

Mika Apell

Developing Blazor Web Application
Running on Microsoft Azure

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

13 April 2020

 Abstract

Author
Title

Number of Pages
Date

Mika Apell
Developing Blazor Web Application Running on Microsoft Azure

30 pages
13 April 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of School, School of ITC, Metropolia

The purpose of this final year project was to see how easy it is to develop a single-page
Blazor Web Application, and could it be done without using JavaScript. The goal of the fi-
nal year project was to be able to create at least a minimum viable product version of the
designed web application and publish it in a cloud service.

To find out how easy it is to develop a Blazor Web Application, a sample application for
making notes and calculations needed in brewing beer was created. Inspiration for the pro-
ject came from personal experience in home-brewing and a need for an easy to use tool.

The goal of the thesis was achieved, and a sample application was created and published.
The released version ended up being an MVP as deadline came to soon. This was due the
writer’s lack of experience in web development rather than in technology itself.

As a conclusion, Blazor is a great alternative for JavaScript for web development, as there
is nothing you could not do with it. Time will tell how popular it might become.

Keywords Blazor, C#, Web Development

Tekijä
Otsikko

Sivumäärä
Aika

Mika Apell
Developing Blazor Web Application Running on Microsoft Azure

30 sivua
13.4.2020

Tutkinto insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Ohjelmistotuotanto

Ohjaajat

Osaamisaluepäällikkö, ICT ja tuotantotalous Janne Salonen

Tämän insinöörityön tarkoituksena oli selvittää, kuinka helppoa on luoda web-sovellus
Blazor-teknologialla ja voiko sen tehdä käyttämättä JavaScriptiä. Tavoitteena oli kehittää
pienin julkaisukelpoinen tuote -versio insinöörityötä varten kehitetystä sovelluksesta ja
julkaista se pilvipalvelussa.

Nähdäkseen kuinka helppoa Blazor web-applikaation tekeminen on, suunniteltiin esimerkki
sovellus oluen valmistusprosessin muistiinpanojen ja laskujen tekemiseen kotona.
Inspiraatio sovellukseen tuli omasta kokemuksesta oluen valmistuksesta kotona.

Insinöörityön tavoite saavutettiin ja sovellus saatiin tehtyä ja julkaistua. Julkaistu versio oli
pienin julkaisukelpoinen tuote, koska aikamääreet tulivat vastaan. Tämä johtui
ennemminkin kirjoittajan kokemuksen vähyydestä web-sovellusten kehityksen parissa,
kuin itse teknologiasta.

Lopputuloksena voidaan todeta Blazor:in olevan hyvä vaihtoehto JavaScriptille web-
sovellusten tekemistä varten. Aika näyttää, kuinka suosittu siitä tulee.

Avainsanat Blazor, C#, Web-kehitys

Contents

List of Abbreviations

1 Introduction 1

2 Technologies 2

2.1 WebAssembly 2

2.2 ASP.NET Core 3

2.3 Blazor 4

2.4 Azure 5

3 Project Implementation 7

3.1 Agile Software Development 7

3.1.1 Iteration 7

3.1.2 User Stories 7

3.1.3 Minimum Viable Product 8

3.2 Project Background 9

3.3 Planning and Design 11

3.4 Building 15

3.4.1 Installing the Project Environment 15

3.4.2 Project Structure 16

3.4.3 Publishing 19

3.5 Project Retrospective 22

4 Discussion 26

5 Conclusion 28

References 29

List of Abbreviations

.NET Core An open-source development framework. Allows building

cross-platform apps.

.NET Framework Part of the .NET platform, created by Microsoft.

Angular Platform for building mobile and desktop web applications.

API An application programming interface.

ASP.NET Open source web framework, created by Microsoft.

Azure Cloud computing service created by Microsoft.

Blazor Free and open-source web framework.

C# Object-oriented programming language.

C Procedural programming language.

C++ Object-oriented programming language.

CSS Cascading Style Sheets, adds styles to websites,

DOM The Document Object Model.

HTML Markup language for creating Web pages.

IDE An integrated development environment.

JavaScript Scripting or programming Language, usually used for the

Web development.

MVC Model-View-Controller

MVP Minimum Viable Product

Razor ASP.NET programming syntax.

Rust An open-source systems programming language.

TypeScript An open-source programming language.

UI User Interface.

WebAssembly A portable binary-code format.

VM Virtual Machine

1

1 Introduction

Modern web applications consist of two parts: client side and server side. The client side

is mostly developed using UI frameworks, such as Angular or React, which use JavaS-

cript or Typescript as their preferred language. The server side of the application is cre-

ated using frameworks such as .NET and languages such as C#. Switching between two

different frameworks and languages can be cumbersome. [1]

For a long time, there has not been any other possibilities, as JavaScript has dominated

the front-end side of development. In this absence of options, Blazor was introduced.

Blazor provides a full stack .NET development experience by allowing the use of .NET

throughout the application. [1]

Purpose of this final year project is to see how easy it is to develop a single-page Blazor

web application and can it be done without using JavaScript. As part of the final year

project, a small web application will be developed and published in Azure. The goal of

this final year project is to be able to create and publish at least the minimum viable

product version of the sample web application, without using a line of JavaScript code.

This thesis is structured to three parts. First part of the thesis has a brief overview of

technologies behind Blazor web applications and introduction of Azure cloud services.

Second part discusses the sample project and in third and last part of the thesis discuss

the results.

2

2 Technologies

In this chapter the technologies behind the Blazor web applications and thesis project

are introduced. First the main technologies under the hood of Blazor are presented:

WebAssembly and ASP.NET Core. Following is a brief overview of Blazor itself and a

brief look to Microsoft Azure.

2.1 WebAssembly

WebAssembly is a low-level assembly-like language. It can run with almost native per-

formance in modern web browsers. It allows the use of languages such as C/C++ and

Rust in web development. WebAssembly also runs alongside with JavaScript. It is being

developed as a web standard by the W3C WebAssembly Working Group and Commu-

nity Group and all major browsers vendors participate in the work. [2] WebAssembly

Community Group started in April 2015 [3].

WebAssembly allows to run code written in multiple languages on the web at almost

native speed. It also allows running client apps, that previously could not have done so,

on the web. This can have extensive implications for the web platform. [2]

Web platform can be divided to two parts: virtual machine (VM) that runs the code and

the set of APIs that can be called to control web browser functionality. Before, only Ja-

vaScript has been able to load to VM. It works fine for smaller scale applications, but can

cause performance problems, when trying to use more demanding use cases that need

native performance. For example, 3D games or virtual/augmented reality (VR/AR) are

very cumbersome. Also, large JavaScript applications can be expensive to download,

parse and compile and other resource-constrained platforms can amplify these bottle-

necks in performance. [2]

WebAssembly is not intended as a replacement for JavaScript. It is designed to comple-

ment and work alongside with it. This way, it allows web developers to take advantage

of strong points in both languages. JavaScript has a huge ecosystem that provides pow-

erful frameworks, libraries, and other tools. It is dynamically typed and requires no com-

piling step. WebAssembly on the other hand has a compact binary format. It provides

3

compilation target for languages such as C++ and Rust, so that they can be run on the

web. [2]

WebAssembly has limitations. These include the absence of Garbage Collection (GC),

the inability to communicate directly with the Document Object Model (DOM), and the

lack of support for older browsers. It is a work-in-progress, so these challenges could be

answered in the future. [4]

2.2 ASP.NET Core

ASP.NET Core is development framework for the server-side web applications. It allows

more efficient way to build web applications. ASP.NET Core is a part of the ASP.NET 5

platform, it runs on top of it.This enables applications to be run on a wide variety of plat-

forms. For example, Linux and Mac OS X are on supported platforms. Microsoft intro-

duced it in early 2002. [5]

ASP.NET has three programming models:

- ASP.NET Web Forms

- ASP.NET Web Pages

- ASP.NET MVC. [5]

ASP.NET Web Forms was the only programming model available to programmers to

develop web applications in ASP.NET when it was first introduced. The ASP.NET Web

Forms model abstracted the web, so that it can maintain the state even though the web

is inherently stateless. It supports the event-driven programming model at the server-

side, which has allowed desktop application developers to have a smoother transition

into web application development. ASP.NET Web Forms is a file-based framework

where users access the web page by means of accessing a file at the server. The server

processes the request, convert all server-side components to HTML, and sends it back

to the requesting client. Before the arrival of ASP.NET MVC, it was predominant pro-

gramming model. It is still used to maintain the production applications which were writ-

ten using this model. [5]

4

ASP.NET Web Pages is primarily used at small web applications where the data-pro-

cessing logic is written directly on the web page [5]. It provides a quick way to combine

server code with HTML markup for creating dynamic web content [6].

ASP.NET MVC is the implementation of the MVC pattern in ASP.NET. ASP.NET Web

Forms disadvantages, such as limited control over the generation of HTML, are resolved

in ASP.NET MVC. [5]

Model-View-Controller (MVC) pattern is a software architectural pattern which helps in

defining the responsibility for each of the components and how they fit together in achiev-

ing the overall goal. It is primarily used in building user interfaces, but it can be used in

many areas including developing desktop applications and web applications. [5]

The MVC pattern has three components: Model, view and controller. Model represents

your domain data. This component can talk to your database, but the model only repre-

sents your domain data. View component is responsible for what is presented to the

user. Usually it contains HTML and CSS files and may also include the layout information

determining the look of web application. The controller is responsible for interacting with

different components. It receives the request, talks to the model, and sends the appro-

priate view to the user. Separated responsibilities bring flexibility to the web application

development, allowing each area to be managed independently. [5]

These three major components in ASP.NET MVC allows separated responsibilities, for

example UI developer can work on the View while backend developers can work on the

Model to build a data domain for the application. This allows the work to be done in

parallel. Separated and compartmentalized components also allow easier unit test case

creation. [5]

2.3 Blazor

Blazor is a framework, that allows building web applications using C# programming lan-

guage. It also allows running any standard .NET library in the browser. Blazor has the

same approach to building applications that run in the browser as the ASP.NET MVC.

Blazor uses razor files (Blazor is a combination of words Browser and Razor). These

razor files execute inside the browser to dynamically build a web page. [7]

5

Blazor provides many benefits over other client-side frameworks. It allows full stack .NET

development experience and removes the need of creating separate model classes for

client and server. Other benefits are existing rich .NET APIs and tools and modern and

feature-rich language. Blazor is open source framework and has a great community sup-

port. [1]

Blazor applications are build on components. These are .NET classes built into .NET

assemblies. Component is an element of UI. These can be pages, dialogs or forms. With

components it is possible to define UI rendering logic or handle user events. They can

also be nested and reused. Distribution is possible as Razor class libraries or NuGet

packages. [8]

Components in Blazor are called Razor components. Razor is a syntax, which allows

combining of HTML markup with C# code. With it, it is possible to have HTML markup

and C# in the same file. Components are used respectively for creating client-side UI

logic and composition. [8]

Blazor is divided between three types: server, client and hosted. Server-side Blazor will

use server resources, while the client side Blazor runs entirely in the browser. In Client

Blazor pages reside on the server but are handled on client-side. This works for a web

sites that provide simple services like calculators or web sites which are used only for

presentation. In Blazor hosted, logic will run on the browser. This allows saving server

resources. It is divided between client Blazor project and an API project, which are con-

nected so that they can be handled in the same project. [9]

2.4 Azure

Microsoft Azure is brand name for Microsoft’s cloud-computing services. It covers a wide

range of services that are constantly growing and often form the elementary elements of

cloud computing. [10] It was first announced with the code name Red Dog in October

2008 and was officially released in February 2010 with the name Windows Azure. First

offered services were web roles and SQL databases. Microsoft rebranded its cloud plat-

form from Windows Azure to Microsoft Azure in March 2014. [11]

6

The general availability of Azure has added many services to its platform. Microsoft has

expanded its data centers to the continents across the globe. Currently the services that

Azure supports include, but are not limited to, the following: mobile services, web ser-

vices, compute services, storage services, messaging, network services, media ser-

vices, machine learning and internet of things. [11]

Azure has different types of cloud services. The most common ones are the following:

Infrastructure as a service (IaaS), Platform as a Service (PaaS) and Software as a ser-

vice (SaaS). Infrastructure as a service allows running Virtual Machines (VM) on the

cloud. In this model the cloud service provider will take care of the underlying infrastruc-

ture, such as hardware, network, storage, and virtualization platform. User will be re-

sponsible for managing and maintaining VMs. Platform as a service allows running ap-

plications on Azure. Underlying infrastructure is managed by the cloud service provider.

This allows developer to focus on developing and running applications. Software as a

service allows using software on the cloud. The cloud service provider will handle the

underlying infrastructure and the application itself. Office 365, for example, provides a

variety of solutions ready to be used, such as email services, VOIP services, and so on,

without implementing Exchange or Skype. [11]

7

3 Project Implementation

The project build during final year project was an application for making notes and cal-

culations needed in brewing beer. The idea came from personal experience in home-

brewing and a need for simple note taking tool. The project is available here: https://brew-

ingcalculator20200412053241.azurewebsites.net/.

Simplified agile methods were followed during implementation. These include project it-

eration planning and concepts such as user stories and minimum viable product.

3.1 Agile Software Development

Agile software development is a concept that includes set of practices and frameworks.

These are based on the values declared in the Manifesto for Agile Software Develop-

ment. Agile is a mindset, it provides guidance on how to create and respond to change.

It also gives tools for dealing with uncertainty. [12]

3.1.1 Iteration

An iteration is a set duration of which development takes place. This may vary from pro-

ject to project, thought it is usually ranging from one week to four weeks. Iteration time

is usually fixed, for the duration of a given project. A key feature of Agile approaches is

that projects consists sequence of iterations. Before the start of development there is a

brief planning phase and after a brief closure phase. The fixed length of iterations allows

teams to estimate the amount of work remaining during iterations. [13]

3.1.2 User Stories

User stories outline pieces of functionality from the point of view of a user. They can be

used to reflect what a particular group of users needs. Example of user stories include:

“As a ‘role’ I can ’objective’ so that ‘reason’”

and

8

“As a ‘particular user’ I want to ‘be able doing something’ so that ‘I get some value’.[14]

User stories helps to define product with clarity. They allow to articulate the functionality

of the product without technicalities and implementation details. This can encourage par-

ticipation by non-technical members. Therefore, user stories can help to achieve team

wide certainty on what to build, why and to whom. [14]

3.1.3 Minimum Viable Product

A minimum viable product (MVP) is a concept. It was introduced in Lean Startup. It

stresses the importance of learning, in a development of new projects. The basis of it is

producing an actual product, which can be offered to the customers. This is used to

observe their behavior with the product. MVP may, for example, just be a landing page

for web site. Seeing what people actually do with the product is more useful than asking

them about it. [15]

The benefit of MVP is that it allows gaining understanding about interest in the product

without developing it fully. More shortly you know the appeal of customers, the less ex-

pense and effort will be spent on the product if it won’t succeed in the market. [15]

9

3.2 Project Background

Before moving to the planning phase, background research needs to be done. To see

how why note taking is important, the brewing process must be understood. The brewing

process can be divided to six different parts mashing, lautering, boiling, hopping, cooling

and fermentation [16]. This is a simplified division, but enough for the purpose of this

thesis.

Mashing is the first step in beer brewing process, in which grist (milled malt) is transferred

to the mash tun. This is achieved by combining the grist and water and heating the com-

bination to specific temperature. Mashing makes the natural enzymes in the malt to

breakdown and ultimately convert them to sugars. These sugars will eventually become

alcohol. [16]

After the mashing, the wort needs to be separated from spent grain. This process is

called lautering. [16] The goal of this phase is to get the most sugars form spent grain

into the wort [17].

After lautering, the wort is transferred to a boiling kettle for sterilizing and hopping. During

the boiling hops are added to the wort. The qualities of aroma, taste and bitterness that

hops give to beer depend on which point they are added. Early added hops yield to

higher bitterness and hops added late in a boil give more flavor and aroma. [16]

The wort is then chilled to a desired temperature and transferred to a fermentation con-

tainer for fermentation process. To start the fermentation, yeast needs to be added to

the wort. Yeast converses the sugars to alcohol and carbon dioxide. As the converting

sugars to alcohol generates heat and higher temperatures may result yeast to yield more

esters or other fragrances to beer, fermentation process is monitored closely by brewers.

[17]

There is a lot of moving parts in all these processes, which all can affect the taste of

beer. Therefore, consistency is needed. The consistent brewer has more great than bad

patches of beer. To achieve that, good organization and record keeping is a must. [18]

In a light of this, easy to use note keeping tool will benefit a brewer greatly.

10

Today most homebrewers use recipe formulation software to calculate their original grav-

ity (OG), bitterness and beer color. However, some additional equations that may help

homebrewer exists. These include calculations of strike water, water absorption, first

wort volume, amount of wort to collect, volume of sparge water required and estimating

OG from pre-boil wort concentration and volume. [19]

11

3.3 Planning and Design

The project iteration duration was chosen to be 8 days, having two day of design and

planning phase and one day for retrospective (See Figure 1).

Figure 1. Project timeline.

During the design and planning phase following user stories were created for this product

(see Figure 2):

Figure 2. User stories created during design process.

All of the user stories have the value of improving the quality of beer. After going through

each user story, five was decided to implement during this iteration: Document my brew-

ing process, calculations, create recipes, save recipes and share recipes. Other stories

were considered to be too big for this iteration.

Of five chosen user stories, two stories were chosen to create an MVP for the project.

MVP was decided to consist of documenting the brewing process and calculators.

12

For documenting the brewing process following principles were created:

 Data should be consistent

 The report should be as readable as possible.

To record the brewing process, the ready-made questions were designed. When user

records something to the form, it automatically fills the ready-made report. This allows

consistency from brew to brew. This auto-generated report is also the base for recipe

and there should be option to save and share it.

A sample UX document were created for documenting the brewing process (see Figure

3).

Figure 3. UX design for recording the brewing process.

13

Following equations were chosen to be the base for calculators:

 Strike Water:

�(������ �����) = �(�����) ∗ ���
������

����ℎ�
�

 Water Absorption:

��(������ ��� ����ℎ�) =
�(��������)

�(�����)

 First Wort Volume:

�(��������) = �(������ �����) − (�(����� ����) + �(��ℎ��))

 Amount of Wort to Collect:

�(��� ���� ����) = �(�����) ∗ ���
������

����ℎ�
�

 Volume of Sparge Water Required:

�(������ �����) = �(��� ����) − (�(����� ����) + �(��ℎ��)

 Estimating OG from Pre-Boil Wort Concentration and Volume:

�(���� ����) =
�(��� ����) ∗ �(��� ����)

�(���� ����)

Where:

 V(strike water) is the volume of strike water in liters

 W(grain) is the weight of the grain in kilograms

 MT is the mash thickness in liters per kilogram

14

 AR(volume per weight) is the volume of water absorbed per weight of grain in

liters

 V(absorbed) is the volume of water absorbed by the grain

 V(first wort) is the volume of the first wort

 V(other) is the volume of water that end anywhere other than absorbed in grain

 V(pre boil wort) is the volume of wort to collect

 FS is the ratio of wort volume to grain weight

 V(sparge water) is the amount of sparge water needed

 C(post boil) is the post-boil concentration in °Plato

 C(pre boil) is the pre-boil concentration in °Plato. [19]

After choosing the equations for the calculators, following UX document was created

(see Figure 4).

15

Figure 4. UX design for calculator page.

3.4 Building

In this section Blazor application specific things are introduced. As the other build is

mainly basic HTML and C#, it will not be discussed in this section.

3.4.1 Installing the Project Environment

An Integrated Development Environment (IDE), enables programmers to bolster the dif-

ferent aspects of coding. It Increases the productivity by combining common activities of

writing software into a single application. [20]

There are two alternations for IDEs in Blazor programming: Microsoft Visual Studio or

Visual Studio Code. For this project Visual Studio 2019 was chosen, mainly because it

16

has vast tools for releasing the applications. Besides installing an IDE, a workloads for

ASP.NET and web development need to be installed. After installation, new project can

be created. [8]

Figure 5. Creating new project in Visual Studio 2019.

When creating a new Blazor project, there is two options: Blazor Server App and Blazor

WebAssembly App (see figure 1). For this project Blazor WebAssembly was selected as

the idea was to create simple single page application. After choosing, the Visual Studio

will create some base files for the project and the building can be started. [8]

3.4.2 Project Structure

When creating a new Blazor WebAssembly application project, some of the application

structure is created for you (see Figure 6). This includes folders for pages and a shared

folder which contains shareable components. [8]

17

Figure 6. Project structure of ready project.

As we learned before Blazor applications are built by using components. A component

is a self-contained part of user interface. In Figure 6, all files which have “.razor” on the

end of filename are components.

HTML is used to define the UI of component and dynamic rendering logic (loops, for

example) are added using an embedded C# syntax called Razor. When the application

is compiled these are converted into a component class. Component class members are

defined in an “@code” block. There can be more than one “@code” block in a compo-

nent. [21] Example of component can be seen on Figure 7.

18

Figure 7. Component for calculating strike water.

Components can be used by in other components by using HTML element syntax. This

looks like an HTML tag where the name is the component type. [21] See Figure 8 for

example.

Figure 8. Calculators component which contains “StrikeWater” component.

In Figure 7, “@bind” attribute can be seen. This is what allows data binding in compo-

nents [21]. In this project, binding is used to get user input to do for example calculations.

In Figure 7, user is asked to input grain weight and mash thickness and then component

uses them to calculate the needed strike water.

Last thing to look in Figure 7, is the “[Parameter]” declaration. Components can have

component parameters. These are defined using public properties on the component

19

class using [Parameter] attribute. [21] With parameters it is possible to set the value of

one control with the properties on another control [22].

All of the project components were created on similar way to create the application. Test-

ing was conducted all the time during the development process.

3.4.3 Publishing

Publishing the application in Azure can be achieved in simple steps. For publishing the

application, free Azure account is required. See Figures 9, 10, 11 for publishing process.

Figure 9. Publishing can be done straight from Visual Studio.

While in visual studio, the publishing process can be started by right clicking the solu-

tion’s name in Solution Explorer and choosing “Publish” (Figure 9) [23].

After that the App Service window will open (Figure 10).

20

Figure 10. Creating new App Service.

From this window a name can be given for the app service. Here the choices for the

wanted Azure subscription, resource group and hosting plan can be made. [24] For this

project, Azure for Students were used, but it is possible to anyone to create free sub-

scription to Azure. After clicking create Visual Studio deploys the app to your Azure App

Service and it opens to a web browser [24].

After pressing create on App Service window, the “Publish” window will open (Figure 11).

In this window you can choose the

21

Figure 11. Making last adjustments before publishing.

22

3.5 Project Retrospective

The project iteration goal was to create tools for note taking, calculations and creating

recipes. As seen from Figures 12, 13 and 14, only note taking and calculations were

made. The given time for the project was not enough, as there were some challenges

along the way. These are discussed in the next section. For next iteration, better planning

would be advised.

However, during the iteration, the MVP was created. This would be enough to present

the project for customers, if this was a customer project.

Figure 12. Screenshot of Brewing Notes page of application.

In Figure 12 the note taking tools are seen. Note taking happens by filling out the specific

forms. Data entered to these forms will be automatically added to the “story box” under

the forms (See Figure 13). In this box it is also possible to write additional notes of the

brew.

23

Figure 13. Screenshot of Brewing Notes page of application.

In the calculators page of the application, different brewing calculators are available.

User can enter the values and press “calculate” button to get the results (see Figure 14).

24

Figure 14. Screenshot of Calculators page of application.

Application also scales down automatically for phones, as seen on Figure 15.

25

Figure 15. Screenshot taken from phone.

Overall the functionality works as intended. This version of the project can be used to

give brief presentation of the functionality, which is the intent of MVP.

26

4 Discussion

The goal of this final year project was achieved. A responsive web application was cre-

ated and published, without using a single line of JavaScript. However, the application

created was much simpler than originally planned. This partly due the fact that I did not

have previous experience in web development and misjudged the amount of work that it

would cause me to learn things. Just knowing C# was not enough in this case. I did not

want to extend the deadline for my project and rather take it as a learning experience.

The application itself could be upgraded many ways. First the code itself could be cleaner

and better organized. The app uses the basic layout at the moment, but it could be mod-

ified for a better functioning look.

Next step would be creating user database and allowing users to create custom views

for their note taking and calculating tools. The note taking tool could be editable in a way

that you could choose the ready-made forms and create a custom report for user’s own

preferences. The calculator page could have more calculators and an option to choose

which one’s are visible for the user. That would improve the user experience as not eve-

ryone will use everything you have to offer.

The next step would be changing this application to a full recipe formulation application.

This would allow user to create a recipe by choosing the malts, hops and yeasts and the

application would automatically calculate the times and amounts you need to know. So-

cial features could be added, and recipes could be made shareable with other users.

These upgrades would of course mean that the application would turn from Blazor

WebAssembly to Blazor Server project as we would need better access to the databases

and backend. However, this all could be done with Blazor.

Publishing the software was made really easy. Just by creating an account and few

guided steps and your application was online. Azure itself is a huge monolith of services

and it would require another thesis to just go through all the options within the app ser-

vices alone. You get a good dashboard for managing and diagnosing your application.

Of course, if you would like to really release your application, the free version will run out

of resources quickly and you will need to pay and scale up the service.

27

I learned a lot during this final year project. I had to deep dive into the field of web devel-

opment as I only had brief basic understanding about it. I learned a lot about cloud ser-

vices and how you can use cloud to publish your application. It was also a good practice

to use some agile methods while developing the application.

Finding information was sometimes problematic, as the Blazor WebAssembly is still in

preview. There were not that many trusted references available, although Microsoft has

a good documentation.

28

5 Conclusion

Developing a responsive web application without using JavaScript is now possible. Bla-

zor is (by the time of writing this thesis) still in preview stage. However, during my brief

familiarization process, I did not come across things that you could not do with Blazor.

There is even a possibility to use JavaScript with Blazor, so there really are no limits to

what is possible to achieve.

There are of course the performance issues that could cause issues to Blazor to really

breakthrough, but those are minor issues. More pressing issue is that, will developers

take this in their toolbox. JavaScript has been an industry standard for a long time and

competing against it will be hard.

Only the time will tell. Whatever happens after the Blazor is officially released in May

2020, one thing is for sure: There is alternative way to do things in web development for

a first time in many years.

29

References

1 Sharma, Ankit. Blazor Quick Start Guide [online]. October 2018. URL:
https://learning.oreilly.com/library/view/blazor-quick-start/9781789344141. Ac-
cessed 11 April 2020.

2 MDN Web Docs. WebAssembly [online]. 2020. URL: https://devel-
oper.mozilla.org/en-US/docs/WebAssembly. Accessed 11 April 2020.

3 WebAssembly. Roadmap [online]. 2015. URL: https://webassem-
bly.org/roadmap/. Accessed 11 April 2020.

4 Rourke, Mike. Learn WebAssemly [online]. September 2018. URL: https://learn-
ing.oreilly.com/library/view/learn-webassembly/9781788997379/?ar. Accessed 11
April 2020.

5 Ragupathi, Mugilan T.S. Learning ASP.NET Core MVC Programming [online] No-
vember 2016. URL: https://learning.oreilly.com/library/view/learning-aspnet-
core/9781786463838/?ar. Accessed 11 April 2020.

6 Microsoft. Docs. ASP.NET Overview [online]. September 2019. URL:
https://docs.microsoft.com/en-us/aspnet/overview. Accessed 11 April 2020.

7 Himschoot, Peter. Blazor Revealed: Building Web Applications in .NET [online].
February 2019. URL: https://learning.oreilly.com/library/view/blazor-revealed-
building/9781484243435/?ar. Accessed 11 April 2020.

8 Microsoft. Docs. Introduction to ASP.NET Core Blazor [online]. March 2020. URL:
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-3.1. Ac-
cessed 11 April 2020.

9 Litvinavicius, Taurius. Exploring Blazor: Creating Hosted, Server-side, and Client-
side Applications with C# [online]. November 2019. URL: https://learn-
ing.oreilly.com/library/view/exploring-blazor-creating/9781484254462/?ar. Ac-
cessed 11 April 2020.

10 Microsoft Azure. What is Azure? [online]. 2020. URL: https://azure.mi-
crosoft.com/en-us/overview/what-is-azure/. Accessed 11 April 2020.

11 Wali, Mohamed. Learn Microsoft Azure [online]. December 2018. URL:
https://learning.oreilly.com/library/view/learn-microsoft-az-
ure/9781789617580/?ar. Accessed 11 April 2020.

12 Agile Alliance. Agile 101. What is Agile? [online] 2020. URL: https://www.agilealli-
ance.org/agile101/. Accessed 11 April 2020.

13 Agile Alliance. Glossary. Iteration [online] 2020. URL: https://www.agilealli-
ance.org/glossary/iteration/. Accessed 11 April 2020.

14 Krasadakis, George. How (and why) to write great User Stories [online]. June
2018. URL: https://www.freecodecamp.org/news/how-and-why-to-write-great-
user-stories-f5a110668246/. Accessed 11 April 2020.

30

15 Agile Alliance. Glossary. Minimum Viable Product (MVP) [online]. 2020. URL:
https://www.agilealliance.org/glossary/mvp/. Accessed 11 April 2020.

16 The Beer Connoisseur. Beer 101: The Fundamental Steps of Brewing [online]
June 2016. URL: https://beerconnoisseur.com/articles/beer-101-fundamental-
steps-brewing?page=2. Accessed 11 April 2020.

17 More Beer. How to Lauter for the Highest Extract Efficiency [online]. July 2012.
URL: https://www.morebeer.com/articles/lautering_for_highest_efficiency. Ac-
cessed 11 April 2020.

18 Palmer, John. How to Brew. 2017. Brewers Publications. Boulder, Colorado.

19 Colby, Chris. Beer & Wine Journal. Useful Brewing Calculations. January 2014.
URL: https://beerandwinejournal.com/brew-calcs/. Accessed 11 April 2020.

20 Codecademy. What Is an IDE? [online]. 2020. URL: https://www.co-
decademy.com/articles/what-is-an-ide. Accessed 11 April 2020.

21 Microsoft. Docs. Create and use ASP.NET Core Razor components [online]
March 2020. URL: https://docs.microsoft.com/en-us/aspnet/core/blazor/compo-
nents?view=aspnetcore-3.1. Accessed 11 April 2020.

22 Washington, Michael. Blazor Binding, Events and Parameters [online]. Septem-
ber 2019. URL: http://blazorhelpwebsite.com/Blog/tabid/61/EntryId/4350/Blazor-
Binding-Events-and-Parameters.aspx. Accessed 11 April 2020.

23 Microsoft Azure. Publish your ASP.NET app to Azure [online]. 2020. URL:
https://tutorials.visualstudio.com/aspnet-azure/publish. Accessed 11 April 2020.

24 Microsoft. Visual Studio Docs. Publish a Web app to Azure App Service using
Visual Studio [online]. January 2019. URL: https://docs.microsoft.com/en-us/visu-
alstudio/deployment/quickstart-deploy-to-azure?view=vs-2019. Accessed 11 April
2020.

