

Florian Brandsma

EXPEDITION GAME EDITOR

EXPEDITION GAME EDITOR

 Florian Brandsma
 Bachelor’s Thesis
 Spring 2020
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Option of Internet Services

Author: Florian Brandsma
Title of the bachelor’s thesis: Expedition Game Editor
Supervisor: Kari Laitinen
Term and year of completion: Spring 2020 Number of pages: 36

This thesis handles a personal project: The Expedition Game Editor. It describes
the resource problems faced when developing adventure games while offering
the editor as a solution.

The aim of the project was to provide a solution for affordable adventure game
development. The editor allows developers to create adventure games without
the assistance of specialists using built-in assets and game logic.

The production of the editor is still in progress, but it has reached a state where
the initial phase of the game logic has been proven to work. The editor alleviates
some of the problems in adventure game development, but it is not without its
own limitations. Developers are restricted to only the built-in assets and logic,
potentially limiting their creative vision.

In the future, the editor can be used to create simple and complex adventure
games.

Keywords: game editor, game design, game development, software develop-
ment, unity

4

PREFACE

I graduated as a Game Designer from Deltion College, the Netherlands, in 2014.
Since then I have attempted to put my mark on the gaming landscape by creating
an adventure game, inspired by the games I used to play when I was younger.

I had spent two years working on my game before deciding not to continue with
it. Recreating the vast amount of content of an adventure game is outside the
scope of what a single person can achieve within a reasonable amount of time.
The plan was to salvage parts of what I had made and create a more contained
adventure game.

A faction in my game world was called The Expedition, a group of adventurers
who trekked through a vast desert. I chose to create a game about them, as a
desert setting would require a limited amount of assets to make it believable and
would therefore be possible to create alone or with a small team.

This project too became more than it was meant to be due to the potential I saw
in it. But this time I knew that if I were to create a game of this scope, I would
need the right tool: a game editor.

The Expedition Game Editor is an ongoing personal project which started in the
summer of 2016 and entered production in the spring of 2018. The project files
can be found in GitHub by searching the name of this author.

I would like to thank Erwin van Dieren for providing the textures for the character
models found in the current version of the editor and Lukasz Holubowicz for his
continued support and testing throughout the production phase of the project.
Secondly, I would like to thank all the lecturers at Oulu UAS, for without their
lectures realizing this project would not be possible. Lastly, I would like to thank
my supervisor Kari Laitinen and language teacher Kaija Posio for their guidance
in writing this thesis.

Oulu, 19.03.2020
Florian Brandsma

5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

VOCABULARY 6

1 INTRODUCTION 7

2 ENGINE VERSUS EDITOR 8

2.1 Unity 9

2.2 Expedition Game Editor 10

3 FEATURES 12

3.1 Assets 13

3.1.1 Items 13

3.1.2 Interactables 15

3.1.3 Regions 18

3.1.4 Scenes 21

3.2 Stages 22

3.2.1 Chapter 22

3.2.2 Phase 24

3.2.3 Quest 25

3.2.4 Objective 26

3.2.5 Interaction 27

3.2.6 Time 31

4 LIMITATIONS 32

5 CONCLUSION 35

REFERENCES 36

6

VOCABULARY

AAA Triple-A, a classification used to describe high budget

games

Asset A local resource used in game development

NPC Non-playable character

UI User interface

7

1 INTRODUCTION

Making a game is hard. Making an adventure game is even harder. Making an

adventure game that competes with AAA giants, such as Blizzard’s World of

Warcraft or CD Projekt Red’s Witcher games, alone or with a small team and with

limited resources, is impossible.

Adventure games are almost by definition large. There is little adventure to be

had in the confinement of a single room, compared to an entire world. Making

such a world takes vast amounts of time and resources. The Witcher 3 cost $81

million to make over the course of 3.5 years by a team of 240 people, with 1,500

people being involved in total (Chalk 2015).

The solution to this problem is using the right tools. Developers have been using

proprietary editors for decades, as Blizzard has for World of Warcraft with

WowEdit (Staats 2019, 224). When these developers are unwilling to share their

editors or if the licence fees are too high, one must make their own editor.

This thesis handles the Expedition Game Editor, a work-in-progress adventure

game creating and editing tool.

The editor allows developers to create adventure games without the assistance

of specialists. This will in turn alleviate the obstacles described above and greatly

reduce the time and resources normally required to make a game of similar

scope.

This thesis will cover the logic, existing and planned features of the editor and

how they can together produce adventure games of any size.

8

2 ENGINE VERSUS EDITOR

Knowing the difference between a game engine and an editor can be difficult.

Both are used to make video games, but one is quite unlike the other. A game

engine is a framework for game development, but not all frameworks are engines.

An engine consists of several sub-engines that handle physics, rendering, object

collision, audio, lighting, animation and AI. They are capable of importing files

from external sources for visuals and audio and they allow developers to create

scripts to create game logic. A debugging tool is provided by the engine to aid

troubleshooting during the development process. Some game engines, such as

Unity, come with built-in scripts to control other parts of the engine (Unity 2020a).

A game editor is a graphical UI that can be used on top of a game engine to help

streamline the development of a game. Editors are tailored to create specific

types of games. Like game engines, an editor comes with a scene editor where

developers can place assets. The editor then communicates with the engine to

construct the game.

The difference between the two is that the editor is more restrictive, following a

set of rules specific for the type of game it is designed for whereas an engine is

more liberal in its capabilities. An editor typically does not allow the creation of

scripts and while this adds more restrictions, it enables the creation of games

without programmers.

Developing a game editor can be a costly and time consuming endeavour and it

is not worth doing for many game projects. For the massively-multiplayer online

roleplaying game World of Warcraft, Blizzard developed their own editor,

WowEdit. WowEdit allowed game designers to craft the World of Warcraft almost

entirely independently from programmers, creating up to 99 percent of the original

game’s abilities (Staats 2019, 224).

9

Blizzard has demonstrated the value of using a game editor for large-scale, long

term game projects. The editor that was used to build World of Warcraft over

fifteen years ago is still used to maintain and create new content for the game.

2.1 Unity

Unity is a game engine that is developed by Unity Technologies. While it is largely

used to make games, it is also used in other industries such as automotive, film,

architecture and gambling (Unity 2020b).

In 2016 it was enjoying a 45 percent share of the global game engine market,

ahead of its closest competitor at 17 percent (TNW DEALS 2016). This means

that there are vast resources available on the Internet for developers, ranging

from documentation and tutorials to frequently asked questions and answers.

Many solutions to problems that users will run into are readily available online.

Unity obtained its popularity by its initial accessibility. Ever since the engine was

released in 2005 it had always had the option to be used for free, whereas its

competitors, e.g. Epic Games’ Unreal Engine previously charged users upfront

(Sweeney 2015). Only when products made with Unity result in revenue earnings

of more than $100k for individuals and $200k for businesses, will users have to

start paying fees (Unity 2020c).

Paired with its accessibility is also the ability to deploy products on up to twenty-

five different platforms with a single click (Unity 2020d). As of today, 50 percent

of games across these platforms are made in Unity (Unity 2020e).

The reasons above have contributed to the decision to develop the Expedition

Game Editor in Unity.

10

2.2 Expedition Game Editor

The Expedition Game Editor is an application that is being developed in Unity.

The idea originated out of the desire to be able to create and maintain large-scale

adventure games with limited resources.

The editor application is one half of a broader Expedition system. It is used to

write information to a database. That information is read by the other half: a game

application. The game is constructed using information from the database that

was entered by the editor.

Entire games can be made in the editor, using only built-in assets. Developers

can create characters, enemies, abilities, items, interactions, quests, scenarios

and entire worlds, all with relative ease in a simple UI and without programming

or the assistance of specialists.

When the editor is ready, it can be used on both desktop computers and mobile

devices. Games made with the editor can be deployed on all platforms supported

by Unity as described earlier in Section 2.1.

Logic

The editor can be used by developers to create games without programming.

Programmers are responsible for creating a game’s logic, but the use of the editor

does not require any. The editor has been designed with a certain logic in mind,

which has been pre-programmed into the system. This logic can be observed in

Figure 1. The way in which the logic operates is best explained in the context of

the editor’s features.

11

FIGURE 1. A diagram of the Expedition system logic

12

3 FEATURES

General

The Expedition Game Editor’s features are centred around the logic introduced

in Section 2.2. While the logic is complicated, the editor’s features are designed

to be minimalistic so that it can even be used on mobile devices.

The general UI layout can be seen in Figure 2. It is divided into four sections:

1. The main view displays all the relevant information of the current selection

and is also the place where all the editing happens.

2. The asset window displays a list of assets depending on the selected tab.

3. The arrow button minimizes the window it is paired with. In this case, the

asset window.

4. The action bar is dedicated to commands and shortcuts that are different

for every sub-editor.

FIGURE 2. The home page of the Expedition Game Editor

13

3.1 Assets

A game produced by the editor is comprised in large part of assets. The assets

in the editor are pieces that are created by a developer that can then be used to

give context to the game. Many parts of the editor require assets for input, and

so they are the cornerstone of the system.

There are three types of assets: items, interactables and regions.

3.1.1 Items

Items are goods that can be collected in the game. They can be used to upgrade

characters, to restore health points, to craft other items or to progress in the game

by passing certain requirements.

They are divided into three categories: supplies, gear and spoils. Categories are

made to help clarify an item’s purpose in the game, as well as being able to sort

items by category in an inventory.

Some features are shared by all item categories. All items have a name and a

graphic to help identify it, as well as an index. A graphic provides both an icon

and a 3D model, which can be seen in the main view of Figure 3. The index is

also used for sorting the items in both the editor and inventory. Furthermore, all

items come with some general properties, such as a monetary value, for which

they could be purchased from or sold to a shop for ingame currency. They also

have a weight value, which is used during movement calculations, and a short

description, which gives further context to the item itself.

14

FIGURE 3. A selected gear-type item being edited in the item sub-editor

Supplies

Supplies are items that can trigger an effect when used. The effect is created by

chaining several commands. Commands answer what effect does, to whom and

how much.

A supply item could be used to restore or decrease a target’s health, offensive or

defensive capabilities. The target can be either the player character itself or an

NPC. It can also be specified if the item will be consumed when it is used, as

would the case for edibles.

A description can be written for the effect which can be read in the game. In this

way, players can easily tell what the item does when it is used.

Gear

Gear is a type of item that can be equipped by an interactable, with the purpose

of manipulating that interactable’s attributes. Like supplies, gear can also have

an effect. The effect is triggered when the interactable strikes or is struck by a

target, depending on the command chain.

15

A piece of gear can be equipped in one of several gear slots and every piece

must be assigned a slot it could occupy. These slots are the main-hand, off-hand,

head, body, legs, hands and feet. When gear is equipped, it can provide basic

offensive and defensive attributes to the interactable. Offensive and defensive

attributes have a primary value that provide offensive and defensive power. The

secondary values are used for elemental bonuses, such as frost (cold) and fire

(heat) bonus damage and resistance. Enemies that are encountered in the game

might also benefit from these bonuses and should be considered when engaged

in game for a strategical advantage. Simultaneously, heat resisting equipment

might be beneficial outside of combat as well in the journey across the desert.

There are no restrictions to the graphic that is used to represent the item or the

slot it can be equipped to. This means that it is possible to equip a sword onto

your head slot, for those extra offensive attributes.

Spoils

Spoils are basic items whose main purpose is to be used as materials to craft

other items or to sell to a shop for in-game currency. They are intended to be

obtained from defeating enemies, gathered in the world, bought from in-game

shops or from scrapping gear.

Recipes

A recipe is a collection of items required to craft another item or obtained from

scrapping one. Supply and gear items can be crafted by combining other items

according to their recipe. Scrapping is the opposite of crafting, where an item is

consumed in return for other items according to the recipe. For every item in the

recipe it is possible to allocate the amount required by it or obtained from it.

3.1.2 Interactables

Interactables are entities in the game that can be interacted with. They are used

as a base for playable characters (also known as party members) and scene

interactables. The latter are the kinds of interactables the player can interact with

in the game world.

16

They are the most widely used asset in the editor and as such need to be easily

identifiable. Like items, it is possible to give an interactable a name and a graphic.

Interactables have also a description that helps define them outside of the

player’s interactions with them. One difference between items and interactables

is that while items are categorized by default, an interactable’s category must be

selected manually.

Interactables are not only limited to characters but may also include objects, such

as chests, which award the player with treasure upon interaction, or an apple

ready to be plucked from a tree.

What sets an interactable apart from a regular object and makes them unique are

their attributes. Not all interactables will be happy to see the player character and

may engage in combat. All interactables have survival attributes which will come

into play in these situations.

Survival attributes include health points and when these points drop to zero, the

interactable loses. Offensive and defensive survival attributes further contribute

to this outcome. These attributes are the same as those on gear. Attributes can

also help define an interactable’s character. Some may be more resistant to low

temperatures and therefore have a higher frost resistance value. The sub-editor

showing off some of the attributes can be seen in Figure 4.

All interactables can equip gear to enhance their base attributes. It is unlikely, but

not impossible for enemies, such as wild animals, to wear equipment. The base

values play a more vital role in that regard.

Other survival attributes also provide some realism to a desert-based adventure

aspect of the game, such as hydration values and closely-knit movement speed

and weight values. The heavier a character is, the slower and thirstier it becomes.

Running out of hydration points may have serious consequences. Carrying many

items could further bog the character down, further decreasing its movement

speed. When either health or hydration goes down, supplies could be used to

restore them as demonstrated earlier in Section 3.1.1.

17

Inventory

Every interactable has an inventory in which items can be stored and used. When

an interactable loses, it is possible to loot them for the items they held in their

inventory. The quantity of each item can be set by the developer, as well as the

chance of it appearing when looting. It is common in games to have enemies

award the player with a specific item upon defeat. All these same enemies have

a small chance to award the player with a rare item. While all have the potential

to award the item, the chance of them doing so must be set by the developer.

Not only can interactables carry items, but they can also equip gear type items

from their inventory. Doing so will increase the interactable’s base attributes with

that of the equipped gear.

FIGURE 4. A selected interactable being edited in the interactable sub-editor

18

3.1.3 Regions

Regions are collections of terrains on which the game is played on. Every region

has a name to help identify it in both the editor and game.

Every region’s environment is determined by the tile set. Where regions are made

up of terrains, a terrain is made up of tiles, for both the performance of the game

and ease of development. The tile set, as the name implies, is a set of tiles that

can be used by each terrain throughout the region. Tiles can be thought of as

pieces to a puzzle, where some pieces fit, and others do not. They fit when their

borders share the same colour. An example of a tile set and how the individual

tiles are pieced together can be seen in Figure 5.

Terrains

Terrains are collections of tiles. They have their own properties to influence their

atmosphere, making the region as an entirety more interesting. Every terrain can

be identified with a name and an icon. The name is to help identify it in both the

editor and game, whereas the icon only helps identify to it in the editor. Various

properties further define the terrain. One such key property is the music that plays

in the background when the player finds itself on that terrain within the game.

Some properties are not only atmospheric like but also impact gameplay.

Weather conditions play a crucial role in any expedition, especially when the

greatest obstacle is the environment itself, which is why it is possible to change

the general weather conditions and wind per terrain. The weather conditions

mainly describe the temperature, cloudiness and precipitation. Wind is described

in kilometres per hour and direction, which can act as a great boon or barrier to

the player. As detailed in earlier Section 3.1.1, equipped gear can have a great

impact on these conditions. If the player enters a frozen cavern, it is wise to equip

some gear with a higher frost resistance.

Weather conditions can vary greatly depending on the time of day and as such,

these values can be changed for both day and night-time.

19

Tiles

Tiles belong to the tile set that is chosen for the region. Developers can place

tiles based on the dimensions of the terrains and region. All tiles have built-in

properties that describe the tile’s main material and hardness, which affect an

interactable’s movement speed over it. A walking interactable carrying many kilos

of goods will have a harder time walking through sand than a bird would fly over

it. Hardness works together with the weather to create environmental hazards. If

the hardness of the tile is low and the main material is sand, a strong wind will

create a sandstorm.

FIGURE 5. A tile being picked from a tile set in the tile sub-editor

Expansion

The game that the editor is initially designed for will be about the Expedition’s

journey through the desert. The journey through the desert will provide them

plenty of challenges. One of the greatest challenges is returning to familiar

grounds after getting lost in a seemingly endless desert. The reason for regions

and terrains to ultimately be square, as well as the use of tiles, is to support the

region expansion feature.

20

When a player approaches the border of a region, there would normally be a

barrier to prevent them from continuing. In the region sub-editor, it is possible to

enable region expansion in all directions: north, east, south and west. When the

player approaches the edge of any of the enabled directions, a new region will be

loaded on that location. What region will be loaded is decided by the repetition

properties, which can be seen in Figure 6. These properties serve to provide an

intentionally confusing and yet believable experience for the player, making them

feel lost in a hostile environment.

The use of tiles is beneficial when creating randomized regions. A special tile is

required in this situation to ensure that all pieces will fit together, no matter their

placement.

FIGURE 6. Expansion settings of a selected region in the region sub-editor

21

3.1.4 Scenes

A scene is a collection of everything bound to a region. All the tiles, terrains,

scene interactables and scene objects belonging to that come together in the

scene. The result of this can be seen in Figure 7.

Scene objects serve as decoration while the scene interactables give players

something to do, separate from any progression they have made within the game.

An example of such an interaction is to be able to pluck an apple from a tree, as

mentioned in Section 3.1.2. If the player sees an apple in a tree, they can pluck

it regardless of what stage in the game they are in.

Objects and interactions can be modified in the scene editor, depending on the

method by which the scene editor was opened. Their Transform values include a

position, rotation and an angle in 3D space. Also included is the object’s scale,

which is multiplied by its linked graphic’s built-in base size. Objects can also be

bound to a tile, meaning that they will only be activated when the tile is also active.

FIGURE 7. A selected scene object being edited in the scene sub-editor

22

3.2 Stages

Many adventure games are static. The game world never changes, resulting in

shopkeepers standing on their feet until the end of time, waiting for the player to

interact with them. Time does not affect this world, and most of its inhabitants are

often unfazed by the player’s actions.

The editor allows developers to create adventure games of various complexities.

While it is entirely possible to create the simple games mentioned above, it is also

possible to create more intricate and believable scenarios. This is achieved by

dividing the game’s structure in multiple branching stages, each representing a

moment in time. Stages are made up of chapters, phases, quests, objectives

down to time-based interactions. In the editor, stages are listed in the main view

and can be edited by pressing the edit button as seen in Figure 8.

3.2.1 Chapter

A chapter is the first stage of the overall structure and is identified by its name.

All the stages within the chapter are supported by including a set of reoccurring

main characters, including both playable characters (party members) and NPC

(scene interactables). Explorable regions are also defined per chapter and their

purpose here will be further detailed in Section 3.2.2.

Party members are the characters that are directly controlled by the player. The

game progresses by their actions and is observed through their lens. For each

chapter it is possible to have multiple party members. One of them is controlled

directly while the others follow. Scene interactables are main characters that can

be interacted with throughout all stages belonging to the chapter.

Both party members and scene interactables are linked to an interactable from

the assets. As an interactable serves as a whole character, more than one of

each cannot exist at any given time and therefore these characters are defined

at this stage.

23

Chapters are linear, meaning that one must be completed before the next can be

started. When the last chapter is complete, the game itself is complete. In order

to complete a chapter, the last phase stage belonging to the chapter must be

completed.

FIGURE 8. A chapter being edited in the chapter sub-editor, displaying a list of

main characters

24

3.2.2 Phase

A chapter is a collection of phases, which in itself represents a linear moment in

time. The regions that were assigned in the chapter can be opened and modified

for each phase as seen in Figure 9. Developers can have the region reflect the

events of the game, opening up opportunities for environmental storytelling.

A phase is completed when one of its stage groups is completed. A stage group

is, as the name suggests, a group of stages that can consist of multiple quests,

objectives and/or interactions. Phases and stages represent a moment in time,

giving the player an opportunity to complete the phase with any action. It also

allows players to progress in the game as they see fit.

FIGURE 9. A phase being edited in the phase sub-editor, displaying the region

provided by the chapter seen in the action bar

25

3.2.3 Quest

A phase is made up of quests. A quest is a self-contained adventure within the

phase with a clear beginning and end. Unlike chapters and phases, quests are

not linear, and they share the same moment in time. Multiple quests can be

started and completed in any order.

The scene interactables that were chosen in the chapter are now allocated to a

quest. A scene interactable cannot belong to multiple quests in the same phase,

as the character they represent cannot be in multiple places at the same time.

Developers must pick which quest each scene interactable belongs to during a

phase. When an interactable has been picked for one quest, it can no longer be

picked for another. An example of this can be seen in Figure 10, where all the

unavailable interactables are marked with a lock icon.

The last objective of the quest must be completed in order to complete a quest.

FIGURE 10. A quest being edited in the quest sub-editor, displaying a list of both

available and unavailable main characters

26

3.2.4 Objective

A quest is divided into objectives. An objective is a linear stage that serves to

provide tangible steps, which are required to complete a quest. The progress of

a quest can be measured by the objectives that are completed. Developers can

write what is expected from the player during an objective as a journal entry.

Temporary scene interactables can also be assigned to objectives as can be

seen in Figure 11. These scene interactables only appear in the scene while the

objective is active.

The objective is completed when a specific interaction is performed by the player.

FIGURE 11. An objective being edited in the objective editor, displaying a list of

temporary interactables

27

3.2.5 Interaction

Every scene interactable has at least one interaction. An interaction is everything

that happens before, during and after the player interacts with the interactable

and also specifies where the interaction may happen. Everything that happens in

the game comes as a result of an interaction and so an interaction has by far the

most settings of any feature in the editor.

An interaction uses a description to identify itself. The description can be read as

a goal, the desired result of the interaction. The icon of the interactable to which

the interaction belongs is also displayed in the editor to help the developer identify

which interactable it concerns.

General

Interactions are linear but completing the last interaction does not automatically

complete the objective it belongs to. Instead, one of the interactions must be

marked as the one which completes the objective.

It is possible for interactions to be repeated if this is enabled by the developer.

Before this can happen, the interaction must be reset and the method by which

this is done can be specified. An interaction can be repeated infinitely or for a

specific amount. A practical example of this would be to interact with the apple

tree from Section 3.1.2. The reset method is duration and the secondary value is

time in minutes for the tree to grow a new apple.

An interaction can also trigger special effects. A filter can be placed over the

camera to fade the screen in or out, to or from black or white and the duration of

the transition can be specified. The screen can be shaken during an earthquake

by animating the camera, and sound effects can provide a further feedback of the

event. All these effects can happen before, during or after the interaction.

Behaviour

Interactions are often triggered by walking up to something and pressing a button.

Some interactions may come as a surprise and a button press would take some

28

of that surprise away. Interactions can be triggered automatically or by the player

input. In both cases, the minimal distance between the party member and the

interactable must be specified. If the interaction is triggered by the player input,

the party member must also be facing the interactable.

A delay can be added to the interaction when it has been triggered. This can help

to simulate the effect of gathering items. As such, an animation can be played

during the delay, such as reaching for something on the ground. How long the

delay lasts can be specified, as well as whether the delay can be interrupted by

the player or not.

As interactions will often happen between characters, it is possible for them to

exchange words. A separate speech editor allows editors to add a few phrases

to selected interactables to simulate a conversation. If the auto-play option was

selected as seen in Figure 12, such a conversation would continue even without

the player input.

How the interaction happens and what happens when it does are answered, but

not where it happens. In this editor, interactables are linked to interactions, not

the other way around. The interaction’s position must be specified per interaction

and the interactable will be placed on top of it. The position, rotation and size can

be changed in the scene through the interaction editor as seen in Figure 13.

Conditions

In order to successfully complete an interaction, certain conditions must be met.

These conditions come in three categories: stages, items and equipment.

Stage conditions function like stage groups for phases. Only one needs to be

completed to meet the condition. To fulfil the item condition, certain items must

be in the party member’s inventory. What items and how many are specified by

the developer, as well as the option to retain the said items when the conditions

are met.

29

Certain items must be equipped in the party member’s gear slots to fulfil the

equipment condition. This is intended for disguises or overcoming environmental

hazards.

Events

Interactions are concluded with an event. The first event is a scenario, which will

temporarily take the player out of the usual game environment. A scenario can

be one of three types: cutscene, encounter or shop.

A cutscene is a short cinematic experience for the player to sit back and watch,

which can be used to give more context to a situation when the basic speech is

not enough. Unlike the basic speech, developers can also position the camera

for cinematic angles.

An encounter is a battle between the player’s party members and one or more

designated enemies. An enemy is linked to an interactable, whose properties,

such as health and power, are carried over to the enemy. Defeating enemies can

award the player with items, as described earlier in Section 3.1.2.

The shop scenario allows the player to browse, purchase and sell items from and

to a shop. Items have an inherent value, which is specified by the developer in

the item editor, for which items are bought and sold. Different shops can offer

different items. What items are available is decided by the developer.

When the scenario is concluded, the player is returned to the game world and

can be rewarded for their deeds. Rewards can be items and in-game currency.

As usual, items and item quantities can be specified by the developer. The in-

game currency can then be used to purchase items from a shop.

30

FIGURE 12. An interaction being edited in the interaction sub-editor, displaying

the general settings

31

3.2.6 Time

Games made with the editor will feature a day and night system. During night-

time, the world goes dark (Figure 13), lighting up once more at the break of dawn.

Inhabitants of the world take notice and act accordingly.

Every interaction has a separate day and night version. The interactables of the

game can behave differently depending on the time of day. During the day, these

interactables may be outside, doing their business. At night, they get some rest

in their beds or hang out by the campfire. The shopkeeper mentioned in Section

3.2 can finally go home and get some rest.

Developers can create quests, where one objective is to meet a shady character

at a specific location during night-time. That character will be elsewhere during

daytime and could let the player know that now is not the right time, reminding

the player of their objective and to urge them to try again later.

FIGURE 13. An interaction’s position being edited in the scene sub-editor

32

4 LIMITATIONS

The editor addresses many issues concerning the development of large-scale

adventure games with limited resources, but it does not come without its own

limitations.

Resources

As briefly touched upon in Chapter 2, creating a game editor is a time-consuming

process, and the cost of it will for many developers not outweigh the benefit. This

project was conceived in 2016 and has been in production since 2018 and no

game has yet been made. It might take another two years before the editor itself

is even ready to do so.

Size Matters

Users are limited to use assets provided by the editor and cannot upload any

home-made assets. The two primary reasons for this are related to security and

size.

The typical assets a user would want to upload are images in form of textures

and 3D models. When a 3D model is uploaded, it would already require a material

to render the texture and a skeleton to perform the animations. To detect what

file is uploaded and construct it in such a way that it is usable by the editor would

be very difficult. Developers could also potentially upload harmful files, which

would spread to the players of their games.

If a developer decides to upload their own assets, there is also a risk that it is not

well optimized and is detrimental to the game’s performance. Players would also

have to download all this extra content in order to play the game.

The size of a mobile app has a significant influence on its download potential.

When an app reaches a size of 100MB, the download rate drops by 66 percent

(Reinhardt 2016). This drop in downloads can be seen in Table 1, which shows

the correlation between app sizes and install rates, as well as the product’s page

33

views. A cellular download limit prevents the downloading of files that size over

3G or 4G networks.

TABLE 1. App install rate by file size (Reinhardt 2016)

On non-mobile platforms such, as desktop computers and game consoles, the

download size does not matter quite as much, and it is not uncommon to see

modern games at sizes of over 100GB.

Performance

The editor app is developed to be usable on mobile devices. The games it can

produce could greatly outperform the device it is made for. It is up to developers

to determine what type of game performance they deem acceptable to release

on the market.

Creativity

The editor only allows users to make adventure games. There are no plans to

implement features that allow users to create other types of games, such as

shooter-style games.

Appearance

In character driven games, characters are often identified by their appearance.

Some slots affect the appearance of the interactable, mainly the main and off-

hand slots. Other slots do not provide visual feedback to the user. The reason for

this is that these items must first be developed in 3D and it must be ensured that

the item fits on all interactables and during all animations. The cost outweighs the

benefits.

34

It is important to consider the value of a graphical upgrade as a reward for the

player’s actions and to serve as a motivator to overcome a challenging obstacle.

Items carried in the party member’s hands still provide that visual feedback.

Complexity

Developers are bound to run into logical errors if they do not possess a deep

understanding of the logic provided by the editor, visible in Figure 1. The logic

makes it impossible for technical bugs to occur, but it is not equipped to prevent

logical errors. It is possible for developers to create requirement paradoxes,

where, for example, a phase can only be completed by a quest that is locked

behind a future phase. The developer may require a player to have a unique item

to continue, which was possible to lose at an earlier stage. The more complex a

game becomes, the more likely it is that these errors will occur, and so adequate

external planning is still required.

35

5 CONCLUSION

Due to the resources required to create an adventure game, it is unfeasible for

an individual or small team to successfully conclude a project that can match AAA

giants in scope. The Expedition Game Editor addresses this problem by providing

a streamlined framework to build adventure games, without writing a single line

of code. This greatly reduces the time and resources required when making an

adventure game.

The games made with the editor can vary in complexity, giving developers the

freedom to create what they want. However, the editor is not the solution to all

problems as it is met with certain limitations. Developers are limited to what the

editor has to offer.

While the editor is not yet finished, it offers a glimpse into the future. The editor

logic that is the foundation of the Expedition system has been proven to work and

is demonstrable by navigating through stages within the editor.

36

REFERENCES

1. Chalk, A. 2015. The Witcher 3: Wild Hunt cost $81 million to make. Date
of retrieval 12.10.2019
https://www.pcgamer.com/the-witcher-3-wild-hunt-cost-81-million-to-
make/

2. Staats, J. 2019. The WoW Diary, A Journal of Computer Game Develop-
ment. Las Vegas: whenitsready LLC.

3. Unity, 2020a. Game engines-how do they work? Date of retrieval

15.03.2020
https://unity3d.com/what-is-a-game-engine

4. Unity, 2020b. Real-time solutions, endless opportunities. Date of retrieval

15.03.2020
https://unity.com/solutions

5. TNW DEALS, 2016. This engine is dominating the gaming industry right

now. Date of retrieval 12.10.2019
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-
industry-right-now/

6. Sweeney, T. 2015. If You Love Something, Set It Free. Date of retrieval
15.03.2020
https://www.unrealengine.com/en-US/blog/ue4-is-free

7. Unity, 2020c. Plans and pricing. Date of retrieval 12.10.2019
https://store.unity.com/#plans-individual

8. Unity, 2020d. Multiplatform – Publishing your game to over 25 platforms.
Date of retrieval 12.10.2019
https://unity3d.com/unity/features/multiplatform

9. Unity, 2020e. This is why creators choose Unity. Date of retrieval
15.03.2020
https://unity.com/our-company

10. Reinhardt, P. 2016. Effect of mobile app size on downloads. Date of re-

trieval 13.10.2019
https://segment.com/blog/mobile-app-size-effect-on-downloads/

https://www.pcgamer.com/the-witcher-3-wild-hunt-cost-81-million-to-make/
https://www.pcgamer.com/the-witcher-3-wild-hunt-cost-81-million-to-make/
https://unity3d.com/what-is-a-game-engine
https://unity.com/solutions
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://www.unrealengine.com/en-US/blog/ue4-is-free
https://store.unity.com/#plans-individual
https://unity3d.com/unity/features/multiplatform
https://segment.com/blog/mobile-app-size-effect-on-downloads/

