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PREFACE 
 
 

As a Software Engineer, I always get curious about the latest trends in the IT field, may 

it be about the new programming language, paradigms, or tools. And nowadays, AI is a 

hot topic with so much hype around it. So I asked myself, "Beyond Boston housing data 

and MNIST exercises that I did, how can AI help me in my daily work?". 

 

Over the years, my work tasks are mostly related to UI, from Visual Basic to Visual C++, 

QT, HTML5, now Swift, and I am about to start learning SwiftUI. UI automated testing 

already brings a lot of challenges, much more on the localization. If AI is already solving 

complex problems today, for sure it can improve my productivity, how about automating 

the localization testing? 

 

The research topic blends my interest and work experience. This will not be possible 

without the support of my manager and colleagues at work.  

 

To my wife, my son Gio Raphael and soon to be born daughter, thank you for allowing 

me to spend time writing this thesis. Those were precious times that I should have spent 

with you.  

 

Dedicated to my mother and father, my first teachers. Nanay and Tatay, we have come 
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1 Introduction 

1.1 Background 

Every mobile app developer wants to make their app a global success. The first step to 

gain a wider audience is by making the app available in all App stores’ supported 

countries or regions. However, top online store locations that have a significant market 

share aside from the US are non-native English speakers. With millions of apps to 

choose from, one common strategy that software companies use to stand out is to make 

their product display the content according to the local market. 

This process of adapting an app’s User Interface (UI) to a different language and region 

so that it can be understood on a local market is called localization. It typically involves 

translating all the texts, replacing icons and images, and presenting the correct date/time 

format in the target language and culture. UI is an integral part of the User Experience 

(UX). UX is defined as “user’s perceptions and responses that result from the use and/or 

anticipated use of a system, product or service” (ISO9241-210, 2019).  UX can affect the 

app's success. It determines whether the potential customer will use or discard the app 

(Applitools, 2019). 

Localization process usually starts with exporting the resource like texts, then sending 

those to an external Localization service provider. Localized resources are then imported 

back, and the app is built and tested afterward. Exporting and importing the resources 

are typically automated. This process is part of the Continuous Integration (CI) of the app 

development cycle. However, there is still a lack of automation in testing. 

Developers make the app ready for localization, then Quality Engineers (QE) validate it 

for correctness. However, QEs are not language experts. They can detect bugs such as 

untranslated texts, texts that are overlapping due to lack of space, and misaligned UI 

elements. However, bugs that are hard to detect, like mistranslation or wrong context, 

truncation, wrong date/ time format, requires linguistic expertise. (Carmi, 2019) 

Quality Engineers repeat this time-consuming task for all supported languages. They are 

doing the same tests on different devices with various screen sizes, resolutions, and also 

with several OS versions. QEs resort to semi-manual testing due to the visual nature of 
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the tests, where most tools cannot adequately find bugs. This research is about finding 

ways to minimize the manual work, speed up the testing time, and effectively find bugs 

in UI Localization testing.  

1.2 Motivation and Research Problem 

In a nutshell, every element in the User Interface can be categorized into groups such 

as buttons, labels, and icons. Various platform-specific tools already exist to extract data 

from these elements. Finding ways to analyze this localized data for correctness without 

human interaction is a challenge. Artificial Intelligence (AI) is one field that might solve 

this challenge because data is where the AI shines. 

Recent advancement of AI in the fields of Computer Vision, Natural Language 

Processing (NLP), is auspicious. One of its practical usages might be to augment the 

linguistic and visual skills required to do localization testing. Big companies like Google, 

Microsoft, and Amazon are investing heavily to forward these fields of sciences and 

already provide platforms for developers to integrate it with their products (Kukushkina, 

2019). 

This thesis have two primary goals. The first goal is to expand the scope of localization 

testing that Quality Engineers are manually doing in the case company. The second goal 

is to reduce the time allotted for testing.  

It was not known during the writing of this thesis, whether AI could help to expand the 

scope of the test. Moreover, the question is if AI has subfields that can provide the visual 

contexts to the test and add linguistic skills needed.  

It is proven that test automation can reduce the time allocated for testing, along with 

other benefits. However, localization testing is rarely addressed in the scientific literature, 

thus finding existing tools, especially for the mobile domain, is a challenge. Likewise, 

there is a risk that none of the manual testing tasks can be automated. 

Those two goals formed the following research question: 

Can AI be used to improve UI Localization testing? 
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The outcome of this research is a proof-of-concept automated system to test UI 

Localization of a mobile app. The scope of this research is to investigate the existing UI 

automation tools, evaluate and integrate the pre-trained AI models from service providers 

like Google and Microsoft, and test the system with at least 2 example iOS apps that are 

localized in 1 language aside from English. 

This research aims to find ways to improve the process of UI Localization testing by a) 

cutting the amount of time it requires from QE to test, b) the possibility to achieve 60% 

automation, and c) expand the testing scope. 

1.3 Research Process, Method and Material 

 

This research follows the Design Science approach to create an innovative solution. This 

subchapter describes the research process from data gathering up to the evaluation of 

the proposed solution. 

 

1.3.1 Research Process 

This research was conducted in stages (Figure 1). The first stage was finding the current 

state by gathering metrics like time spent, average bugs found, and types of issues. 

Likewise, a preliminary study was done to familiarize with the tools used in UI testing. 

Requirements were narrowed down, and at the same time, the areas for improvement in 

the existing process were identified. Information and data came from the interviews with 

Quality Engineers and internal documentation from the case company. 

The second stage was getting acquainted with the theoretical background. Previously 

published research about localization testing, automation, and UI testing were examined, 

and compared with each other. Next was evaluating the suitable pre-trained models of 

NLP and Computer Vision from AI platform service providers like Google, Microsoft, IBM, 

and Amazon.  

The third stage was building a solution. Trial and error were conducted with the chosen 

tools and technologies, then selecting the best ones that were easy to integrate, covered 

the test cases that QEs require, and faster to execute. 

In the last stage, the prototype system was demoed, and results were evaluated. 
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Figure 1. Research plan adapted from Henver et al. (Hevner, et al., 2001) 
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1.3.2 Method and Material 

A qualitative method was used to gather the information that defines the scope of the 

research question. Requirements for the solution came from observations from the 

current test process and system, interviews with the Quality Engineers, and project lead. 

Internal documents and bug tickets were examined to know the types of bugs found and 

missed during testing, and likewise know the corresponding severity for prioritization. 

The solution was evaluated using the quantitative method. The test runs determined the 

test time reduction, the number of bugs found, bugs missed, and the number of false-

positives. 

1.4 Organization of the Thesis 

This thesis is divided into five chapters. Chapter 1 introduces the goals, motivation and 

expected outcome of this research. Chapter 2 presents the theoretical background of the 

existing work done in a field of UI Localization testing, AI fields of Computer Vision, NLP, 

and major service providers for these technologies. Chapter 3 discusses the 

requirements and steps in building the proof-of-concept UI Localization testing system. 

Chapter 4 then discusses the validation of the results. Finally, the last chapter is the 

summary and the conclusion of the thesis.  
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2 Theoretical Background 

This chapter presents the core concept of the localization process. It explores the various 

industry-standard practices and strategies in testing localized software, including 

previous research that focuses on automating it. Moreover, to come up with an answer 

to the research question, information is analyzed and compared from publications, 

journals, websites, and books about Automated UI Testing and AI usage in UI Automated 

Testing. Specific subfields of AI, such as Computer Vision and NLP, are also discussed. 

The knowledge presented here lays the ground for understanding, scoping, and 

designing the Automated UI Localization Testing System that this thesis aims to 

implement. 

2.1 App Internationalization and Localization 

There are two main steps to design an app for a global audience. The first step is to 

internationalize the app, and the second is to localize it. Internationalization and 

Localization are sometimes written as i18n and l10n, respectively, where 18 and 10 are 

the number of letters between the first and last character of each word (w3c, 2005). 

Internationalization and localization are sometimes referred to as globalization (Hardy, 

et al., 2012). 

 

Figure 2. Localization process (Apple, 2015) 
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2.1.1 Internationalization Process 

Internationalization is the process of preparing the app to adapt to different languages, 

regions, and cultures (Apple, 2015).  It means that it should be able to display text, 

numbers, and currency in appropriate locales. A locale is a combination of language and 

region (Android, 2019). It represents cultural conventions (Flanagan, 2002). 

Internationalization is a pre-requisite for localization. The following are the typical 

activities involved in internationalization.  

Auto Layout. Adjusting or resizing view layouts to accommodate longer strings. UI 

components that display text must not have a fix width or height. Some languages have 

a longer localized text, and this may be truncated if the control's width or height is not 

flexible. 

Externalize Resources. Putting the user-facing content into resource files. Separating 

the localizable element from the code, such as text, images, and videos. 

 

Listing 1. Load and print the string according to the system's language. This will print 'Good morning!' 
if the system's language is English. Otherwise, it will print 'Hyvää huomenta!' if it is in Finnish. 

 

System-Provided Formatting Methods. Changing the code to adhere to locale formats 

when displaying data such as date, time, numbers, personal names, and forms of 

address. Confusion will arise if this is not done. Awwad and Slany’s mentioned in their 
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research that “typical problems are ‘../../....’ date formats between the US and European 

date formats, where it is unclear whether 10/2/2016 is the 2nd of October (US) or the 

10th of February (most European countries) 2016” (Awwad & Slany, 2016). 

 

Listing 2. Format a date value according to the system's region. This will print '2/28/20, 1:46' PM if the 
region is the US, and ‘28.2.2020 13.46', if the system's region is Finland. 

User Interface Mirroring. For right-to-left languages, mirror the user interface and change 

the text direction as right-aligned. The reading order for the speakers of bi-directional 

languages is from right to left. 

 

Figure 3. Example of right to left UI (Awwad & Slany, 2016) 

However, according to Apple Developer Guide, some elements must not flip, these are:  
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• “Video controls and timeline indicators 

• Images, unless they communicate a sense of direction, such as arrows 

• Clocks 

• Music notes and sheet music 

• Graphs (x– and y–axes always appear in the same orientation)”. (Apple, 2015) 

2.1.2 Localization Process 

Localization is a process of translating an app into different languages. Resources such 

as text, audio, and images are exported and then submitted to translators. When 

translations are ready, they are then imported back to the app. Exporting and importing 

varies depending on the platform. It can be as simple as copying the files or using 

platform-specific developer tools like XCode, as illustrated in the figure below. 

 

Figure 4. Exporting and Importing of string resources for iOS or OS X app. (Apple, 2015) 

Translation step is commonly outsourced to a third-party localization service provider, or 

inhouse if there are language experts. Google even integrated an App Translation 
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Service in its Google Play Console. According to the manager that was interviewed 

during this research, the translation process includes a validation round inside the vendor 

that provides translation. If screenshots are available, review rounds are used to validate 

further the string in projects. He also pointed out the common issues during translation 

step such as: 

• Difficulties in translation due to poor internationalization of the product or the 

resource file.  

• Unclear or poor English combined with sentences that were split. 

• Unclear variables and configuration information in the resource file. 

• Inflexible UI layout design causes the majority of issues.  

• Typos and mistranslations due to lack of context.  

• Highly specialized and new terminology. 

2.2 Localization Testing 

A wrongly worded or grammatically wrong text can ruin the User Experience of an app 

despite its sophisticated features. The quality of the app depends on the localization 

level, and it cannot be stressed enough the importance of localization testing in quality 

assurance of a localized app (Zhao, et al., 2010).  

2.2.1 Testing Strategies 

Test strategies can vary at each stage of the globalization process. Nevertheless, the 

pre-requisite is the test environment. It must be properly set up to uncover issues specific 

to culture, language, date and time format, and bi-directional language. Test environment 

can be either an Emulator or a physical device. Emulators simulate a mobile device on 

a laptop or PC (Haller, 2013). A test device's locale must be set to the target language 

and region to test a localized app. Android Developer Guide (Android, 2019) also 

suggests creating a custom locale that is not supported by the system to test how the 

app runs. It must display the default resource. 

Pseudo-localization is a common technique to test the app during the internationalization 

stage of app development. “The pseudo-localization process replaces the characters in 

a given source string (such as in an English language string) with characters from a 

target set (such as Unicode) and changes the size of the string by adding extra 
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characters to it” (Gundepuneni, et al., 2012). This method reveals whether elements in 

the UI can resize properly with string length variations, and adapt to different language 

fonts.  If the UI displays un-pseudolocalized text, then it means that there are 

untranslatable messages in your source code (Android Developer Guide, 2019). It is a 

technique to test the readiness of the app while waiting for the localization. 

The following are common issues with a localized app: 

• Non-localized strings. Hardcoded strings are not sent to translation. 

• Long texts that can break the UI layout. Label or text elements might overlap. 

• Wrong person’s title or postal address format. 

• Wrong currency, number, date or time format. 

• Right-to-left layout if elements are not mirrored. 

Android Developer Guide summarizes the best practices to test the app. 

• “Where possible, always use native-language speakers to test your localization. 

• On each test device, set the language or locale in Settings. Install and launch the 

app and then navigate through all of the UI flows, dialogs, and user interactions. 

Enter text in inputs. 

• Look out for clipped text or text that overlaps the edge of UI elements or the 

screen. 

• Verify that text is line wrapped appropriately. 

• Check for incorrect word breaks or punctuation. 

• Validate alphabetical sorting to ensure the order is as expected. 

• Make sure all layouts and text directions are correct. 

• Watch for untranslated text; check that the resources directory is marked with the 

correct language qualifier. 

• Test for default resources.” (Android Developer Guide, 2019) 

2.2.2 Previous Work on Automated Localization Testing 

Searching for keywords such as “localization”, “localisation”, “globalization” together with 

“automated testing” from Metropolia's digital libraries and resources yields a minimal 

result. Ramler and Hoschek also pointed out that there is very little scientific literature 

focusing on localization (Ramler & Hoschek, 2017). However, localization testing is the 
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candidate for automation because it involves many repetitive tasks. As an example, 

Archana et al. (Archana, et al., 2013) enumerated the following issues that the 

automation system can detect from a web-based app: 

Inconsistent font usage. Small font can result in unreadable text or text that can appear 

garbled. 

Character corruption. Presence of mojibake (garbage characters), tofu (hollow boxes) 

due to wrong encoding or missing glyph for that character from the chosen font, 

respectively. 

 

Figure 5. Character corruption (Archana, et al., 2013) 

Hardcoded texts. Texts that are not translated according to the locale. 

 

Figure 6. Hardcoded strings (Archana, et al., 2013) 

Over translations. Strings that should not be translated are not presented according to 

the value from the app resource. These are default strings like product name and 

versions. 
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Automated localization testing can find not only cosmetic issues but also critical bugs. A 

simple truncation issue can lead to a misleading situation. As an example "110V" voltage 

value is shown as "10 V" in a right aligned text where there is not enough space to 

accommodate the number value. (Ramler & Hoschek, 2017) 

GWALI (Global Web Applications’ Layout Inspector) has likewise proven that a 

presentation failure of web apps can be detected by automation. GWALI is a prototype 

for detecting distortion in a web page’s appearance caused by internationalization. It can 

narrow down the HTML elements or text that is causing the problem. This tool identified 

91% of defects based on their test results and has a running time of 9.75 seconds per 

web page. Their approach was to build Layout Graphs and comparing these graphs to 

identify the distorted appearance of a webpage after localization. (Alameer, et al., 2016) 

 

Figure 7. Part of a webpage and its localized version (Alameer, et al., 2016) 

 

Figure 8. Text overlapping with a button after translation (Alameer, et al., 2016) 

 

There are not that many research papers related to automated localization testing for 

mobile apps, especially for iOS.  

2.3 Automated UI Testing 

The artifact of this research is a prototype of an automated localization testing system. 

The test cases for this system are variants of UI tests because localized resources, such 

as strings and images, are presented in the UI through elements like buttons, text labels, 
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and icons. Therefore, verifying that localized data are displayed correctly is considered 

as a UI testing task.  

It is essential to confirm that the UI meets functional requirements and consistent in style. 

However, manually testing it is time-consuming, tedious, and error-prone. Automating 

user action is an efficient way to test the app (Android, 2019). 

An automated UI test case is a coded test that generates user actions or events such as 

typing in a text field, swiping views, and tapping buttons. It then validates the changes in 

the user interface or functionality of the app according to the expected outcome of the 

action. Automated tests are fast and repeatable. Aside from testing the app flow, 

automated UI tests can check visual consistencies of UI elements properties; this 

includes but not limited to: colors, icons, fonts types, and font sizes. 

According to Microsoft, “Automated tests that drive your application through its user 

interface (UI) are known as coded UI tests (CUITs)” (Microsoft, 2016). The app is first 

tested manually, and then this scenario will be automated. The figure below illustrates 

the different use cases of coded tests depending on the functionality being tested. 

 

Figure 9. Typical flow and approaches of test development. (Microsoft, 2016) 

2.3.1 Test Case Generation 

Quality Engineers or developers create a set of test cases to exercise the functionality 

of the app. Test Automation Framework will automate the execution of these tests. One 

of the challenges is to achieve high coverage due to a large number of execution paths, 
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which means engineers need to create a lot of test cases. Most UI test tools provide a 

“record” feature that allows humans to manually explore the app and later generates a 

code to “replay” their actions.  

A test automation framework is a set of concept and tools to create tests and perform 

automated software testing (Archana, et al., 2013). UI Test Automation Frameworks 

address two requirements for automated testing (Microsoft, 2019): 

1. Locate a specific view. This is performed through queries. A test case must be 

able to query for a view or element from the screen. The framework should be 

able to return this view object so that actions can be done to it. 

2. Interact with a view. APIs to perform actions on a view such as tapping, entering 

text, or swiping. 

Google and Apple provide UI test frameworks tailored for their respective platform, 

XUITest for iOS and Espresso for Android. Test cases created for these frameworks 

must be written in a programming language specific to their particular platform. Example 

codes are listed below.  

 

Listing 3. Test case for iOS app written in Swift. 

 



16 

 

 

Listing 4. Espresso sample test code snippet. (Bezmolna, Victoria, 2019) 

These frameworks are stable and no cost for setup as it is usually bundled together with 

the app development tools. Cross-platform frameworks also exist like Appium that can 

run a test script for either Android or iOS. Its advantage is that it supports many 

programming languages to write a test case and run parallel Android UI tests (Bezmolna, 

Victoria, 2019). However, it is complex to setup initially, test runs are slow and can have 

compatibility issues with every update of platform tools like XCode (Mischinger, Sarah, 

2019). 

 

Listing 5. Appium sample test case written in python. (Appium, 2019) 

Another approach to automated testing is Model-based Testing (MBT). This approach is 

about automating test case generation. It requires a model as input in order to generate 

test cases. Morgado and Paiva highlights two main issues of MBT, those are: “1) the 

necessity of an input model from which test cases are generated and whose manual 

construction is a time consuming and error prone process and 2) the combinatorial 

explosion of generated test cases” (Morgado & Paiva, 2015). Their paper presents a 

solution through reverse engineering implementation. It identifies the UI Patterns and 

based on that, applies a similar test strategy from their catalog of patterns, and continue 

exploring the app. Another issue pointed by Arnatovich et al., is that the existing model-

based testing tools for Android generates trivial or non-sensible input, or sometimes it 

requires the user to provide such data during app testing (Arnatovich, et al., 2016). 
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2.3.2 Test Case Execution 

In the Continuous Integration (CI) process, developers commit their code changes to a 

central source repository several times per day. This event triggers an action to run the 

automated tests. CI runs the automated test to verify that new code changes do not 

break existing features or introduce new bugs, so the software remains deployment 

ready at all times (Atlassian, 2020).  

 

Figure 10. Technical implementation of Continuous Integration (pepgotesting, ei pvm) 

UI Tests can be executed either in real devices or in virtual devices such as simulators 

and emulators. An emulator is a virtual representation of the entire device, including the 

low-level system calls. On the other hand, a simulator runs a version of mobile OS 

implementation in the host machine's kernel. These virtual devices are software 

programs, and tests that are performed on it will not uncover device-specific bugs. 

Customers' use cases can only be performed on a real device such as network change 

events, phone calls, push notifications, audio input/ output, and among others. However, 

procuring real device is expensive, and needs to be updated as new devices come to 

the market very often. (SauceLabs, 2018) 
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These environments may either reside on-premise or on the cloud. Cloud-based test 

labs enable customers to use a set of devices based on the subscription plan. The 

advantage of using service from cloud is that there is no need to maintain and purchase 

the latest devices. (Garg, 2016) 

 

Figure 11. Physical setup of the test environment on-premise that can support iOS and Android app testing 

Cloud-based test infrastructure allows running of tests in parallel against a massive 

collection of physical devices. Facebook (Facebook, 2016) mentioned that they require 

2000 mobile devices to cover all combinations of device hardware, operating systems 

and network connections. Cloud Testing Service providers also provide better analytics 

and reporting features, they also solve complicated signing issues with Apple's app 

security model, and the infrastructure is scalable (SauceLabs, 2018). AWS Device Farms 

(Amazon, 2020) even allow debugging to reproduce issues and can interact with a device 

via a web browser. 

 

Figure 12. Bitbar cloud-based testing infrastructure (Bitbar, 2019) 
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2.4 AI in Automated Testing 

To answer the research question of whether AI can be used to improve UI localization 

testing, it is fundamental to understand what AI is and how it is providing useful solutions 

to software test automation domain. 

Testing approaches evolved over the years, from testers acting as product users, 

interacting with the application to coding test scripts for automation. In the future, test 

automation techniques would involve predictive analysis, self-remediation, cognitive 

automation, and machine learning according to 38% - 42% of the organizations surveyed 

in World Quality Report 2017 (Sogeti, Capgemini, Micro Focus, 2017). 

 

Figure 13. How testing has evolved over the last 4 decades. (Testim, 2018) 

World Quality Report 2019-2020 (Capgemini, Sogeti, 2019) recommends building a 

smart, connected test platform with intelligent analytics. According to the same report, 

Artificial Intelligence (AI) can make testing smarter. However, the test team needs AI-

related skillset, like data science, statistics, and mathematics. Integrating AI in Software 

testing is a natural progression (Testim, 2018).  

 



20 

 

2.4.1 AI Basic Concepts 

Researchers have no exact definition of AI. However, a system with AI has two key 

attributes. First is autonomy, which means it must be able to perform tasks in complex 

environments without constant guidance from the user. Second is adaptability or the 

ability to improve by learning from experience. (Reaktor, University of Helsinki, 2018) 

Although AI covers various theories and technologies, the two main classifications are 

Machine learning and Deep learning (Taulli, 2019). Machine learning (ML) is a subfield 

of AI and defined as “Systems that improve their performance in a given task with more 

and more experience or data” (Reaktor, University of Helsinki, 2018). ML deals with 

constructing a system where the focus is on learning from available data or reactions of 

the environment. One of the subfields of ML is Deep learning (DL). It “refers to certain 

kinds of machine learning techniques where several "layers" of simple processing units 

are connected in a network so that the input to the system is passed through each one 

of them in turn” (Reaktor, University of Helsinki, 2018). 

 

Figure 14. “High-level look at the main components of the AI world”. (Taulli, 2019) 

The book Artificial Intelligence Basic: A Non-Technical Introduction (Taulli, 2019) 

illustrates better the distinction between deep learning and machine learning through its 

example of finding a picture of a horse from thousands of animal pictures. In machine 

learning, the model must be trained by using labeled photos of animals as its training 

data. It can also employ feature extraction, a process of analyzing the pixel patterns of 

the images itself to develop the characteristics of a horse. On the other hand, the Deep 
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learning approach analyzes all the data to find the relationships between pixels. It will 

use a neural network, just like the human brain. (Taulli, 2019) 

Machine learning is already applied in many applications. Some examples (illustrated 

below) are Predictive maintenance - to forecast when equipment will fail. Customer 

experience - to leverage the data to gain customer insights on what really works. Finance 

- to detect discrepancies in billing. (Taulli, 2019) 

 

Figure 15. Applications for machine learning. (Taulli, 2019) 

The AI infrastructure requires a lot of computing power to train the neural network. It also 

requires a lot of data for algorithm to perform better. These two are the major stumbling 

blocks for smaller companies to build, implement, or adopt AI in their business. Tech 

giants companies like Amazon, Google, IBM, and Microsoft are addressing these 

challenges by providing cloud-based AI services. IBM referred to this as a “cognitive-as-

a-service”, and according to their study, this setup is the preferred way by most early 

adopters in developing and delivering AI-infused solutions (IBM, 2016). 
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Figure 16. Preferred way to access and use AI capabilities (IBM, 2016) 

Aside from the lower cost compared to building non-cloud infrastructure, cloud-based AI 

service also has other benefits. Risk reduction is one of the benefits, which means if the 

product is not successful, a company can terminate the service without worrying about 

the expensive hardware equipment or the data scientists that they do not need anymore. 

Similarly, if the product is a success, a company can expand or scale their infrastructure 

on demand. Another advantage is access to bleeding-edge technologies. Major cloud 

vendors have a large scale investment in research and development. Technologies can 

become obsolete fast, and these major vendors can roll out new capabilities regularly. 

(V2Soft, 2018) 

As mentioned in the introduction section, this thesis aims to use multiple cloud-based AI 

service. Listed below are services that are considered relevant to this research. 

• Google Cloud Vision. It offers pre-trained machine learning models through 

REST APIs. It can classify and assign labels to images. Likewise, it detects 

objects and faces and reads printed and handwritten text from images. 

• Google Natural Language Processing. It “uses machine learning to reveal the 

structure and meaning of the text” (Google, ei pvm). The pre-trained models can 

extract information, understand sentiments, and parse intent from customer 

conversations. 

• Google Translation. “Dynamically translate between languages using Google’s 

pre-trained or custom machine learning models” (Google, ei pvm). 

• Amazon Rekognition. It uses deep learning technology. It “can identify objects, 

people, text, scenes, and activities in images and videos, as well as detect any 
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inappropriate content” (Amazon, 2020). It also provides facial analysis and facial 

search capabilities. 

• Amazon Textract. It is a document text detection and analysis service using 

deep-learning technology. Its API can “detect text in a variety of documents, 

including financial reports, medical records, and tax forms” (Amazon, 2020). It 

can also extract forms and tables for documents with structured data. 

• IBM Watson Natural Language Processing. It uses deep learning-based NLP 

models like named entity recognition, sentiment analysis, keyword extraction, 

part-of-speech tagging, topic modeling to analyze text to extract metadata from 

the content. 

• Microsoft Azure Cognitive Services. A comprehensive portfolio of domain-

specific AI capabilities with a set of APIs for vision, language, speech and search 

capabilities. 

2.4.2 Computer Vision in Automated Testing 

“Computer vision allows machines to identify people, places, and things in images with 

accuracy at or above human levels with much greater speed and efficiency. Often built 

with deep learning models, it automates extraction, analysis, classification and 

understanding of useful information from a single image or a sequence of images. The 

image data can take many forms, such as single images, video sequences, views from 

multiple cameras, or three-dimensional data” (Amazon, 2020). Computer vision (CV) 

typically imitate the visual perception of humans, intending to interpret natural scenes of 

images (Peters, 2017). 

The computer vision process typically starts with acquiring a large set of images from 

real-time video or photos. It then uses deep learning to process the image using the 

models that were trained by feeding pre-identified images. The last step is to interpret 

and show results by identifying or classifying the objects. (Sas, 2019) 

Sas enumerated some of the use cases of Computer Vision: 

• “Image segmentation partitions an image into multiple regions or pieces to be 

examined separately. 

• Object detection identifies a specific object in an image. Advanced object 

detection recognizes many objects in a single image: a football field, an offensive 
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player, a defensive player, a ball and so on. These models use an X,Y coordinate 

to create a bounding box and identify everything inside the box. 

• Pattern detection is a process of recognizing repeated shapes, colors and other 

visual indicators in images.” (Sas, 2019) 

 

 

Figure 17. Image Classification and Segmentation (Venables, 2019) 

Object detection is one of the use cases that is relevant to this research. It is a technology 

also related to image processing to locate and identify objects such as humans, vehicles, 

and animals, from either images or videos (Jiao, et al., 2019). This technology can 

classify just one or diverse objects from an image. YOLO (you only look once) is one of 

the fastest object detectors. YOLO divides the image into a cell, predicts if the object is 

enclosed in a cell, then classifies the object if there is any, and this is done in one go 

(Redmon, et al., 2016). 

 

Figure 18. YOLO Detection System. (Redmon, et al., 2016) 
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Figure 19. YOLO model. “System models detection as a regression problem” (Redmon, et al., 2016) 

The practical usage of object detection in the scope of this thesis is to locate elements 

that display potentially localizable data. Traditional test frameworks can enumerate these 

elements, but they needed to access the app's elements tree. UI test frameworks such 

as Appium and XCUITests use element ID or XPath to locate an item in the UI. These 

identifiers are hardcoded in the test. The test must first find the element to perform 

actions such as tapping a button or sending keys to a text field. However, UI constantly 

changes to adhere to new UX guidelines, or new features are being added. As an 

example, XPaths can change by reordering view hierarchy, which means test scripts 

must be updated. This is just one of the reasons that make UI test automation hard to 

maintain and fragile, especially during active app development. 

Integrating computer vision technology to the test framework can help solve this issue. 

CV detects objects such as UI controls and elements on the image, thus eliminates the 

requirement of the test framework to know the UI view hierarchy to locate a control. 

TechBeacon employed the same technique when they faced difficulty in implementing 

tests in one of their clients. Since they cannot access the element tree of the app, they 

use CV to detect controls on pages.  They took the screenshots manually, labeled the 

image, and generated a metadata XML file containing the element category and their 

respective coordinates. These files were used to train their network for 4 hours. 

(TechBeacon, 2018)  
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User Interfaces can look different depending on the device's orientation, screen 

resolutions, and operating system version. The traditional UI test automation framework 

alone cannot validate the visual aesthetics of the app. It requires humans to inspect 

visually. Applitools Eyes is addressing this issue by using Cognitive Vision Technology. 

It first establishes the baseline appearance of the app per environment, and then on the 

next run, it will compare the differences between the screenshot and the baseline image. 

It uses AI-powered computer vision algorithms to detect and report only the differences 

that are obvious to the users. (Applitools, 2019) 

Inconsistencies between the UI design and implementation is another defect that the test 

automation framework cannot detect. However, the research conducted by Chen et al. 

proved that the computer vision method could be used to identify inconsistencies in the 

layout, such as positions, sizes. It can also verify the presentation characteristics such 

as colors and fonts. Their solution - UI X-Ray achieved a “99.03% true-positive rate, 

which significantly surpassed the 20.92% true-positive rate obtained via manual 

analysis” (Chen, et al., 2017). 

2.4.3 Natural Language Processing in Automated Testing 

“Natural language processing (NLP) is one area of artificial intelligence using 

computational linguistics that provides parsing and semantic interpretation of text, which 

allows systems to learn, analyze, and understand human language” (IBM, ei pvm). 

NLP practical applications are already used in our daily lives. Alexa, Siri, Google 

Translate, the Spam filtering in our mailboxes, or just by typing into the web browser’s 

search bar and many others. The table below lists a few applications of NLP. 
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Table 1. Categorized NLP applications (Hapke, et al., 2019) 

 

An NLP processing system is often referred to as a pipeline because it usually involves 

several stages of processing where natural language flows in one end, and the 

processed output flows out the other (Hapke, et al., 2019). The two main processing 

steps are: “preprocessing the text and using AI to understand and generate language” 

(Taulli, 2019). 

Cleaning and preprocessing involve tokenization, stemming, and lemmatization. During 

tokenization, texts are parsed and segmented in various parts. Texts are also normalized 

to simplify the analysis, like converting to upper or lower cases and removing 

punctuations. Stemming, on the other hand, is a process of removing prefixes and 

suffixes to extract the root word. Lemmatization then finds the similar meaning of the root 

word, “better” is lemmatize to “good” as an example. (Taulli, 2019) 
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Figure 20. Example of tokenization (Taulli, 2019) 

 

 

Figure 21. Example of stemming (Taulli, 2019) 

 

 

Figure 22. Example of lemmatization (Taulli, 2019) 
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To understand or extract information or knowledge from natural language text, 

researchers commonly use the following approaches: 

• Named entities and relations recognition. A typical sentence may contain several 

named entities such as location, organizations, people, dates, times, and events. 

This is a process of identifying words that represent the mentioned entities. 

(Hapke, et al., 2019) 

• Part-of-speech (POS) tagging. A process of recognizing what parts of speech do 

the word belong, such as verbs, adverbs, nouns, etc. 

• Topic modelling. A process of finding hidden patterns and cluster. (Taulli, 2019) 

• Chunking. Processing text in phrases. (Taulli, 2019) 

Entity extraction is one of the useful features of NLP for UI localization testing. The ability 

to recognize names, dates, times, and locations have many use cases for localization. 

These are localizable data, thus if the test framework can extract those, then definitely it 

can validate that the extracted data adhere to the expected locale format.  

Translation service providers have many uses of NLP. As an example, Jonker 

enumerated some of the applications of NLP for localizer such as (a) extracting all names 

before translation to make sure they are handled correctly afterward, (b) extracting key 

terms for glossaries, and (c) highlighting locations' geopolitical names for localization 

(Jonkers, 2018).  

NLP is also now finding its way in Scriptless Test Automation. Scriptless or less coding 

approach in testing abstracts the underlying test code intended for manual testers that 

lack programming skills or stakeholders that have no technical expertise. Tools like 

Testsigma use NLP for test case creation and have AI at its core to allow writing of test 

in plain natural language, which can easily be understood (Testsigma, 2020). The 

example test is shown below (Lavanya, 2019). 

"Go to https://testsigma.com”, 
“Enter Name in the Username field”, 
“Verify that the page displays text Testsigma” (Lavanya, 2019) 

 



30 

 

3 Solution Building 

The knowledge presented in the theoretical background section is the building block for 

the proposed solution presented in this chapter. First, the requirements are enumerated 

based on the current testing practices of Quality Engineers in the company that this 

research was conducted. Then, based on the requirements, design decisions, and 

implementation details of a prototype system called NEAR (Navigate, Extract, Analyze 

and Report) are presented. 

3.1 Localization Testing Requirements 

Before answering the research question about the usage of AI in automated localization 

testing, the author, together with the Quality Engineers, evaluated if there are any steps 

in localization testing that are worth automating. A set of questionnaires were sent to two 

QE leads, two members of localization teams, one manager, and three senior quality 

engineers. The questions are listed in the table below: 

Table 2. Questionnaires 

 
Questions 

 

 
What kind of issues do you look for when testing localization? 

 
 
How often do you test localization? How much time do you allocate per test 
run? 

 

 
Should this be automated or manual testing is enough? 
 

 
Do you have a TA system to test localization? If yes, what framework/tools 
do you use? 
 

 
If there is a prototype system to do this, are you willing to pilot to do a few 
test runs? 
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The following conclusions were made based on the gathered answers. 

• Localization testing should be semi-automated.  

• Manual verification by a person that knows the context should still be done to 

check the findings reported by the automation process.  

• On average, one day is allocated every release for localization testing.  

• Technologies that they are familiar with: 

o Python language 

o Selenium 

o Appium 

o Alchemy Catalyst 

o UIAutomator 

Based on the discussion afterward, the following are the steps that the automated system 

should accomplish. 

• Generate screenshots. Store these as artifacts, also draw a bounding rectangle 

for offending lines or words that are found in the image. 

• Detect non-localized string. These can be hardcoded or placeholder texts. 

• Detect overlapping strings. 

• Detect truncated strings. 

• Find wrong spellings. 

• Find corrupted characters. 

• Find dates, currencies and numbers that are not formatted according to the 

locale. 

3.2 NEAR System Implementation 

The prototype system is called NEAR which stands for Navigate, Extract, Analyze and 

Report.  

After the requirements were narrowed down, a draft of the system's design was drawn. 

The diagram provides an overview that even a non-technical person can understand, 

and it also serves as a starting point when discussing ideas with peers. The figure below 

illustrates how the components interact.  
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Figure 23. High level design draft 

The process starts and ends with Quality assurance, a group of people composed of 

Quality Engineers, and at least one language expert. They are responsible for creating 

test scripts and validating the results. These test scripts navigate the app's UI and take 

screenshots. Likewise, it passes these images for further data extraction to cognitive 

service, a cloud-based AI platform for running computer vision and NLP algorithms. The 

predefined rules are then applied to the accumulated data to determine the results. The 

component diagram is show in the figure below. 

 
Figure 24. Component diagram 
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3.2.1 Development and Testing Environment 

Quality Engineers will be the ones to adopt and develop this prototype further. Therefore 

it is imperative to align the tools with their existing skills.  

Test creation. The chosen language was Python, and the automation framework was 

Appium. The test scripts were written using Visual Studio Code as editor. The set-up is 

similar to the figure shown below. 

 

Figure 25. Appium architecture (Verma, 2017) 

Test execution. Since the system is in prototype level, it was not integrated with Jenkins 

CI server. Tests were run on a local machine where the mobile devices are connected 

via USB. To support multi-platform testing, Macbook was used with XCode 11, Android 

Studio 3.5, and Appium 1.17.0-beta.1 installed. 

Test app. An iOS app was created as a proof-of-concept. It serves as an example for 

App Under Test (AUT). It has UI elements that display the typical localizable data such 

as date, currency, and number values. Although the original intention was to localize the 

app in Finnish, it is merely not possible because most cloud-based AI services like 

Google Vision and Amazon Textract do not support this language yet. For research 
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purposes, the Spanish language was chosen instead. This app was adopted from the 

article about localization that Malliswamy wrote (Malliswamy, 2018). 

The baseline UI is shown in the figure below. During development, the app was modified 

to introduce various kinds of localization issues in order to verify the test logic. 

 
 

Figure 26. Test app in US and Spain locale 

 

 

3.2.2 Automation Strategies 

The automation approach was adapted from Ramler and Hoschek system. The steps 

are (a) navigating the UI, (b) extracting the UI information, (c) analyzing the extracted 
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data, and (d) generating a test report (Ramler & Hoschek, 2017). The input and output 

of each step are shown in the process diagram below. 

 

3.2.2.1 Navigating the UI 

It was decided early on to create a test tailored to the app under test instead of adopting 

a model-based testing approach of generating the test cases automatically. The test 

navigates to the UIs, but it does not verify the functionality. The element's accessibility 

identifier is used to locate for a specific control. Using accessibility identifier or XPath 

makes the test script language-independent, which means it can be reused for each 

localized variant of the app. The code snippet below was executed while testing both in 

English and Spanish. 

N

•Navigate

• Input: Test app

•Output: Screenshot, raw texts of target elements

E

•Extract

• Input: Screenshot images

•Output: Texts from the images, text entities and translation of texts in English

A

•Analyze

• Input: Texts, text entities, raw texts from step N

•Output: Status

R

•Report

• Input: Analysis status

•Output: Test summary
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Listing 6. Code snippet to wait for element with ‘country’ as id before scrolling and taking screenshot 

The test script takes screenshots before executing navigation actions such as tapping 

the back and next button and scrolling. These screenshots are images in PNG format 

and are saved in a local folder. Likewise, the test script enumerates all the elements and 

string values that will be used for comparison later on. Example screenshot is shown 

below 

 

Figure 27. Captured screenshot 
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3.2.2.2 Extracting the UI information 

Appium can already extract an element's text value. However, it is not useful when 

validating if the text is truncated or not. It gives the entire value and not the visually visible 

part of the text only. This is illustrated in the figure below. 

 

 

Figure 28. Visually captured text and Appium’s extracted text 

To capture the visually visible texts only, Vision AI was used to extract texts from images. 

Two cloud-based services were tested, Google Vision and Amazon Textract. Amazon 

Textract has a feature to extract key-value pairs, which should be very useful to retain 

the original context. However, it only supports the English language, as illustrated in the 

example screenshot below, “Sánchez” was captured as “Sanchez”. 

 

Figure 29. Amazon Textract key-value pair extraction 
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On the other hand, Google Vision's Optical Character Recognition (OCR) feature 

supports multiple languages. However, the blocking of text is somewhat inconsistent, as 

shown in the figure below. This impediment is slightly irrelevant for localization testing. 

 

Figure 30. Google OCR with text blocking 

The Google computer vision API returns paragraphs texts and vertices for the bounding 

rectangle. The extracted texts are then analyzed by natural language processing service 

to identify the entities.  

Three natural language processing API was tested, IBM’s Watson Natural Language 

Understanding, spaCy, and Google Natural Language API. All are using deep learning-

powered models. spaCy is handy as it is not a cloud-based service, but rather provides 

pre-trained models that are available for download and install. It was able to identify most 

entities from the provided sample text, but it also misinterprets entities in a string like 

“Superficie 505.990 kilometro cuadrado”, it tag kilometro as a PERSON. Google’s NLP 

was chosen instead.  

Afterward, those texts are translated into English by the cloud translation service. These 

values are then accumulated and stored in a dictionary data structure. The flow chart is 

shown below. 
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Figure 31. Flow chart for data extraction using cloud-based AI services 
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3.2.2.3 Analyzing the Extracted Data 

The table below is tabulated data accumulated from different sources. The data serve 

as input to the set of rules to verify if specific criteria are met. If one of the rules returns 

true, it is considered a failed test. 

Table 3. Tabulated data to be analyzed 

Item Description Source 

Raw texts Array of elements text 
values 

Appium 

XCUIElementTypeStaticText 

values.  

Paragraphs String Computer Vision API 

Paragraph bounds Vertices of the bounding 
rectangle per 
paragraphs 

Computer Vision API 

Words List of words in a 
paragraph 

Computer Vision API 

Words bounds Vertices of the bounding 
rectangle per word 

Computer Vision API 

Entities NLP entities found in the 
paragraph 

Natural Language 
Processing API 

Translation English translation of 
the paragraph 

Translation API 

 



41 

 

The following basic rules are applied: 

Misspelling. Each word checked for misspelling using Aspell, an open-source spell 

checker.  

Wrong format. An entity such as date or number is verified if it follows the locale format 

for displaying such data. 

Untranslated string. A paragraph is compared with its English translation.  If the value is 

the same, this means that it is a hardcoded string or invalid value. The translation service 

also returns the detected source language. This value must match with the current 

language of the system. 

Truncation. Ellipsis at the end of the string usually indicates that the text is truncated. 

However, there might be cases that this is intentional. A list of raw text values is iterated 

and checked if it starts with the same value as the given paragraph. If it is, but the length 

is not the same, this can signify that the text is truncated. 

Bounds are used to draw a rectangle in an image if a rule criterion is not met. Each 

rectangle color signifies a type of issue found. 

3.2.2.4 Generating a Test Report 

The test output is a summary of the test cases and status. If one of the test cases failed, 

it would be listed together with the corresponding image that has a bounding rectangle 

drawn on a word or paragraph that failed to satisfy the requirements. 

 

Figure 32. Example output of a successful test 
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Figure 33. Example output of a failed test 

A rectangle is drawn into a word if the spelling is wrong. If a paragraph is truncated, 

untranslated, or contains a number or date that is not properly, then a rectangle is drawn 

on the paragraph bounds. The following colors are used depending on the type of issue 

found. 

• BLUE. Invalid date or number format. 

• RED. Untranslated paragraph. 

• YELLOW. Truncated paragraph. 

• GREEN. Misspelled word. 

 

 

Figure 34. Rectangle drawn on the truncated paragraph 
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4 Solution Evaluation 

After the development of the prototype system, the research moved to find the apps to 

use for testing in order to determine the system's strengths and weaknesses. This 

chapter describes the testing results, observed behaviors, and recommended future 

enhancements. 

4.1 Results 

NEAR System evaluated three iOS apps with source codes that were downloaded from 

the internet and compiled to run on iOS 13. The apps languages were Spanish, German, 

and Russian. All apps contained a total of 51 localizable data, such as numbers, dates, 

names, and descriptions. Apps' UI elements included buttons, labels, and images. 

The evaluation coverage included detecting misspelling, untranslated or hardcoded 

string, wrong number or time format, and truncated string. The total running test time for 

three apps on one platform was around 5 minutes. It averages 6 seconds to evaluate 

one element. 

NEAR found four issues from all of the tested apps, two of those are truncated strings 

and two invalid number format. There were four false positives, and those are year 

values that are tagged as both YEAR and NUMBER entities by natural language 

processing service. In this particular case, two rules were used, such as validating the 

date format and also the number format. The system expects that 2014 must be written 

as 2 014 in ru_RU locale. The date rule should override the number rule if both are 

applicable. Some of the screens with detected issues are illustrated below. 
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Figure 35. False positives for year and title strings. App under test is AutoParker (Sharp, et al., 2013) 

 

Figure 36. Truncated string and wrong number formatting. App under test is from an article written by 
Malliswamy (Malliswamy, 2018) 
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Figure 37. Invalid number format. App under test is iLikeIt (Raywenderlich, 2017) 

 

4.2 Limitations 

The system has limited language support. NLP entities feature dictates what language 

the NEAR system will support. As of this writing, Google Cloud Natural Language 

supports 11 languages.  

The system's validation logic is dependent on the tools used. As an example, python's 

de_DE locale does not have a separator for thousand, but in iOS, the separator is a 

period character. This limitation can cause false positives when validating if a number is 

formatted correctly.  

Another observation is with the Aspell spell-checker. It is necessary to exclude or white-

list the numbers and names of persons because these can also generate false-positive 

results. This can be a burden to maintain as more and more entity types needed to be 

white-listed. 

NEAR system uses Appium API to enumerate raw text values for each element. The 

output list serves as a lookup table when checking if the visually captured text is 

truncated or not. However, the raw strings can contain line breaks or indentations. This 

can result in false-positive because vision API can capture the indented text in the new 
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line as another element causing multiple paragraph blocks instead of just a single 

paragraph. 

4.3 Future work 

Addressing false-positives is left for future work. Caching mechanism is also needed to 

reduce the usage cost of cloud-based cognitive services. For efficiency, it is also 

recommended to only reprocess the screenshots if the captured images from the 

previous test run are different from the current one. 

5 Summary and Conclusions 

There are a few research papers that focus on automated localization testing. This thesis 

contributes to the practical implementation intended for testing a localized mobile app. 

5.1 Summary  

This thesis commenced by highlighting the significance of localizing the app. The work 

continued by gathering the requirements from the case company. It became apparent 

that the lack of an automated system for testing localization was due to the difficulties 

and challenges that Quality Engineers are facing while testing it. Then the research 

focused on finding out from the stakeholders such as Quality Engineers and fellow 

developers the tasks that they wish to be automated.  

The theoretical background chapter then described the core concepts of the app 

localization process, testing strategies, and previous research conducted to automate 

the testing process. Due to the lack of tools designed for localization testing, existing UI 

automation frameworks were evaluated. The research then focused on AI subfields such 

as Computer Vision and Natural Language Processing, exploring the existing pre-trained 

models from cloud-based AI service providers such as Google, Amazon, IBM, and 

Microsoft. Then the prototype system called NEAR was developed. The system was then 

evaluated with the three iOS apps in multiple languages. 
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5.2 Conclusion 

The prototype system proved to automate 70% of tasks enumerated from the 

requirements. It just took 5 minutes to test 3 apps in one platform. Considerably faster 

than manual testing. However, the limited language support of cloud-based NLP and 

Computer Vision models from service provider hindered the original intention of using 

the system for testing localization such as Finnish and Swedish. Nevertheless, German 

language support is already essential because that is one of the huge markets for the 

products of the case company. 

This thesis answered the research question if AI can be used to improve UI localization 

testing. The prototype proved that it could be used, and it provides a visual context for 

the test, considerably faster to run and repeatable. However, it is underutilizing the 

capability of AI,  using it only for data extraction. The data analysis was done on the 

python script with custom made rules. Ideally, machine learning or deep learning models 

should be designed and used to identify issues without the need to post-process the 

results. This is the side effect of relying alone on ready-made or pre-trained models from 

AI service providers. It is recommended to develop and train a model specific for the 

requirements to have a more specific context. 
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