

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

07 April 2020

Jose Cezar Ynion

Using AI in Automated UI Localization
Testing of a Mobile App

PREFACE

As a Software Engineer, I always get curious about the latest trends in the IT field, may

it be about the new programming language, paradigms, or tools. And nowadays, AI is a

hot topic with so much hype around it. So I asked myself, "Beyond Boston housing data

and MNIST exercises that I did, how can AI help me in my daily work?".

Over the years, my work tasks are mostly related to UI, from Visual Basic to Visual C++,

QT, HTML5, now Swift, and I am about to start learning SwiftUI. UI automated testing

already brings a lot of challenges, much more on the localization. If AI is already solving

complex problems today, for sure it can improve my productivity, how about automating

the localization testing?

The research topic blends my interest and work experience. This will not be possible

without the support of my manager and colleagues at work.

To my wife, my son Gio Raphael and soon to be born daughter, thank you for allowing

me to spend time writing this thesis. Those were precious times that I should have spent

with you.

Dedicated to my mother and father, my first teachers. Nanay and Tatay, we have come

a long way.

Espoo, 07.04.2020

Jose Cezar S. Ynion

 Abstract

Author
Title

Number of Pages
Date

Jose Cezar Ynion
Using AI in Automated UI Localization Testing of a Mobile App

53 pages
7 April 2020

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Antti Koivumäki, Senior Lecturer

Localization testing is seldom addressed in the scientific literature, especially on the mobile
app domain. This thesis focused on the practical implementation of an automated
localization testing system for an iOS mobile app.

I work as a Software Engineer in an international company that has mobile and desktop
apps as main products. Each app is localized into multiple languages. Testing that each
User Interface (UI) displays the right content per language is the most time-consuming part
of the software development lifecycle. Due to the visual nature of the tests, this is done
manually and repeatedly in different devices with various Operating Systems and screen
resolutions.

Effectively testing the localized app is always a challenge for Quality Engineers because
they are not language experts. The scope of the tests is somewhat limited to finding bugs
like wrong layout, overlapping, untranslated texts, and wrongly represented characters.

The prototype system called NEAR is the outcome of this thesis. It was designed to automate
most of the tasks in testing UI Localization. It integrates pre-trained cloud-based Artificial
Intelligence models of Natural Language Processing (NLP) and Computer Vision from
service providers like Google to add visual context to a test. As a result, the time required to
run the regression test is less. The scope of the testing now includes finding bugs that need
linguistic skills like mistranslation, text truncations, and locale violations.

Keywords A.I., automated testing, localization testing, i18n, l10n, mobile
app testing, computer vision, natural language processing

Contents

Preface

Abstract

List of Abbreviations

1 Introduction 1

1.1 Background 1

1.2 Motivation and Research Problem 2

1.3 Research Process, Method and Material 3

1.3.1 Research Process 3

1.3.2 Method and Material 5

1.4 Organization of the Thesis 5

2 Theoretical Background 6

2.1 App Internationalization and Localization 6

2.1.1 Internationalization Process 7

2.1.2 Localization Process 9

2.2 Localization Testing 10

2.2.1 Testing Strategies 10

2.2.2 Previous Work on Automated Localization Testing 11

2.3 Automated UI Testing 13

2.3.1 Test Case Generation 14

2.3.2 Test Case Execution 17

2.4 AI in Automated Testing 19

2.4.1 AI Basic Concepts 20

2.4.2 Computer Vision in Automated Testing 23

2.4.3 Natural Language Processing in Automated Testing 26

3 Solution Building 30

3.1 Localization Testing Requirements 30

3.2 NEAR System Implementation 31

3.2.1 Development and Testing Environment 33

3.2.2 Automation Strategies 34

4 Solution Evaluation 43

4.1 Results 43

4.2 Limitations 45

4.3 Future work 46

5 Summary and Conclusions 46

5.1 Summary 46

5.2 Conclusion 47

References

List of Abbreviations

AI Artificial Intelligence

CI Continuous Integration

CV Computer Vision

DL Deep Learning

DOM Document Object Model

I18n Internationalization

L10n Localization

MBT Model-Based Testing

ML Machine Learning

NLP Natural Language Processing

OCR Optical Character Recognition

OS Operating System like Android, iOS, Windows, Linux and OSX

SDK Software Development Kit

TA Test Automation

UI User Interface

UX User Experience

QA Quality Assurance

QE Quality Engineers

YOLO You Only Look Once

1

1 Introduction

1.1 Background

Every mobile app developer wants to make their app a global success. The first step to

gain a wider audience is by making the app available in all App stores’ supported

countries or regions. However, top online store locations that have a significant market

share aside from the US are non-native English speakers. With millions of apps to

choose from, one common strategy that software companies use to stand out is to make

their product display the content according to the local market.

This process of adapting an app’s User Interface (UI) to a different language and region

so that it can be understood on a local market is called localization. It typically involves

translating all the texts, replacing icons and images, and presenting the correct date/time

format in the target language and culture. UI is an integral part of the User Experience

(UX). UX is defined as “user’s perceptions and responses that result from the use and/or

anticipated use of a system, product or service” (ISO9241-210, 2019). UX can affect the

app's success. It determines whether the potential customer will use or discard the app

(Applitools, 2019).

Localization process usually starts with exporting the resource like texts, then sending

those to an external Localization service provider. Localized resources are then imported

back, and the app is built and tested afterward. Exporting and importing the resources

are typically automated. This process is part of the Continuous Integration (CI) of the app

development cycle. However, there is still a lack of automation in testing.

Developers make the app ready for localization, then Quality Engineers (QE) validate it

for correctness. However, QEs are not language experts. They can detect bugs such as

untranslated texts, texts that are overlapping due to lack of space, and misaligned UI

elements. However, bugs that are hard to detect, like mistranslation or wrong context,

truncation, wrong date/ time format, requires linguistic expertise. (Carmi, 2019)

Quality Engineers repeat this time-consuming task for all supported languages. They are

doing the same tests on different devices with various screen sizes, resolutions, and also

with several OS versions. QEs resort to semi-manual testing due to the visual nature of

2

the tests, where most tools cannot adequately find bugs. This research is about finding

ways to minimize the manual work, speed up the testing time, and effectively find bugs

in UI Localization testing.

1.2 Motivation and Research Problem

In a nutshell, every element in the User Interface can be categorized into groups such

as buttons, labels, and icons. Various platform-specific tools already exist to extract data

from these elements. Finding ways to analyze this localized data for correctness without

human interaction is a challenge. Artificial Intelligence (AI) is one field that might solve

this challenge because data is where the AI shines.

Recent advancement of AI in the fields of Computer Vision, Natural Language

Processing (NLP), is auspicious. One of its practical usages might be to augment the

linguistic and visual skills required to do localization testing. Big companies like Google,

Microsoft, and Amazon are investing heavily to forward these fields of sciences and

already provide platforms for developers to integrate it with their products (Kukushkina,

2019).

This thesis have two primary goals. The first goal is to expand the scope of localization

testing that Quality Engineers are manually doing in the case company. The second goal

is to reduce the time allotted for testing.

It was not known during the writing of this thesis, whether AI could help to expand the

scope of the test. Moreover, the question is if AI has subfields that can provide the visual

contexts to the test and add linguistic skills needed.

It is proven that test automation can reduce the time allocated for testing, along with

other benefits. However, localization testing is rarely addressed in the scientific literature,

thus finding existing tools, especially for the mobile domain, is a challenge. Likewise,

there is a risk that none of the manual testing tasks can be automated.

Those two goals formed the following research question:

Can AI be used to improve UI Localization testing?

3

The outcome of this research is a proof-of-concept automated system to test UI

Localization of a mobile app. The scope of this research is to investigate the existing UI

automation tools, evaluate and integrate the pre-trained AI models from service providers

like Google and Microsoft, and test the system with at least 2 example iOS apps that are

localized in 1 language aside from English.

This research aims to find ways to improve the process of UI Localization testing by a)

cutting the amount of time it requires from QE to test, b) the possibility to achieve 60%

automation, and c) expand the testing scope.

1.3 Research Process, Method and Material

This research follows the Design Science approach to create an innovative solution. This

subchapter describes the research process from data gathering up to the evaluation of

the proposed solution.

1.3.1 Research Process

This research was conducted in stages (Figure 1). The first stage was finding the current

state by gathering metrics like time spent, average bugs found, and types of issues.

Likewise, a preliminary study was done to familiarize with the tools used in UI testing.

Requirements were narrowed down, and at the same time, the areas for improvement in

the existing process were identified. Information and data came from the interviews with

Quality Engineers and internal documentation from the case company.

The second stage was getting acquainted with the theoretical background. Previously

published research about localization testing, automation, and UI testing were examined,

and compared with each other. Next was evaluating the suitable pre-trained models of

NLP and Computer Vision from AI platform service providers like Google, Microsoft, IBM,

and Amazon.

The third stage was building a solution. Trial and error were conducted with the chosen

tools and technologies, then selecting the best ones that were easy to integrate, covered

the test cases that QEs require, and faster to execute.

In the last stage, the prototype system was demoed, and results were evaluated.

4

Figure 1. Research plan adapted from Henver et al. (Hevner, et al., 2001)

Automated UI Localization Testing System

• Theories, existing publications, research

papers

• AI frameworks

Vision, NLP

Vendors: Google, Microsoft,

Amazon

• Automation tools

Platform specific like XCUItest

Platform independent: Appium

Robot framework

IDENTIFICATION

KNOWLEDGE BASE

D
e
s
ig

n
 d

e
c
is

io
n

• People

Interview Quality Engineers,

Developers

• Testing practices

Strategy in localization testing

Current process flow

• Tools and frameworks

Extract data from Bug ticketing

system

Test tools used

ENVIRONMENT

DATA COLLECTION/ ANALYSIS

B
u
s
in

e
s
s
 n

e
e
d
s

ACTION AND EVALUATION

DESIGN AND DEVELOPMENT

• Validate with the test app

Metrics of errors

found/missed

• Compare results

Test coverage

Runtime

Ease of integration in

CI

• Demo

Test run

Asses

Refine

• Develop prototype

Choose UI automation

tools

Choose appropriate

pre-trained Vision and

NLP models

• Develop an iOS test app

Localize in Finnish

Add localization error

A
p
p
lic

a
b
le

?

A
d
d
it
io

n
s

5

1.3.2 Method and Material

A qualitative method was used to gather the information that defines the scope of the

research question. Requirements for the solution came from observations from the

current test process and system, interviews with the Quality Engineers, and project lead.

Internal documents and bug tickets were examined to know the types of bugs found and

missed during testing, and likewise know the corresponding severity for prioritization.

The solution was evaluated using the quantitative method. The test runs determined the

test time reduction, the number of bugs found, bugs missed, and the number of false-

positives.

1.4 Organization of the Thesis

This thesis is divided into five chapters. Chapter 1 introduces the goals, motivation and

expected outcome of this research. Chapter 2 presents the theoretical background of the

existing work done in a field of UI Localization testing, AI fields of Computer Vision, NLP,

and major service providers for these technologies. Chapter 3 discusses the

requirements and steps in building the proof-of-concept UI Localization testing system.

Chapter 4 then discusses the validation of the results. Finally, the last chapter is the

summary and the conclusion of the thesis.

6

2 Theoretical Background

This chapter presents the core concept of the localization process. It explores the various

industry-standard practices and strategies in testing localized software, including

previous research that focuses on automating it. Moreover, to come up with an answer

to the research question, information is analyzed and compared from publications,

journals, websites, and books about Automated UI Testing and AI usage in UI Automated

Testing. Specific subfields of AI, such as Computer Vision and NLP, are also discussed.

The knowledge presented here lays the ground for understanding, scoping, and

designing the Automated UI Localization Testing System that this thesis aims to

implement.

2.1 App Internationalization and Localization

There are two main steps to design an app for a global audience. The first step is to

internationalize the app, and the second is to localize it. Internationalization and

Localization are sometimes written as i18n and l10n, respectively, where 18 and 10 are

the number of letters between the first and last character of each word (w3c, 2005).

Internationalization and localization are sometimes referred to as globalization (Hardy,

et al., 2012).

Figure 2. Localization process (Apple, 2015)

7

2.1.1 Internationalization Process

Internationalization is the process of preparing the app to adapt to different languages,

regions, and cultures (Apple, 2015). It means that it should be able to display text,

numbers, and currency in appropriate locales. A locale is a combination of language and

region (Android, 2019). It represents cultural conventions (Flanagan, 2002).

Internationalization is a pre-requisite for localization. The following are the typical

activities involved in internationalization.

Auto Layout. Adjusting or resizing view layouts to accommodate longer strings. UI

components that display text must not have a fix width or height. Some languages have

a longer localized text, and this may be truncated if the control's width or height is not

flexible.

Externalize Resources. Putting the user-facing content into resource files. Separating

the localizable element from the code, such as text, images, and videos.

Listing 1. Load and print the string according to the system's language. This will print 'Good morning!'
if the system's language is English. Otherwise, it will print 'Hyvää huomenta!' if it is in Finnish.

System-Provided Formatting Methods. Changing the code to adhere to locale formats

when displaying data such as date, time, numbers, personal names, and forms of

address. Confusion will arise if this is not done. Awwad and Slany’s mentioned in their

8

research that “typical problems are ‘../../....’ date formats between the US and European

date formats, where it is unclear whether 10/2/2016 is the 2nd of October (US) or the

10th of February (most European countries) 2016” (Awwad & Slany, 2016).

Listing 2. Format a date value according to the system's region. This will print '2/28/20, 1:46' PM if the
region is the US, and ‘28.2.2020 13.46', if the system's region is Finland.

User Interface Mirroring. For right-to-left languages, mirror the user interface and change

the text direction as right-aligned. The reading order for the speakers of bi-directional

languages is from right to left.

Figure 3. Example of right to left UI (Awwad & Slany, 2016)

However, according to Apple Developer Guide, some elements must not flip, these are:

9

• “Video controls and timeline indicators

• Images, unless they communicate a sense of direction, such as arrows

• Clocks

• Music notes and sheet music

• Graphs (x– and y–axes always appear in the same orientation)”. (Apple, 2015)

2.1.2 Localization Process

Localization is a process of translating an app into different languages. Resources such

as text, audio, and images are exported and then submitted to translators. When

translations are ready, they are then imported back to the app. Exporting and importing

varies depending on the platform. It can be as simple as copying the files or using

platform-specific developer tools like XCode, as illustrated in the figure below.

Figure 4. Exporting and Importing of string resources for iOS or OS X app. (Apple, 2015)

Translation step is commonly outsourced to a third-party localization service provider, or

inhouse if there are language experts. Google even integrated an App Translation

10

Service in its Google Play Console. According to the manager that was interviewed

during this research, the translation process includes a validation round inside the vendor

that provides translation. If screenshots are available, review rounds are used to validate

further the string in projects. He also pointed out the common issues during translation

step such as:

• Difficulties in translation due to poor internationalization of the product or the

resource file.

• Unclear or poor English combined with sentences that were split.

• Unclear variables and configuration information in the resource file.

• Inflexible UI layout design causes the majority of issues.

• Typos and mistranslations due to lack of context.

• Highly specialized and new terminology.

2.2 Localization Testing

A wrongly worded or grammatically wrong text can ruin the User Experience of an app

despite its sophisticated features. The quality of the app depends on the localization

level, and it cannot be stressed enough the importance of localization testing in quality

assurance of a localized app (Zhao, et al., 2010).

2.2.1 Testing Strategies

Test strategies can vary at each stage of the globalization process. Nevertheless, the

pre-requisite is the test environment. It must be properly set up to uncover issues specific

to culture, language, date and time format, and bi-directional language. Test environment

can be either an Emulator or a physical device. Emulators simulate a mobile device on

a laptop or PC (Haller, 2013). A test device's locale must be set to the target language

and region to test a localized app. Android Developer Guide (Android, 2019) also

suggests creating a custom locale that is not supported by the system to test how the

app runs. It must display the default resource.

Pseudo-localization is a common technique to test the app during the internationalization

stage of app development. “The pseudo-localization process replaces the characters in

a given source string (such as in an English language string) with characters from a

target set (such as Unicode) and changes the size of the string by adding extra

11

characters to it” (Gundepuneni, et al., 2012). This method reveals whether elements in

the UI can resize properly with string length variations, and adapt to different language

fonts. If the UI displays un-pseudolocalized text, then it means that there are

untranslatable messages in your source code (Android Developer Guide, 2019). It is a

technique to test the readiness of the app while waiting for the localization.

The following are common issues with a localized app:

• Non-localized strings. Hardcoded strings are not sent to translation.

• Long texts that can break the UI layout. Label or text elements might overlap.

• Wrong person’s title or postal address format.

• Wrong currency, number, date or time format.

• Right-to-left layout if elements are not mirrored.

Android Developer Guide summarizes the best practices to test the app.

• “Where possible, always use native-language speakers to test your localization.

• On each test device, set the language or locale in Settings. Install and launch the

app and then navigate through all of the UI flows, dialogs, and user interactions.

Enter text in inputs.

• Look out for clipped text or text that overlaps the edge of UI elements or the

screen.

• Verify that text is line wrapped appropriately.

• Check for incorrect word breaks or punctuation.

• Validate alphabetical sorting to ensure the order is as expected.

• Make sure all layouts and text directions are correct.

• Watch for untranslated text; check that the resources directory is marked with the

correct language qualifier.

• Test for default resources.” (Android Developer Guide, 2019)

2.2.2 Previous Work on Automated Localization Testing

Searching for keywords such as “localization”, “localisation”, “globalization” together with

“automated testing” from Metropolia's digital libraries and resources yields a minimal

result. Ramler and Hoschek also pointed out that there is very little scientific literature

focusing on localization (Ramler & Hoschek, 2017). However, localization testing is the

12

candidate for automation because it involves many repetitive tasks. As an example,

Archana et al. (Archana, et al., 2013) enumerated the following issues that the

automation system can detect from a web-based app:

Inconsistent font usage. Small font can result in unreadable text or text that can appear

garbled.

Character corruption. Presence of mojibake (garbage characters), tofu (hollow boxes)

due to wrong encoding or missing glyph for that character from the chosen font,

respectively.

Figure 5. Character corruption (Archana, et al., 2013)

Hardcoded texts. Texts that are not translated according to the locale.

Figure 6. Hardcoded strings (Archana, et al., 2013)

Over translations. Strings that should not be translated are not presented according to

the value from the app resource. These are default strings like product name and

versions.

13

Automated localization testing can find not only cosmetic issues but also critical bugs. A

simple truncation issue can lead to a misleading situation. As an example "110V" voltage

value is shown as "10 V" in a right aligned text where there is not enough space to

accommodate the number value. (Ramler & Hoschek, 2017)

GWALI (Global Web Applications’ Layout Inspector) has likewise proven that a

presentation failure of web apps can be detected by automation. GWALI is a prototype

for detecting distortion in a web page’s appearance caused by internationalization. It can

narrow down the HTML elements or text that is causing the problem. This tool identified

91% of defects based on their test results and has a running time of 9.75 seconds per

web page. Their approach was to build Layout Graphs and comparing these graphs to

identify the distorted appearance of a webpage after localization. (Alameer, et al., 2016)

Figure 7. Part of a webpage and its localized version (Alameer, et al., 2016)

Figure 8. Text overlapping with a button after translation (Alameer, et al., 2016)

There are not that many research papers related to automated localization testing for

mobile apps, especially for iOS.

2.3 Automated UI Testing

The artifact of this research is a prototype of an automated localization testing system.

The test cases for this system are variants of UI tests because localized resources, such

as strings and images, are presented in the UI through elements like buttons, text labels,

14

and icons. Therefore, verifying that localized data are displayed correctly is considered

as a UI testing task.

It is essential to confirm that the UI meets functional requirements and consistent in style.

However, manually testing it is time-consuming, tedious, and error-prone. Automating

user action is an efficient way to test the app (Android, 2019).

An automated UI test case is a coded test that generates user actions or events such as

typing in a text field, swiping views, and tapping buttons. It then validates the changes in

the user interface or functionality of the app according to the expected outcome of the

action. Automated tests are fast and repeatable. Aside from testing the app flow,

automated UI tests can check visual consistencies of UI elements properties; this

includes but not limited to: colors, icons, fonts types, and font sizes.

According to Microsoft, “Automated tests that drive your application through its user

interface (UI) are known as coded UI tests (CUITs)” (Microsoft, 2016). The app is first

tested manually, and then this scenario will be automated. The figure below illustrates

the different use cases of coded tests depending on the functionality being tested.

Figure 9. Typical flow and approaches of test development. (Microsoft, 2016)

2.3.1 Test Case Generation

Quality Engineers or developers create a set of test cases to exercise the functionality

of the app. Test Automation Framework will automate the execution of these tests. One

of the challenges is to achieve high coverage due to a large number of execution paths,

15

which means engineers need to create a lot of test cases. Most UI test tools provide a

“record” feature that allows humans to manually explore the app and later generates a

code to “replay” their actions.

A test automation framework is a set of concept and tools to create tests and perform

automated software testing (Archana, et al., 2013). UI Test Automation Frameworks

address two requirements for automated testing (Microsoft, 2019):

1. Locate a specific view. This is performed through queries. A test case must be

able to query for a view or element from the screen. The framework should be

able to return this view object so that actions can be done to it.

2. Interact with a view. APIs to perform actions on a view such as tapping, entering

text, or swiping.

Google and Apple provide UI test frameworks tailored for their respective platform,

XUITest for iOS and Espresso for Android. Test cases created for these frameworks

must be written in a programming language specific to their particular platform. Example

codes are listed below.

Listing 3. Test case for iOS app written in Swift.

16

Listing 4. Espresso sample test code snippet. (Bezmolna, Victoria, 2019)

These frameworks are stable and no cost for setup as it is usually bundled together with

the app development tools. Cross-platform frameworks also exist like Appium that can

run a test script for either Android or iOS. Its advantage is that it supports many

programming languages to write a test case and run parallel Android UI tests (Bezmolna,

Victoria, 2019). However, it is complex to setup initially, test runs are slow and can have

compatibility issues with every update of platform tools like XCode (Mischinger, Sarah,

2019).

Listing 5. Appium sample test case written in python. (Appium, 2019)

Another approach to automated testing is Model-based Testing (MBT). This approach is

about automating test case generation. It requires a model as input in order to generate

test cases. Morgado and Paiva highlights two main issues of MBT, those are: “1) the

necessity of an input model from which test cases are generated and whose manual

construction is a time consuming and error prone process and 2) the combinatorial

explosion of generated test cases” (Morgado & Paiva, 2015). Their paper presents a

solution through reverse engineering implementation. It identifies the UI Patterns and

based on that, applies a similar test strategy from their catalog of patterns, and continue

exploring the app. Another issue pointed by Arnatovich et al., is that the existing model-

based testing tools for Android generates trivial or non-sensible input, or sometimes it

requires the user to provide such data during app testing (Arnatovich, et al., 2016).

17

2.3.2 Test Case Execution

In the Continuous Integration (CI) process, developers commit their code changes to a

central source repository several times per day. This event triggers an action to run the

automated tests. CI runs the automated test to verify that new code changes do not

break existing features or introduce new bugs, so the software remains deployment

ready at all times (Atlassian, 2020).

Figure 10. Technical implementation of Continuous Integration (pepgotesting, ei pvm)

UI Tests can be executed either in real devices or in virtual devices such as simulators

and emulators. An emulator is a virtual representation of the entire device, including the

low-level system calls. On the other hand, a simulator runs a version of mobile OS

implementation in the host machine's kernel. These virtual devices are software

programs, and tests that are performed on it will not uncover device-specific bugs.

Customers' use cases can only be performed on a real device such as network change

events, phone calls, push notifications, audio input/ output, and among others. However,

procuring real device is expensive, and needs to be updated as new devices come to

the market very often. (SauceLabs, 2018)

18

These environments may either reside on-premise or on the cloud. Cloud-based test

labs enable customers to use a set of devices based on the subscription plan. The

advantage of using service from cloud is that there is no need to maintain and purchase

the latest devices. (Garg, 2016)

Figure 11. Physical setup of the test environment on-premise that can support iOS and Android app testing

Cloud-based test infrastructure allows running of tests in parallel against a massive

collection of physical devices. Facebook (Facebook, 2016) mentioned that they require

2000 mobile devices to cover all combinations of device hardware, operating systems

and network connections. Cloud Testing Service providers also provide better analytics

and reporting features, they also solve complicated signing issues with Apple's app

security model, and the infrastructure is scalable (SauceLabs, 2018). AWS Device Farms

(Amazon, 2020) even allow debugging to reproduce issues and can interact with a device

via a web browser.

Figure 12. Bitbar cloud-based testing infrastructure (Bitbar, 2019)

19

2.4 AI in Automated Testing

To answer the research question of whether AI can be used to improve UI localization

testing, it is fundamental to understand what AI is and how it is providing useful solutions

to software test automation domain.

Testing approaches evolved over the years, from testers acting as product users,

interacting with the application to coding test scripts for automation. In the future, test

automation techniques would involve predictive analysis, self-remediation, cognitive

automation, and machine learning according to 38% - 42% of the organizations surveyed

in World Quality Report 2017 (Sogeti, Capgemini, Micro Focus, 2017).

Figure 13. How testing has evolved over the last 4 decades. (Testim, 2018)

World Quality Report 2019-2020 (Capgemini, Sogeti, 2019) recommends building a

smart, connected test platform with intelligent analytics. According to the same report,

Artificial Intelligence (AI) can make testing smarter. However, the test team needs AI-

related skillset, like data science, statistics, and mathematics. Integrating AI in Software

testing is a natural progression (Testim, 2018).

20

2.4.1 AI Basic Concepts

Researchers have no exact definition of AI. However, a system with AI has two key

attributes. First is autonomy, which means it must be able to perform tasks in complex

environments without constant guidance from the user. Second is adaptability or the

ability to improve by learning from experience. (Reaktor, University of Helsinki, 2018)

Although AI covers various theories and technologies, the two main classifications are

Machine learning and Deep learning (Taulli, 2019). Machine learning (ML) is a subfield

of AI and defined as “Systems that improve their performance in a given task with more

and more experience or data” (Reaktor, University of Helsinki, 2018). ML deals with

constructing a system where the focus is on learning from available data or reactions of

the environment. One of the subfields of ML is Deep learning (DL). It “refers to certain

kinds of machine learning techniques where several "layers" of simple processing units

are connected in a network so that the input to the system is passed through each one

of them in turn” (Reaktor, University of Helsinki, 2018).

Figure 14. “High-level look at the main components of the AI world”. (Taulli, 2019)

The book Artificial Intelligence Basic: A Non-Technical Introduction (Taulli, 2019)

illustrates better the distinction between deep learning and machine learning through its

example of finding a picture of a horse from thousands of animal pictures. In machine

learning, the model must be trained by using labeled photos of animals as its training

data. It can also employ feature extraction, a process of analyzing the pixel patterns of

the images itself to develop the characteristics of a horse. On the other hand, the Deep

21

learning approach analyzes all the data to find the relationships between pixels. It will

use a neural network, just like the human brain. (Taulli, 2019)

Machine learning is already applied in many applications. Some examples (illustrated

below) are Predictive maintenance - to forecast when equipment will fail. Customer

experience - to leverage the data to gain customer insights on what really works. Finance

- to detect discrepancies in billing. (Taulli, 2019)

Figure 15. Applications for machine learning. (Taulli, 2019)

The AI infrastructure requires a lot of computing power to train the neural network. It also

requires a lot of data for algorithm to perform better. These two are the major stumbling

blocks for smaller companies to build, implement, or adopt AI in their business. Tech

giants companies like Amazon, Google, IBM, and Microsoft are addressing these

challenges by providing cloud-based AI services. IBM referred to this as a “cognitive-as-

a-service”, and according to their study, this setup is the preferred way by most early

adopters in developing and delivering AI-infused solutions (IBM, 2016).

22

Figure 16. Preferred way to access and use AI capabilities (IBM, 2016)

Aside from the lower cost compared to building non-cloud infrastructure, cloud-based AI

service also has other benefits. Risk reduction is one of the benefits, which means if the

product is not successful, a company can terminate the service without worrying about

the expensive hardware equipment or the data scientists that they do not need anymore.

Similarly, if the product is a success, a company can expand or scale their infrastructure

on demand. Another advantage is access to bleeding-edge technologies. Major cloud

vendors have a large scale investment in research and development. Technologies can

become obsolete fast, and these major vendors can roll out new capabilities regularly.

(V2Soft, 2018)

As mentioned in the introduction section, this thesis aims to use multiple cloud-based AI

service. Listed below are services that are considered relevant to this research.

• Google Cloud Vision. It offers pre-trained machine learning models through

REST APIs. It can classify and assign labels to images. Likewise, it detects

objects and faces and reads printed and handwritten text from images.

• Google Natural Language Processing. It “uses machine learning to reveal the

structure and meaning of the text” (Google, ei pvm). The pre-trained models can

extract information, understand sentiments, and parse intent from customer

conversations.

• Google Translation. “Dynamically translate between languages using Google’s

pre-trained or custom machine learning models” (Google, ei pvm).

• Amazon Rekognition. It uses deep learning technology. It “can identify objects,

people, text, scenes, and activities in images and videos, as well as detect any

23

inappropriate content” (Amazon, 2020). It also provides facial analysis and facial

search capabilities.

• Amazon Textract. It is a document text detection and analysis service using

deep-learning technology. Its API can “detect text in a variety of documents,

including financial reports, medical records, and tax forms” (Amazon, 2020). It

can also extract forms and tables for documents with structured data.

• IBM Watson Natural Language Processing. It uses deep learning-based NLP

models like named entity recognition, sentiment analysis, keyword extraction,

part-of-speech tagging, topic modeling to analyze text to extract metadata from

the content.

• Microsoft Azure Cognitive Services. A comprehensive portfolio of domain-

specific AI capabilities with a set of APIs for vision, language, speech and search

capabilities.

2.4.2 Computer Vision in Automated Testing

“Computer vision allows machines to identify people, places, and things in images with

accuracy at or above human levels with much greater speed and efficiency. Often built

with deep learning models, it automates extraction, analysis, classification and

understanding of useful information from a single image or a sequence of images. The

image data can take many forms, such as single images, video sequences, views from

multiple cameras, or three-dimensional data” (Amazon, 2020). Computer vision (CV)

typically imitate the visual perception of humans, intending to interpret natural scenes of

images (Peters, 2017).

The computer vision process typically starts with acquiring a large set of images from

real-time video or photos. It then uses deep learning to process the image using the

models that were trained by feeding pre-identified images. The last step is to interpret

and show results by identifying or classifying the objects. (Sas, 2019)

Sas enumerated some of the use cases of Computer Vision:

• “Image segmentation partitions an image into multiple regions or pieces to be

examined separately.

• Object detection identifies a specific object in an image. Advanced object

detection recognizes many objects in a single image: a football field, an offensive

24

player, a defensive player, a ball and so on. These models use an X,Y coordinate

to create a bounding box and identify everything inside the box.

• Pattern detection is a process of recognizing repeated shapes, colors and other

visual indicators in images.” (Sas, 2019)

Figure 17. Image Classification and Segmentation (Venables, 2019)

Object detection is one of the use cases that is relevant to this research. It is a technology

also related to image processing to locate and identify objects such as humans, vehicles,

and animals, from either images or videos (Jiao, et al., 2019). This technology can

classify just one or diverse objects from an image. YOLO (you only look once) is one of

the fastest object detectors. YOLO divides the image into a cell, predicts if the object is

enclosed in a cell, then classifies the object if there is any, and this is done in one go

(Redmon, et al., 2016).

Figure 18. YOLO Detection System. (Redmon, et al., 2016)

25

Figure 19. YOLO model. “System models detection as a regression problem” (Redmon, et al., 2016)

The practical usage of object detection in the scope of this thesis is to locate elements

that display potentially localizable data. Traditional test frameworks can enumerate these

elements, but they needed to access the app's elements tree. UI test frameworks such

as Appium and XCUITests use element ID or XPath to locate an item in the UI. These

identifiers are hardcoded in the test. The test must first find the element to perform

actions such as tapping a button or sending keys to a text field. However, UI constantly

changes to adhere to new UX guidelines, or new features are being added. As an

example, XPaths can change by reordering view hierarchy, which means test scripts

must be updated. This is just one of the reasons that make UI test automation hard to

maintain and fragile, especially during active app development.

Integrating computer vision technology to the test framework can help solve this issue.

CV detects objects such as UI controls and elements on the image, thus eliminates the

requirement of the test framework to know the UI view hierarchy to locate a control.

TechBeacon employed the same technique when they faced difficulty in implementing

tests in one of their clients. Since they cannot access the element tree of the app, they

use CV to detect controls on pages. They took the screenshots manually, labeled the

image, and generated a metadata XML file containing the element category and their

respective coordinates. These files were used to train their network for 4 hours.

(TechBeacon, 2018)

26

User Interfaces can look different depending on the device's orientation, screen

resolutions, and operating system version. The traditional UI test automation framework

alone cannot validate the visual aesthetics of the app. It requires humans to inspect

visually. Applitools Eyes is addressing this issue by using Cognitive Vision Technology.

It first establishes the baseline appearance of the app per environment, and then on the

next run, it will compare the differences between the screenshot and the baseline image.

It uses AI-powered computer vision algorithms to detect and report only the differences

that are obvious to the users. (Applitools, 2019)

Inconsistencies between the UI design and implementation is another defect that the test

automation framework cannot detect. However, the research conducted by Chen et al.

proved that the computer vision method could be used to identify inconsistencies in the

layout, such as positions, sizes. It can also verify the presentation characteristics such

as colors and fonts. Their solution - UI X-Ray achieved a “99.03% true-positive rate,

which significantly surpassed the 20.92% true-positive rate obtained via manual

analysis” (Chen, et al., 2017).

2.4.3 Natural Language Processing in Automated Testing

“Natural language processing (NLP) is one area of artificial intelligence using

computational linguistics that provides parsing and semantic interpretation of text, which

allows systems to learn, analyze, and understand human language” (IBM, ei pvm).

NLP practical applications are already used in our daily lives. Alexa, Siri, Google

Translate, the Spam filtering in our mailboxes, or just by typing into the web browser’s

search bar and many others. The table below lists a few applications of NLP.

27

Table 1. Categorized NLP applications (Hapke, et al., 2019)

An NLP processing system is often referred to as a pipeline because it usually involves

several stages of processing where natural language flows in one end, and the

processed output flows out the other (Hapke, et al., 2019). The two main processing

steps are: “preprocessing the text and using AI to understand and generate language”

(Taulli, 2019).

Cleaning and preprocessing involve tokenization, stemming, and lemmatization. During

tokenization, texts are parsed and segmented in various parts. Texts are also normalized

to simplify the analysis, like converting to upper or lower cases and removing

punctuations. Stemming, on the other hand, is a process of removing prefixes and

suffixes to extract the root word. Lemmatization then finds the similar meaning of the root

word, “better” is lemmatize to “good” as an example. (Taulli, 2019)

28

Figure 20. Example of tokenization (Taulli, 2019)

Figure 21. Example of stemming (Taulli, 2019)

Figure 22. Example of lemmatization (Taulli, 2019)

29

To understand or extract information or knowledge from natural language text,

researchers commonly use the following approaches:

• Named entities and relations recognition. A typical sentence may contain several

named entities such as location, organizations, people, dates, times, and events.

This is a process of identifying words that represent the mentioned entities.

(Hapke, et al., 2019)

• Part-of-speech (POS) tagging. A process of recognizing what parts of speech do

the word belong, such as verbs, adverbs, nouns, etc.

• Topic modelling. A process of finding hidden patterns and cluster. (Taulli, 2019)

• Chunking. Processing text in phrases. (Taulli, 2019)

Entity extraction is one of the useful features of NLP for UI localization testing. The ability

to recognize names, dates, times, and locations have many use cases for localization.

These are localizable data, thus if the test framework can extract those, then definitely it

can validate that the extracted data adhere to the expected locale format.

Translation service providers have many uses of NLP. As an example, Jonker

enumerated some of the applications of NLP for localizer such as (a) extracting all names

before translation to make sure they are handled correctly afterward, (b) extracting key

terms for glossaries, and (c) highlighting locations' geopolitical names for localization

(Jonkers, 2018).

NLP is also now finding its way in Scriptless Test Automation. Scriptless or less coding

approach in testing abstracts the underlying test code intended for manual testers that

lack programming skills or stakeholders that have no technical expertise. Tools like

Testsigma use NLP for test case creation and have AI at its core to allow writing of test

in plain natural language, which can easily be understood (Testsigma, 2020). The

example test is shown below (Lavanya, 2019).

"Go to https://testsigma.com”,
“Enter Name in the Username field”,
“Verify that the page displays text Testsigma” (Lavanya, 2019)

30

3 Solution Building

The knowledge presented in the theoretical background section is the building block for

the proposed solution presented in this chapter. First, the requirements are enumerated

based on the current testing practices of Quality Engineers in the company that this

research was conducted. Then, based on the requirements, design decisions, and

implementation details of a prototype system called NEAR (Navigate, Extract, Analyze

and Report) are presented.

3.1 Localization Testing Requirements

Before answering the research question about the usage of AI in automated localization

testing, the author, together with the Quality Engineers, evaluated if there are any steps

in localization testing that are worth automating. A set of questionnaires were sent to two

QE leads, two members of localization teams, one manager, and three senior quality

engineers. The questions are listed in the table below:

Table 2. Questionnaires

Questions

What kind of issues do you look for when testing localization?

How often do you test localization? How much time do you allocate per test
run?

Should this be automated or manual testing is enough?

Do you have a TA system to test localization? If yes, what framework/tools
do you use?

If there is a prototype system to do this, are you willing to pilot to do a few
test runs?

31

The following conclusions were made based on the gathered answers.

• Localization testing should be semi-automated.

• Manual verification by a person that knows the context should still be done to

check the findings reported by the automation process.

• On average, one day is allocated every release for localization testing.

• Technologies that they are familiar with:

o Python language

o Selenium

o Appium

o Alchemy Catalyst

o UIAutomator

Based on the discussion afterward, the following are the steps that the automated system

should accomplish.

• Generate screenshots. Store these as artifacts, also draw a bounding rectangle

for offending lines or words that are found in the image.

• Detect non-localized string. These can be hardcoded or placeholder texts.

• Detect overlapping strings.

• Detect truncated strings.

• Find wrong spellings.

• Find corrupted characters.

• Find dates, currencies and numbers that are not formatted according to the

locale.

3.2 NEAR System Implementation

The prototype system is called NEAR which stands for Navigate, Extract, Analyze and

Report.

After the requirements were narrowed down, a draft of the system's design was drawn.

The diagram provides an overview that even a non-technical person can understand,

and it also serves as a starting point when discussing ideas with peers. The figure below

illustrates how the components interact.

32

Figure 23. High level design draft

The process starts and ends with Quality assurance, a group of people composed of

Quality Engineers, and at least one language expert. They are responsible for creating

test scripts and validating the results. These test scripts navigate the app's UI and take

screenshots. Likewise, it passes these images for further data extraction to cognitive

service, a cloud-based AI platform for running computer vision and NLP algorithms. The

predefined rules are then applied to the accumulated data to determine the results. The

component diagram is show in the figure below.

Figure 24. Component diagram

33

3.2.1 Development and Testing Environment

Quality Engineers will be the ones to adopt and develop this prototype further. Therefore

it is imperative to align the tools with their existing skills.

Test creation. The chosen language was Python, and the automation framework was

Appium. The test scripts were written using Visual Studio Code as editor. The set-up is

similar to the figure shown below.

Figure 25. Appium architecture (Verma, 2017)

Test execution. Since the system is in prototype level, it was not integrated with Jenkins

CI server. Tests were run on a local machine where the mobile devices are connected

via USB. To support multi-platform testing, Macbook was used with XCode 11, Android

Studio 3.5, and Appium 1.17.0-beta.1 installed.

Test app. An iOS app was created as a proof-of-concept. It serves as an example for

App Under Test (AUT). It has UI elements that display the typical localizable data such

as date, currency, and number values. Although the original intention was to localize the

app in Finnish, it is merely not possible because most cloud-based AI services like

Google Vision and Amazon Textract do not support this language yet. For research

34

purposes, the Spanish language was chosen instead. This app was adopted from the

article about localization that Malliswamy wrote (Malliswamy, 2018).

The baseline UI is shown in the figure below. During development, the app was modified

to introduce various kinds of localization issues in order to verify the test logic.

Figure 26. Test app in US and Spain locale

3.2.2 Automation Strategies

The automation approach was adapted from Ramler and Hoschek system. The steps

are (a) navigating the UI, (b) extracting the UI information, (c) analyzing the extracted

35

data, and (d) generating a test report (Ramler & Hoschek, 2017). The input and output

of each step are shown in the process diagram below.

3.2.2.1 Navigating the UI

It was decided early on to create a test tailored to the app under test instead of adopting

a model-based testing approach of generating the test cases automatically. The test

navigates to the UIs, but it does not verify the functionality. The element's accessibility

identifier is used to locate for a specific control. Using accessibility identifier or XPath

makes the test script language-independent, which means it can be reused for each

localized variant of the app. The code snippet below was executed while testing both in

English and Spanish.

N

•Navigate

• Input: Test app

•Output: Screenshot, raw texts of target elements

E

•Extract

• Input: Screenshot images

•Output: Texts from the images, text entities and translation of texts in English

A

•Analyze

• Input: Texts, text entities, raw texts from step N

•Output: Status

R

•Report

• Input: Analysis status

•Output: Test summary

36

Listing 6. Code snippet to wait for element with ‘country’ as id before scrolling and taking screenshot

The test script takes screenshots before executing navigation actions such as tapping

the back and next button and scrolling. These screenshots are images in PNG format

and are saved in a local folder. Likewise, the test script enumerates all the elements and

string values that will be used for comparison later on. Example screenshot is shown

below

Figure 27. Captured screenshot

37

3.2.2.2 Extracting the UI information

Appium can already extract an element's text value. However, it is not useful when

validating if the text is truncated or not. It gives the entire value and not the visually visible

part of the text only. This is illustrated in the figure below.

Figure 28. Visually captured text and Appium’s extracted text

To capture the visually visible texts only, Vision AI was used to extract texts from images.

Two cloud-based services were tested, Google Vision and Amazon Textract. Amazon

Textract has a feature to extract key-value pairs, which should be very useful to retain

the original context. However, it only supports the English language, as illustrated in the

example screenshot below, “Sánchez” was captured as “Sanchez”.

Figure 29. Amazon Textract key-value pair extraction

38

On the other hand, Google Vision's Optical Character Recognition (OCR) feature

supports multiple languages. However, the blocking of text is somewhat inconsistent, as

shown in the figure below. This impediment is slightly irrelevant for localization testing.

Figure 30. Google OCR with text blocking

The Google computer vision API returns paragraphs texts and vertices for the bounding

rectangle. The extracted texts are then analyzed by natural language processing service

to identify the entities.

Three natural language processing API was tested, IBM’s Watson Natural Language

Understanding, spaCy, and Google Natural Language API. All are using deep learning-

powered models. spaCy is handy as it is not a cloud-based service, but rather provides

pre-trained models that are available for download and install. It was able to identify most

entities from the provided sample text, but it also misinterprets entities in a string like

“Superficie 505.990 kilometro cuadrado”, it tag kilometro as a PERSON. Google’s NLP

was chosen instead.

Afterward, those texts are translated into English by the cloud translation service. These

values are then accumulated and stored in a dictionary data structure. The flow chart is

shown below.

39

start

Image to text using

Computer Vision API

Has

texts

Extract entities using

NLP API

Translate texts using

Translation API

end

Y

N

Figure 31. Flow chart for data extraction using cloud-based AI services

40

3.2.2.3 Analyzing the Extracted Data

The table below is tabulated data accumulated from different sources. The data serve

as input to the set of rules to verify if specific criteria are met. If one of the rules returns

true, it is considered a failed test.

Table 3. Tabulated data to be analyzed

Item Description Source

Raw texts Array of elements text
values

Appium

XCUIElementTypeStaticText

values.

Paragraphs String Computer Vision API

Paragraph bounds Vertices of the bounding
rectangle per
paragraphs

Computer Vision API

Words List of words in a
paragraph

Computer Vision API

Words bounds Vertices of the bounding
rectangle per word

Computer Vision API

Entities NLP entities found in the
paragraph

Natural Language
Processing API

Translation English translation of
the paragraph

Translation API

41

The following basic rules are applied:

Misspelling. Each word checked for misspelling using Aspell, an open-source spell

checker.

Wrong format. An entity such as date or number is verified if it follows the locale format

for displaying such data.

Untranslated string. A paragraph is compared with its English translation. If the value is

the same, this means that it is a hardcoded string or invalid value. The translation service

also returns the detected source language. This value must match with the current

language of the system.

Truncation. Ellipsis at the end of the string usually indicates that the text is truncated.

However, there might be cases that this is intentional. A list of raw text values is iterated

and checked if it starts with the same value as the given paragraph. If it is, but the length

is not the same, this can signify that the text is truncated.

Bounds are used to draw a rectangle in an image if a rule criterion is not met. Each

rectangle color signifies a type of issue found.

3.2.2.4 Generating a Test Report

The test output is a summary of the test cases and status. If one of the test cases failed,

it would be listed together with the corresponding image that has a bounding rectangle

drawn on a word or paragraph that failed to satisfy the requirements.

Figure 32. Example output of a successful test

42

Figure 33. Example output of a failed test

A rectangle is drawn into a word if the spelling is wrong. If a paragraph is truncated,

untranslated, or contains a number or date that is not properly, then a rectangle is drawn

on the paragraph bounds. The following colors are used depending on the type of issue

found.

• BLUE. Invalid date or number format.

• RED. Untranslated paragraph.

• YELLOW. Truncated paragraph.

• GREEN. Misspelled word.

Figure 34. Rectangle drawn on the truncated paragraph

43

4 Solution Evaluation

After the development of the prototype system, the research moved to find the apps to

use for testing in order to determine the system's strengths and weaknesses. This

chapter describes the testing results, observed behaviors, and recommended future

enhancements.

4.1 Results

NEAR System evaluated three iOS apps with source codes that were downloaded from

the internet and compiled to run on iOS 13. The apps languages were Spanish, German,

and Russian. All apps contained a total of 51 localizable data, such as numbers, dates,

names, and descriptions. Apps' UI elements included buttons, labels, and images.

The evaluation coverage included detecting misspelling, untranslated or hardcoded

string, wrong number or time format, and truncated string. The total running test time for

three apps on one platform was around 5 minutes. It averages 6 seconds to evaluate

one element.

NEAR found four issues from all of the tested apps, two of those are truncated strings

and two invalid number format. There were four false positives, and those are year

values that are tagged as both YEAR and NUMBER entities by natural language

processing service. In this particular case, two rules were used, such as validating the

date format and also the number format. The system expects that 2014 must be written

as 2 014 in ru_RU locale. The date rule should override the number rule if both are

applicable. Some of the screens with detected issues are illustrated below.

44

Figure 35. False positives for year and title strings. App under test is AutoParker (Sharp, et al., 2013)

Figure 36. Truncated string and wrong number formatting. App under test is from an article written by
Malliswamy (Malliswamy, 2018)

45

Figure 37. Invalid number format. App under test is iLikeIt (Raywenderlich, 2017)

4.2 Limitations

The system has limited language support. NLP entities feature dictates what language

the NEAR system will support. As of this writing, Google Cloud Natural Language

supports 11 languages.

The system's validation logic is dependent on the tools used. As an example, python's

de_DE locale does not have a separator for thousand, but in iOS, the separator is a

period character. This limitation can cause false positives when validating if a number is

formatted correctly.

Another observation is with the Aspell spell-checker. It is necessary to exclude or white-

list the numbers and names of persons because these can also generate false-positive

results. This can be a burden to maintain as more and more entity types needed to be

white-listed.

NEAR system uses Appium API to enumerate raw text values for each element. The

output list serves as a lookup table when checking if the visually captured text is

truncated or not. However, the raw strings can contain line breaks or indentations. This

can result in false-positive because vision API can capture the indented text in the new

46

line as another element causing multiple paragraph blocks instead of just a single

paragraph.

4.3 Future work

Addressing false-positives is left for future work. Caching mechanism is also needed to

reduce the usage cost of cloud-based cognitive services. For efficiency, it is also

recommended to only reprocess the screenshots if the captured images from the

previous test run are different from the current one.

5 Summary and Conclusions

There are a few research papers that focus on automated localization testing. This thesis

contributes to the practical implementation intended for testing a localized mobile app.

5.1 Summary

This thesis commenced by highlighting the significance of localizing the app. The work

continued by gathering the requirements from the case company. It became apparent

that the lack of an automated system for testing localization was due to the difficulties

and challenges that Quality Engineers are facing while testing it. Then the research

focused on finding out from the stakeholders such as Quality Engineers and fellow

developers the tasks that they wish to be automated.

The theoretical background chapter then described the core concepts of the app

localization process, testing strategies, and previous research conducted to automate

the testing process. Due to the lack of tools designed for localization testing, existing UI

automation frameworks were evaluated. The research then focused on AI subfields such

as Computer Vision and Natural Language Processing, exploring the existing pre-trained

models from cloud-based AI service providers such as Google, Amazon, IBM, and

Microsoft. Then the prototype system called NEAR was developed. The system was then

evaluated with the three iOS apps in multiple languages.

47

5.2 Conclusion

The prototype system proved to automate 70% of tasks enumerated from the

requirements. It just took 5 minutes to test 3 apps in one platform. Considerably faster

than manual testing. However, the limited language support of cloud-based NLP and

Computer Vision models from service provider hindered the original intention of using

the system for testing localization such as Finnish and Swedish. Nevertheless, German

language support is already essential because that is one of the huge markets for the

products of the case company.

This thesis answered the research question if AI can be used to improve UI localization

testing. The prototype proved that it could be used, and it provides a visual context for

the test, considerably faster to run and repeatable. However, it is underutilizing the

capability of AI, using it only for data extraction. The data analysis was done on the

python script with custom made rules. Ideally, machine learning or deep learning models

should be designed and used to identify issues without the need to post-process the

results. This is the side effect of relying alone on ready-made or pre-trained models from

AI service providers. It is recommended to develop and train a model specific for the

requirements to have a more specific context.

References

Alameer, A., Mahajan, S. & Halfond, W. G. J., 2016. Detecting and Localizing

Internationalization Presentation Failures in Web Applications. Chicago, 016 IEEE

International Conference on Software Testing, Verification and Validation .

Amazon, 2020. Amazon Rekognition. [Online]

Available at: https://aws.amazon.com/rekognition/

[Accessed 7 April 2020].

Amazon, 2020. AWS Device Farm. [Online]

Available at: https://aws.amazon.com/device-farm/

[Accessed 6 March 2020].

Amazon, 2020. What Is Amazon Textract?. [Online]

Available at: https://docs.aws.amazon.com/textract/latest/dg/what-is.html

[Accessed 7 April 2020].

Amazon, 2020. What is Computer Vision ?. [Online]

Available at: https://aws.amazon.com/computer-vision/

[Accessed 6 April 2020].

Android Developer Guide, 2019. Test your app with pseudolocales. [Online]

Available at: https://developer.android.com/guide/topics/resources/pseudolocales

[Accessed 1 March 2020].

Android, 2019. Automate user interface tests. [Online]

Available at: https://developer.android.com/training/testing/ui-testing

[Accessed 4 March 2020].

Android, 2019. Localize your app. [Online]

Available at: https://developer.android.com/guide/topics/resources/localization

[Accessed 10 January 2020].

Anon., 2019. Test your app in each language to ensure a successful launch. [Online]

Available at: https://developer.android.com/distribute/best-practices/launch/test-

language

[Accessed 02 March 2020].

Appium, 2019. Appium Sample Code. [Online]

Available at: https://github.com/appium/appium/tree/master/sample-code

[Accessed 6 March 2020].

Apple, 2015. About Internationalization and Localization. [Online]

Available at:

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInte

rnational/Introduction/Introduction.html#//apple_ref/doc/uid/10000171i

[Accessed 10 January 2020].

Apple, 2015. Localizing Your App. [Online]

Available at:

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInte

rnational/LocalizingYourApp/LocalizingYourApp.html#//apple_ref/doc/uid/10000171i-

CH5-SW1

[Accessed 28 February 2020].

Applitools, 2019. Applitools Eyes: Introduction to Automated Visual UI Testing. [Online]

Available at: https://applitools.com/blog/applitools-eyes-introduction-to-automated-

visual-ui-testing

[Accessed 14 March 2020].

Archana, J., Chermapandan, S. R. & Palanivel, S., 2013. Automation framework for

localizability testing of internationalized software. Chennai, 2013 International

Conference on Human Computer Interactions (ICHCI).

Arnatovich, Y. L., Ngo, M. N., Kuan, T. H. B. & Soh, C., 2016. Achieving High Code

Coverage in Android UI Testing via Automated Widget Exercising. Hamilton, IEEE, pp.

193-200.

Atlassian, 2020. What is automated testing?. [Online]

Available at: https://www.atlassian.com/continuous-delivery/software-

testing/automated-testing

[Accessed 6 March 2020].

Awwad, A. M. A. & Slany, W., 2016. Automated Bidirectional Languages Localization

Testing forAndroid Apps with Rich GUI. Mobile Information Systems, Volume 2016.

Bezmolna, Victoria, 2019. Appium vs. Espresso: Which Framework to Use for

Automated Android Testing. [Online]

Available at: https://bitbar.com/blog/appium-vs-espresso-which-framework-to-use-for-

automated-android-testing/

[Accessed 5 March 2020].

Bitbar, 2019. Client-side vs Cloud-side execution. [Online]

Available at: https://www.youtube.com/watch?v=gz58N1vRLb8

[Accessed March 6 2020].

Capgemini, Sogeti, 2019. World Quality Report 2019-20. [Online]

Available at: https://www.capgemini.com/fi-en/research/world-quality-report-2019-20/#

[Accessed 4 March 2020].

Carmi, A., 2019. Taking the Pain Out of UI Localization Testing. [Online]

Available at: https://applitools.com/blog/taking-the-pain-out-of-ui-localization-testing-

1?utm_referrer=https%3A%2F%2Fwww.google.com%2F

[Accessed 6 Februrary 2020].

Chen, C.-F.et al., 2017. UI X-Ray: Interactive Mobile UI Testing Based on Computer

Vision. Limassol, 22nd International Conference on Intelligent User Interfaces.

Engineer, Q., 2020. UI Testing [Interview] (February 2020).

Facebook, 2016. The mobile device lab at the Prineville data center. [Online]

Available at: https://engineering.fb.com/data-center-engineering/the-mobile-device-lab-

at-the-prineville-data-center/

[Accessed 6 March 2020].

Flanagan, D., 2002. Java in a Nutshell. 4th Edition ed. s.l.:O’Reilly & Associates.

Garg, S., 2016. Appium Recipes. s.l.:Apress.

Google, n.d. Natural Language. [Online]

Available at: https://cloud.google.com/natural-language

[Accessed 7 April 2020].

Google, n.d. Translation. [Online]

Available at: https://cloud.google.com/translate

[Accessed 7 April 2020].

Gundepuneni, M. et al., 2012. Generating Localized User Interfaces. United States of

America, Patent No. 20140006004.

Haller, K., 2013. Mobile Testing. ACM SIGSOFT Software Engineering Notes, 38(6), p.

4.

Hans, M., 2015. Appium Essentials. s.l.:Packt Publishing.

Hapke, H., Howard, C. & Lane, H., 2019. Natural Language Processing in Action.

s.l.:Manning Publications.

Hardy, C. et al., 2012. Internationalization and Localization. In: Professional Android

Programming with Mono for Android and .NET/C#. s.l.:Wrox.

Hevner, A. R., March, S. T., Park, J. & Ram, S., 2001. Design science in information

systems research. MIS Quarterly, 28(1), pp. 75-105.

IBM, 2016. The future is all cloud and AI. [Online]

Available at: https://www.ibm.com/blogs/cloud-computing/2016/12/08/future-cloud-ai/

[Accessed 27 March 2020].

IBM, n.d. Build apps with natural language processing. [Online]

Available at: https://www.ibm.com/watson/natural-language-processing

[Accessed 6 April 2020].

ISO9241-210, 2019. Ergonomics of human-system interaction — Part 210: Human-

centred design for interactive systems. s.l.:ISO.

Jiao, L. et al., 2019. A Survey of Deep Learning-based Object Detection. IEEE Access,

Volume 7, pp. 128837-128868.

Jonkers, 2018. Applying Natural Language Processing to Localization. [Online]

Available at: https://www.jonckers.com/applying-natural-language-processing/

[Accessed 16 March 2020].

Kukushkina, N., 2019. How Facebook, Apple, Microsoft, Google, and Amazon are

investing in AI. [Online]

Available at: https://hackernoon.com/how-facebook-apple-microsoft-google-and-

amazon-are-investing-in-ai-f58b5706e34a

[Accessed 04 February 2020].

Lavanya, 2019. Smart Test Automation using NLP. [Online]

Available at: https://dev.to/lvnya_c/smart-test-automation-using-nlp-h9b

[Accessed 16 March 2020].

Malliswamy, B., 2018. Localize your Apps to Support Multiple Languages — iOS

Localization. [Online]

Available at: https://medium.com/swift-india/localize-your-apps-to-support-multiple-

languages-ios-localization-ac7b612dbc58

[Accessed 24 March 2020].

Microsoft, 2016. Use UI Automation To Test Your Code. [Online]

Available at: https://docs.microsoft.com/en-us/visualstudio/test/use-ui-automation-to-

test-your-code?view=vs-2015&redirectedfrom=MSDN

[Accessed 4 March 2020].

Microsoft, 2019. Xamarin.UITest. [Online]

Available at: https://docs.microsoft.com/en-us/appcenter/test-cloud/uitest/

[Accessed 5 March 2020].

Mischinger, Sarah, 2019. Appium vs. XCUITest for Automated iOS Testing. [Online]

Available at: https://bitbar.com/blog/appium-vs-xcuitest-for-automated-ios-testing/

[Accessed 5 March 2020].

Morgado, I. C. & Paiva, A. C. R., 2015. The iMPAcT Tool: Testing UI Patterns on

Mobile Applications. Lincoln, NE, IEEE, pp. 876-881.

pepgotesting, n.d. Automated software testing in Continuous Integration (CI) and

Continuous Delivery (CD). [Online]

Available at: https://pepgotesting.com/continuous-integration/

[Accessed 6 March 2020].

Peters, J. F., 2017. Foundations of Computer Vision. Winnipeg: Springer International

Publishing.

Ramler, R. & Hoschek, R., 2017. How to Test in Sixteen Languages? Automation

Support for Localization Testing. Tokyo, 2017 IEEE International Conference on

Software Testing, Verification and Validation.

Raywenderlich, 2017. Internationalizing Your iOS App: Getting Started. [Online]

Available at: https://www.raywenderlich.com/250-internationalizing-your-ios-app-

getting-started

[Accessed 4 April 2020].

Reaktor, University of Helsinki, 2018. Elements of AI. [Online]

Available at: https://course.elementsofai.com

[Accessed 10 March 2020].

Redmon, J., Divvala, S., Girshick, R. & Farhadi, A., 2016. You Only Look Once:

Unified, Real-Time Object Detection. Las Vegas, 2016 IEEE Conference on Computer

Vision and Pattern Recognition.

Sas, 2019. Computer Vision. [Online]

Available at: https://www.sas.com/en_us/insights/analytics/computer-vision.html

[Accessed 14 March 2020].

Sas, 2019. Natural Language Processing (NLP). [Online]

Available at: https://www.sas.com/en_us/insights/analytics/what-is-natural-language-

processing-nlp.html

[Accessed 15 March 2020].

SauceLabs, 2018. Real Mobile Devices for Continuous Testing. [Online]

Available at: https://saucelabs.com/sauce-labs/white-papers/real-mobile-devices-for-

continuous-testing.pdf

[Accessed 6 March 2020].

Sharp, M., Sadun, E. & Strougo, R., 2013. Learning iOS Development: A Hands-on

Guide to the Fundamentals of iOS Programming. s.l.:Addison-Wesley Professiona.

Sogeti, Capgemini, Micro Focus, 2017. World Quality Report 2017–18. [Online]

Available at: https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-

2018/wqr_2017_v9_secure.pdf

[Accessed 13 March 2020].

Sten Pittet, 2020. What are the differences between continuous integration, continuous

delivery, and continuous deployment?. [Online]

Available at: https://www.atlassian.com/continuous-delivery/principles/continuous-

integration-vs-delivery-vs-deployment

[Accessed 6 March 2020].

Taulli, T., 2019. Artificial Intelligence Basics: A Non-Technical Introduction. s.l.:Apress.

TechBeacon, 2018. How to use computer vision for your test automation. [Online]

Available at: https://techbeacon.com/app-dev-testing/how-use-computer-vision-your-

test-automation

[Accessed 14 March 2020].

Testim, 2018. How AI is Changing the Future of Software Testing. [Online]

Available at: https://www.testim.io/blog/ai-transforming-software-testing/

[Accessed 12 March 2020].

Testsigma, 2020. Natural Language Processing (NLP)Based Test Automation. [Online]

Available at: https://testsigma.com/blog/natural-language-processing-nlp-based-test-

automation/

[Accessed 16 March 2020].

V2Soft, 2018. Cloud based AI Services: The gateway to Artificial Intelligence in your

business. [Online]

Available at: https://www.v2soft.com/blogs/cloud-based-ai-services-gateway-to-

artificial-intelligence-in-your-business

[Accessed 27 March 2020].

w3c, 2005. Localization vs. Internationalization. [Online]

Available at: https://www.w3.org/International/questions/qa-i18n

[Accessed 28 February 2020].

Venables, M., 2019. An Overview of Computer Vision. [Online]

Available at: https://towardsdatascience.com/an-overview-of-computer-vision-

1f75c2ab1b66?gi=580f2b2d77a3

[Accessed 14 March 2020].

Verma, N., 2017. Mobile Test Automation with Appium. s.l.:Packt Publishing.

Zhao, C., He, Z. & Zeng, W., 2010. Study on International Software Localization

Testing. Wuhan, 2010 Second World Congress on Software Engineering.

	1 Introduction
	1.1 Background
	1.2 Motivation and Research Problem
	1.3 Research Process, Method and Material
	1.3.1 Research Process
	1.3.2 Method and Material

	1.4 Organization of the Thesis

	2 Theoretical Background
	2.1 App Internationalization and Localization
	2.1.1 Internationalization Process
	2.1.2 Localization Process

	2.2 Localization Testing
	2.2.1 Testing Strategies
	2.2.2 Previous Work on Automated Localization Testing

	2.3 Automated UI Testing
	2.3.1 Test Case Generation
	2.3.2 Test Case Execution

	2.4 AI in Automated Testing
	2.4.1 AI Basic Concepts
	2.4.2 Computer Vision in Automated Testing
	2.4.3 Natural Language Processing in Automated Testing

	3 Solution Building
	3.1 Localization Testing Requirements
	3.2 NEAR System Implementation
	3.2.1 Development and Testing Environment
	3.2.2 Automation Strategies
	3.2.2.1 Navigating the UI
	3.2.2.2 Extracting the UI information
	3.2.2.3 Analyzing the Extracted Data
	3.2.2.4 Generating a Test Report

	4 Solution Evaluation
	4.1 Results
	4.2 Limitations
	4.3 Future work

	5 Summary and Conclusions
	5.1 Summary
	5.2 Conclusion

