flow into the hydro accumulator is equal to the flow rate provided by the pump. The 

reason for this is that the basic model represents an idealistic storage system with 

nearly no dissipation. It can be seen that the maximum flow rate of 8.6l/min is the same 

as calculated in the dimensioning section. It is reduced, due to the decreasing shaft 

speed of the pump, to a minimum value of roughly 3l/min. 

The incoming water pressurises the air in the accumulator from the pre-charge pres-

sure of 35bar to a final storage pressure of around 98bar. That nearly matches the pre-

viously defined storage pressure of 100bar. As a result, the volume of the gas is re-

duced from its initial volume of 249l to its final storage volume of around 91l. Conse-

quently, the hydro accumulator keeps 158l of water under pressure (98bar) at the end 

of the charging process (≙ effective volume ∆𝑉). 
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Figure 19: Simulation results of the hydro accumulator (charging model) 

 

Normally, the temperature of the gas should start at the ambient temperature of 20°C 

(≙ 293K). For some reason, the underlying equations of the simulations calculate an 

initial temperature of around 19°C. As mentioned in chapter 3.3.2, the development of 

the gas temperature is influenced by the thermal time constant (50s). It can be seen 

that the temperature of the gas rises during the first 140s and finds its equilibrium at 

around 23°C (≙ 296K). The compression heat dissipates across the system boundary, 

so that an almost constant temperature difference of 3°C between the gas and its sur-

rounding settles in. The waste heat is mostly absorbed and removed by the water. 

It can be concluded that the long charging period (i.e. nearly isothermal compression) 

allows proper heat exchange, which results in a stable temperature range of the work-

ing and storage medium during compression. 

Due to the idealised conditions, the amount of energy stored in the accumulator is 

close to the input energy (𝑊஼ ൌ 0.25𝑘𝑊ℎ). The stored energy can be calculated with 

the equation 2.2.1-1 and yields around 0.249kWh. The tiny difference arises from heat 

losses occurring during compression. Hence, the volumetric energy density (𝑊’) is 

more or less the optimum with 1.001kWh/m3 (optimum: 1.02kWh/m3, cf. Chapter 3.3.2). 

There will be more deviations from the ideal storage when the initial assumptions are 

iteratively replaced with more realistic values. 

The final properties of the hydro accumulator are the initial inputs for the basic dis-

charging model. Therefore, the values of interest are summarised in table 8. 
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Table 8: Characteristics of the charged hydro accumulator 

Charged hydro accumulator 

Accumulator volume Vacc [l] 250 

Thermal time constant τ [s] 50 

Orifice diameter d0 [mm] & flow coefficient αD 10 & 0.7 

Storage medium (air) 

Storage volume V2 [l] 91 

Storage pressure p2 [bar] 98 

Storage temperature T2 [K] 296 

 

3.4.2 Setup and simulation of the basic discharging model 

Figure 20 shows the AMESim basic model of the discharging process of the hydro ac-

cumulator system. It is the “counterpart” of the charging model which was described in 

detail in chapter 3.4.1. More details regarding the discharging model are displayed in 

Appendix B. 

 

Figure 20: Setup of the basic discharging model 
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Output Interface 

The model for the electrical consumer, i.e. the generator, is strongly simplified in order 

to realise the discharging of the hydro accumulator system. The generator is repre-

sented by an (idealised) constant mechanical load, which discharges the stored energy 

with the previously assumed characteristics: 𝑃௚ ൌ 500𝑊, 𝑓௚ ൌ 50𝐻𝑧 ሺ≙ n௚ ൌ

3000𝑟𝑒𝑣/𝑚𝑖𝑛ሻ. Likewise the charging model, the generator is coupled mechanically to 

the accumulator system, more specifically to the hydraulic motor, via an ideal stepless 

MGB to regulate the power relevant variables. Here, the hydraulic energy is converted 

into mechanical energy, which is required by the generator. Thus, the same specifica-

tions, made for the input interface, also apply for the discharging model. 

Control Scheme 

The control scheme of the discharging process is based on the same prerequisites and 

equations as the control scheme of the charging process (cf. Chapter 3.4.1). 

For this reason, the description of the control scheme during discharging is kept short. 

Here, the gear ratio 𝛼 yields (with 𝑇௚ & 𝑇௠ according to 3.4.1-3 &-4): 

 𝛼 ൌ
𝑇௚

𝑇௠
3.4.2-1 

 𝑇௚ torque of the generator [Nm] 

 𝑇௠ torque of the motor [Nm] 

Analogous to the pump, the torque of the motor depends on the pressure difference 

∆𝑝, which is captured with two pressure sensors. During discharging, the air in the hy-

dro accumulator expands continuously and thus the pressure at the motor inlet de-

creases, which consequently reduces ∆𝑝. This results in a declining torque of the mo-

tor. In order to be able to provide a constant power to the generator, the MGB regulates 

the motor by increasing its shaft speed (reverse regulation as it happens for the charg-

ing). Overall, the control scheme enables the generator to drive at constant speed and 

power, by using the stored energy within the system’s operating range. 

Besides, other regulation solutions exist. One option is, for example, to keep the pres-

sure at the motor inlet constant by utilising a PRV. This consequently restricts the mo-

tor’s speed to a certain value (i.e. resistance control with impressed pressure, cf. 

Murrenhoff 2014, pp. 329-330). In this application, no transmission would be neces-

sary, since the generator shaft could be coupled directly to the constant-speed shaft of 

the hydraulic motor. However, this approach is associated with significant shortcom-

ings. In particular, huge efficiency losses at the PRV diminish the performance of the 

storage system, since excess amounts of liquid, provided by the hydro accumulator, 

must be bypassed into a tank to maintain the pressure. Hence, the regulation and con-
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trol of the discharging process, provided in this thesis, have the advantage of reduced 

losses and higher efficiency. 

Storage 

The outcome of the charging model serves as a starting point for the parameters of the 

basic discharging model (cf. Table 8). In particular, the hydro accumulator (𝑉௔௖௖ ൌ 250𝑙) 

is in the charged state with an air storage pressure of 98bar, a corresponding air vol-

ume of 91l and temperature of 23°C. The air expands and forces the water out of the 

accumulator to drive the motor (𝑉஽,௠ ൌ 4𝑐𝑚ଷ/𝑟𝑒𝑣) with 500W. The discharging process 

lasts until the pre-charge pressure state is reached, i.e. lower system pressure of 

35bar. This consequently determines the discharge time 𝑡ௗ. The final system’s state is 

equal to the initial state of the charging step. The results of the simulation are visual-

ised below. 

Simulation results of the output interface and the motor 

Figure 21: Simulation results of the output interface & motor (discharging model) 

 

The results only show the discharging process during the actual operating phase. The 

ramp-up phase, during which the generator and motor are accelerated to system 

speed, is not displayed. The generator must be continuously supplied with 500W. The 

corresponding load, applied at the storage system, is roughly 1.6Nm. As already de-

scribed in the control section, the motor shaft torque falls with the declining storage 

pressure, here, from approximately 6Nm to 2Nm. As a reaction, the MGB regulates the 



 

59 

motor speed gradually from around 765rev/min up to 2190rev/min by adjusting the gear 

ratio alpha. It can be seen that the operational parameters (i.e. torque- and speed-

range) of the motor are nearly equal to the pump’s parameters; an indicator that the 

control scheme works for both interfaces. As a result, the motor power is equal to the 

required consumer power at any point during operation. The changes in the hydraulic 

accumulator are illustrated below. 

Simulation results of the hydro accumulator 

Figure 22: Simulation results of the hydro accumulator (discharging model) 

 

The graphs above show that the pressurised air gradually expands from 98bar, and a 

corresponding volume of 91l, back to pre-charge conditions: 35bar and 249l. That forc-

es the stored water out of the hydro accumulator (𝑄௔௖௖ሻ and drives the motor (𝑄௔௖௖ ൎ

𝑄௠ሻ. The flow rate increases continuously from roughly 3l/m to 8.8l/min. This is neces-

sary to compensate the decreasing system pressure and therefore torque at the motor 

(cf. Figure 21). As a reminder, the gas pressure is equal to the pressure at the motor 

inlet and also to ∆𝑝 (= system pressure, cf. Chapter 3.3.1).  

Due to the expansion with the related thermal time constant, the gas temperature drops 

sharply from 23°C to roughly 17°C in the first 140s and remains at this value for the 

rest of the discharging process. When the gas temperature becomes lower than the 

surrounding’s temperature (i.e. water temperature: 𝑇௪௔ ൌ 20°𝐶), heat transfer occurs 

from the water into the gas and stabilises the temperature during expansion. Combined 
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with the slow operation, this leads to a total temperature difference of only 6°C (nearly 

isothermal) during expansion. 

Besides the volumetric energy density 𝑊’, it is possible to determine other parameters 

defined in chapter 3.2.2. The total efficiency 𝜂௦ of the storage cycle can be derived from 

the ratio of discharge and charge time, because the input power and the output power 

are equal (cf. 3.2.2-1). A closer look at the graphs shows that the time period for dis-

charging is shorter than for the charging process. In fact, the discharging process only 

lasts around 1750s. For the idealised basic model, the following efficiency can be stat-

ed (𝑃௜௡ ൌ 𝑃௢௨௧ ൌ 500𝑊): 

 𝜂௦ ൌ
𝑃௢௨௧ ∙ 𝑡ௗ

𝑃௜௡ ∙ 𝑡௖
ൌ

𝑡ௗ

𝑡௖
ൌ

1750𝑠
1800𝑠

ൎ 97.2%  

The efficiency is less than 100% because a small amount of energy is lost as heat and 

cannot be reused as volumetric change work. As a consequence, less energy is avail-

able to drive the hydraulic motor and hence the generator. Currently, the calculation of 

the system’s efficiency is rather representative, since both models represent idealistic 

systems (i.e. no dissipation, idealised components, etc.). Nevertheless, the efficiency of 

the storage system can be determined by following this approach. By taking additional 

losses (e.g. mechanical and hydraulic frictions) into account, the discharge time and 

thus the efficiency of one storage cycle are further reduced. The final efficiency cannot 

precisely be determined at this stage, but it is expected that the system is able to reach 

efficiencies between 60-80%. 

Overall, the presented simulation results demonstrate the functionality of the (idealistic) 

basic charging and discharging models of the hydro accumulator system. The outcome 

is in line with the dimensioning and the underlying control schemes. The models can be 

adapted and optimised to become more realistic. In the following step, both models are 

merged in one basic storage model which represents a full storage cycle. 

3.4.3 Merging of the charging and discharging model 

In this chapter, the charging model and discharging model (cf. Chapter 3.4.1 &-2) are 

merged to one basic model that is capable of the representation of full storage cycles. 

It can be used for further simulation and examination purposes in the research project 

WESSPA. The structure of the model is described, followed by a qualitative represen-

tation of its functionality. Figure 23 depicts the merged model which was also set up 

with the AMESim software. The HTML report, attached in Appendix C, provides more 

detailed information. 
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Figure 23: Merged basic model 

 

 

It can be seen that the structure of the model is based on the previously separated dis- 

and charging model. The left side represents the charging process (charging side), 

while the right side implements the discharging process (discharging side). Conse-

quently, the same components (i.e. the same characteristics and dimensions) are ap-

plied according to the separated models. For the sake of clarity, the control schemes 

are merged into so called “Supercomponents”, which basically fulfil the same function 

as the control schemes of the separated models. 

The model is extended by two different kinds of valves (cf. Chapter 2.3): DCVs and 

PRVs. As already mentioned in chapter 3.3.3, the valves are dimensioned so that they 

have, at first, no negative influence on the system’s performance. The three PRVs, at 

the pump, the motor and the hydro accumulator are integrated for safety reasons. They 

limit the pressure in the hydraulic system to avoid damages caused by unexpected 

pressure peaks. They are configured to open slightly over the targeted storage pres-

sure at 105bar. This makes sense because the storage pressure was one design crite-

rion in the dimensioning section (cf. Chapter 3.3). The two DCVs are utilised to sepa-

rate the charging and discharging side. They are triggered time-dependent and distinct 

three different phases in the storage cycle. 
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1. Charging phase: The left DCV is open and the right DCV is closed, so that 

the water only flows from the pump into the hydro accumulator (i.e. the dis-

charging side is shut off). The charging phase represents a time period when 

the wind turbine generates surplus energy, which is stored by the hydro ac-

cumulator system. 

2. Storage phase: Both DCVs are closed. Thus, the liquid flow is interrupted 

and the hydro accumulator is shut off from the system. The storage phase 

represents a time period when the stored energy is not required. 

3. Discharging phase: The left DCV is closed and the right DCV is open, so that 

the stored liquid can exit the hydro accumulator and drive the hydraulic motor 

(i.e. the charging side is shut off). The discharging phase is active when the 

wind turbine does not provide enough power due to the lack of wind. 

The merging of the models has caused some complications. Hence, the following ad-

justments had to be made. 

Required changes for the merging 

The first adjustment concerns the orifice of the hydro accumulator. The diameter had to 

be adapted from 10mm to 5mm. For some reasons, a “large” orifice diameter led to 

uncontrolled incoming and outgoing flows of water during the storage phase. This 

made the simulation extremely slow and prevented appropriate investigations. Conse-

quently, the orifice diameter was reduced. Nevertheless, related pressure losses at the 

accumulator inlet remain negligible due to the low flow rates. The impact of the orifice 

diameter on the simulation is illustrated below. 

Figure 24: Impact of the orifice diameter on the simulation 

 

It can be seen that a smaller diameter results in less flow fluctuations at the accumula-

tor inlet which levels off in the further course of the storage phase. That is not the case 

for a diameter of 10mm. 
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Secondly, the control schemes of the charging and discharging side needed to be ex-

tended. Under real conditions, the storage system would be coupled or decoupled to 

the input and output interface according to the current supply and demand situation. 

This was realised in the model by activating or deactivating the charging and discharg-

ing side for a defined period. Accordingly, related components are only active for their 

respective time period. As a result, charging and discharging of the storage system do 

not occur at the same time. 

Simulation results 

Since the merged model is a combination of the charging and discharging model, the 

general conditions (framework, dimensions, parameters, etc.) are exactly the same as 

explained in detail in the previous chapters. For this reason, the simulation results are 

only presented concisely and qualitatively. Resulting values will not be discussed in 

detail, as these correspond to the previous simulation results. However, it was not pos-

sible to model the storage phase with the single models, so this phase receives more 

attention in this section. Overall, the aim is to illustrate the functionality of the merged 

model. 

The hydro accumulator system is charged for 30min, followed by a storage phase of 

10min (600s) and then discharged to pre-charge conditions. The execution of the simu-

lation shows the following results. 

Simulation results of the pump and motor 

Figure 25: Simulation results of the pump & motor (merged model) 

 

Figure 25 shows that the total simulation time period is set to 4500s. However, the mo-

tor stops after roughly 4140s. This is because the hydro accumulator reaches its pre-

charge state at this point. Since the charge time and storage time is fixed, it can be 

concluded that the discharge time is slightly shorter in comparison to the results of 

chapter 3.4.2. The reason for this is described in the following sections. For the 
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demonstration of the functionality, the shaft speed of the pump and the motor serve as 

an example. It can be seen that the power components only operate when they are 

required. There is a downtime of 10min during the storage phase. The direct interrup-

tion, when the storage process changes from one phase to another, is a simplification. 

In real applications the transition would be more continuous. 

Simulation results of the hydro accumulator 

Figure 26: Simulation results of the air volume (merged model) 

 

The three different phases of the storage cycle can be easily identified by examining 

the volume of the air (Figure 26). The charging phase, i.e. compression, is followed by 

the storage phase where the volume remains constant. When the discharging is in-

duced, the air continuously expands to the initial volume. The development of the air 

volume during charging and discharging is similar to the separated simulation models 

of the previous chapters. 

Figure 27: Simulation results of the air pressure (merged model) 
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The pressure development is displayed in Figure 27. In this graph, the pressure be-

haves in exact contrast to the volume, but also represents the phases of the storage 

cycle. When the storage pressure is reached after 30min, a slight pressure drop can be 

noted right after the accumulator is shut off from the system. Here, the air expands 

isochorically (cf. Chapter 2.2) because the air temperature deviates from the tempera-

ture of its surrounding. This means the accumulator loses some of its storage pressure 

without performing usable work, which consequently reduces the discharge time and 

the efficiency a tiny bit. After that, the hydro accumulator is in equilibrium for the re-

maining storage period from the thermodynamic point of view. It is interrupted when the 

discharging side opens and the stored potential energy is used to push the water out of 

the hydro accumulator, which steadily reduces the systems pressure back to pre-

charge conditions. Hence, this storage cycle represents three changes of state: iso-

thermal compression, isochoric expansion and isothermal expansion. 

Figure 28: Simulation results of the air temperature (merged model) 

 

By taking a closer look at the development of the air temperature, it can be seen that 

there is only one time period where no heat transfer occurs between the storage medi-

um and the surrounding components (Figure 28). This is when the air temperature has 

balanced to the ambient temperature during the storage phase. During charging and 

discharging, the compression and expansion results in heating and cooling of the gas, 

which leads to a temperature gradient and heat flows over the system boundary. At the 

moment when the hydro accumulator is shut off, the cooling of the gas leads to iso-

choric expansion (cf. Figure 27). Nevertheless, the total change of temperature is very 

low, which keeps thermal effects and resulting efficiency losses marginal in the pre-

sented storage system. Moreover, the stable temperature has the positive effect that 

some properties of the working and storage medium also remain relatively constant 

during operation. As already mentioned, the viscosity, heat capacity and density are, 

for instance, temperature dependent characteristics. As a result, the system’s perfor-
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mance is easier to calculate and to predict and deviations from the initial assumptions 

are kept small. 

To sum it up, this chapter represented the functionality of the merged basic model. The 

combination of the charging and discharging models additionally allows the investiga-

tion of effects, which occur during the storage phase. In the following chapter, the find-

ings and results of this thesis are compared with the work of Jan Molter who investigat-

ed a purely pneumatic CAES system within the research framework. 

3.4.4 Comparison of the hydro accumulator and CAES system 

The main working principle and characteristics of CAES is part of chapter 1.4. General 

similarities and differences between the purely pneumatic CAES system and the hydro-

pneumatic accumulator system were already discussed in chapter 2.3. While both sys-

tems utilise air as the storage medium, the hydro accumulator system does not use air 

as the working medium but uses a liquid (water) instead. This chapter provides a com-

parison of the results of this thesis with the results of Jan Molter. The aim is to highlight 

important differences of the examined system parameters and characteristics (e.g. 

temperature or pressure behaviour) in order to identify potential difficulties and sticking 

points for subsequent tasks in the WESSPA project. 

From the start, the authors ensured comparability of both concepts when defining the 

framework with its underlying assumptions, the dimensioning criteria and the setup of 

the simulation models. For example, the applied control schemes as well as the input 

and output requirements for the storage system are equal. Moreover, the applied stor-

age medium is dry air in both cases. The structure of the models is similar and the sim-

ulations are executed according to the same general conditions. That means, for in-

stance, that the charge time, the operating pressure range and the initial temperature 

are equal. 

To get a quick overview, the main parameters of interest are summarised in the table 

below. These mainly consist of the results of the thermodynamic calculations and the 

simulation results of the separated basic models. The results of the merged models are 

compared qualitatively. Some values are rounded for the sake of clarity. Again, the 

simulation results should be treated with caution due to the set of assumptions made 

for first research purposes. Currently, the available data for evaluation is limited, since 

both systems are still in their pre-development phase. Hence, further examination is 

necessary for more meaningful comparisons. 
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Table 9: Comparison of the hydro accumulator and CAES system 

Parameter 
Hydro accumulator 

system 
CAES system 

Isothermal energy density [kWh/m3] 
(p1=35bar, p2=100bar) 

1.02 2.9 

Isentropic energy density [kWh/m3] 
(p1=35bar, p2=100bar) 

0.86 2.5 

Storage volume [l] 249 21 

Storage pressure (achieved) [bar] 98 96 

Minimum storage temperature [°C] 17 -9 

Maximum storage temperature [°C] 23 67 

Discharge time [s] 1750 420 

Efficiency [%] 97 23 

Source of CAES data: Jan Molter 2020 

The first parameter of interest is the (volumetric) energy density for both storage con-

cepts. It can be seen that the isothermal and isentropic energy density is roughly three 

times lower for hydro accumulator systems. Consequently, CAES systems are able to 

provide the same storage capacity as hydro accumulators with less volume or a lower 

storage pressure. Hence, CAES systems generally allow a more space-saving design 

than hydro accumulator systems. For this reason, the required storage volume, to 

reach the aimed 100bar, is considerably lower for the CAES system, only 21l, while the 

dimensioning of the hydro accumulator leads to a required storage volume of 249l. Fur-

thermore, the dimensioning of the CAES storage volume relies on slightly different 

equations (mass specific dimensioning), which is another reason for the deviation of 

storage sizes. 

After the charging process, both storage systems nearly reach the aimed storage pres-

sure of 100bar, while the CAES system’s storage pressure is slightly lower with 96bar 

than the hydro accumulator system’s pressure (98bar). From the thermodynamic point 

of view, this means that both systems nearly achieve the optimum of storable energy. 

However, a closer look at the temperature of the storage medium emphasises the main 

difference between CAES and hydro accumulator system (Figure 29). 

While the temperature of the air in the hydro accumulator only deviates a few degrees 

from the ambient temperature (17-23°C), the thermal effects in the CAES system are 

enormous during the storage process. Even with slow operation (30min charge time), 

the temperature rises up to 67°C in the storage tank. 
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Figure 29: Comparison of the storage temperature during the charging process 

 

Source of CAES data: Jan Molter 2020 

Discharging from this state results in a minimum temperature of minus 9°C. The simu-

lation results, thus, substantiate the complications of heat management that CAES sys-

tems have to challenge, as it was already mentioned in chapter 2.3. This is additionally 

highlighted when the temperature of the compressor is examined. Here, the simulation 

shows a maximum temperature of 467°C. That would result in serious damage at the 

compressor unit in real applications. 

The large temperature variation has several negative impacts on the performance of 

the CAES system, which the hydro accumulator system does not have to deal with to 

this extent. Firstly, temperature dependent properties of the air (e.g. viscosity and den-

sity) are more variable. Consequently, the calculation of the system’s outcome gets 

more complex and deviations from initial assumptions are more severe. Secondly, oc-

curring thermal effects have an adverse impact on the total efficiency. This becomes 

clear when comparing the discharge times. While the hydro accumulator system is able 

to provide 500W of power for 1750 seconds, the discharge period of the CAES system 

only lasts 420 seconds. Hence, the discharge time is roughly four times shorter com-

pared to the discharge time of the hydro accumulator system. This in turn leads to a 

total efficiency of only 23%, whereas the efficiency of the hydro-pneumatic system is 

roughly 97%. Since both concepts utilise idealised components (e.g. 100% efficiency of 

the power units and transmission system), the logical conclusion is that thermal losses 

(i.e. waste heat during compression and cooling during expansion) are the main reason 

for the poor efficiency of the purely pneumatic system. 

The influence of the temperature development on the system’s performance is even 

more serious when the simulations of the merged models are being compared. As it 

was described in the previous chapter, the stable temperature range of the hydro ac-

cumulator system keeps differences between the results of the separated models and 

the merged model low. The addition of the storage phase only leads to a slight pres-
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sure drop and therefore a small amount of lost energy. However, the storage phase in 

the CAES system results in a considerable temperature drop of the air (from 67°C to 

20°C), which is followed by a huge pressure decrease. Hence, the amount of reusable 

energy is further reduced and with it the already modest discharge time and efficiency. 

Overall, even though CAES systems achieve higher energy densities, the complexity 

and impact of thermal effects crucially influence the system’s performance. The hydro 

accumulator system circumvents this problem by utilising an almost incompressible 

liquid with a higher heat capacity as the working medium. Consequently, the hydro ac-

cumulator system achieves better efficiencies and more feasible simulation results than 

the CAES system at the current research state. As a reminder, the efficiency is only 

23%, although idealised conditions are assumed. Opportunities to enhance the effi-

ciency of the CAES system are, on the one hand, to compress the air in several stages 

(followed by a cooling phase) up to the storage pressure and, on the other hand, the 

integration of a TES solution to reduce thermal losses (cf. Chapter 1.4). The TES 

stores waste heat, which is generated during compression, and returns it during the 

expansion step to minimise the temperature decrease. These are necessary steps be-

fore the CAES system can be implemented as a real application. 
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4 Conclusion & Outlook 

As a conclusion, the following can be claimed about the outcome of this bachelor the-

sis. For a basic understanding, important theoretical and physical principles of the hy-

dro accumulator concept were illustrated and classified within the current state of ener-

gy storage technologies. Particularly the hydro accumulator, as the key component of 

the storage system, was discussed with its existent designs, working principle and cur-

rent state of research. For the requirements of the WESSPA project, a hydro accumu-

lator system was designed based on various parameters and general conditions. In the 

next step, the system was modelled, parameterised and then simulated with the soft-

ware tool AMESim. The evaluation of the simulation results showed that the functionali-

ty of the models is in accordance with the outcome of the dimensioning. The dimen-

sioning, modelling and simulation was sufficiently documented for subsequent investi-

gations. 

Thus, this work provides a theoretical framework as well as several storage models to 

the project team, which can easily be understood, used and adapted according to spe-

cific requirements. Consequently, the task of the conception, modelling and dimension-

ing of an energy storage system for wind energy with hydro accumulators is success-

fully completed. 

The following difficulties and complications emerged during the working process. The 

familiarisation with the simulation software was more difficult than expected. The un-

derstanding of the interrelations of parameters, the underlying calculation methods as 

well as the selection and adjustment of the system components were very time-

consuming. Another challenge was the development of a proper functioning control 

scheme which works for the input and the output interface. 

In addition, the high complexity of the system led to a number of simplifying assump-

tions, made for the dimensioning and simulation, which do not apply in reality. These 

assumptions limit the informative value of the obtained simulation results. Detailed 

statements about final system’s efficiency and technical feasibility are therefore des-

tined for later stages of the project. Hence, this thesis rather serves as a foundation for 

further research purposes. 

Consequently, the author suggests the following steps in the further course of the re-

search project. The basic models should be enhanced by systematically replacing the 

initial assumptions with more realistic values. This includes, for instance, the following 

implementations. 
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 consideration of the efficiencies of the power units (pump & motor) and 

the transmission system (𝜂௩௢௟, 𝜂௛௠, 𝜂௠௘௖௛, …) 

 adjustments of integrated valves to consider losses caused by system 

control and regulation 

 replacement of an ideal gas by a real gas to examine realistic behaviour 

of the storage medium 

 consideration of dissolved air in the hydraulic liquid and of dissolved wa-

ter in the storage medium (air) to investigate resulting impacts on the flu-

id’s characteristics during operation (e.g. compressibility, temperature, 

etc.) 

 replacement of a constant power input by a variable wind input to model 

effects of storage dynamics 

 consideration of pressure losses at the pipes by taking wall roughness, 

pipe length and geometries (i.e. junctions, connectors, etc.) into account 

 … 

The improved models can then be used to optimise the storage system further. This is 

done by parameter variations, such as the variation of the accumulator’s storage pres-

sure, volume and charge time. This approach creates more usable data to drive scien-

tific insights related to the hydro accumulator system. The next logical step is the selec-

tion of proper system components for a first prototype, whereby the dimensioning and 

simulation results serve as a reference point. The prototype of the hydro accumulator 

system can then be coupled to the prototype of the small-scale wind turbine of the 

WESSPA project and be investigated in the wind tunnel of htw saar. The models and 

related simulation results are suitable for comparison with the experimental outcomes. 

The hydro accumulator technology, with its versatile applicability and environmentally 

friendly characteristics, will play an important role in the future of energy storages. 

Therefore, research projects, such as the WESSPA project, are indispensable to push 

the technical progress for a sustainable and long-term energy supply. 
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Appendix A: HTML report of the charging model 
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Appendix B: HTML report of the discharging model 
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Appendix C: HTML report of the merged model 
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