
 

 

*

Nhu Minh Kha Nguyen 

Real-time fashion items classification using 
TensorflowJS and ZalandoMNIST dataset 

Subtitle 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Information Technology 

Bachelor’s Thesis 

25th August 2019 



 Abstract 

 

 
Author 
Title 
 
 
Number of pages 
Dates 

 
Nhu Minh Kha Nguyen 
Real time fashion items classification using 
TensorFlowJS and ZalandoMNIST dataset 
 
42 pages  
23 March 

Degree Bachelor of Engineering 

Degree Programme Information Technology 

Professional Major  Software Engineering 

Instructors  Janne Salonen, Supervisor 

The last decade has marked a significant growth in Deep Learning, driven mainly by the 
rapid development of Graphics Processing Unit (GPU) which provide sufficient computing 
power for deep neural network training. However, AI platforms are usually centrally 
hosted on the computing instances provided by Cloud Service Providers and therefore 
leads to undesirable networked latency. 
 
Acknowledging the problem, Google released TensorFlowJS, an open-sourced library for 
Machine Learning in an attempt to provide an interactive in-browser Machine Learning 
environment for researchers and practitioners to perform various machine learning tasks.  
 
This thesis will uncover the fundamentals of deep learning by training deep artificial 
neural network models using FashionMNIST dataset and use TensorFlowJS to build a 
real-time hand-drawing image classification based on trained models. Traditionally, 
MNIST is the most popular dataset for validating an algorithm in deep learning; however, 
in April 2017, the pioneer of Artificial Intelligence Ian Goodfellow stated that MNIST is 
being overused by the Machine Learning community and that researchers and 
practitioners should move on to harder datasets. These facts inspired Zalando's research 
team to replace the obsolete MNIST with FashionMNIST – a dataset consists of 70,000 
examples of Zalando's article images in 28x28 grayscale format.  
 
To demonstrate the usability and effectiveness of in-browser Machine Learning platform, 
the author constructed a neural network model using Keras and train it with 
FashionMNIST. The parameters of the neural network were saved in text files and loaded 
to the browser using TensorFlowJS. The thesis project also made use of Canvas, an 
HTML5 feature which allows users to draw fashion items in the browser and convert the 
depicted image to TensorFlow input for prediction. 
 
The outcome of the project is a functional web app which features a hand drawing area 
and a pie chart representing the prediction made by the neural network model. 

Keywords FashionMNIST, deep learning, artificial intelligence, 
neural network, Tensorflow.js 



 

 

Contents 

1 Introduction 2 

2 An overview of Deep Learning 3 

2.1 Neural Network 3 
2.1.1 Artificial Neural Network 4 
2.1.2 Convolution Neural Network 5 
2.1.3 Pooling Layer 7 
2.1.4 Activation function 8 

2.1.4.1 Sigmoid function ........................................................................ 10 
2.1.4.2 TanH function ............................................................................. 10 
2.1.4.3 ReLu function ............................................................................. 11 
2.1.4.4 Leaky ReLU ............................................................................... 12 

2.2 Optimization for Deep Learning 13 
2.2.1 Definition of optimization for deep learning 13 
2.2.2 Empirical Risk Minimization 14 
2.2.3 Loss function 14 
2.2.4 Backpropagation 15 
2.2.5 Regularization 15 

2.2.5.1 𝐿1 regularization ......................................................................... 16 
2.2.5.2 𝐿2 regularization ......................................................................... 16 

2.2.6 Batch normalization 17 
2.3 Neural network architectures 17 

2.3.1 AlexNet 18 
2.3.2 LeNet-5 18 
2.3.3 VGG16 19 

2.4 Challenges and limitation 20 
2.4.1 Overfitting 20 
2.4.2 Computing expenses 20 

3 Libraries and Frameworks 20 

3.1 TensorFlow 20 
3.2 Keras 22 
3.3 TensorFlow.js 22 

4 Training and validation 23 



 

 

4.1 Fashion MNIST 23 
4.2 Implementation 24 

5 Real-time Artificial Intelligence 27 

5.1 In-browser AI applications 28 
5.2 Model conversion 29 
5.3 Implementation 29 

6 Evaluation 30 

6.1 Neural Network model evaluation 30 
6.2 Web application evaluation 32 
6.3 Further improvement and research 34 

7 Conclusion 35 

Bibliography 36 

  

 



1 

  

 

List of Abbreviations 

AI Artificial Intelligence. 

ANN Artificial Neural Network. 

BN Batch Normalization. 

CL Convolutional Layer 

CNN Convolution Neural Network. 

DL  Deep Learning. 

FC Fully Connected 

FCNN Fully Connected Neural Network 

ML Machine Learning. 

NN Neural Network 

 

  



2 

  

1 Introduction 

Artificial Intelligence is among the next big things in the software engineering field that 

empowers numerous applications in health care, finance, logistic, industries for good 

measure. Several scientists have embarked on utilising the advancement of Artificial 

Intelligence and high-grade dataset to change our lives profoundly. One notable field in 

Artificial Intelligence is Computer Vision, which rapidly emerged over the last decade 

thank to an enormous amount of visual data and significant development in GPU 

processing power. Neural networks can now have millions of trainable parameters which 

makes technologies like diseases self-diagnoses or self-driving car possible. 

However, Computer Vision problems require real-time prediction and the AI community 

calls out for a client-side deep learning system. On 18th March 2018, Google released 

Tensorflow.js, an open-source library written in the JavaScript programming language 

for creating in-browser Artificial Intelligence platform. Tensorflow.js provides an 

environment for AI enthusiasts to train, run and deploy their AI programs in their 

browsers. Real-time AI has unlocked many opportunities and possibilities for AI projects, 

like interactive Machine Learning programs, data privacy, app sharing and decentralized 

computing resources.  

The objectives of this thesis were to demonstrate the usability and effectiveness of in-

browser Artificial Intelligence system. The thesis achieved that goal by constructing a 

neural network model to classify fashion item images and convert such model to JSON 

format for in-browser usage. The model will take a 28x28 grayscale format image as 

input and return the corresponding category. The process of predicting images happens 

on client-side, and there is no backend server involved. 

The thesis is structure as follow. The first section introduces the purpose of the project, 

dataset and technologies. The second section provides theoretical background and 

applications of various Deep Learning algorithms and noteworthy neural network 

architectures, followed by the third section which describes the usage of Tensorflow.js in 

building in-browser AI system and how it’s implemented in this. The fourth section 

discusses the training and validating process and their implementation, while the last 

section analyses the result and gives information about the future work of the thesis. 



3 

  

2 An overview of Deep Learning 

Artificial Intelligence is a vast field which concerns several areas like Statistic, 

Optimization, Machine Learning and Deep Learning. This section introduces DL as the 

state-of-the-art solution for AI problems with complex datasets like visual data, sound or 

natural languages and how it’s related other fields of AI. Besides, this section explains 

the concepts of Convolutional Neural Network, optimization process of Neural Network 

training and then dives deeper to Mathematics theory behind their implementation. 

 

 

 

 

Figure 1. Relationships between Math, AI, ML and DL. 

Figure 1 shows that AI, ML, and DL all involve Mathematic to some extends. Machine 

Learning and Deep Learning are two sub-fields of Artificial Intelligence. Machine 

Learning focuses on small and medium datasets, while Deep learning applies 

mathematical models to learn large and complex ones.  

2.1 Neural Network 

Researches in Deep Learning focus on generating a hierarchy of concepts that enable 

the machine to gain knowledge of complicated concept. To achieve that goal, Deep 



4 

  

Learning utilises Neural Network which combines several computational units to build up 

a more powerful instance. 

The neural circuit system inspired computer scientist to build the concept of neural 

network. Each neural network consists of multiple computing units which is similar to 

synapse in animal brain. Both gain knowledge of outside world and perform various tasks 

through examples, usually without being programmatically configured. However, the 

development of ANN now focuses on performing a particular task, resulting in deviations 

from biological one.  

2.1.1 Artificial Neural Network 

Many Deep Learning fields have heavily adopted Artificial Neural Network, such as real-

time translation, speech to text conversion, and vision system. One novelistic application 

of ANN is the Generative Adversarial [1] proposed by Ian Goodfellow et al. in 2014. The 

GAN allows two ANNs to train by opposing each other, simulating the concepts of two-

player games. By applying GAN, Deep Learning system can generate realistic 

photographs, audio, text, and speech. 

Mathematically, ANN is represented as a composition of multiple different functions 

altogether. Assume that there existed the function  𝑦 = 	𝑓∗(𝑥) that map input vector 𝑥 

into category 𝑦, the ultimate goal of an ANN is to optimize the parameter 𝜃 so that 𝑓(𝑥, 𝜃) 

can approximate 𝑓∗(𝑥). A quintessential example of ANN is Deep Feedforward Network 

(DFN) [2] which is of extreme importance to Deep Learning development since they form 

the skeleton of how ANN works.  



5 

  

 

Figure 2. ANN with four layers. [3] 

Figure 2 demonstrate an ANN with 1 input layers, 2 hidden layers of different size and 

the output layers. ANN is often referred to as Fully Connected Neural Network since a 

node of a layer connects to all nodes of the layer right after it. 

2.1.2 Convolution Neural Network 

Overfitting usually occurs when large-size image datasets are fed to the training Deep 

Feedforward Neural Network process [4]. For AI problem that use high-resolution images 

as input, the number of trainable parameters of an ANN can quickly reach over 10 million. 

In order for a FCNN to process a grayscale picture of dimension 1920x1080, its first layer 

would require at least 2,073,600 parameters. The number of computing nodes 

exponentially increases as the size of input grows and significantly slows down the 

training process.  



6 

  

To solve this issue, Convolutional Neural Network [5] introduces a concept called kernel 
(also called filter). The mechanism of kernel is based on the convolution operation in 

Mathematics. The convolution operation allows CNN to capture sub-feature of the inputs; 

therefore, the output of CNN remains unchanged despite small transformations of the 

inputs, such as flipping and shifting [4, p. 267]. 

 

Figure 3. CNN filtering [4, p. 268] 

The figure above illustrates the process of capturing sub-feature in Convolutional Neural 

Network using convolution operation. Each subregion of the image is filtered, and the 

most notable feature of that subregion is extracted and passed to the next layer of the 

network. The convolution operation following the below formula, with I and K are two-

dimensional input and kernel respectively:  

𝑆(𝑖, ℎ) = (𝐼 ∗ 𝐾)(𝑖, ℎ) = (𝑥 + 𝑎)5 = ∑ ∑ 𝐼(𝑔, 𝑡)𝐾(𝑖 − 𝑔, ℎ − 𝑡)5:  [2, p. 328] 

In Convolutional Neural Network, many kernels together form a special layer called the 

convolutional layer. This particular layer responsible for performing the core functionality 

of the CNN: detecting features of subregions of the input image like edge and colour 

scheme for good measure.  



7 

  

 

 

Figure 4. Visualization of edge detection using bottom Sobel. 

Figure 4 shows the effect of image filtering using bottom Sobel. The image on the right-
hand side displays horizontal lines very clearly while erasing vertical lines. 

Convolutional Neural Network reduces the number of required parameters significantly 

by applying identical convolution layer to all subregions of the input image. Also, the 

kernel that learns useful features for the training process can be re-used to detect such 

features virtually everywhere without the need to re-train. These mechanisms in the 

translation invariance property of CNN, meaning that it can identify patterns regardless 

of their location inside the input image [6, p. 565]. 

2.1.3 Pooling Layer 

Many Convolutional Neural Network models, LeNet-5 [7] for example, decrease the 

dimensions of convolution layers by using subsampling methods. The training process 

of a convolutional network generally involves three stages, which are producing linear 

activations, detecting feature and pooling respectively [2, p. 335]. In CNN training 

process, the occurrence of the feature is more considerable than its whereabouts, 

meaning that CNN can perform better if it is invariant to translation transformation of the 

input image. Pooling layers helps CNN to achieve this as long as the translation is 

sufficiently small.  

Pooling layer works by perform statistical operations on a particular location of the net 

(also known as the receptive field). For example, max pooling [8] operation selects the 



8 

  

largest value in the receptive field and pass it through the next layer. There are several 

other pooling types: average subsampling, max pooling and weighted average sample, 

to name a few. Among all, max pooling yield superior performance in practice [9]. 

  

Figure 5. An illustration of max pooling operation  

Figure 5 demonstrates the max pooling operation performed on two different input. The 

top rows represent the output of pooling layer, and the bottom row represent the input. 

The later input is indeed the first one shifted by 1 pixel to the right. As can be seen from 

the figure, only the first and last value of the lower top row have changed because max 

pooling only selects the most significant value within a receptive field regardless of its 

exact location.  

2.1.4 Activation function 

Regardless of how many layers the ANN possesses, it cannot approximate non-linear 

separable dataset. To tackle this issue, Artificial Neural Networks employs a 

mathematical concept called the activation function. For an ANN with a sufficiently large 



9 

  

number of computing nodes, the use of activation function can enable the ANN to 

approximate any known complex function [10]. 

The choice of activation function significantly affects the overall performance of 

Convolutional Neural Network. This thesis will explain the concept of and give intuition 

about Sigmoid (also known as Logistic), Rectified Linear Unit (ReLU), TanH, and Leaky 

Rectified Linear Unit (Leaky ReLU). Also, the graph of each function will be provided for 

a better understanding. 

The following Python snippet will plot Sigmoid, TanH, ReLU and Leaky ReLU 

respectively: 

 

1. from matplotlib import pylab   

2. import pylab as plt   

3. import numpy as np   

4. import tensorflow as tf   

5. x = plt.linspace(-10,10,10000)   

6. with tf.Session() as sess:   

7.   plt.plot(x, sess.run(tf.nn.sigmoid(x)), 'b')   

8.   plt.text(2.5, 0.5, r'$\frac{1}{1+e^{-x}}$', fontsize=16)   

9.   plt.grid()   

10.   plt.show()   

11.   plt.plot(x, sess.run(tf.nn.tanh(x)), 'b')   

12.   plt.text(2.5, 0, r'$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$', fontsize=16)   

13.   plt.grid()   

14.   plt.show()   

15.   plt.plot(x, sess.run(tf.nn.relu(x)), 'b')   

16.   plt.text(-5, 4, r'$max(0,x)$', fontsize=16)   

17.   plt.grid()   

18.   plt.show()   

19.   plt.plot(x, sess.run(tf.nn.leaky_relu(x)), 'b')   

20.   plt.text(-5, 4, r'$max(0.1*x,x)$', fontsize=16)   

21.   plt.grid()   

22.   plt.show()   



10 

  

 

2.1.4.1 Sigmoid function  

The sigmoid function has wide application in optimization process due to its monotonicity, 

boundedness and differentiability. Sigmoid guarantees positive output for any given 

arbitrary real input. The graph of the sigmoid functions features an S-shaped curve. The 

graph of the sigmoid function generated by the Python snippet is: 

 

 
 

The formula of the sigmoid function is:  

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 	
1

1 + 𝑒@A
 

 

2.1.4.2 TanH function 

The TanH function is a bounded, differentiable and monotonic function. Its differentiate, 

however, is not monotonic. Like the sigmoid function, the graph of TanH features an S-

shaped curve with the range from -1 to 1. One significant difference between TanH and 

sigmoid is that the negative region of the input 𝑥 will be mapped to the range from [-1, 0] 

instead of near-zero and therefore results in better performance [2, p. 195]. The graph 

for the TanH function generated by the Python snippet is: 



11 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

TanH function is defined as: 

 

2.1.4.3 ReLu function 

Though Sigmoid and TanH functions generally yield good performance, they do have 

undesired disadvantages. One of them is both functions easily saturate when the input 

value approaches negative or positive infinity [2, p. 195]. This problem of the two 

hyperbolic leads to the vanishing gradient descent problem and make the training 

process of deep ANN ineffective.  

Hahnloser et al. introduced the ReLU (an abbreviation of Refined Linear Unit) activation 

function in 2000 [11] in an attempt to construct an activation that behaves like a linear 

function yet does not prevent the ANN to learn complex datasets. The figure below 

demonstrate the graph for the ReLU function:  

 



12 

  

 

The ReLU function follows the formula: 

 

2.1.4.4 Leaky ReLU 

The limitation of ReLU is that when the input is negative the gradient becomes zero and 

leads to the case where a node in the network never activates in the training process. 

Should many units in the network feed the activation function with negatives input the 

optimization step would be considerably slower. 

The Leaky ReLU function [12] is identical to the ReLU function in the positive region of 

𝑥. For negative input 𝑥, it guarantees a small positive gradient to prevent freezing the 

optimization process. The graph for Leaky ReLU is as follow: 

 



13 

  

 

The Leaky ReLU function follow the below formula: 

 

 
 

The parameter 𝛼 is usually within the range 0.01 ≤ 𝛼 ≤ 0.1 depending on the dataset 

and the architecture of ANN. 

2.2 Optimization for Deep Learning 

There are numerous cases where Artificial Intelligence algorithms need to involve 

optimization. For instance, solving the inference of Principal Component Analysis would 

require dealing with an optimization problem. Among several optimization problems that 

AI involves, optimizing the weight parameters of the ANN is the most complicated and 

arduous one [2, p. 271] 

This thesis will focus on one particular optimization in Deep Learning: optimizing the 

parameter 𝜽 to minimize the cost function 	𝐽(𝜃) which is a notable measure for the overall 

performance of the training process. 

2.2.1 Definition of optimization for deep learning 

The fact that there are many intractable performance measures in Deep Learning makes 

direct optimization complicated. So, in contrast to traditional optimization problems which 



14 

  

deals with minimising the cost using various mathematical models, a cost function 𝐽(𝜃) 

is minimized in the hope that the performance measures will be improved. The cost 

function 𝐽(𝜃) is defined as 

𝐽(𝜃) = 	Ε(A,I)~KLMNM𝐿(𝑓(𝑥; 𝜃), 𝑦)	[2, p. 272], 

where 𝐿(𝑓(𝑥; 𝜃), 𝑦) is the per training sample loss function, 𝑓(𝑥; 𝜃) is the hypothesis 

function that yield prediction for input 𝑥 with distribution 𝑝QR5R(𝑥, 𝑦) given parameter 𝜃. 

 

2.2.2 Empirical Risk Minimization 

One problem of Deep Learning is that training data comes from a fixed but unknown 

distribution 𝑝QR5R(𝑥, 𝑦). This means optimization process in Deep Learning will focus on 

minimizing empirical error instead of true error which is calculated based on all possible 

training data. The true distribution of training data is replaced by the empirical distribution 

𝑝QR5R^ (𝑥, 𝑦) and the cost function 𝐽(𝜃) for 𝑚 training samples becomes 

𝐽(𝜃) = 	Ε(A,I)~KLMNM𝐿(𝑓(𝑥; 𝜃), 𝑦) = 	
T
U
∑ 𝐿(𝑓V𝑥W, 𝜃X, 𝑦W)U
WYT . 

The process of optimizing 𝐽(𝜃) is known as empirical risk minimization and 

Ε(A,I)~KLMNM𝐿(𝑓(𝑥; 𝜃), 𝑦) is referred to as the empirical error. 

2.2.3 Loss function  

Choosing the loss function has a major impact on the outcome of the training process. 

The competence of loss function varies according to the problem type; for instance, 

regression problem with numerical output type would benefit from Mean Squared Error 

and classification problem with multiple labels would be suitable for Categorical Cross 

Entropy. The purpose of this thesis was to classify fashion images, so Categorical Cross 

Entropy was chosen. 

The formula for categorical cross entropy for N labels is as follow: 

𝐿(𝑦Z, 𝑦) = 	−
1
𝑚
[[𝑦W\ ∗ log	(𝑦ZW\)

`

\YT

U

WYT

 



15 

  

Computing the gradient of 𝐿(𝑦Z, 𝑦) is relatively easy, which is a significant advantage of 

Categorical Cross Entropy. 

2.2.4 Backpropagation 

The process of minimizing empirical risk is achieved by adopting the local message 

passing method in which pass error of each layer to the previous one and the weight 

parameters will be updated accordingly is known as backpropagation. The motivation for 

this method is to train the ANN such that it can learn the concept of any arbitrary mapping 

function [13]. 

There are two requirements that the loss function must satisfy in order that it’s applicable 

for backpropagation [14]. The first requirement is that the cost function can be 

represented as an average of losses over individual training samples. The reason for this 

requirement is that backpropagation computes the gradient of the Mean Squared Error 

partially for each training samples. The second requirement is that the loss function can 

be expressed as a function whose input is the output of the ANN. The formula for 

categorical cross entropy satisfies all requirements. 

Backpropagation update the weight parameters of the ANN using the following rule: 

𝑍[W] = 𝑍[W] − 𝛾
𝜕𝐺
𝜕𝑊[W] 

ℎ[W] = ℎ[W] − 𝛾
𝜕𝐺
𝜕𝑎[W]

	 

The parameter 𝛾 is the pre-defined learning rate of the ANN and 𝑖 is the index of the 

layer. 

2.2.5 Regularization 

A critical problem in deep learning is to train the neural networks in a way that it performs 

well not only on the observed sample but also unknown ones. Many optimizing strategies 

in deep learning try to decrease the empirical error on test dataset with the expense of 

getting higher training error [2, p. 224]. Such strategies are called regularization – one of 

the major optimization methods in Deep Learning. 



16 

  

It’s generally a good practice to penalize the weight of each layer rather than regularize 

the bias parameter [2, p. 226]. The reason for this strategy is that each bias affect only 

a single variable, meaning leaving the biased unregularized would not cause variance to 

rise. Also, since bias parameters are introduced to combat the underfitting problem, 

regularizing biases may cause the ANN model to underfit complex datasets. 

2.2.5.1 𝐿T regularization  

The formula for 𝐿T regularization on the model parameter 𝒘 is defined as the summation 

of modulus of individual parameters and has the following mathematical expression: 

Ω(𝑤) = k|𝑤|kT = 	∑ |𝑤W|W . 

In practice, the 𝐿T regularization controls the impact of Ω(𝑤) by multiply Ω(𝑤) with a 

positive hyperparameter 𝛼. With 𝐿T regularization the cost function becomes 

𝐽m(𝜃) = 	𝐽(𝜃) + 𝛼 ∗ k|𝑤|kT. 

The gradient for 𝐽m(𝜃) is given by 

∇o𝐽m(𝜃) = 	∇o𝐽(𝜃) + 𝛼𝑠𝑖𝑔𝑛(𝑤), 

where 𝑠𝑖𝑔𝑛(𝑤) denotes the sign of 𝑤 applied elementwise. 

2.2.5.2 𝐿q regularization 

𝐿q regularization forces the weight parameters to degenerate overtime. It limits the 

complexity of the neural network by applying a penalty on the growth in the magnitude 

of the weight parameters. The formula of 𝐿q regularization is the sum up the square of 

individual weight parameter together. The mathematical expression of 𝐿q regularization 

is:  

Ω(𝑤) = k|𝑤|kq = 	∑ 𝑤WqW 	. 



17 

  

Similar to the 𝐿T regularization, the impact of Ω(𝑤) on the cost function is also controlled 

by multiplying Ω(𝑤) with T
q
𝛼. The regularized cost function 𝐽m(𝜃) has the following formula: 

𝐽m(𝜃) = 	 r
q
Ω(𝑤) + 𝐽(𝜃) = r

q
𝑤s𝑤 + 𝐽(𝜃), 

with the corresponding gradient  

∇o𝐽m(𝜃) = 	∇o𝐽(𝜃) + 𝛼𝑤. 

Applying 𝐿q regularization cause the weight parameters to be closer to the origin [2, p. 

227]. This strategy is known to enhance the generalization of the ANN [15] and is the 

most common form of regularization. 

2.2.6 Batch normalization 

It has been known for decades that normalizing the input vector 𝑥 to normal distribution 

𝑥	~	 T
√qu

𝑒@
v
wA

w
  enhance the performance of neural networks [16]. Batch Normalization 

evolves the idea of input normalization to normalizing intermediate layers of a deep ANN, 

although the Batch Normalization technique is typically performed across mini-batches 

of the training dataset and is therefore sometimes referred to as mini-batch 

normalization. 

2.3 Neural network architectures 

The cost of training CNN models using high-resolution images has been prohibitively 

high and therefore not wholly applicable to real-life problems. Fortunately, the rapid 

development of Graphics Processing Unit with excellent support for optimizing 

convolution operation make it feasible to train CNN models with large dataset like 

ImageNet ILSVRC-2010 [17]. This section focusses on explaining the CNN architectures 

that achieved a considerably low error rate on the ImageNet datasets.  



18 

  

2.3.1 AlexNet 

Alex Krizhevsky invented the AlexNet [18] in an attempt to perform image classification 

task on the dataset ImageNet LSVRC-2010 and achieved a remarkable performance 

with an error rate of 17%.  

  

Figure 6. Illustration of the AlexNet architecture. [18] 

As can be seen from figure 6, AlexNet consists of 60,000,000 parameters, 650,000 

neurons, five CL, three FC layers and 1000-classes SL at last.  

2.3.2  LeNet-5 

LeNet-5 [19] is considered of the pioneering architecture for convolutional neural 

network. The network was designed by Yann LeCun et al in 1998 with the purpose of 

classifying the famous MNIST dataset. 

  

Figure 7. The illustration of the LeNet-5 architecture. [19] 



19 

  

Figure 7 demonstrates that LeNet-5 has two convolution – subsampling pairs and three 

fully connected layers. The first pair features six convolution layers of size 28 by 28 and 

six max pooling layers of size 14 by 14. The second one possesses sixteen convolution 

layers of size 10 by 10 and sixteen max pooling layers of size 5 by 5. 

Because of the limit in computing power in 1998, LeNet-5 did not possess immense 

number of parameters to learn large datasets like ImageNet. However, the architecture 

ensures shift, scale and distort invariance to some degree by using local receptive field, 

shared weights and spatial sampling [19]. 

2.3.3 VGG16 

VGG16 [20] was designed by Karen Simomyan and Andrew Zisserman from the Visual 

Geometry Group of University of Oxford. The architecture achieved the top-5 error of 

6.8% on the ILSVRC-2014 dataset, securing the second place of the ILSVRC-2014 

challenge. 

 

 

 

 

Figure 8. The illustration of VGG16 architecture 

As can be seen from Figure 8, the VGG16 architecture employs several consecutives 

convolution layers which enhance the ability to captures important features of the image 

and therefore improve the overall accuracy. VGG16 is adapted to object detection and 

localization research field and typically serve the purpose of base neural network.  



20 

  

2.4 Challenges and limitation 

Even though Deep Learning is regarded as a state-of-the-art solution for learning large 

and complex dataset, there are still various challenges and barriers to address. This 

section focuses on two critical issues of Deep Learning: Overfitting and Computing 

expenses. 

2.4.1 Overfitting 

Modern neural network models often have millions of neurons (trainable parameters). 

Having a large number of trainable parameters enable the model to learn complex data 

but usually leads to the overfitting problem in which the model fails to yield good 

performance when it processes never-seen-before data. There are several strategies to 

combat the overfitting problem, yet it remains one of the most challenging issue in ANN 

optimization process. 

2.4.2 Computing expenses 

Training a large neural network model usually requires high-end Graphics Processing 

Unit, which significantly increases the overall cost. Also, it’s quite often that the training 

process lasts for days, even months, so the energy cost usually accounts for a significant 

portion in the total budget. High expense means that reachability is low and therefore 

slow down the development pace. 

3 Libraries and Frameworks 

This thesis used various libraries and frameworks to implement the real-time fashion 

classification system, namely Keras, TensorFlow, and TensorFlowJS. This section 

introduces the essential details about these libraries and framework, as well as analyses 

their advantages and disadvantages. 

3.1 TensorFlow 

TensorFlow was initially implemented by the Google Brain team [21] for internal usages 

only. Google decided to make the first release of TensorFlow in 2015 as an open-

sourced software framework under the Apache License 2.0. Since then, TensorFlow has 



21 

  

been massively adopted for both research and production usages by various software 

companies. 

TensorFlow offers various level of abstraction for implementing and training neural 

network models depending on developers’ needs. The framework provides an 

outstanding performance when it comes to computational speed thanks to the C++ 

kernel. The kernel allows developers to scale the applications without sacrificing speed 

or performance. 

 

 

Figure 9. An architecture of TensorFlow computational graph 

Figure 9 demonstrates the workflow of TensorFlow computational graph. The input data 

is passed to Deep Neural Network (DNN) layers and from there, it either goes through 

several parameters optimization processes or gets saved for later uses. 



22 

  

3.2 Keras 

Keras is a framework for architecting ANN model implemented in Python. It is capable 

of utilizing TensorFlow, Theano, Microsoft Cognitive Toolkit, or PlaidML as its backend 

depending on the configuration.  

The initial released of Keras was on 27 March 2015. The library was originally developed 

by François Chollet [22] and actively maintained by various developers as it is an open-

sourced project. Two years after Keras’s first release, Google’s TensorFlow team 

announced an official module to support the Keras functional API in TensorFlow.    

3.3 TensorFlow.js 

TensorFlow.js is an open-sourced framework designed to build ML models in the 

JavaScript programming language. The Google’s TensorFlow team announced the 

official release of TensorFlow.js for Artificial Intelligence application implementation in 

March 2018 [23].  The library allows deploying pre-trained TensorFlow model to the 

browser for running, re-training and modifying.  

 

Figure 10. Architecture of TensorFlow.js application [23] 



23 

  

As can be seen from Figure 10, TensorFlow.js relies on WebGL for running execution 

and provides a high-level APIs for Deep Learning models building. TensorFlow.js also 

supports pre-built models implemented in Keras and SavedModels. 

4 Training and validation 

Understanding the characteristics of the dataset is a crucial part of any AI project. This 

section introduces the basic features of the dataset and visualization to make it more 

understandable. Additionally, this section covers basic details about Keras as a Neural 

Network Application Program Interface, the detailed architecture of the CNN, and the 

training process along with sample codes. 

4.1 Fashion MNIST 

The MNIST Database of Handwritten Digit Images was published in 2012 and has been 

actively used as the base dataset to validate new models in Deep Learning research. 

However, with the fast-paced growth of DL, the AI community calls out for a more 

complex dataset as MNIST is too easy and does not represent modern Deep Learning 

task. 

In August 2017, Zalando published the Fashion MNIST dataset [24] in an attempt to 

replace the traditional handwritten digits dataset. The new dataset preserves all the 

accessibility of MNIST like size, format and number of classes. The Fashion MNIST is 

significantly more complex than the MNIST since the samples were captured using digital 

cameras (thus possess more features). 

 



24 

  

Figure 11. Sample images with corresponding class name from Fashion MNIST [24] 

Figure 11 visualizes sub-samples along with their class names from the original Fashion 

MNIST dataset. There are totally 70 000 samples evenly distributed to 10 classes. The 

dataset is randomly segmented into training and test sets with 60 000 and 10 000 

samples, respectively.  

4.2 Implementation 

The convolution neural network model was implemented using Keras – a framework API 

designed for building ANN implemented in Python and capable of using Theano, CNTK, 

and TensorFlow as backend.  



25 

  

 

Figure 12. Summary of the neural network model 

Figure 12 demonstrates the architecture of the CNN model. The model consists of four 

convolution layers, two max-pooling layers and two dense layers with batch 

normalization. Dropout layers with 25% rate were also added to counter the overfitting 

problem. 

Figure 13 shows the Python code snippet that describes the process of loading and 

reshaping the train and test dataset: 

 

Figure 13. Dataset loading and reshaping 



26 

  

The model was built using Keras Sequential class, as shown in Figure 14: 

 

Figure 14. Model building 

The model is built within the CnnIsFakeModel class constructor and exposed via the 

getModel method. 

 

 

 

 



27 

  

 

Figure 15 shows the Python script for training the model. 

 

Figure 15. Mode training with 40 epochs 

 

The model is trained with 40 epochs, and the batch size is 512. The training time is 

roughly seven seconds for each epoch. The learning rate is reduced over time based 

on the changes in validation accuracy to prevent the divergent problem. The model 

performs better as the training progresses, and eventually achieves an accuracy of 

93.79% for the test set.  

5 Real-time Artificial Intelligence 

For years, the AI community has attempted to eliminate the dependence of AI 

applications on centrally hosted servers. With the development of real-time AI 

technologies, AI applications could finally collect data, train Deep Learning models, and 

make informed decisions independently of network connection. This section introduces 

the concepts of in-browser AI applications and how it’s implemented in this thesis. 



28 

  

5.1 In-browser AI applications 

In-browser AI technology enables developers to build and execute Machine Learning 

models entirely in the client-side. This unlocks tremendously exciting new opportunities 

for AI researcher and practitioners, building interactive Machine Learning applications, 

for example.  

 

Figure 16. Interactive Pac-Man games using In-browser AI technologies 

The Pac-Man game in Figure 16 uses facial gestures as the movement controlling 

mechanism. The neural network modes were loaded to the browser and perform 

classification tasks in real-time to decides the moving direction of Pac-Man. 



29 

  

5.2 Model conversion 

Converting pre-trained neural network models into TensorFlow.js format is a critical task 

of building in-browser AI applications. The Keras model is first saved in h5 file format 

and then converted into JSON format by using TensorFlowJS Converter. The model in 

JSON format is loaded into the browser through TensorFlowJS Application Programming 

Interfaces for real-time computing. 

5.3 Implementation 

This thesis features a web-based application that allows users to sketch an arbitrary 

fashion item, and the application will make predictions based on the depicted image. 

 

 

Figure 17. Overview of the application 

Figure 17 describes the usage of the application. The users can sketch the fashion item 

on the left side, then they can click on the “Predict” button, and the result is displayed on 

the right side. The application makes top-5 prediction, meaning that it generates five 

class names that best described the input. In Figure 15, the author intended to sketch a 

bag and got “Bag” as the top result. 



30 

  

6 Evaluation 

This section covers the evaluations of both the convolution neural network model and 

the web application to visualize the full picture of how well the web application performs 

against the Keras model. There’s also detailed discussion about future improvements 

and research objectives. 

6.1 Neural Network model evaluation 

There are several approaches to measure the performance of a neural network model. 

This thesis focus on evaluating the accuracy of the top-1 prediction of the model since it 

is how benchmarks are evaluated on the official FashionMNIST GitHub.  

We first need to plot the accuracy and loss of the convolution neural network model over 

epochs to determine whether having more epochs would result in better performance. 

Figure 18 demonstrates the Python snippet plots the line-graph of the accuracy and loss 

of training and validation dataset: 

 

Figure 18. Accuracy and loss graph plotting 

The accuracy and loss of the training and validating process are plotted in the following 

images: 



31 

  

 

 

Figure 19. Accuracy over epochs 

 

Figure 20. Loss over epochs 



32 

  

As can be seen from Figure 19 and Figure 20, the accuracy of both training and validating 

process increases significantly from the first to tenth epochs. The loss for training and 

validating process also decreases dramatically over the first ten epochs. After that, both 

accuracy and loss remain stable until the termination of the process. This phenomenon 

signifies that the model has converged since the tenth epochs and training the model 

any further adds little value to the overall performance. 

One noteworthy point is that accuracy and loss sometimes become worse than they’re 

at the previous epochs. There are several problems that might cause this issue like a 

large learning rate, overfitting and small batch size. To resolve this issue, the author 

applied the learning rate reduction call-back to gradually decrease the learning rate over 

time.  

6.2 Web application evaluation 

Measuring the web application requires human interaction, and therefore, massive test 

batch size is not a practical solution. The most appropriate approach, in this case, would 

be sketching several images and observing the results.  

One noteworthy point in evaluating the web application is that the input images for the 

neural network training process are captured using digital cameras, whereas the input 

images for the web app are sketched ones. This significantly aggravates the 

performance of the web app as sketched images do not convey as much information as 

the digital ones. 

  

Figure 21. Data for training versus data for predicting 



33 

  

Figures 21 shows differences between two samples of T-shirt class. As can be seen from 

the image, the T-shirt on the left-hand side clearly has more useful features for classifying 

task than the T-shirt on the right-hand side does.  

 

 

Figure 22. Prediction for T-shirt 

Pullover, Shirt and T-shirt are sensible predictions for the image in Figure 22. Bag was 

the prediction with the highest confidence, so the model does not work well on this image. 

  

Figure 23. Prediction for Pullover 



34 

  

The author intended to sketch a pullover in Figure 23. Bag was the prediction with the 

highest confidence again. The author hypothesized that since images in class Bag and 

images in class Shirt, T-shirt and Pullover have visually similar bottom the model 

confuses images in these classes. 

6.3 Further improvement and research 

It can be seen that the model achieved only trivial improvements in accuracy after the 

tenth epochs. The final accuracy was 93.4, and the accuracy at tenth epochs was 91.33. 

The author concluded that it’s not sensible to increases the number of epochs any further 

since it might lead to the overfitting problem. The right approach in this situation would 

be modifying the architecture of the neural network and image augmentation. 

Concerning the web application, the main improvement would be seeking a better 

dataset for training the neural network. There are significant differences between the 

input for training and the one for testing as discussed in the “Web application evaluation” 

section, which causes the performance of the web application to drop dramatically.  

  

Figure 24. Samples from the Google Quick Draw dataset 

Figure 24 illustrate some samples from the Google Quick Draw dataset. The dataset 

features a collection of 50 million hand-drawings images spanning across 345 

categories. Since the web application makes predictions based on sketched images, the 



35 

  

Google Quick Draw data set is perceived as a more suitable and robust dataset than the 

Fashion MNIST. 

7 Conclusion 

Returning to the research objectives mentioned in the “Introduction” section of the thesis: 

how to build a real-time Artificial Intelligence system and demonstrate its usability using 

the Fashion MNIST dataset. It can be concluded that the thesis has successfully 

introduced an image classifier with outstanding performance compared to other 

submissions on Fashion MNIST GitHub. The thesis also demonstrated the core features 

of in-browser Artificial Intelligence system by implementing the web application. The 

background theory of Artificial Intelligence, Machine Learning, and Deep Learning were 

explained meticulously along with the concept of neural network and its applications.  

There are, however, several improvements left for future work. Many popular neural 

network architectures such as AlexNet, MobileNet, and VGG were not used due to 

computing resources limitation. The author firmly believes that by employing highly 

ranked neural network in the ImageNet competition would considerably improve the 

overall accuracy of the classifier. Also, the performance of the web application would 

significantly improve should the classifier were trained with sketched images instead of 

digital photos. 

In summary, the thesis emphasizes the importance of real-time Deep Learning system 

in solving real-world problems. Real-time technology has been playing an indispensable 

role in human life and now, with artificial intelligence embedded to it, thousands of 

opportunities have just arisen.   

 

 

 



36 

  

Bibliography 

 

[1]  Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza , Bing Xu, David Warde-
Farley, Sherjil Ozair, “Generative Adversarial Nets,” in Advances in Neural 
Information Processing Systems 27, 2014.  

[2]  I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.  
[3]  G. Ognjanovski, “Towards Data Science,” 14 January 2019. [Online]. Available: 

https://towardsdatascience.com/everything-you-need-to-know-about-neural-
networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a. 
[Accessed 30 8 2019]. 

[4]  C. M. Bishop, Pattern recognition and machine learning, 5th Edition, Springer, 
2007.  

[5]  Yann LeCun et al, “Backpropagation Applied to Handwritten Zip Code Recognition,” 
Neural Computation, vol. 1, pp. 541-551, 1989.  

[6]  Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.  
[7]  Yann LeCun et al, “Gradient-based learning applied to document recognition,” 

Proceeding of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.  
[8]  Yi-Tong Zhou, Rama Chellappa, “Computation of optical flow using a neural 

network,” in IEEE 1988 International Conference on Neural Networks, 1988.  
[9]  Dominik Scherer, Andreas Müller, Sven Behnke, “Evaluation of Pooling Operations 

in Convolutional Architectures for Object Recognition,” in 20th International 
Conference on Artificial Neural Networks (ICANN), Thessaloniki, Springer, 2010, 
pp. 99-101. 

[10]  Kurt Hornik, Maxwell Stinchcombe, Halbert White, “Multilayer feedforward networks 
are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359-366, 1989.  

[11]  Richard Hahnloser et al, “Digital selection and analogue amplification coexist in a 
cortex-inspired silicon circuit,” Nature, vol. 405, pp. 947-951, 2000.  

[12]  A. Mass, A. Ng and A. Hannun, “Rectifier Nonlinearities Improve Neural Network 
Acoustic Models,” in ICML Workshop on Deep Learning for Audio, Speech and 
Language Processing, 2013.  

[13]  Geoffrey Hinton, David Rumelhart, Ronald William, “Learning representations by 
back-propagating errors",” Nature, vol. 323, pp. 533-536, 1986.  

[14]  Yann LeCun, Yoshua Begio, Geoffrey Hinton, “Deep Learning,” Nature, vol. 521, 
pp. 436-444, 2015.  

[15]  G. Hinton, “Learning translation invariant recognition in a massively parallel 
networks,” in PARLE Parallel Architectures and Languages Europe, Springer, 
1987, pp. 1-13. 

[16]  Yann LeCun , Léon Bottou, Bottou, Genevieve Orr, Klaus-Robert Müller , “Efficient 
BackProp,” in Neural Networks: Tricks of the trade, Springer, 1998, pp. 9-48. 

[17]  Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean 
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander 
C. Berg and Li Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” 
International Journal of Computer Vision, vol. 115, pp. 211-252, 2015.  

[18]  Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, “ImageNet Classification with 
Deep Convolutional Neural Networks,” Neural Information Processing Systems, 
vol. 25, 2012.  



37 

  

[19]  Yann LeCun, Léon Bottou, Yoshua Bengio, Pattrick Haffner, “Gradient-based 
learning applied to document recognition,” in IEEE, 1998.  

[20]  Karen Simonyan, Andrew Zisserman, “Very Deep Convolutional Networks for 
Large-Scale Image Recognition,” in ICLR, 2015.  

[21]  J. Dean, “TensorFlow,” Google, [Online]. Available: 
https://www.tensorflow.org/about. [Accessed 5 1 2020]. 

[22]  F. Chollet, “Keras IO,” [Online]. Available: https://keras.io/. [Accessed 5 1 2020]. 
[23]  D. Smilkov, “Medium,” Google, 30 March 2018. [Online]. Available: 

https://medium.com/tensorflow/introducing-tensorflow-js-machine-learning-in-
javascript-bf3eab376db. [Accessed 5 1 2020]. 

[24]  Han Xiao, Kashif Rasul, Roland Vollgraf, “Fashion-MNIST: a Novel Image Dataset 
for Benchmarking Machine Learning Algorithms,” 2017.  

[25]  Sáez Yago, Baldominos Alejandro, Isasi Pedro, “A Comparison Study of Classifier 
Algorithms for Cross-Person Physical Activity Recognition,” Sensors, vol. 17, p. 66, 
2016.  

 
 

 

 
 


