

Antti Kupiainen

Electronic Application for a Summons

Process Design and C# Library

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

8 April 2020

 Abstract

Author
Title

Number of Pages
Date

Antti Kupiainen
Electronic Application for a Summons
Process Design and C# Library
32 pages + 9 appendices
8 April 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Susanna Havanka, Development Manager
Janne Loikkanen, Software Architect
Janne Salonen, Head of ICT, Principal Lecturer

In this final year project, a process design for the creation of electronic applications for a
summons from a debt collection system was developed. The project was conducted for a
professional debt collection agency in Finland. The debt collection agency was developing
a new debt collection system and was using Agile methodologies, so new system features
were planned and scheduled according to client needs. Concurrently, changes in the XML
schema of the application for a summons were planned by the government.

The project was developed on the .NET Core platform using the object-oriented paradigm.
Development was conducted by studying existing implementations and documents offered
by the government and carrying out a literature review. The contents of an application for a
summons were analyzed with the help of a schema draft received from the government and
classes for representation of an application for a summons were designed. Finally, a process
for utilizing the classes was designed and the classes were implemented.

The project produced a process description and a C# library which are in production use.

Keywords OOP, XML, software design

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Antti Kupiainen
Electronic Application for a Summons
Process Design and C# Library
32 sivua + 9 liitettä
8.4.2020

Tutkinto insinööri (AMK)

Tutkinto-ohjelma Information Technology

Ammatillinen pääaine Software Engineering

Ohjaajat

Susanna Havanka, Development Manager
Janne Loikkanen, Software Architect
Janne Salonen, Head of ICT, Principal Lecturer

Insinöörityössä suunniteltiin prosessi sähköisten haastehakemusten tuottamiseen perintä-
järjestelmästä. Työ tehtiin suomalaisessa ammattimaisessa perintätoimistossa. Perintätoi-
mistolla oli meneillään uuden perintäjärjestelmän kehitysprojekti, jossa käytettiin ketteriä
ohjelmistokehityksen menetelmiä, joten uudet ominaisuudet otettiin kehitettäväksi asiakkai-
den tarpeiden mukaisesti. Samanaikaisesti kehitysprojektin kanssa valtionhallinto suunnit-
teli sähköiselle haastehakemukselle uutta XML-skeemaa.

Kehitys tapahtui .NET Core -alustalla oliopohjaisia menetelmiä hyödyntäen. Insinööri-
työssä tutustuttiin olemassa olevien järjestelmien toteutukseen vastaavasta toiminnallisuu-
desta, tutkittiin valtionhallinnon tarjoamaa dokumentaatiota, ja tutustuttiin kirjallisuuteen.
Haastehakemuksen sisältöön tutustuttiin ja kehitettiin luokkia kuvaamaan haastehake-
musta. Lopuksi kehitettiin luokille toteutus ja niitä hyödyntävä prosessi.

Insinöörityön tuloksena syntyi tuotantokäytössä oleva prosessikuvaus ja C#-kirjasto.

Avainsanat OOP, XML, Ohjelmistosuunnittelu

Contents

1 Introduction 1

1.1 Business Context 1

1.2 Business Challenge, Objective and Outcome 2

1.3 Thesis Outline 2

1.4 Key Concepts 3

2 Methods and Material 4

2.1 Research Design 4

2.2 Project Plan 5

2.3 Collected Data 6

3 Current State Analysis and Schema Changes 8

3.1 Implementation in the Old Systems 8

3.2 New Debt Collection System 9

3.3 Old XML Schema for an Application for a Summons 9

3.4 Changes in the New XML Schema 10

4 Available Knowledge and Best Practices 12

4.1 Agile Software Development 12

4.1.1 Scrum 13

4.2 Object-oriented Programming 14

4.3 .NET and C# 15

4.4 Extensible Markup Language 17

4.4.1 XML Schema 18

5 Electronic Application for a Summons 20

5.1 Preliminary Phase 20

5.2 Definition of the Objective and the Outcome 21

5.3 Analysis and Research 21

5.4 Design and Implementation 22

5.4.1 Classes for Applications and Batches 22

5.4.2 Writer Class 24

5.4.3 Process Design 25

5.5 Validation and Corrections 26

6 Summary and Conclusions 27

6.1 Executive Summary 27

6.2 Next Steps 28

6.3 Thesis Evaluation 28

6.4 Final Words 29

References 30

Appendices

Appendix 1. Application Creation Process

Appendix 2. Set santrahak.sahkoinenHakija

Appendix 3. Set Basic Application Information

Appendix 4. Create Parties

Appendix 5. Set asos.hennimi

Appendix 6. Set asos.osoite

Appendix 7. Create santrahak.kuluttajaluottosopimus

Appendix 8. Create Receivables

Appendix 9. Set saatava.viivastyskorko

1

1 Introduction

Digitalization of the public services provides fast and convenient channels for interaction

with the authorities, while reducing the burden on public resources. In the judicial system

digital services allow citizens and businesses to deliver applications concerning undis-

puted receivables electronically, thus reducing need of manual labor for courts and liti-

gants alike. As of 1 September 2019, only private individuals may submit applications for

a summons for a summary civil case as a paper copy in Finland, apart from exceptional

cases. (Legal Register Centre 2019; Ministry of Justice 2019.)

The Legal Register Centre offers a web service, where applications for a summons can

be filed and their status can be followed. However, this is feasible only when the number

of applications is small. For applicants who file large numbers of applications, the Legal

Register Centre offers a system called Santra, which allows electronic filing via

Extensive Markup Language (XML) documents. (Legal Register Centre 2019.)

This thesis project was conducted as a part of a larger project developing a new debt

collection system. The aim of this thesis project was to create a process and a C# library

for creating electronic applications for a summons in XML from a debt collection system.

1.1 Business Context

Svea Group is a financial company group offering administrative and financial services

and payment solutions. It was formed in Sweden in 1981 and now spans several Euro-

pean countries. Svea Group has over 2,000 employees. In Finland it started in 2002

through corporate acquisitions. (Svea 2020a; Svea 2020b.)

Svea Perintä Oy (later Svea Perintä) is a Finnish debt collection agency that is a part of

the Svea Group. Svea Perintä employs approximately 60 persons in two offices in

Helsinki and Sastamala. Services include payment reminders, voluntary collection, legal

collection, and international debt collection. Svea Perintä has both public and private

sector clients. (Svea 2020b.)

2

This thesis was written at the System Development department of Svea Perintä in Hel-

sinki. Svea Perintä is developing a new debt collection system to replace several older

systems.

1.2 Business Challenge, Objective and Outcome

Svea Perintä is currently in the process of developing a new debt collection system. The

new system did not have software for the automatic creation of an electronic application

for a summons implemented before the final year project was carried out. Concurrently

with Svea Perintä’s development process, the Legal Register Centre was developing a

new version of the XML schema for the application for a summons in their Santra system.

The task given was to design a process for the automatic creation of electronic applica-

tions for a summons in XML, incorporating the new features of the new schema. The

outcome of the project is a C# library and a process description for the creation of these

applications.

1.3 Thesis Outline

This thesis project was conducted by researching the Legal Register Centre’s documen-

tation, proprietary source code and system documentation at Svea Perintä, and by re-

viewing pertinent literature.

The thesis discusses the electronic application for a summons as defined by the Legal

Register Centre of Finland. Because of differences in legislation and governance, the

findings may not apply to other countries.

This thesis is divided into 6 sections. Section 1 is an introduction to the thesis. Section 2

discusses the methods and material used for research. Section 3 contains current state

analysis and analyzes planned changes. Section 4 introduces available knowledge on

the technologies and methodologies used. Section 5 describes how the project was con-

ducted, and section 6 contains summary and conclusion.

3

1.4 Key Concepts

Summons An invitation to the plaintiff to attend court.

Application for a summons A request to the court for a summons to be is-

sued.

Collection A process for recovering amounts owed that are

past due date.

4

2 Methods and Material

This section describes the methods and material used in the project. The first subsection

describes the research design for the project, in the second subsection a plan for the

project is described, and the third subsection briefly introduces the material collected.

2.1 Research Design

The project was conducted in eight phases as shown in the diagram below.

Figure 1. Research Design Diagram

As shown in Figure 1, the project launched with defining the objective and the outcome

of the project. The definition of the objective also started a review of literature concerning

technologies used in the project. This literature review continued for most of the project’s

duration.

After defining the project, current state analysis was conducted. The goal of this analysis

was to better understand how similar implementations were designed in the past and

what the current situation of the new system in development is.

In the third phase, the old XML schema for an electronic application for a summons was

studied. This phase had some overlap with the previous phase, as a part of the current

state analysis was studying actual XML files produced by the existing systems.

The fourth phase consisted of studying the new features that the Legal Register Centre

was implementing in the new XML schema. The fourth phase continued concurrently

with the later phases until the end of the project because the new schema design was

Define the
Objective and
the Outcome

Current State
Analysis

Research the
Old Schema

Research New
Schema
Features

Class Design
Process
Design

Library
Implementatio

n

Validation and
corrections

5

not finalized and the Legal Register Centre changed the design several times during the

project.

After researching the old schema in use and the new schema, the design for classes

representing the elements of an application for a summons was conducted. During and

after the class design, a process for gathering and inserting data required for an

application was designed and the implementation of the classes in C# began.

After the class and process designs were concluded, the C# library implementation was

finalized by creating the methods for the creation of applications represented by the class

design. Finally, the resulting process and library were validated and corrections were

applied.

2.2 Project Plan

The project was conducted in the System Development department of Svea Perintä as

a part of a larger debt collection system project. The author, a 4th year Software Engi-

neering student, was instructed by Development Manager Susanna Havanka and Soft-

ware Architect Janne Loikkanen.

The new debt collection system is already in production use, but as the system project

uses Agile methodologies, new features are not implemented until they are required

(Sommerville 2015: 50). Initially the objective of the project was intended to be the im-

plementation of the complete application for a summons module, but during the definition

of the objective and the outcome, it was soon realized that schedule constraints neces-

sitated assigning the components responsible for collecting the data and triggering the

process to other System Development employees.

Some preliminary research was conducted during the summer of 2019, but the objective

and the outcome of the project were defined in September 2019, and the research and

implementation phases were carried out from September to November 2019. Validation

and corrections were mostly conducted in December 2019, apart from some source code

documentation revisions done in January 2020.

6

The project was an actual business project based on the analysis of data from multiple

governmental documents. These data sources are described below.

2.3 Collected Data

The information concerning the electronic application for a summons is scattered within

multiple documents, none of which are comprehensive and some of which are even con-

tradictory. This resulted in a large number of data sources for merely analyzing the infor-

mation content of the application. These data sources are described in the table below.

Table 1. Documents used in the analysis and design

 Name of the document Amount/number of pages Description

A

SANTRA-JÄRJES-
TELMÄ Järjestelmän ku-
vaus ja ohjeita Santra-
hakijoille

13 pages
Description of the Santra sys-
tem and guidelines for appli-
cants using it.

B
XML-muotoisen haaste-
hakemuksen formaatti

39 pages
Description of the elements in
the XML formatted application.

C SantraYleinen.xsd 1 schema
General schema of Santra ele-
ments.

D SantraHakemus.xsd 1 schema
Schema of Santra elements
specific to an application for a
summons.

E Hakemusesimerkki.pdf 2 pages
An example of an application
for a summons.

F XMLSantra-koodistoja 2 pages
Description of certain code val-
ues used in applications.

G Tuomioistuintunnukset 1 page
Listing of code values for dis-
trict courts.

H
XMLSantra-muutoksia
2010

4 pages
Description of changes made
to the XML schema in 2010.

I
Viivästyskorko-
koodit/määräytymistavat
2013

2 pages
Description of some code val-
ues used for interest percent-
ages in the applications.

J
Kuluttajaluottouudistus
2019 Info-tilaisuus
Santra-hakijoille

23 pages

Supporting documentation for a
briefing held about changes to
the application for a summons
schema.

K

Hakijoiden kysymykset

Santra-infossa

26.9.2019 (vastaukset

3.10.2019)

4 pages

Questions asked at the briefing
about changes to the schema
and answers to those ques-
tions.

7

L
Kuluttajaluottouudistus,

Santra-muutokset
7 pages

Further information about the
changes to the application for a
summons schema.

M SantraHakemus.svg 1 chart
Graphical representation of the
schema.

Some of the documents listed in Table 1 described the application for a summons in

general while others focused on specific changes made to the application. Some of the

documents are publicly available from the web page of the Legal Register Centre, but a

few were at least initially available only to parties implementing changes to the systems

that already have the Legal Register Centre’s approval for using the Santra system.

For example, SantraHakemus.xsd (item D in Table 2) was revised several times during

the autumn 2019 but was not available on the Legal Register Centre’s web page until

February 2020.

The Legal Register Centre also sent several advisories via email and answered some

questions. These are shown in Table 2.

Table 2. Email advisories from the Legal Register Centre

 Topic Date

1 Answer to a question about a specific element in an ap-
plication

30 August 2019

2 Answer to a further question about the element 30 August 2019

3 Initial version of the new schema 4 September 2019

4 Changes to the schema. New schema version included 25 September 2019

5 Items J, K, and L in Table 1 3 October 2019

6 Changes to the schema. New schema version included 18 October 2019

7 Changes to some code values 7 November 2019

8 Changes to the schema. New schema version included 28 November 2019

9 Changes to the schema. New schema version included 19 December 2019

Many of the advisories seen in Table 2 contained new versions of the new schema.

Information about the old and new debt collection systems was gathered by researching

the code base and running the systems with employees of Svea Perintä. In the next

section, analysis of both the application for a summons and the debt collection systems

at Svea Perintä are discussed.

8

3 Current State Analysis and Schema Changes

Although some time was allocated to examining the old systems in use at Svea Perintä,

the current state analysis phase primarily focused on understanding the new collection

system being developed. The analysis then proceeded to old schema features and new

features added in the new schema. The first subsection describes the implementation of

the application for a summons in the old systems; the second subsection briefly intro-

duces the design of the new system being developed; and the finally both the old and

the new schemas for an application for a summons are analyzed.

3.1 Implementation in the Old Systems

The old systems differed in their approach to applications for a summons. One debt col-

lection system was primarily focused on serving public entity clients. Public entity clients’

debts can often be put to distraint without a court order as dictated by the Act on the

Enforcement of Taxes and Public Payments, chapter 3. They usually also have their own

legal departments, which may sue the debtors after voluntary collection, if a court order

is needed. Therefore, the debt collection cases in the system which were brought to court

by Svea Perintä had their applications for a summons filed using the Legal Register Cen-

tre’s web service.

The other old debt collection system had the Santra system integration built into it. The

company that developed the system had designed the system in such a manner that

most of the system apart from the user interface was implemented as stored procedures

in the database management system (DBMS). The DBMS used in that system is Oracle

Database, and the Santra integration was implemented by using Oracle Database’s XML

functions. This implementation of the Santra integration was not a suitable reference for

the new implementation, but as the documentation of elements offered by the Legal Reg-

ister Centre is often quite brief, the applications produced by it were helpful in determin-

ing the actual usage of the elements in the applications.

9

3.2 New Debt Collection System

The new debt collection system is being developed in-house at Svea Perintä by consult-

ants and Svea Perintä employees. According to corporate policy, Microsoft’s .NET is

used for backend development. The specific platform chosen is .NET Core, and the pro-

gramming language chosen for .NET development is C#. The programming paradigm

used is Object-Oriented Programming. The new system is designed to run as an intranet

web application.

The exact design of the system is confidential, but the basic design principles are that

different functions of the debt collection process are implemented in such a way that their

positions in the process are largely interchangeable, that adding and removing functions

from the process is effortless, and that implementing new functions for the process is

simple. This allows designing different processes for different use cases, and prepares

the system for changes in legislation, which may change the debt collection process.

3.3 Old XML Schema for an Application for a Summons

The old XML schema for a Santra application can be divided into a few main parts. An

element called hakemusera groups several applications into a batch allowing filing of

multiple applications in a single file. A batch contains multiple hakemus elements repre-

senting the individual applications. (Oikeushallinnon tietotekniikkakeskus 2010.)

The contents of a single application represented by a hakemus element can further be

divided into three main groups: general information about the application, the parties to

the case, and information about receivables. General information contains, for example,

the text of the claim in the application, information about the entity responsible for the

Santra integration used, the date of the application, and which district court receives the

application (Oikeushallinnon tietotekniikkakeskus 2010).

Information about the parties is largely identical for all parties. The root elements for

litigant and plaintiff are called kantaja and vastaaja, respectively, and the child element

asemaKdi has different values for litigant and plaintiff, but otherwise the elements have

10

the same contents. Both contain elements for personal information of the party, such as

the name and the date of birth, the address of the party, and other contact details, such

as the phone number and the email address. There can be an arbitrary number of both

litigants and plaintiffs. (Oikeushallinnon tietotekniikkakeskus 2010.)

The information about the receivables have their own elements, with every saatava ele-

ment containing a single receivable. The child elements of the saatava element describe

the type and amount of the receivable, the due date, and possible interest rate. They

also contain an explanation for the receivable and whether the receivable is based on a

consumer loan agreement. The number of saatava elements on an application is unlim-

ited. (Oikeushallinnon tietotekniikkakeskus 2010.)

Many of these elements remain the same in the new schema. All the changes concern

consumer loan agreements (Virta 2019). These are described below.

3.4 Changes in the New XML Schema

According to Virta (2019), the aim in the development of the new schema for the Santra

application was that if the application does not concern consumer loan agreements, the

contents remains identical to the applications formed using the old schema. A few ele-

ments that were used for consumer loan agreements were removed, because new fea-

tures in the new schema made them redundant (Virta 2019).

If some of the receivables in a Santra application are based on a consumer loan agree-

ment, a new child element called kuluttajaluottosopimus is created under the hakemus

element. This kuluttajaluottosopimus element has mandatory elements, such as when

the consumer loan agreement was made and what is the annual percentage rate. (Virta

2019.)

In addition, kuluttajaluottosopimus has one of these elements depending on the time

frame during which the consumer loan agreement was made:

11

• tehtyEnnen2010, if the agreement was made before 1 February 2010

• tehty2010-2019Valilla, if the agreement was made between 1 February
2010 and 31 August 2019

• tehty2019Jalkeen, if the agreement was made on 1 September 2019 or
later.

The chosen time frame affects whether the contract’s expiration date is mandatory, and

if the time frame is 1 September 2019 or later, the element has additional child elements.

(Virta 2019.)

tehty2019Jalkeen has a child element that is called either liikennevalineTaiAsluotto, if

the agreement concerns financing of either a vehicle or a dwelling, or

eiLiikennevalineTaiAsluotto, for other agreements. eiLiikennevalineTaiAsluotto has yet

more child elements for the amount of the agreement, the end date of the agreement,

and the interest rate agreed upon. (Virta 2019.)

If the kuluttajaluottosopimus element is used, the receivables that are based on the con-

sumer loan agreement are listed as child elements of this element. Otherwise, the re-

ceivables are direct child elements of the hakemus element, as in the old schema. (Virta

2019.)

This section described the findings of the current state analysis and reviewed the old and

the new schema. The next section introduces available knowledge and best practices on

technologies and methodologies relevant to the topic.

12

4 Available Knowledge and Best Practices

This section contains a brief introduction to the available knowledge and best practices

on Agile software development, or Agile, object-oriented programming (OOP), .NET, and

XML. First, Agile and more specifically the Scrum framework are discussed. Then, basic

concepts of object-oriented programming are introduced. In the penultimate subsection,

.NET is discussed with emphasis on C#, and the section finishes with an overview of

XML.

4.1 Agile Software Development

Sommerville (2015: 22) observes that for the creation of web-based systems a flexible

approach that can handle changing requirements should be considered. In the Agile

Manifesto, the word Agile is chosen to represent this flexibility (Agile Alliance n.d.). One

of the core values presented in the Agile Manifesto is “Responding to change over fol-

lowing a plan” (Beck et al. 2001). According to Agile Alliance (n.d.), Agile software de-

velopment differs from other development in that it focuses on the members of the teams

and their cooperation. However, what are often overlooked are technical practices that

prepare for uncertainty (Agile alliance n.d.).

The principles behind the Agile Manifesto state that development should aim for deliver-

ing software swiftly and often, respond to changes in requirements even in late phases,

and that development should be conducted in collaboration with people working in the

business, not just by developers. They also emphasize the importance of communica-

tion, having the right people in the team, and the team adjusting its behavior. (Beck el al.

2001.)

The Agile principles are central to several different frameworks and practices. One of

these frameworks is Scrum.

13

4.1.1 Scrum

Scrum is a framework for using different processes for development of complex projects.

It is often used in software development, but Scrum is not limited to software develop-

ment, and can be used for almost any kind of development. The core idea of Scrum is

making progress in increments and using the knowledge gained in the process to adjust

the direction of the project if needed. Schwaber and Sutherland (2017) state that Scrum

has been used in release cycles which have multiple releases per day. (Schwaber and

Sutherland 2017: 3–5.)

The people engaged in Scrum form a Scrum Team, which has a few different roles. The

Product Owner is the person who manages all the work and requirements of the product.

These form the Product Backlog. However, the Product Owner does not dictate who

conducts the work. (Schwaber and Sutherland 2017: 6–7, 15.)

The Scrum Master is the person responsible for ensuring that everyone involved under-

stands Scrum and helps the people outside the Scrum Team interact with the members

of the Development Team in a productive manner. The Scrum master also helps the

Product Owner in managing the Product Backlog and the Development Team with prob-

lems preventing progress. (Schwaber and Sutherland 2017: 7–8.)

The Development Team is a group of developers, which is not divided into further sub-

teams and where members do not have titles. The Development Team is self-organizing,

meaning that the Development Team alone decides how the requirements of the Product

Backlog are best fulfilled, and who conducts the work. The Development Team takes

responsibility for the project together, but members may have areas of expertise.

(Schwaber and Sutherland 2017: 7.)

The work is conducted in Sprints, which are time periods of one month or less. Items

from the Product Backlog are put into Sprint Backlog, which is the list of work conducted

during the Sprint. If necessary, the items are refined so they can be completed during

the Sprint. The items completed during a Sprint form an Increment, which must be a

useable product; in other words, partial implementations are not allowed. (Schwaber and

Sutherland 2017: 9, 16–17.)

14

During the Sprint, the Development Team gathers daily in Daily Scrums to discuss how

to progress towards the Sprint goals, and after a Sprint all the work is inspected in Sprint

Retrospective to help with preparation for the next Sprint, and possible adjustments in

the processes are made. A Sprint Review is also conducted with the Scrum Team and

stakeholders to inspect the work, and possible adjustments to the Product Backlog are

conducted. (Schwaber and Sutherland 2017: 12–14.)

4.2 Object-oriented Programming

Object-oriented programming is a programming style, or a paradigm, where the design

of a program is based on objects. Eng (2017) presents a car as an example of an object.

An object may have attributes and behavior represented by methods. For a car the at-

tributes might be the color of the car or how much it weighs, and the representation of its

behavior could contain methods for starting the engine, turning, accelerating and so forth.

(Eng 2017.)

A class is a concept of an object that describes the methods and attributes. A specific

object that is represented by this concept is an instance of this class. For example, a

single car is an instance of the general car class describing the attributes and behavior

all cars have in common. (Eng 2017; Tiel 1996.)

A class may duplicate and modify the attributes and behavior of another class through

inheritance and polymorphism (Eng 2017). Tiel (1996) describes inheritance as a a-kind-

of relationship. For example, a Siamese is a kind of cat, so it has the attributes and

behavior of a cat. Polymorphism is mechanism that allows a class to modify inherited

behavior, thus allowing a class that inherits another class to have the same interface but

different implementation (Tiel 1996). Eng (2017) states that another kind of relationship

between classes is a has-a relationship, where a class contains another class. For ex-

ample, a car has a motor.

Tiel (1996) explains that the rationale for applying the object-oriented paradigm is that it

allows closer modeling of the real world, promotes reusability, and enables decentraliza-

tion of architecture, thus limiting the effects that changes in one part of a program have

on other parts. However, Cardelli (1996) states object-oriented programming results in

15

less efficient programs that those designed using the procedural paradigm, and their

compilation time may grow faster than their size. Pobar (2008) suggests that object ori-

entation may encourage developers to rigidly define interfaces and data types in ad-

vance, which may not suit large projects with multiple teams or agile methods such as

rapid prototyping. Further, in an interview with Peter Seibel, Joe Armstrong expressed

that

I think the lack of reusability comes in object-oriented languages, not in functional
languages. Because the problem with object-oriented languages is they've got all
this implicit environment that they carry around with them. You wanted a banana
but what you got was a gorilla holding the banana and the entire jungle. (Seibel
2009.)

In contrast, Bernie Cosell recommended studying object-oriented programming in its ab-

stract form (Seibel 2009).

The object-oriented paradigm is supported by numerous programming languages. One

of these is C#, which is one of the languages supported by .NET.

4.3 .NET and C#

According to Microsoft (2020) .NET is a developer platform supporting multiple lan-

guages that can be used for development of web, mobile, IoT and desktop applications

on multiple platforms.

.NET, originally known as Next Generation Windows Services, was announced by Mi-

crosoft in 2000. Initially, it was described as a layer running on servers and clients, offer-

ing access to networked services running either on the web or on company servers. It

was envisioned to have “a sparse browser-like user interface without any menu bars”.

(Deckmyn 2000.)

Despite these early visions describing even the user interface of the services, .NET ex-

tended to become a more generalized programming framework called .NET Framework,

a simpler and more flexible alternative for the Component Object Model (COM), which

was frequently used for the creation of Windows applications. Like older software based

16

on COM, software developed using .NET could interoperate with existing software and

support multiple programming languages, but .NET had a simpler deployment model, as

.NET libraries did not require registering to the system registry. (Troelsen and Japikse

2017: 3–4.)

.NET Framework is a Windows implementation of the ECMA Common Language Infra-

structure (CLI), which was implemented on other platforms in projects such as Mono.

However, in 2016 Microsoft released .NET Core for Windows, macOS and Linux. This

allows both development and execution of .NET Core software on all these platforms.

(Microsoft 2020; ECMA 2012; Mono Project 2020; Troelsen and Japikse 2017: 30–32,

1245–1246.)

While .NET Core initially coexisted with .NET Framework, in 2019 Microsoft announced

that the path .NET would take in the future would be .NET Core. Version 4.8 would be

the last version of .NET Framework, and the next version of .NET Core, planned to be

released in 2020, would be called .NET 5. (Lander 2019; Hunter 2019.)

The languages supported by .NET Core are C#, F#, and Visual Basic. For object-ori-

ented programming the main language is C#, a type-safe object-oriented programming

language in the C family of programming languages. Its syntax resembles closely Java,

another member of the C family, but also includes aspects for non-C family languages

such as Visual Basic, LISP, and Haskell. For example, C# supports the use of class

properties instead of getters and setters that are more commonly used in the C family

languages, and functional programming features such as lambda expressions. (Mi-

crosoft 2020; Microsoft 2015; Troelsen and Japikse 2017: 5.)

C# supports encapsulation, inheritance, and polymorphism, as needed in object-oriented

programming. All variables and methods are encapsulated in classes, which may inherit

a single parent and implement additional interfaces. C# also supports garbage collection

and exception handling. (Microsoft 2015; Microsoft 2017.)

Regardless of programming language, code targeting .NET runs on Common Language

Runtime (CLR) or on CoreCLR, .NET Core’s version of CLR. CLR is .NET’s implemen-

tation of Virtual Execution System (VES) specified in CLI. Microsoft calls code targeting

17

.NET managed code. Managed code compiles to Intermediate Language (IL) instead of

machine code. IL code is packaged in assemblies, which the CLR then compiles into

machine code just before execution. The runtime manages tasks such as object refer-

encing and dereferencing, threading, and integration and exception handling across lan-

guages. (Microsoft 2019; ECMA 2012; Gregory 2003; Troelsen and Japikse 2017:4, 8.)

4.4 Extensible Markup Language

Encyclopaedia Britannica (2011) defines a markup language as a system for describing

a document’s structure and layout within the document with text symbols that can be

distinguished from the content. Extensible Markup Language, or XML, is a markup lan-

guage derived from Standard Generalized Markup Language (SGML) that was designed

for electronic publishing but has an important role as a data exchange format (Hem-

mendinger 2020; Quin 2016).

Unlike Hypertext Markup Language (HTML) used for the creation of basic web pages,

XML allows the definition of new symbols, called elements, allowing document structures

to be tailored for specific use cases (Hemmendinger 2020). A trivial example of XML and

custom elements is presented in Listing 1 below.

<exampleContainer>

 <example>This is an example of XML elements</example>

</exampleContainer>

Listing 1. A trivial example of XML.

The example begins with an opening XML tag that marks the beginning of the element

exampleContainer. Tags are marked by enclosing the text between less than and greater

than signs. Everything from an element’s opening tag until the element’s closing tag,

which is similar to the opening tag but prefixed with a slash (/), is contained within that

element. In the example listing, this means that the element called example is contained

within the exampleHolder element. The example element is called a subelement of the

exampleContainer element. The phrase contained between the example element’s

opening and closing tags is the content of that element. (W3C 2004.)

In addition to content, XML elements may have attributes, as shown in Listing 2 below.

18

<toybox>

 <toy color=”red”>ball</toy>

 <toy color=”yellow”>car</toy>

</toybox>

Listing 2. An example of XML attributes.

Attributes define the properties, in the given example the color, of a specific element.

The element toybox contains two toy elements, which both have color defined. The first

element represents a ball, which is defined to be red, and the second element a car,

which is yellow. (W3C 2004.)

There are several ways to define these elements, one of them being XML Schema lan-

guage (W3C 1999).

4.4.1 XML Schema

As XML is derived from SGML, it supports the definition of elements and document struc-

ture constraints in Document Type Definition (DTD) files. However, to extend functional-

ity and to allow constraints that differ from those possible in DTD, the XML Schema lan-

guage was created. (Hemmendinger 2020; W3C 1999.)

The XML Schema language allows the definition of schemas in XML; in other words, it

is a schema for writing schemas. It defines mechanisms that allow schema writers to

define datatypes, elements, namespaces, constraints and so forth. Schemas written us-

ing the XML Schema language are contained within an XML Schema Definition (XSD)

file. (W3C 1999; W3C 2004.) An XSD file containing the schema for the XML document

in Listing 2 can be seen in Listing 3.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="toy">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:string" name="color" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="toybox">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="toy" maxOccurs="unbounded" minOccurs="0"/>

 </xs:sequence>

19

 </xs:complexType>

 </xs:element>

</xs:schema>

Listing 3. An XSD file defining a simple XML document

The schema starts with a schema tag which opens the schema element. Inside the

schema tag a namespace prefix “xs” is defined. This means that all elements the names

of which start with “xs:” are part of the namespace

“http://www.w3.org/2001/XMLSchema”. This allows multiple authors to create elements

with similar names, as they can be recognized from each other by their namespaces.

Although the name of the namespace looks like a web address, it is used just for naming.

(W3C 2004; W3C 2012.)

Then an element named toy is defined. The toy element is defined to be of a complex

type, meaning it can contain more than text. This is needed because the toy element has

an attribute. Apart from the attribute, the element is defined to contain simple content,

meaning that the element does not have subelements. The element is defined to be an

extension of the string type and may contain an optional attribute color. (W3C 2004; W3C

2012.)

After the definition of the toy element, an element named toybox is defined. It is likewise

a complex type. The toybox element is defined to contain a sequence of elements. The

elements in the sequence must be of type toy and there may be an arbitrary number of

them. The order of the elements inside the toybox must match the order defined in the

sequence. In the example, the toybox element is defined to contain only toy elements,

so the sequence could be replaced in the schema by an any element, which defines

which elements it may contain, but they may be in an arbitrary order. (W3C 2004; W3C

2012.)

This section has described various methodologies and technologies, including Agile soft-

ware development, .NET and C#, and XML. The next section demonstrates how these

were applied in a real-life project.

20

5 Electronic Application for a Summons

This section introduces how the knowledge and practices presented in the previous sec-

tion were applied to a project, the aim of which was to design a process and create a

library for the creation of electronic applications for a summons. The project was a part

of a larger collection system project at Svea Perintä. This section presents the steps

taken in the project in chronological order. First, preceding events are outlined. This is

followed by defining the goals of the project, and analysis and research. Then the design

and implementation are presented, and finally validation and corrections are discussed.

5.1 Preliminary Phase

During the spring of 2019 the collection system project at Svea Perintä was in such a

phase that it was deemed necessary to implement an electronic application for a sum-

mons. The clients that were handled in the new system did not need this functionality at

the time, so adhering to the Agile principles, the functionality had not been implemented

yet. However, the project neared a phase where the migration of the clients from the old

system would begin. It was already known that legislation concerning consumer loan

agreements would be changing in September 2019, and that the Legal Register Centre

was designing a new schema for the electronic application for a summons that would

take these changes into account. The Legal Register Centre was planning to deploy the

new schema in early 2020.

At the time, the author needed a subject for his thesis project, so Development Manager

Susanna Havanka suggested that the electronic application for a summons could be a

candidate. This subject was accepted by Janne Salonen, head of ICT at Metropolia Uni-

versity of Applied Sciences. The upcoming summer vacation season and the author’s

other duties at Svea Perintä’s System Development department postponed the start of

the thesis project until the autumn of 2019, but preliminary research into the Legal Reg-

ister Centre’s existing documentation was conducted during the summer.

21

5.2 Definition of the Objective and the Outcome

As the changes in the schema were imminent, it was deemed impractical to implement

the old schema for a few months. Thus, the objective of the project was to design the

process adhering to the new schema, and initially the outcome was planned to be a

module for the automatic creation of electronic applications for a summons. Even

though the collection system project is using Agile methodologies, and the Scrum prin-

ciples state that all the work conducted during a sprint should form an increment, all the

user stories concerning the electronic application for a summons were initially assigned

to the author. While the objective clearly could not be completed during one sprint, di-

viding all the work for the electronic application for a summons to multiple developers

would prevent the author from writing his thesis.

5.3 Analysis and Research

After the objective and the outcome of the project were defined, current state analysis

was conducted and features of the old and the new schema were researched. Research

suggested that although the new version of the schema was not finalized, the possible

changes to the schema would all concern consumer loan agreements. Thus, large parts

of the process design could be based on the old schema and the draft of the new

schema. Findings from current state analysis and research can be found in section 3.

During the scheduling of the work needed for the electronic application for a summons

module, it was determined that the author’s other duties at the company and the sched-

ule of the project necessitated assigning some of the work to other developers. To

keep the subject of the thesis well defined, it was decided that the author would design

the process for the creation of the applications and implement a library for their crea-

tion, but the implementation of the logic in the collection system that triggers the crea-

tion and collects the data necessary was assigned to other developers.

22

5.4 Design and Implementation

The collection system project adheres to the object-oriented paradigm and uses .NET

Core for the platform. As the outcome of the thesis project is not an independent pro-

gram but a library used in the development of collection system, the library must also

adhere to the object-oriented paradigm and use .NET Core. While in principle F# or

Visual Basic could have been used to implement the library, C# is the .NET language

designed for object-oriented programming (Microsoft 2020). As the rest of the collection

system project is implemented in C#, it was also the most reasonable choice in terms

of maintainability.

With the paradigm, the platform and the programming language defined, design and im-

plementation proceeded. As the structure of an application is predefined, the author de-

cided that it would be reasonable to begin with the design of the classes needed for

representation of an application and then proceed to design of the process for creation

of the application. It was requested that the application for a summons and writing of the

XML file were separated from each other, so classes representing applications and a

separate writer class for these were designed. The writer class was developed concur-

rently with the process design.

5.4.1 Classes for Applications and Batches

As the application for a summons has all its element named in Finnish, it was decided

that the classes would be named similarly to make the association between the elements

and the classes apparent. Thus, the class representing an electronic application for a

summons is named SantraHakemus. A simple container class representing a batch of

applications named SantraHakemusera was also defined. While SantraHakemusera has

only one property, a list of SantraHakemus objects, which could be handled in the pro-

gram using the library, conceptually this is an important class, as the XML file delivered

to Santra systems contains a batch of multiple applications.

The XML application contains multiple complex types representing concepts such as

parties to a case or receivables. Some of the complex types even contained other com-

23

plex types. It is evident that there is a has-a relationship between, for example, an appli-

cation and its parties, and the division of the elements in the XML application is logical,

so the XML schema was used as a basis for further class design. In the final class design,

many of the complex types are represented by their own classes. The classes for repre-

senting the application batch and the applications are:

• SantraHakemusera, to represent a batch of applications,

• SantraHakemus, to represent an application,

• SahkoinenHakija for the entity filing the application,

• Asianosainen, to represent both the plaintiffs and the litigants of the case,

• Hennimi for the names of the parties,

• Osoite for the addresses of the parties,

• Kuluttajaluottosopimus, to represent consumer loan agreements,

• Saatava for receivables, and

• Viivastyskorko, to represent late payment interest

SahkoinenHakija represents the entity filing the application, whether the original debtee

or a professional collection agency. In the collection system for which this library is de-

signed for the entity is presumably always Svea Perintä, but the class allows information

of the entity on the application to be freely defined.

Asianosainen represents both the plaintiffs and the litigants of a case, whether a natural

or a legal person. The class contains properties for personal and contact information of

the parties and for information on a possible representative to the party. The name of the

party is contained in Hennimi. The XML application for a summons has an element which

represents the full name of a legal person, but in case of a natural person contains just

the last name, while the first name is in an additional element. Both cases are repre-

sented by this class. Osoite contains all the address information of a party to the case or

a representative to the party.

Kuluttajaluottosopimus represents consumer loan agreements. Applications concerning

consumer loan agreements contain a considerable amount of information that is other-

wise not present, such as the expiration date of the agreement and the time frame during

which the agreement was made, as this affects the legislation used to decide the case.

This information is contained in this class.

24

Saatava represents the receivables in an application. It contains the type, the amount,

and an explanation of the receivable, as well as information on the late payment interest

of the receivable in a class named Viivastyskorko.

The source code of all the classes is documented with XML documentation features of

C#. The documentation contains brief description of the classes and their members, and

some additional information about the properties containing data for some of the less

obvious features of the application for a summons. All classes also have at least empty

constructors explicitly defined. While a class without a constructor would be provided

with an empty constructor automatically, possible addition of a non-empty constructor in

the future would remove this and break all code using the implicit empty constructor. The

values of properties are checked against the constraints set by the schema and if values

are outside the constraints an exception is thrown. Even in cases where the class could

modify the value to fit in the property, for example by truncating the names to lengths

allowed by the schema, throwing an exception is preferable as this forces the user of the

library to decide how the situation is handled and minimizes the possibility of unintended

consequences.

5.4.2 Writer Class

As requested, the writing of XML data was separated into a writer class SantraWriter.

SantraWriter has methods for writing either a single application or a batch of applications.

The methods write the XML data into a file, as this was the only output requested. This

was deemed sufficient for the initial version and could be developed further in the future.

An application for a summons has many complex dependencies, where the existence of

an element may require the existence of some other elements and prohibit others. Some

of these are not even enforced by the schema, so it is possible to create an application

which would validate against the schema but which would be dismissed because of the

contents. To help the developers of software creating applications for a summons,

SantraWriter tries to detect these logical errors and throw exceptions.

There are many optional elements, which must be checked during writing, and some

elements which are optional in principle but mandatory in practice. These, combined with

25

the checks for logical errors, result in a considerable amount of conditional logic. To keep

the source code more readable, guard clauses are used to reduce nesting in conditional

logic in the private methods. Guard clauses check conditions essential to the execution

before the execution proceeds, so these conditions may be ignored later in the method.

For example, there are several ways to define late payment interest, but only one of

these may be applied at a time. A guard clause in the method responsible for the creation

of the viivastyskorko element checks that only one of these is defined before continuing

the execution. If a definition of a late payment interest is detected later in the execution,

it can be used without checks, as it is the only one.

5.4.3 Process Design

The process of the creation of applications for a summons was designed concurrently

with the SantraWriter class, as understanding of the process was essential for the logical

integrity checks mentioned in 5.4.2. The guiding principle in the process design was that

the user of the library would not need to be familiar with the contents of an electronic

application for a summons, but to only be able to provide information defined by the

process description.

To achieve this, the process description has step by step instructions for the user. The

process was divided into multiple subprocesses to make the process chart easier to per-

ceive. Part of the process chart can be seen in Figure 2 below.

Consumer loan
agreement?

Yes

Create
santrahak.kul
uttajaluottoso

pimus

Create
receivables

Set
santrahak.vaatimu

steksti

Claim text

Figure 2. Extract from the Process Chart

26

Division to subprocesses generally mirrors the class division of the application for a sum-

mons and some subprocesses have further subprocesses. While the process charts de-

scribe input data on a general level, such as in Figure 2 above, Svea Perintä received

written instructions containing more detailed information for their specific use cases. In

addition to the main process, the final process description has subprocesses for:

• Setting the electronic applicant for the application for a summons,

• Setting basic application information,

• Creating parties to the case,

• Creating consumer loan agreements,

• Creating receivables,

• Setting the names of the parties,

• Setting the addresses of the parties, and

• Setting the late payment interest of a receivable

All the process charts can be found in Appendices 1–9.

5.5 Validation and Corrections

The initial design of the process and implementation of the classes were finished in No-

vember 2019. During validation in December 2019, a single fault was discovered.

SantraWriter did not recognize that a single application for a summons could have some

receivables that are based on a consumer loan agreement and some that are not, re-

sulting in some of the receivables not being written. This was corrected. Some additional

XML documentation for the source code was also added during December 2019 and

January 2020.

The library produced in the thesis project is already in use at Svea Perintä.

27

6 Summary and Conclusions

This section contains a summary of the thesis, and conclusions of the thesis project. The

first subsection summarizes the thesis; the second part discusses how the library could

be further developed. Then the thesis is evaluated, and the section finishes with final

words.

6.1 Executive Summary

The thesis project was conducted in the System Development department of Svea Per-

intä. At the time, Svea Perintä was developing a new debt collection system. Concur-

rently, the Legal Register Centre was developing a new version of the schema for the

application for a summons. The task given was to design a process for automatic crea-

tion of electronic applications for a summons in XML, incorporating the new features of

the new schema.

The project was conducted by inspecting the implementations for applications for a sum-

mons in the existing systems at Svea Perintä, by studying documentation offered by the

Legal Register Centre, and by reviewing literature.

During the current state analysis, it was found out that the technologies used in the ex-

isting system would not be suitable for implementation in the new system, but the mate-

rial they produced could be used as a reference. The review of the old schema and the

draft of the new schema revealed that the changes in the schema mostly concerned

consumer loan agreements.

The thesis project was conducted with the C# programming language on the .NET Core

platform adhering to the object-oriented programming paradigm. Classes for represent-

ing an application for a summons and a writer class for writing the applications in XML

form were developed, along with a process for creating these applications.

The outcome of the project was a process for creating an electronic application for a

summons, and a supporting C# library. The library is currently in production use at Svea

Perintä.

28

6.2 Next Steps

While the library has been adopted to production use, there are some aspects that could

be refined. First, some of the class properties could be derived from other properties,

leaving the user of the library fewer details to handle. For example, currently creating an

instance of Kuluttajaluottosopimus requires providing both the date and the time frame

when the consumer loan agreement was made, even though the time frame could be

derived from the date.

Second, constructors designed for the most common use cases of the classes could be

defined. Currently properties are mostly left to be manually set, as at the time of devel-

opment it was not clear which properties would be most used. Simplified process charts

for these use cases could also be designed.

Third, SantraWriter could be further developed to support streams for output. Initially only

support for writing files was requested, but even then this was described as a good basis

for further development. Using streams would enable numerous different output targets.

6.3 Thesis Evaluation

Initially the aim of the thesis project was to create a complete solution for creating appli-

cations for a summons. Unfortunately, it soon became clear that the project plan had to

change in order to meet deadlines. However, a coherent subject for a thesis could be

defined. The redefined aim of the project was to design the process for the creation of

applications for a summons and a supporting C# library. This was achieved.

Even the revised schedule was somewhat tight, so the functionality of the library could

be refined. Nevertheless, the library implements all the necessary features and the pro-

cess description is detailed enough for a person with no prior knowledge of the topic to

create software that creates applications for a summons. This was demonstrated at Svea

Perintä, which uses the library and the process in a production system.

29

6.4 Final Words

This thesis exists because of support from Svea Perintä and its System Development

department. Especially Development Manager Susanna Havanka and Software Archi-

tect Janne Loikkanen were crucial for the project. When the schedule of the collection

system project was at odds with the thesis project, they found ways to reschedule so the

thesis could be finished. For those in the same situation in the future, do not despair,

because, to paraphrase Helmuth von Moltke the Elder,

“No battle plan survives first contact with the enemy.”

30

References

Agile Alliance. (n.d.). Agile 101. [online] Available from: https://www.agilealli-
ance.org/agile101/ [Accessed 22 February 2020].

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.,
Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D. (2001). Manifesto for
Agile Software Development. [online] Agilemanifesto.org. Available at:
http://www.agilemanifesto.org/ [Accessed 22 February 2020].

Cardelli, L. (1996). Bad Engineering Properties of Object-Oriented Languages. ACM
Computing Surveys, 28(4es), Article 150.

Dean, J., Grove, D. and Chambers, C. (1995). Optimization of Object-Oriented Pro-
grams Using Static Class Hierarchy Analysis. [online] Seattle: University of
Washington. Available from: https://citeseerx.ist.psu.edu/viewdoc/sum-
mary?doi=10.1.1.117.2420 [Accessed 22 February 2020].

Deckmyn, D. (2000). Update: Microsoft stakes future on .Net strategy. [online] Availa-
ble from: https://www.computerworld.com/article/2596383/update--microsoft-
stakes-future-on--net-strategy.html [Accessed 22 March 2020].

ECMA. (2012). ECMA-335 Common Language Infrastructure (CLI). [online] ECMA In-
ternational. Available from: https://www.ecma-international.org/publica-
tions/standards/Ecma-335.htm [Accessed 22 March 2020].

Eng, R. K. (2017). Chapter 3: What is Object-Oriented Programming? [online] Available
from: https://medium.com/learn-how-to-program/chapter-3-what-is-object-ori-
ented-programming-d0a6ec0a7615 [Accessed 22 February 2020].

Gregory, K. (2003). Managed, Unmanaged, Native: What Kind of Code Is This? [online]
Available from: https://www.developer.com/net/cplus/article.php/2197621 [Ac-
cessed 22 March 2020].

Hemmendinger, D. (2020). ‘XML’, Encyclopædia Britannica. Encyclopædia Britannica,
inc..

Hunter, S. (2019). .NET Core is the Future of .NET. Available from:
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/ [Accessed 22
March 2020].

Lander, R. (2019). Introducing .NET 5. [online] Available from: https://devblogs.mi-
crosoft.com/dotnet/introducing-net-5/ [Accessed 22 March 2020].

Legal Register Centre (2019). Sähköinen haastehakemus. [online] Available from:
https://www.oikeusrekisterikeskus.fi/fi/index/loader.html.stx?path=/channels/pub-
lic/www/ork/fi/structured_nav/asiakaspalvelu/sahkoinenhaastehakemus [Ac-
cessed 7 April 2020].

https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.2420
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.2420
https://www.computerworld.com/article/2596383/update--microsoft-stakes-future-on--net-strategy.html
https://www.computerworld.com/article/2596383/update--microsoft-stakes-future-on--net-strategy.html
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://medium.com/learn-how-to-program/chapter-3-what-is-object-oriented-programming-d0a6ec0a7615
https://medium.com/learn-how-to-program/chapter-3-what-is-object-oriented-programming-d0a6ec0a7615
https://www.developer.com/net/cplus/article.php/2197621
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://www.oikeusrekisterikeskus.fi/fi/index/loader.html.stx?path=/channels/public/www/ork/fi/structured_nav/asiakaspalvelu/sahkoinenhaastehakemus
https://www.oikeusrekisterikeskus.fi/fi/index/loader.html.stx?path=/channels/public/www/ork/fi/structured_nav/asiakaspalvelu/sahkoinenhaastehakemus

31

Microsoft. (2015). Introduction to the C# language and the .NET Framework. Available
from: https://docs.microsoft.com/fi-fi/dotnet/csharp/getting-started/introduction-to-
the-csharp-language-and-the-net-framework [Accessed 22 March 2020].

Microsoft. (2017). Introduction. Available from: https://docs.microsoft.com/en-us/dot-
net/csharp/language-reference/language-specification/introduction [Accessed 22
March 2020].

Microsoft. (2019). Common Language Runtime (CLR) Overview. Available from:
https://docs.microsoft.com/en-us/dotnet/standard/clr [Accessed 22 March 2020].

Microsoft. (2020). What is .NET? An open-source platform. [online] Available from:
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet [Accessed 22 March
2020].

Ministry of Justice (2019). Summary civil cases. [online] Available from:
https://oikeus.fi/tuomioistuimet/karajaoikeudet/en/index/riita-asiat_1/sahkoinen-
haastehakemus.html [Accessed 7 April 2020].

Mono Project. (2020). The Mono Runtime. [online] Available from: https://www.mono-
project.com/docs/advanced/runtime/ [Accessed 22 March 2020].

Oikeushallinnon tietotekniikkakeskus. (2010). XML-muotoisen haastehakemuksen for-
maatti. [online] Hämeenlinna: Oikeushallinnon tietotekniikkakeskus. Available
from: https://www.oikeusrekisterikeskus.fi/material/attachments/ork/oikeusrekiste-
rikeskus/santra/vKkwwN4rh/XML-muotoisen_haastehakemuksen_for-
maatti_2010.pdf [Accessed 30 August 2019].

Pobar, J. (2008). Alphabet Soup: A Survey of .NET Languages and Paradigms. MSDN
Magazine, May 2008 [online]. Available from: https://docs.microsoft.com/en-
us/archive/msdn-magazine/2008/may/alphabet-soup-a-survey-of-net-languages-
and-paradigms [Accessed 22 February 2020].

Quin, L. (2016) Extensible Markup Language (XML). [online] Available from:
https://www.w3.org/XML/ [Accessed 29 March 2020].

Riel, A. J. (1996). Object-Oriented Design Heuristics. [online] Addison-Wesley, 2001.
Available from: https://learning.oreilly.com/library/view/object-oriented-design-
heuristics/020163385X [Accessed 22 February 2020].

Schwaber, K. and Sutherland, J. (2017). The Scrum Guide. The Definitive Guide to
Scrum: The Rules of the Game. [online] ScrumGuides.org. Available from:
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
[Accessed 22 February 2020].

Seibel, P. (2009). Coders at Work. Reflections on the Craft of Programming. [online]
Apress. Available from: https://learning.oreilly.com/library/view/coders-at-
work/9781430219484/ [Accessed 22 February 2020].

Sommerville, I. (2016). Software Engineering. 10th ed. Harlow: Pearson Education
Limited.

https://docs.microsoft.com/fi-fi/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/fi-fi/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://oikeus.fi/tuomioistuimet/karajaoikeudet/en/index/riita-asiat_1/sahkoinenhaastehakemus.html
https://oikeus.fi/tuomioistuimet/karajaoikeudet/en/index/riita-asiat_1/sahkoinenhaastehakemus.html
https://www.mono-project.com/docs/advanced/runtime/
https://www.mono-project.com/docs/advanced/runtime/
https://www.oikeusrekisterikeskus.fi/material/attachments/ork/oikeusrekisterikeskus/santra/vKkwwN4rh/XML-muotoisen_haastehakemuksen_formaatti_2010.pdf
https://www.oikeusrekisterikeskus.fi/material/attachments/ork/oikeusrekisterikeskus/santra/vKkwwN4rh/XML-muotoisen_haastehakemuksen_formaatti_2010.pdf
https://www.oikeusrekisterikeskus.fi/material/attachments/ork/oikeusrekisterikeskus/santra/vKkwwN4rh/XML-muotoisen_haastehakemuksen_formaatti_2010.pdf
https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/may/alphabet-soup-a-survey-of-net-languages-and-paradigms
https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/may/alphabet-soup-a-survey-of-net-languages-and-paradigms
https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/may/alphabet-soup-a-survey-of-net-languages-and-paradigms
https://www.w3.org/XML/
https://learning.oreilly.com/library/view/object-oriented-design-heuristics/020163385X
https://learning.oreilly.com/library/view/object-oriented-design-heuristics/020163385X
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://learning.oreilly.com/library/view/coders-at-work/9781430219484/
https://learning.oreilly.com/library/view/coders-at-work/9781430219484/

32

Svea Group. (2020a). About us. [online] Available from:
https://www.svea.com/gb/en/about/about-us/ [Accessed 7 April 2020].

Svea Group. (2020b). Perimme saatavasi hyvässä hengessä. [online] Available from:
https://www.svea.com/fi/fi/yritykset/perinta/ [Accessed 7 April 2020].

The Editors of Encyclopaedia Britannica. (2011). ‘Markup language’, Encyclopædia Bri-
tannica. Encyclopædia Britannica, inc.

Troelsen, A. and Japikse, P. (2017). Pro C# 7: With .NET and .NET Core. 7th ed. Ap-
ress.

Virta J. (2019). Kuluttajaluottouudistus 2019 Info-tilaisuus Santra-hakijoille. Helsinki: Oi-
keat Oliot.

W3C. (1999). XML Schema Requirements. [online] Available from:
https://www.w3.org/TR/NOTE-xml-schema-req [Accessed 29 March 2020].

W3C. (2004). XML Schema Part 0: Primer Second Edition. [online] Available from:
https://www.w3.org/TR/xmlschema-0/ [Accessed 29 March 2020].

W3C. (2012). W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.
[online] Available from: https://www.w3.org/TR/xmlschema11-1/ [Accessed 29
March 2020].

https://www.svea.com/gb/en/about/about-us/
https://www.svea.com/fi/fi/yritykset/perinta/
https://www.britannica.com/editor/The-Editors-of-Encyclopaedia-Britannica/4419
https://www.w3.org/TR/NOTE-xml-schema-req
https://www.w3.org/TR/xmlschema-0/
https://www.w3.org/TR/xmlschema11-1/

Appendix 1

 1 (1)

Application Creation Process

Start Batch?

Yes

Create
SantraHakemusera

santraera

Set
santrahak.sah
koinenHakija

Create
SantraHakemus

santrahak

Add santrahak to
santraera.hakemuk

set

Set basic
application
information

Create parties
Consumer loan

agreement?

Yes

Create
santrahak.kul
uttajaluottoso

pimus

Create
receivables

Set
santrahak.vaatimu

steksti

Claim text

Set
santrahak.viitetieto

Reference code
for the

application

More
applications?

Batch? Yes

SatraWriter.WriteH
akemus

SantraWriter.Write
Hakemusera

End

Yes

XML

Appendix 2

 1 (1)

Set santrahak.sahkoinenHakija

Start

Set
sahkoinenHakija.as

iakastunnus

Office id?

Contact
person?

End

Yes
Set

sahkoinenHakija.to
imipaikkatunnus

Yes
Set

sahkoinenHakija.y
hteysHloNimi

Electronic
applicant id

Office id

Contact
person s name

Appendix 3

 1 (1)

Set Basic Application Information

Start

Set saapumisPvm
Date of the
application

Addendums?YesSet liitteita = true No Set liitteita = false

Set asianimikeKdi
Nomenclature
of Civil Cases

Set
tuomioistuintunnu

s

Id code of the
district court

End

Appendix 4

 1 (1)

Create Parties

Start
Create

Asianosainen asos
Set asos.laji

Natural or legal
person

Identifier

Set asos.hetu Set asos.yTunnus
Set

asus.syntymaPvm

Personal
identity code

Birth date

Business
identity code

Set asos.kieli
Language of

the party

Set
asos.hennimi

Has guardian?YesSet asos.coNimi

Set
asos.osoite

Phone? Yes Set asos.puhelin

Fax?Email?

Yes

Set asos.fax
Set

asos.sahkoposti

Yes

Set asos.kunta

Role

Add to
santrahak.kantajat

Add to
santrahak.vastaajat

More parties? End

Party s phone
number

PlaintiffLitigant

Yes

Party s fax
number

Party s email
address

Municipality
code

Appendix 5

 1 (1)

Set asos.hennimi

Start

End

Natural
person?

Yes
Set hennimi.nimi

to last name

Set
hennimi.etunimi to

first name

Set hennimi.nimi
to full name

Appendix 6

 1 (1)

Set asos.osoite

Start

Set
osoite.lahiosoite

Street address

Set osoite.postinro

Set
osoite.postitoimip

aikka

Country?

Yes

Set osoite.valtio

Postal code

Municipality

Country

End

Appendix 7

 1 (1)

Create santrahak.kuluttajaluottosopimus

Start

Create
santrahak.kuluttaja

luottosopimus

Set
kuluttajaluottosopi

mus.tunniste

Identifier for
the agreement

Set
kuluttajaluottosopi
mus.vuosikorkopr

osentti

APR

Set
kuluttajaluottosopi
mus.tehtyKulutsuo
jalainEdellTavalla

Compiance to
Consumer

Protection Act

Set
kuluttajaluottosopi
mus.eraantymispv

Expiration date 2010-2019?YesYes

After 2019?

Optional

Yes
Vehicle or
dwelling?

Yes

Set
kuluttajaluottosopi
mus.viikennevaline
TaiAsluotto = true

Set
kuluttajaluottosopi
mus.viikennevaline
TaiAsluotto = false

Set
kuluttajaluottosopi

mus.maaraEur

Set
kuluttajaluottosopi
mus.paattymispv

Set
kuluttajaluottosopi
mus.sopimuksenM

ukainenKorko

End

Loan amount

Actual end date

Interest rate in
the agreement

Tekoaika

Appendix 8

 1 (1)

Create Receivables

Start

Create Saatava
saatava

Set
saatava.rahamaara

Amount of
receivable

Set
saatava.saatavani

mi

Type of
receivable

Set
saatava.viivast

yskorko

Definition?YesSet saatava.selite

Consumer loan
agreement?

Yes

Add saatava to
santrahak.kuluttaja
luottosopimus.saat

avat

Add saatava to
santrahak.saatavat

End
More

receivables?

Yes

Definition for
receivable

Appendix 9

 1 (1)

Set saatava.viivastyskorko

Start

Set
viivastyskorko.laji

Set
viivastyskorko.viiva

styskorkoKdi

Set
viivastyskorko.pros

entti

Set
viivastyskorko.mar

ginaali

Set
viivastyskorko.alku

PvmKdi

Set
viivastyskorko.kor

onAlkuPvm

Set
viivastyskorko.maa

raytymistapa

Interest reset
date?

Yes
Set

viivastyskorko.tark
astusPrm

Interest end
date?

Yes
Set

viivastyskorko.kor
onLoppuPvm

End

Type of interest
Code value for

interest

Interest
percentage rate

Interest
marginal

Code value for
start date

Start date

Section and
subsection of
Interest Act

Interest reset
date

Interest end
date

	1 Introduction
	1.1 Business Context
	1.2 Business Challenge, Objective and Outcome
	1.3 Thesis Outline
	1.4 Key Concepts

	2 Methods and Material
	2.1 Research Design
	2.2 Project Plan
	2.3 Collected Data

	3 Current State Analysis and Schema Changes
	3.1 Implementation in the Old Systems
	3.2 New Debt Collection System
	3.3 Old XML Schema for an Application for a Summons
	3.4 Changes in the New XML Schema

	4 Available Knowledge and Best Practices
	4.1 Agile Software Development
	4.1.1 Scrum

	4.2 Object-oriented Programming
	4.3 .NET and C#
	4.4 Extensible Markup Language
	4.4.1 XML Schema

	5 Electronic Application for a Summons
	5.1 Preliminary Phase
	5.2 Definition of the Objective and the Outcome
	5.3 Analysis and Research
	5.4 Design and Implementation
	5.4.1 Classes for Applications and Batches
	5.4.2 Writer Class
	5.4.3 Process Design

	5.5 Validation and Corrections

	6 Summary and Conclusions
	6.1 Executive Summary
	6.2 Next Steps
	6.3 Thesis Evaluation
	6.4 Final Words

	References

