

Janessa Aulén

Animation State Machines
in Unreal Engine

Bachelor’s Thesis

Degree Programme in Information Technology

April 2020

Tekijä/Tekijät

Tutkintonimike

Aika

Janessa Aulén Insinööri (AMK) Huhtikuu 2020

Opinnäytetyön nimi

Animaatiotilakoneet Unreal Engine -pelimoottorilla

79 sivua

Toimeksiantaja

Gamelab

Ohjaaja

Marko Oras

Tiivistelmä

Tämän opinnäytetyön tarkoituksena oli tutkia ja opetella käyttämään Unreal Engine -pelimoottorin
animaatiotyökaluja ja työvaiheiden kulkua. Tarkoitus oli myös saada lisättyä aiemmin aloitettuun
peliprojektiin pelaajahahmolle ja muille hahmoille perittäviä animaatiotilakoneita.
Tämän dokumentin on samalla tarkoitus toimia raporttina siitä, mitä ongelmia ja huomioita tuli
vastaan toteutuksen aikana ja mitä pitäisi ottaa huomioon animaatioihin liittyvissä asioissa
tulevaisuudessa projektin kehittämisen kannalta.
Pohjana käytetty projekti on toteutettu Unreal Engine -pelimoottorilla, joten myös opinnäytetyön
aikana tehty työ on tehty samalla pelimoottorilla suoraan samaan projektiin.
Opinnäytetyön aikana toteutettiin peliprojektiin animaatiotilakoneet pelaajahahmolle ja yhdelle
lisähahmolle. Suunnitelmista poiketen tilakoneet eivät ole suoraan perittävissä muille hahmoille.
Koska pelimoottorin animaatioiden työnkulusta ja työkaluista ei ollut ennalta suurta kokemusta,
toteutuksesta on suuri osa ollut kokeilemista ja kaikki alkuun suunnitellut toiminnot eivät toteutuneet
niin kuin oli aluksi tarkoitus.
Opinnäytetyön tärkeimmät tavoitteet saavutettiin. Tulevaa kehitystyötä varten myös animaatioon
liittyvistä ongelmista ja tarvittavista ennakkotiedoista on projektin jäsenille tehty selkokielistä
projektikohtaista dokumentaatiota.
Tämän työn lukijan olisi hyvä ymmärtää C-kieleen perustuvaa ohjelmointikieltä. Työssä näkyvä
koodi on erittäin helppolukuista, mutta ohjelmoinnin perusasioita ei käydä työssä läpi. Olisi myös
hyvä, että lukijalla on hallussa Unreal Enginen tai vastaavan pelimoottorin perusteet.

Asiasanat

dokumentaatio, peliprojekti, Unreal Engine, animaatio, animaatiotilakoneet

Author (authors) Degree Time

Janessa Aulén

Bachelor of
Engineering

April 2020

Thesis title

Animation State Machines in Unreal Engine

79 pages

Commissioned by

Gamelab

Supervisor

Marko Oras

Abstract

The purpose of this thesis was to study and learn to use the animation tools and workflow in the
commercial game engine Unreal Engine. It was also intended to make inheritable animation state
machines for a game project’s player character and other characters.
This thesis also serves as a report of the problems and discoveries regarding the animations during
the implementation, which should be considered in the future development of the project.
The project used as a basis for the thesis has been developed with Unreal Engine, so the work
done for the thesis has also been done with the same game engine and implemented directly into
the game project.
During the thesis study, animation state machines for the player character and one additional
character were implemented. Contrary to the initial plan, the state machines cannot be directly
inherited for other characters. Since there was only little prior experience with the animation tools
and workflow, many parts of the thesis had been experimental and not all of the features that were
initially planned were implemented in the way originally intended.
For future development, clear project-specific documentation concerning the problems and possible
information needed prior to working in animations was also made and is now available for the
project members.
The code shown in the work is very easy to read, but the basics of programming are not covered
and so the reader should understand a programming language based on the C language. It would
also help the reader to be familiar with the basics of Unreal Engine or a similar game engine.

Keywords

documentation, game project, Unreal Engine, animation, animation state machines

Table of Contents

1 INTRODUCTION .. 8

2 PROJECT ... 8

3 TOOLS ... 10

3.1 Blender ... 10

3.2 Mixamo ... 11

3.3 Unreal Engine 4 .. 12

4 ANIMATION .. 12

4.1 Traditional Animation .. 12

4.2 Computer Animation ... 13

4.2.1 2D Animation .. 14

4.2.2 3D Animation .. 15

4.3 Animation in Games ... 16

5 ANIMATION SYSTEM IN UE4.. 17

5.1 Terms and concepts ... 17

5.1.1 Animation Tools .. 17

5.1.2 Skeleton Assets .. 18

5.1.3 Animation Sequences ... 18

5.1.4 Animation Notifications (Notifies) .. 18

5.1.5 Animation Blueprints ... 18

5.1.6 Blend Spaces .. 19

5.1.7 Animation Montage ... 19

5.1.8 Skeletal Control .. 19

5.1.9 State Machines ... 19

5.2 Animation Blueprints ... 20

5.3 Reusing Animation Blueprints ... 20

6 IMPLEMENTATION .. 21

6.1 Original plan for implementation ... 21

6.2 Assets ... 21

6.3 Importing assets into UE4 ... 22

6.4 Finished animation logic and blueprints .. 22

6.5 Implemented animation states .. 23

6.5.1 Idle state ... 23

6.5.2 Movement state .. 29

6.5.3 Jump state .. 30

6.5.4 Attacking state .. 42

6.5.5 Crouching state ... 44

6.5.6 Aim offset .. 47

6.6 Retargeting animations to another character .. 50

6.7 Other implemented features ... 59

6.7.1 Camera ... 59

6.7.2 Simple AI for NPC ... 63

6.8 Future development .. 70

7 CONCLUSIONS ... 71

REFERENCES .. 73

LIST OF FIGURES .. 76

LIST OF TABLES .. 79

Terms and Abbreviations

2D

Two-dimensional. Something that consists of only two dimensions, width and

height or x-axis and y-axis. There is no depth or z-axis.

3D

Three-dimensional. Something that consists of three dimensions. Width,

height and depth, so there are x, y and z-axis.

AI

Artificial intelligence. A machine or program that tries to simulate human-like

behaviour. In this thesis, a non-playable character has a very simple AI

implemented which allows it to move from one place to another.

CharacterMovement

A readymade component in Unreal engine where ready-to-use logic for

movement has been implemented, for example, falling, jumping and walking.

The settings and functions for controlling the movement are contained within

the component.

NDA

Non-disclosure agreement. Is a contract where the employee or visitor agrees

to not let anything they learn, hear or see leak outside of the company or their

team working on the project.

NPC

Non-playable character. In games, this is a character that the player cannot

control. Most often NPCs are side characters that bring the game’s world to

life as its inhabitants and they may give the player some info regarding a

quest or mission.

Player Blueprint

In this thesis, the Player Blueprint refers to the logic script used to drive the

player character’s logic. Actions such as jump, attacking, moving and input are

in the Player Blueprint. The CharacterMovement component can be found

inside of this Blueprint and is used to implement some of the player

character’s logic.

Player Animation Blueprint

This refers to the script that takes care of the player character’s animations

and animation logic in the thesis project. For example, when the player moves

the character, this script makes the walking or running animation play.

UE4

Unreal Engine 4. It is a free-to-use commercial game engine. It can be used to

create the game levels and everything a game consists of, such as

programming or scripting the logic, adding 3D models and other assets and

then at the end it can export the creation as a playable game for a computer,

mobile or a console.

1 INTRODUCTION

The purpose of this thesis was to learn more about animation in video games

and to learn how to use a commercial game engine, Unreal Engine 4’s basic

animation workflow and tools to implement animations for a game project’s

main character and possibly non-playable characters by re-using the same

animations and logic.

For this thesis, it was decided to use premade animations that can be

downloaded from an online service by Adobe at mixamo.com.

The intention for this thesis was to implement working animation logic and

reusable animations into an ongoing game project.

Additional secondary objectives for this thesis study was to identify what is

needed for the project in terms of animation and animation logic in order to

work now and in the future and to experiment with the animation tools and

related workflow in Unreal Engine 4.

There is in-depth documentation written about the different animation tools

online, and anyone who plans or wishes to work with UE4 and animation in

any form should properly familiarise themselves with the material. This thesis

will focus more on the tools used, but it is still expected of the reader to have a

basic understanding of UE4.

The commissioner for this thesis is Gamelab. Gamelab is also a learning

environment for students to fully utilise of the industry level skills and

knowledge provided by their curriculum and apply them in their game projects

as well as any software projects.

2 PROJECT

The game project used as a basis for this thesis is called Chicken Quest, a

game in development that is a side-project by a group of three people

including the author of this thesis. This project will be finished and released in

the future.

Chicken Quest is a 3D platformer and adventure game. The idea for this game

came into being at a game jam in 2017. During the game jam, a simple side-

view 2.5-dimensional platform styled demo was made with the game engine

Unity and it even made it in to the top three games of the jam. It was a simple

demo where a witch-like girl is searching for magical crystals in a cave filled

with lava, then if there were time left at the end of the jam add a magic school

environment to explore or something, but the magic school did not make it to

the demo then. No more story was planned.

Later in the summer 2018, the same idea was taken to another game creation

event, the Game Camp, held in Kotka. The game changed there from a 2.5-

dimensional to a 3D and the idea was completely revised. More story

elements were created with the power of a team of four people, hastily put

together at the site. Another demo was made during the Game Camp with

Unity as well.

The story elements added included the situation of the main character and

some elements of the surrounding world. The main character was to be a boy

who is accepted into an out-of-the-way magic school in the countryside, but

the school prided its other departments over the magical one. The main

character was only accepted owning to his rare magic of transformation, even

though he could only turn into a chicken.

The game was to be a parody of magical school fantasies. The game

mechanics of turning into a chicken will give the main character the ability to

move slightly faster and jump somewhat better and these skills would help him

clear the platforming levels and obstacles in the game. Maybe he would learn

more “useless” spells later.

The demo contained one level where it was possible to battle with an evil

wizard and one where the chicken form was needed to reach a chest with a

key. Nothing would happen after the battle or from acquiring the key, since, it

was a demo to showcase the mechanics of the game after all.

At the end of the Camp, a question was asked about the game. “Why does he

turn into a chicken?” The answer given was “because he is afraid”. Later in the

following fall, the project was started a new again, this time with Unreal Engine

4. UE4 was chosen so that the team members still embracing the game idea

would be able to work on an interesting project and learn the use of the

popular game engine and the demos made with Unity were not really

pleasing, it was also easier to start from the beginning as many of the features

made in the demos were just quick fixes on top of quick fixes. The insides of

the projects were messy and hard to make heads or tails out of.

In sum, the project is slowly moving forward even at present time. The team

working on it do it as a side project, which is the reason it is regularly stalled.

At the time of writing this thesis two thirds of the people in the team could not

work on it at all. This was part of the reason why the initial plan for the

implementation had to be changed.

3 TOOLS

The tools used for the thesis were chosen when the Chicken Quest project

was started anew with UE4 in 2018, with the exception of using premade

animations to save time for learning to use the tools and workflow for

animation as making custom animations would take more time than was

possible with the time frame set for this thesis.

Even though the tools were chosen at the very start of the project, they proved

to be valid. They are provided with regular updates and changing them mid

project would at the very worst cause the project to have to be started from

the beginning, which would be the case, for example, if the game engine was

changed.

3.1 Blender

Blender is an open-source 3D toolset. This means that it is a free-to-use

computer program that can be used to create 3D models and to rig and

animate them. It is also favoured by many because it is free and has massive

amounts of tutorials online, so learning to use it is quite easy. It is also quite

versatile and can handle modelling, rigging, animating and video editing, to

name a few of its features. It is also updated regularly, and it is possible to

write custom components for it using Python. This enables the creators to

make custom workflows to help them achieve what they desire.

Blender was created to support the entirety of 3D pipeline, the process of

working with 3D. This includes modelling, rigging, animation, simulation,

rendering, compositing and motion tracking, video editing and 2D animation

pipeline. (Blender Foundation no date.)

3D pipeline can be understood to be the different steps of 3D modelling.

According to Collins (2018), the typical stages of 3D pipeline are: pre-

production, 3D Modelling, UV Mapping, texturing and shaders, rigging,

animation, lighting, rendering and compositing.

Blender was used to tweak the premade animations and verify how they look

right after being downloaded from Mixamo.

Other 3D programs were not considered as Blender is free-to-use and all the

team members were able to use it prior to this project so there was no need to

learn new tools or workflows.

3.2 Mixamo

Mixamo.com is a website by Adobe where it is possible to upload premade 3D

models of humanoid characters to add animations for them. It also offers

readymade 3D characters that can be downloaded and used if there are no

custom models available.

According to Adobe (2020) it is the first online character animation service.

Mixamo was used to acquire a base character mannequin and all the

animations used in the thesis.

Alternative choices for making animations could have been to make them

using a 3D program, such as Blender. However, making all the needed

animations for this thesis would have taken more time than what was planned.

It must be mentioned that custom made animations would have looked better

and given the characters more of a personal feel.

Mixamo first uploads a 3D model to their site, then their online tools make a

rig for it and it can be given any of the animations on the site and, finally, the

animations can be downloaded for a game engine or other 3D program with

that same model. Mixamo also offers their own models, which allows the user

to choose a model from them, add animations to it and use it if self-made

models are not available.

3.3 Unreal Engine 4

Unreal Engine is a complete package of development tools available for

working with real-time technology. They can be used for design visualizations

and cinematic experiences to high-quality games across PC, console, mobile,

VR, and AR. The user can use UE4 for everything they need from starting and

shipping to growing and stand out from the crowd. (Unreal Engine, 2020e.)

This means UE4 is basically a program used to make games and interactive

content.

UE4 was chosen for the game project as it is one of the largest commercial

game engines and has a great number of tutorials and support online to learn

from. Games made with it include Borderlands 3, Final Fantasy VII: Remake,

Fortnite and Octopath Traveler, which are just few. All the after mentioned

games are very popular and different from each other so it can be said that

UE4 highly suitable for different genres and types of games.

4 ANIMATION

4.1 Traditional Animation

Animation itself is not the main topic of this thesis, but it still needs to be

introduced briefly to better understand animation states. This introduction will

focus mainly on computer animation, but to understand the difference

between it and traditional animation will be useful for understanding why

computer animation works the way it does.

Traditional animation is often explained by referring to old Disney animations

where everything was drawn by hand on paper. According to Sito (2013, 218-

219) there were multiple stages to making animation and multiple teams

working on each small step along the way. These stages included

storyboarding, sounds, layouts, backgrounds and the drawing characters and

their movement. Many inspections were also made to ensure everything was

perfect. For every stage a final review was always made by an animator

director. Sito (2013, 220) also indicates that classic animation was good in its

time, but that it had become too expensive and labour-intensive to be

profitable.

The production of animated films once required large teams of artists, in large

buildings which collectively comprised the large animation studio. Nowadays,

all that was once done by such a massive team can effectively be produced

by a single user on one desktop computer—in theory, at least. (White 2006,

184.)

4.2 Computer Animation

Unlike in traditional animation, in computer animation computers are used not

only in the management steps, but also for making the graphics and images

used in the animation. Also, different animation programs are used to work on

other parts of the whole process, for example, drawing, editing and adding

special effects. This was not possible in the age of traditional animation,

before computers were easily available for individuals and small groups.

In 1977, engineer Dave Wolf attended a screening of Disney’s Sleeping

Beauty at the USC cinema school. “When the old Disney guys asked for

questions, I asked if they could see a role for computers. Immediately, I got a

lot of ugly looks from everyone.” (Sito 2013, 222.)

When computers were brought into animation studios, traditional animators

were skeptical about using computers in the production. There were many

animators who disliked the thought of computer made animation, but even

then, there were those who understood the possibilities a computer could

bring into the industry. Sito (2013, 222-223) also says that the demand for

quality animation grew in 1980s, and animation studios increasingly started to

work CG into their production process. Beauty and the Beast was a huge hit,

which made many skeptics in Hollywood begin to look at CG seriously (Sito

2013, 231). Also, as is known today, computers did make their breakthrough

and are used everywhere and with the computers, animation changed.

White (2006, 184) states that there are differences in the production of

different types of animation of which the principal two are 2D and 3D. Pointing

them out helps understand the general processes that go into all aspects of

making animation.

4.2.1 2D Animation

The description of 2D animation in the following four chapters is based on a

blog entry by a professional video content creation service Renderforest

(2019). 2D animation is one of the primary types of animation and it is

extensively used in media from cartoons to advertisements and educational

material.

In 2D animation, the characters are created in two-dimensional space and

they only have width and height, no depth. This is considered to be the

traditional animation style.

2D animation consists of three main phases. In the first stage, pre-production,

the story and script are developed, and the characters and a story board are

created. After which, the colour palette is chosen, and the voice-overs are

made. Production is the second stage where the animation is created by

gathering all the created materials and putting them together to produce the

scenes. In this step, the backgrounds are painted, and individual scenes and

character activities are made into a rough animation and then cleaned and

polished. In order to have everything put together, the animators create an

exposure sheet where all the instructions on how to make the scene are

marked. The third step is the post-production. It is the final editing process

where the animation is enhanced and then exported to different formats.

In order to make the best possible 2D animation, the 12 principles of

animation are usually followed by professional animators. These principles

may be best described as tips or tricks by the Disney animators Ollie Johnston

and Frank Thomas.

The 12 principles of animation are:

1. Squash & stretch

2. Staging

3. Anticipation

4. Straight ahead & pose to pose

5. Follow-through & overlapping action

6. Slow in & slow out

7. Arcs

8. Secondary action

9. Appeal

10. Timing

11. Exaggeration

12. Solid drawing

As stated by Cooper (2019, 27) although these fundamentals are old and

come from the pre-computer graphics days of hand-drawn animation, with

slight reinterpretation they translated perfectly for the later evolution of 3D

animation.

4.2.2 3D Animation

As can be understood from the internet article about 3D animation by Chang

(2020), 3D animation is the process of creating moving pictures in a digital

three-dimensional environment. 3D models are carefully manipulated within

the 3D program then the picture sequences can be exported, which will then

create the illusion of motion.

According to Chang (2020), 2D graphics are represented on a two-

dimensional platform while 3D graphics on a three-dimensional platform. In

2D, the images are flat with only one perspective, and the colouring and

shading are relatively simple, for example, shadows are hard and not soft as

they appear in the real world. In contrast, 3D images have depth and multiple

perspectives. The shadows are also more subtle and soft. Chang (2020) also

states that 2D looks unrealistic and cartoonish, but even if 3D can look

cartoonish, at the same time it also looks realistic.

In an attempt explain more in depth how, for example, a character could be

animated in 3D, an article about 3D animation by Bloop Animation (2019)

states that in 3D animation, for example, when animating a 3D character, the

character model is rigged. It means that the model has virtual bones

programmed into it. This enables the animators to animate or move the

character. The act of grabbing a control bone for the character and moving it

does not on its own animate the model. For the animation to be registered or

to happen, the movement has to be added into a timeline. Selecting the

wanted point in time in the timeline and adding a keyframe with the part of the

character moved to its correct position is what tells the program that the part

will animate at this time, and the movement is saved. However, with only one

keyed frame nothing really happens. In order to complete the animation, the

animator then goes forward in the timeline adding all key poses of the full

movement, for example, walking, and the program then automatically

interpolates the steps between of the keyed frames, and the full movement is

generated. Another major factor to take into consideration is the frame rate. In

film, there are usually 24 frames per second, which for 2D animation means

24 drawings per one second. However, when there are no significant

movements in 2D it is enough to have one drawing for every two frames or,

with very still movements, one drawing for every four or five frames. With 3D,

the character would seem dead if it is kept completely still for even a second.

When the character is not particularly doing anything, it must have an

animation, such as an imitation of breathing, when being idle or still in order

for it to maintain the illusion of being alive.

4.3 Animation in Games

Based on an article by Pluralsight (2014), animation is different for games and

other media such as movies. In a game, the animation needs to look good

from every angle, and at times the animated movements need to be fast but

realistic. The reason for this is the fact that games are meant to be interactive

and many of the controls that drive the animation lie with the player. For

example, in shooting games some animations such as the reloading animation

needs to be fast enough so the player can go quickly back into action but at

the same time slow enough to be realistic and add a challenge to enhance the

gameplay experience.

As said also by Cooper (2019, 44), games are made of many short animations

playing in sequence rather than long flowing animations. As such, they are

often stopping, starting and overlapping.

Also, the article by Pluralsight states that game animation is not about creating

top-notch performances such as are seen in Frozen, the Disney movie, but

ensuring the animation will work well for the player.

The after mentioned points are a few to keep in mind about animations in

games and help to understand the possibilities and difficulties that may arise

when creating games.

5 ANIMATION SYSTEM IN UE4

The Animation System in UE4 is consists of several different tools and editors

and they mix skeletal-based deformation of meshes with morph-based vertex

deformation to allow for elaborate animation. The system is used to make the

basic player movement more realistic and create customized special moves.

For example, it can be used for scaling ledges or walls, applying damage

effects, controlling facial expressions, directly controlling bone transformations

or telling the character through logic which animation it should be given

depending on the situation. (Unreal Engine 2020c.)

5.1 Terms and concepts

UE4’s documentation lists the terms and concepts of the Animation System on

their documentation as listed below. All the following explanations about the

terms are based on UE4’s documentation.

5.1.1 Animation Tools

Several different Animation Tools are used to create animated characters.

Each of the Tools focus on different steps of animation.

For example, the Skeleton Editor is where everything begins and, it is used

to manage the bone (or joint hierarchy) that controls the Skeletal Mesh and

its animation. The Skeletal Mesh Editor is used to modify the Skeletal Mesh,

the outward appearance of a character, and it is linked to a Skeleton. In

the Animation Editor animation assets can be created and modified and is

where the tuning and tweaking of animation assets are done. The Animation
Blueprint Editor is used to create the logic that controls what animation a

character uses and when, it is also what controls how animations are blended

together. Last is the Physics Asset Editor, which can be used to create and

modify the physics bodies that are used for the collision of Skeletal Meshes.

(Unreal Engine 2020c.)

5.1.2 Skeleton Assets

A Skeleton is a hierarchy of bone locations and rotations used to deform a

Skeletal Mesh. In UE4, Skeletons are separated from Skeletal Meshes in

their own asset. The animations are applied to the Skeleton, and not the

Skeletal Mesh. Thus, when multiple Skeletal Meshes use the same

Skeleton they can share animations. (Unreal Engine 2020c.)

5.1.3 Animation Sequences

An Animation Sequence is a single animation asset that can be played on a

Skeletal Mesh. They contain keyframes that indicate the position, rotation,

and scale of a bone at different points in time. The bones of a Skeletal Mesh

are smoothly animated by playing the keyframes back in a sequence, with

automatic blending between the frames. (Unreal Engine 2020c.)

5.1.4 Animation Notifications (Notifies)

Animation Notifications, AnimNotifies or Notifies, can be used to setup

events to occur at specific points during an Animation Sequence. Notifies

are mostly used to add effects during the animation. The effects can be

sounds for footsteps of particle effects for rising dust from the ground. It is also

possible to extend the system with custom notifications to accommodate the

needs of any type of game. (Unreal Engine 2020c.)

5.1.5 Animation Blueprints

An Animation Blueprint is a specially designed Blueprint that controls the

animation of a Skeletal Mesh. Graphs are edited inside of the Animation
Blueprint Editor to directly control the bones of a Skeleton, perform

animation blending and setup the logic that will define the final animation pose

for a Skeletal Mesh to use per frame. (Unreal Engine 2020c.)

5.1.6 Blend Spaces

Blend Spaces are assets which can be sampled in Anim Graphs. Blend
Spaces are used to blend multiple animations together based on multiple

values, which are currently limited to two. To blend together only two

animations the standard Blend nodes can be used and are available in

Animation Blueprints. (Unreal Engine 2020c.)

5.1.7 Animation Montage

Animation Montages or Montages enable a large variety of animation

effects, mainly used to expose animation controls within Blueprint Visual
Scripting or through code. Animation effects, along with intelligent loops of

animation and logic-based animation switching can also be created by using

Montages. (Unreal Engine 2020c.)

5.1.8 Skeletal Control

Skeletal Controls or SkelControls can be used to directly control bones

within a Skeleton asset. Within Animation Blueprints it is possible to use

them to control an individual bone or create IK chains. This direct control of

the hidden Skeleton enables the creation of procedural, dynamically driven

animation. The transform of a bone can be used to drive another or can be

used to coordinate the feet of a character to the ground while playing a walk

animation, for example, on an uneven ground. It is also possible to modify,

tweak or override the bone transforms applied by Animation Sequences.

(Unreal Engine 2020c.)

5.1.9 State Machines

State Machines provide a visual way to break the animation of a Skeletal
Mesh into a series of states. These states are controlled by Transition Rules

that handle how to blend from one state to another. State Machines are used

to simplify the design steps of Skeletal Mesh animation, a visual graph can be

created easily, and used to control how characters alternate between different

animations without the need for a complicated Blueprint network. (Unreal

Engine 2020c.)

5.2 Animation Blueprints

As Animation Blueprints are some of the most essential tools used in the

implementation part of the thesis so they will be given more coverage than the

other tools.

Animation Blueprints are visual scripts used for the creation and control of

complicated animation behaviours (Unreal Engine 2020a). According to

Unreal Engine (2020a), there are two main components in Animation
Blueprints: The Event Graph and the Anim Graph. Event Graph updates

the values used in Anim Graph which is used to drive the animation states,

blends and other nodes using said values. Anim Graph is essentially where

the different animation states are shown and where the new states will be

added when creating new animation behaviour. To change the animation,

transition rules are made between the wanted states for when the animations

should go from one state to the next. For example, on the player character,

this is where the movement animations and other animations states can be

found and edited. A character could have a walking and running state, the

transition rule for the change could be if the character’s speed rose over a

certain value to blend to the running animation. As for Event Graph, it is the

visual representation of the logic scripts that drive the animations. It is where

the values used to change between animation states are obtained and they

can then be accessed in the Anim Graph inside the animation state

transitions. Here, for example, the speed could be fetched from the Player
Blueprint and made into a local variable for the Animation Blueprint to use

in the transition rules between the different animation states.

5.3 Reusing Animation Blueprints

When working with multiple characters it is possible to share the animation

logic between the characters if they use the same skeleton by using Sub
Animation Instances. With the Sub Anim Instance node, a reference to a

separate Animation Blueprint can be created and used for accessing as well

as including all of its logic within another Animation Blueprint (Unreal Engine

2020a). Another example of using old animation logic with new similar

characters is the use of Child Animation Blueprints. If multiple characters

are similar but they should have different animations from each other, it may

be possible to use a Child Animation Blueprint to override the animation

assets, which should be replaced. This way there is no need to create

individual Animation Blueprints for every character. The Child Animation
Blueprint will inherit everything from the parent, and it enables the overriding

and specification of single animations via the Asset Override Editor. (Unreal

Engine 2020a.) As with the Sub Anim Instance, the characters must have the

same skeleton to be able to behave properly.

6 IMPLEMENTATION

As the implementation part is finished, it has become apparent that there are

some aspects that could be improved, but to within the framework of this

thesis it was deemed necessary to halt the development work and work on the

documentation as well.

6.1 Original plan for implementation

Before starting the implementation, the initial plan for what was needed and

what was to be done included many of the features that were eventually

finished by the end.

The initial plan was to use self-made custom models that would be used in the

game, make one parent Animation Blueprint and have the rest inherit from it to

minimise the workload. The Animation Blueprint was intended to have states

for being idle, moving, jumping and maybe attacking. The aim was to achieve

this by using Child Animation Blueprints which are a component in UE4.

6.2 Assets

In order to be able to do any animation logic or testing, there was a need for

3D models and animations for them. Differing from the original idea, it was not

possible to acquire custom 3D models for the implementation part of the study

as there were no resources to make them by the time they were needed.

There was one self-made 3D model from an earlier project that was used with

testing the animation logic but as it used an unconventional custom rig, it was

later replaced. Instead, models from Mixamo were used. For the base or

parent Animation Blueprint, a simple mannequin model was chosen from

Mixamo. For another model, a cartoon styled girl character was chosen testing

the inheritance. After that the needed animations were given to the mannequin

and downloaded. The 3D models and animation files were both .fbx files as

those are what UE4 understands (2020f, UE4). Fbx files are available from

Mixamo without the need to convert them via another program.

6.3 Importing assets into UE4

When importing assets into UE4, the assets files can be dragged and dropped

from the folder to the Content Browser. There is also the option to select

import from the Content Browser header. More comprehensive guides for best

export settings for .fbx files from Blender to UE4 and import settings for UE4

can be found online.

In this thesis, the export settings are not explored as no custom models were

used. However, it should be mentioned that an announcement has been made

by UE4 (2020d) that they are building an add-on for Blender that takes care of

the exporting of .fbx files from Blender to UE4 themselves, but it is not

available yet.

As for the importing settings used in the implementation part for this thesis,

they were left at default. Only when trying to use the NPC model with the

baseCharacter_skeleton, was the skeleton to use chosen to be the

baseCharacter_skeleton instead of UE4’s default skeleton.

6.4 Finished animation logic and blueprints

This chapter will focus on what was implemented for the project. The

implemented features do not include every aspect that was initially largely

because proper documentation and tutorials for UE4 regarding the topics

could not be found. This might be because UE4 is such a significant engine

and is widely used by AAA-studios so the best techniques and workflows for

certain more advanced topics stay inside the companies and the people

working on them might be restricted by NDAs and cannot publish tutorials or

guides on everything that can be done. In the case of this thesis study, there

were many parts that seemed hard or difficult to read, but no better

alternatives for making the parts could be found. Many of the planned features

would have also needed custom made 3D rigged models, but it was

impossible to acquire them for the implementation part of this thesis due to

time restrictions.

6.5 Implemented animation states

What was initially planned for the project to was make a base character with

animation states for being idle, moving, jumping and attacking. Additional

elements were implemented, because some of the other planned features had

to be discarded. These being, the use of Child Animation Blueprints. It was

initially thought the animation logic could be inherited to other characters from

Mixamo as they should be sharing the same skeleton, but at the time of

importing the new characters to the project it became apparent that UE4 broke

the new character models as it could not attach the previously added skeleton

properly. Many different settings were tested following UE4’s own

documentation, but none of these worked with the importing of new Mixamo

characters. Therefore, so as to not waste more time trying to make the

temporary characters to work, the use of Child Animation Blueprints was

abandoned in favour of polishing the main character’s animation logic and

retargeting the animations for the NPC instead.

6.5.1 Idle state

The idle state means that when the character is not moving, it has a default

standing and breathing animation to bring it to life. A completely still 3D model

would seem dead.

It was desired for the main character to have a base idle where it would be

standing and breathing. If the player took no action for a longer time, the

character should make random extra movements, such as stretching or

looking around. At the start of the idle state a timer would be started for

counting the time the player character stays still. These extra idle states would

activate if there was no input from the player for a long time then they would

play once then go back to base idle and the timer for doing an extra idle would

then reset. The action would be stopped if the player started moving. The

actual transition rule for going from the base idle to the extra idles is to check

for two booleans, one for the player moving and another for the making the

extra animations. The latter boolean is set to true after the idle timer is more

than a set value, for example, ten seconds. The extra idles were implemented

by using a Conduit State. It is an animation state node from which one of

many choices connected to it can be taken by giving the states connected to it

their own rules as to when they can be played. Figure 1 below illustrates the

representation of the idle system.

Figure 1. Idle system flowchart.

Figure 2 illustrates the idle system in the game project. The white arrows

between the states illustrate the transition rules which can be opened by

double clicking on them. The IdleForLong is a state conduit, distinguishable

from a normal state by the symbol or three lines on the left side of the box.

Figure 2. Idle system animation states in the project.

In Table 1, the Transition rules between the idle system states can be seen as

they are in the project. However, only one of the extra idles is shown as they

are all similar, the WhichIdle variable is checked against different hardcoded

values from 0 to 5.

Table 1. Transition rules for idle system.

From Idle to

IdleForLong.

From IdleForLong

to the first extra idle,

Idle1.

From Idle1 to

ResetExtraIdle.

From

ResetExtraIdle to

the base idle, Idle.

The extra idle played is chosen at random. This means it might be the same

one played previously, or it might be a different one. During testing, the same

animation was not played consecutively too many times for it to be noticeable

for the player.

The idle animations are randomised by choosing a random integer from range

of 0 to the number of extra idle animations. The maximum number is hard

coded and set to 5 because no way was found to receive the number of states

leaving from a state conduit by code. The idle states play depending on which

number the integer variable WhichIdle is at that moment. It is randomly set

every time the character goes back to base idle state. In the details panel for

base idle, there is a menu for Animation State Events. There, a custom

event Entered State Event is set to EnteredIdleBC to enable calling it

whenever the state is entered. This makes it into an AnimNotifiy. It can then

be called in the Graph Editor to add logic. In Figure 3 and Figure 4, the use of

the custom event in the project is shown.

Figure 3. Custom events from Idle animation state set to enable using them.

Figure 4. Calling EnteredIdleBC as an AnimNotify to add logic from the Event Graph.

The idle needs a boolean called DoExtraIdleAnim to be true to obtain

permission to transition into the extra idle states. This boolean also needs to

be set to false after having played the extra idle. After that, the timer is also

reset back to 0. This is so that the extra idle animation is only played once,

and the loop can then start again. In order to enable this, a new state was

added after the extra idle states. This state is called ResetExtraIdle state and

is used to call a custom event to enable the logic for resetting the idle system

timer. The state itself plays the same animation as the base idle, but only for a

minuscule amount of time and should not be able to be seen playing. At first,

there was a custom timer for setting the boolean to false. It was called after

leaving the base idle state, but this created logical errors, and set the boolean

to false at the wrong times either stopping the extra idles completely or playing

them continuously with no regard to the idle system timer. In order to fix this

behaviour, the ResetExtraIdle state was added and all the extra idles go to

this state after having played. The AnimNotify for the ResetExtraIdle can be

seen in Figure 5.

Figure 5. Reset idle AnimNotify for resetting the boolean for playing extra idles animations.

6.5.2 Movement state

The movement state for the character is a Blend Space. Blend Spaces are

readymade components in UE4. By giving it the speed and direction of the

character, it automatically blends between the given walk and run animations.

Figure 6 illustrates the movement Blend Space, and Figure 7 shows how the

Movement Blend Space is given its needed values in the Anim Graph of the

Player Animation Blueprint.

Figure 6. Movement Blend Space.

Figure 7. Movement Blend state in the Anim Graph.

The character transitions to the movement state if it is not jumping or in the air

and its movement speed is more than zero. From the movement it goes back

to idle state if the movement speed is zero and it is not jumping or in the air.

Figure 8 below for clarifies this.

Figure 8. Transition between idle and movement state.

6.5.3 Jump state

As Chicken Quest is a platforming game jump is perhaps one of the most

important features. As stated by Cooper (2019, 42), jumping in platforming is

most fun when the character is controlled in an analogue manner and that the

jump is as much of a challenge in programming, design and animation. And

that has proven to be true. The jump has caused even more trouble than

trying to inherit the Animation Blueprints.

The jump is controlled by input from the player. When the character jumps, it

goes up in the air a somewhat slower than when it comes down. The

character can also be controlled while in the air. These features are

preferences of the project team, but it also seems to be how many platformers

implement the jump. If the jump comes down with the same speed as it goes

up, it will feel like the character is floating. Also, the ability to control the

character while it is in the air is a preference, many other platformers also give

the player the freedom to control the character while it is in the air. It is not

necessary to imitate real life in games and many prefer to give as much

control to the player as possible. A game that does not respond to inputs from

the player will soon start to seem broken and inferior. Figure 9 shows the

script for the jumping logic.

Figure 9. Jump script in the project.

As for the jump animation system itself, there were two jump systems

implemented, one for jumping from stand-still and one for jumping from

movement. After testing, what seemed to work the best for the game was to

have states where the character is going up in the air, falling and then landing.

There is also an option of making an extra jump. As such, for the both jump

systems there are four stages. There is a limited number of extra jumps that

can be performed if the character is in the air. The available extra jumps are

reset when the character touches the ground again. Being in the air is also

called the jump loop, and it is usually an animation where the character is

posed as if it is falling but some parts of the model, for example, arms or

clothing, are swaying slowly to simulate the wind.

The jump systems are controlled with five boolean values, three for the basic

jumping and two for the extra jump. The boolean IsInAir is a variable received

from the CharacterMovement component attached to the player. IsInAir is

true when the character is not touching the ground. In addition, there are

booleans FallingDown and JumpingUp for whether the character is falling

down or going up. If the character is in the air and its Z-axis velocity is more

than 0, the character is going up, and JumpingUp is set to true. Otherwise, it

is false and the FallingDown is set to true. For the extra jump, the two

booleans are DidExtraJump for the player jumping again while already in the

air and CanJumpAgain for confirming if the character can be allowed to do

the extra jump. The values for these booleans are received from the Player
Blueprint. Figure 10 illustrates the jump system.

Figure 10. Jump system in the project.

The single most difficult part of the jump in the project was the extra jump or

the jump flip, as the animation sequence for it is a flip in the air. The idea

behind it is simple. Using an integer to count the jumps, jumpCounter, it is

tested if the counter is equal or more than the maximum possible jumps that

can be made. If this is the case, the player must not be allowed to make any

more jumps until the character has hit the ground and the counter has been

reset.

Instead of a jump start animation where the character squats down and

springs off, it was decided to use an animation where the character launches

directly into the air because if there is a squat, the animation for the squat is

played when the character is already in the air. Because the game is

supposed to be a 3D platformer, it would not make any sense to delay the

actual jump until the animations to finish playing. Also, speeding up a squat

animation to keep the responsiveness would look unrealistic. Because of this,

it was decided to leave out the squatting part.

Many problems arose while working with the jumping states, mostly due to

logic failure. These problems were fixed by adding transitions between the

states or adding checks for seeing if something undesired was happening

which might hinder the proper behaviour.

When starting to test the jumping from being idle and from movement, the

animations for jumping from being idle failed to be played. This was because

in the transition rule from the idle state to jump. It was testing if the character

was moving, if it was not, the transition could be made. This was possible by

testing if the character had any speed. Every time the result would be positive,

the character had speed, thus it was moving. The reason behind the problem

was that when jump was pressed, the character started going up, and as the

character is using UE4 readymade components for the character controls, the

movement of going up and down is also regarded as speed, vertical speed. As

so, when jump was pressed, the character would go into the movement state.

This was bypassed by adding a new transition rule from idle to movement.

The character could now go from idle to movement if it was moving, but not in

the air.

A more visual problem was that if during the jump from being idle the player

started giving input for the character to move, the jump animation would play

to the end, transition to the landing animation and the character would still be

playing the landing animation, when it was in fact already moving. This looked

like the character was sliding along the ground. This behaviour was easily

fixed by adding a new transition from the jump fall to the movement state. If

the player started moving after jumping from being idle, right at the moment

the character touched the ground after the jump, it would transition to the

movement state and play either walking or running. Table 2 and Table 3

illustrate the transitional rules used with the jump states. The behaviour of the

jump systems and the transition rules for them are mostly the same.

Table 2. Transition rules for jumping from idle.

Transition rule from

the idle state to the

jumping up state.

Transition rule from

the jumping up state

to the falling down

state.

Transition rule from

the falling state and

the jumping up state

to the jump flip state

is the same for both.

Transition rule from

the jump flip state to

the falling state.

Transition rule from

the falling down

state to the landing

state.

Transition rule from

the landing state

back to the idle

state.

Table 3. Transition rules for jumping from movement.

Transition rule from

the Movement

Blend state to the

jumping up state.

Transition rule from

the jumping up state

to the falling down

state.

Transition rule from

the falling state and

the jumping up state

to the jump flip state

is the same for both.

Transition rule from

the jump flip state to

the falling state.

Transition rule from

the falling down

state to the landing

state.

Transition rule from

the landing state

back to the

Movement Blend

state.

A significant problem with the jumping animations was the jump flip, or the

extra jump. The logic itself for it was simple enough and proved functional

after testing. The problem was the location of the 3D model during the jump

flip animation and it consumed a great amount of time to identify this. In the

project, UE4’s own component for the CharacterMovement was used to save

time and effort as many required features were already incorporated in it such

as input and crouching, movement and checks for falling. That can be really

beneficial unless specific custom logic is required for the game to work.

With the jump flip, the problem was that when the jump flip was performed,

during the animation, the character model would always behave weirdly and

be positioned either too high or too low. First, the cause was thought to be the

animation itself. The animation was downloaded from Mixamo and it was

discovered that in the jump flip animation, the animation itself positioned the

model high into the air instead of its local origin point. Therefore, the animation

had to be modified so that the flip would not move the model but would

happen in a fixed place. This was important because the character is moved

with code, and when the animation was moving the model as well it was too

high, and the actual collision for the character would not move with the

animation. Figure 11 provides a visual representation of this. The blue

rectangle drawn on top of the images shows where the collision and centre

point of the character is in reality during the jump.

Figure 11. Character model position during jump flip.

As such when playing the game, the player would see the character high in

the air, but the collision would in reality be in a different place. This would

make the character look like it hit seemingly invisible obstacles and cause

other unexpected behaviour. When this problem was identified, it was also

noticed that the collision for the character was too large during the jump

animation, anim notifies were used to control it during the jump animation to

scale it to be a suitable size. Figure 12 shows how the collision is detached

from the model, and Figure 13 illustrates how the collision was halved. The

black capsule is the collision component drawn using the debug tools in UE4.

At the start of the jump the

character is where the

collision is.

When jumping up the

character moves higher than

the actual collision.

After having landed from the

jump the character stays

higher than the collision.

Figure 12. Character collider during the jump animation.

At the start of the jump the

collision height is the height

of the character.

When jumping up the

collision height made

smaller.

When falling after jump the

collision is returned to its

original size.

Figure 13. Halving the height of capsule component.

After modifying the collision and the position of the model in the animation, the

problem, however, still existed. After using debugging tools to draw the

collision, it became apparent that the model would either be slightly above the

collision or slightly below it. The reason for this behaviour remains unknown.

The next possible solution that was tested to fix the behaviour was to set the

model to where the capsule is through code for the duration of the jump flip

animation. This worked, but it was visually quite unattractive. The model was

instantly moved to the new position and this transition was plain to see as

well. Figure 14 represents visual explanation for this.

Just before the jump flip

animation starts.

Instantly moving the

model to the collision at

the start of the jump flip.

After moving the model

and the jump flip is

playing.

Instantly moving the

model to the collision at

the end of the jump flip

animation.

Right after the model

has been moved to the

collision position at the

end of the jump flip

animation.

Figure 14. Moving the character model to the collision position during the jump flip.

Lerping the model to the new position would look visually more attractive since

the movement would be smooth instead of a sudden disappearing and

reappearing. In order for the player movement logic to remain independent

from the animation script, the moving of the model had to be done in the

Animation Blueprint. As such, when trying to implement the lerp for the

model, it was discovered that the lerp function in UE4 needed an alpha value

that would grow from 0 to 1 over time, and that this alpha value should come

from a timeline component. However, these timeline components are not

allowed in the Animation Blueprint. This is how UE4 works and it cannot be

changed, at least for the time being.

Making a custom timer for this was also tested, but the result was the same as

before trying to lerp the model to the correct position. It would go over or

below the actual collision. As such, the version where the model instantly

moves to the proper position for the duration of the jump flip was kept. It was

more important to have the collision and model be in their correct places

rather than the animation to look perfect.

It is even stated by Cooper (2019, 42) that gameplay wins over the most

beautiful and fluid animations if they interfere with gameplay, and such

animations will be cut or scaled back.

To fix many of the problems in the jump animations and behaviour, custom 3d

models and animations for the characters are needed. Another solution would

be to not use the UE4’s own character component, but to make a custom one

for the main character.

6.5.4 Attacking state

The player character can also attack. It has different spell attacks and two

different melee attacks, one when a weapon is equipped and one for when no

weapons are equipped. It possible for the character to attack from idle and

movement states. To attack the character must be on the ground, if it is in the

air it cannot attack. For the project this is okay as there is not going to be a lot

of combat and no aerial combat at all. Melee and spell attacks are both

implemented using Conduit States.

For the melee attacks after the Conduit State, it is tested whether the

character has a weapon equipped or not, and if it is moving or still. Based on

the result the correct melee attack is chosen. After the animation has played

the character transitions back to the movement state and from there to idle it

is not moving anymore. Figure 15 below illustrates the melee attack system.

Figure 15. Melee attack system.

The spell attacks work similarly. From the Conduit State multiple different

spells are available. The correct one is chosen by getting an enumeration for

the used spell from the Player Blueprint. Figure 16 below illustrates the spell

system. Once the spell animation is over the character transitions back to the

movement state the same way as in melee attacks.

Figure 16. Spell attack system.

6.5.5 Crouching state

The player was not originally meant to crouch, but it was decided to add

crouching, in case there came the need to make obstacles that required the

player to go under them. The character crouches if the crouch button is being

pressed. This input is checked in the Player Blueprint and checked in the

Animation Blueprint. Script for the input is seen in Figure 17.

Figure 17. Input for crouching.

Crouching has three states. Starting the crouch (StartCrouch), being in the

crouch (CrouchBlend) and ending the crouch (EndCrouch). Starting the

crouch plays an animation where the character crouches down, during the

crouching down movement gets disabled and stopped when the character

enters the state. Movement will be enabled after the crouching down

animation has left the StartCrouch state. As such, when entering and leaving

the StartCrouch state Anim Notifies are being used to disable and enable

movement. During the crouching CrouchBlend state is being played.

EndCrouch state works the same way as the StartCrouch, the animation for

it is one where the character stands back up. During EndCrouch movement is

disabled and stopped. The CrouchBlend state is a Blend State where the

character is either crouched still or moving in crouched state. The state takes

in the speed and direction of the character. From the speed it checks whether

to use walking animation or idle crouch animation. The direction can be used

to blend in leaning to sides or crouch walking by facing front, but moving

towards the sides, also called strafing. Figure 18 and Figure 19 show the

crouching blend implemented for the project.

Figure 18. Crouch Blend.

Figure 19. CrouchBlend state in the Anim Graph.

During the crouching the camera would suddenly teleport a notch lower, this is

part of UE4’s readymade features when using crouching from the

CharacterMovement, the movement of the camera was made slightly

smoother by selecting the Spring Arm the camera is attached to, in the

Player Blueprint, and enabling Camera Lag. The settings for the Spring
Arm are shown in Figure 20. Other options for better camera movement

during crouch would be to make a custom crouch system but it was not

possible at the time.

Figure 20. Spring arm settings to smooth camera movement during crouch.

6.5.6 Aim offset

Aim Offset is a kind of Blend Space meant solely for the use of blending

aiming animations, for characters that can use a weapon. it can also be used

to create animation blend where the character’s head turns toward the

direction the player is turning the camera to. For Aim Offset it is

recommended to have 9 animations or poses, where the character looks to

the different direction for the result to be satisfactory. This is because there

are 9 main directions to look to: the front, up, down, left, right, up left, up right,

down left and down right. The setup for each of these animations needs to be

set as seen in Figure 21 below.

Animation Settings for the aim animation

clip.

Additive settings for the aim animation clip.

Root Motion settings for the aim animation

clip.

Figure 21. Settings for animation to be used in aim offset blend.

In the Asset Details panel in additive settings the Additive Anim Type is set

to Mesh Space and Base Pose Type to Selected animation. In the thesis

that would be the base idle animation. These settings allow for the head turn

animation to be added to the idle animation, instead of having to also create 9

different idles with the head turns.

During the implementation of the Aim Offset it was noticed that using

animations where the head was turned to a good direction, but the rest of the

animation was very different from the base idle animation the blending of the

Aim Offset animation would not work as was supposed to. For example, the

arms of the character would be stiffly raised up instead of being relaxed by the

character’s sides, the model would also be disfigured. This was fixed by

making custom animations from the base idle animation by making the head

turn to where the character was supposed to look at and then exporting only

that one frame as its own animation. Figure 22 shows the wrong behaviour

and Figure 23 the correct one.

Looking straight ahead.

Looking left.

Looking straight up.

Looking up right.

Figure 22. Aim offset wrong behaviour.

Looking straight forward.

Looking left.

Looking straight up.

Looking up right.

Figure 23. Aim offset correct behaviour.

6.6 Retargeting animations to another character

UE4 has inbuilt Animation Retargeting tools for sharing animation assets

between different characters. Animation Retargeting is a feature that is

meant to be used to share animations between differently proportioned

characters that use the same Skeleton asset.

It is possible to prevent animated skeletons losing their proportions or

becoming deformed when using animations from a differently shaped

character via retargeting. Animations can also be shared between characters

that use different Skeleton assets, if they have a similar bone hierarchy and

share an asset called a Rig to pass animation information from one Skeleton

to the other by using Animation Retargeting. (Unreal Engine 2020b.)

For the project Animation Retargeting was used because the two characters

chosen from Mixamo could not be identified by UE4 to share the same

skeleton. The reason for this is unknown as when inspecting the models with

Blender the bone hierarchy and naming conventions were the exact same.

After trying to re-import the second character multiple times with different

settings and UE4 flipping parts of the character to point wherever and

disfiguring it the idea of using the same skeleton had to be given up.

Retargeting was used to share the set of animations meant for the main

character with the NPC. Figure 24 shows the weird behaviour.

Figure 24. Weird behaviour of the NPC model when trying to use the same skeleton as the

base character.

Alternative way for acquiring animations for the NPC would have been to

individually download them from Mixamo, but this would have taken hours of

more work and so was an option left to be. As stated in UE4 documentation

(2020b) animations are bound to a Skeleton asset. The Skeleton asset is a

list that consists of bone names and hierarchical data. Furthermore, the initial

proportions, which define the Skeleton asset, of the original Skeletal Mesh

are stored in the Skeleton asset. This data is stored as bone translation data.

Only the bone's translation component is targeted by the retargeting system,

and the bone's rotation is obtained from the animation data.

This is the reason why different sized meshes trying to use the same skeleton

directly end up disfigured. In the project the NPC is slightly shorter than the

base character so at first it was tested to retarget the animations to the same

skeleton following UE4 documentation and then use them with the NPC, but

this also made the NPC behave weirdly. Figure 25Figure 25 shows how the

NPC behaved unsatisfactorily.

Figure 25. NPC with animations retargeted to the same skeleton.

The final solution was to import the NPC with its own skeleton and use that

skeleton with it. After which, the animations were retargeted for the new

skeleton. This worked very well and saved hours of work finding and

downloading individual animations for the NPC.

To actually retarget the animations what first needed to be done was to set up

the base skeleton correctly. This was done by opening the skeleton wanted to

use as the base for the new one and using the Retarget Manager to set up a

rig for it. In the project this base skeleton is the base character’s skeleton.

Figure 26 and Figure 27 show the Retarget Manager and the settings used.

Figure 26. Base skeleton with Retarget Manager options.

Figure 27. Rig options in the Retarget Manager.

When retargeting a humanoid character, the new one also needs to be a

humanoid. As such, a Humanoid Rig was chosen. After this selection has

been done the list for retargetable bones becomes visible and the correct

bones can be chosen. Figure 28 shows the Set up Rig panel and how the

bones were set to their corresponding targets.

Figure 28. Retargeting bone names in the Retarget Manager.

The same settings must be set for the new skeleton as well. Very similarly to

the base skeleton, in the Retarget Manager selecting a new Humanoid Rig

in the Set up Rig tab. Then setting the corresponding bones in the list that is

underneath. The corresponding bones would be those that are in the same

place on the new skeleton as the ones in the base skeleton. Clavicle left

could, for example, be called Left Shoulder on the new skeleton. Figure 29

shows the NPC’s retargeting.

Figure 29. Retarget options for the NPC.

When the setup is done for the skeletons, what remains is choosing the

animations to retarget in the Content Browser. This happens by right clicking

and choosing to retarget assets from the tab that opens. Shown in Figure 30.

Figure 30. Retargeting selected animations.

After this a window for previewing the result opens up. In this preview window

it is important for the both characters to be in the same pose. A T-pose is

good for this. Figure 31 shows the review window with both characters in a T-

pose.

Figure 31. Duplicating animations skeleton selection.

However even if in the preview window everything seems to be properly set, it

might not still go right on the first try. Figure 32 shows how the legs of the

NPC are disfigured.

Figure 32. Retargeted skeleton on NPC with the NPC’s legs disfigured.

If disfigurement happens it is probably because the bone names were not set

correctly. This can be fixed by going back and re-setting the bone names in

the Retarget Manager. Figure 32 shows the fixed NPC.

Figure 33. NPC’s retargeting fixed.

For reusing the animations, it would have been best if the models were made

for the same skeleton by using an external 3D program. Even if something

seems to be the same on downloaded third-party made models, there may be

some settings or changes that are not visible. As such, features or

components needing them to be the exact same will not work or they may

suffer in quality. It is possible to work with, but at worst will create extra work

as happened with the NPC model during the implementation. Although this is

also a question of knowledge before starting the actual work. Someone very

experienced in 3D modelling might have the knowledge to fix the problems

showcased here or may know what to do beforehand to avoid them

completely.

6.7 Other implemented features

During the implementation there arose the need to add a few other features

and change how some components worked. These had little to do with the

animations themselves but were needed to help with the testing of the
Animation Blueprints.

6.7.1 Camera

Originally the camera was fixed behind the character and the character’s front

could not be seen. However, during the development came a need to see how

the character moves and works in all perspectives so that errors could be

found more easily. For example, in the jump flip animation the model would

move forward, but when only viewed from behind it was hard to realise why it

seemed to lag weirdly at times. Unlocking the camera revealed the problem,

the model moved forward during the animation, but it was not supposed to do

so.

The following figures show the settings that were changed to modify the

camera movement. Figure 34 shows the Player Character Blueprint
overview where the settings for the Player Character, CharacterMovement
and Camera can be found. In Figure 35 and Figure 36 it is shown how to set

the Player Pawn Settings to enable the camera’s movement settings, which

are shown in Figure 37 and Figure 38. Lastly the settings for the

CharacterMovement are shown in Figure 39 and Figure 40.

Figure 34. Player Character Blueprint Event Graph view.

Figure 35. Components panel with the player selected.

Figure 36. Player Details panel opened with the Pawn tab highlighted.

Figure 37. Components panel with Camera selected.

Figure 38. Camera’s Details panel open.

Figure 39. Components panel with CharacterMovement selected.

Figure 40. CharacterMovement details panel open.

6.7.2 Simple AI for NPC

To showcase and test the re-targeted animations an NPC was needed. A

proper AI with human lifelike behaviour had not been implemented in the

project by the time the re-targeted animations were made and needed to be

tested. As such, there was a need for a simple AI. The simple implemented AI

has one feature. It moves the NPCs in a designated area to new random

locations. The NPC needed two new Blueprints, one for the AI Controller
and one for the Character Pawn. Figure 41 and Figure 42 show the creation

of the AI Controller and Figure 43 shows the creation of the Character
Pawn.

Figure 41. Making a new Blueprint Class.

Figure 42. Making the new Blueprint into an AI Controller for the NPC.

Figure 43. Making the Character Pawn for the NPC from the Blueprint Class.

In the following Figure 44 the NPC Character Blueprint is shown. There

under the Details the Skeletal Mesh has been changed to the skeleton of the

NPC. This is because as stated previously the animations in UE4 are tied to

their skeletons and only models rigged with the exact same skeleton can use

the animations for that skeleton. As shown previously the animations used for

the base character were re-targeted for the cartoon girl character that is used

for the NPC.

Figure 44. Changing the mesh for the NPC Character pawn.

In Figure 45 below the Pawn Sensing component has been added to the

NPC Character Pawn, this enables the NPC to be aware of its surroundings.

Features such as seeing or hearing the player are found in this component.

Figure 45. Pawn Sensing component on NPC Character Pawn.

In the following Figure 46 a custom event has been made for the NPC which

enables it to move to a new random location. Figure 47 after that shows the

custom event in a more detail. After the NPC has moved it waits for a random

time between zero and fifteen seconds and then moves again.

Figure 46. Custom Event for moving the NPC to a random location.

Figure 47. Custom Event MoveTorandomLocation as currently implemented in the project.

Figure 48 shows how the event is called to move the NPC.

Figure 48. Calling the new event from the Begin Play.

Figure 49 and Figure 50, both below, show that the NPC has been added to

the game map and that UE4’s another ready component Nav Mesh Bounds
Volume has been added as well. This component enables AI Pawns to move

in the area where the component is.

Figure 49. NPC put to the level and Nav Mesh in the side menu.

Figure 50. Nav Mesh Bounds Volume added to the level and scaled to cover a large area.

As the 3D model used for the NPC uses a different skeleton from the base

character it needs its own Animation Blueprint. The NPC was given states

for idle, walk and run. Similarly, to the player character, the NPC has three

extra idle states that randomly happen if the NPC stays still for long enough.

For the testing of the re-targeted animations and the simple AI these stages

were enough. It is possible to expand it later. The animation states for the

NPC are shown in Figure 51 below. Controlling of the animations via the
Animation Blueprint for the NPC are shown in Figure 52, Figure 53 and

Figure 54, also below.

Figure 51.NPC animation states.

Figure 52. NPC animation update in the Animation Blueprint Event Graph.

Figure 53. NPC Animation Begin Play in Animation Blueprint Event Graph.

Figure 54. Idle system for the NPC using AnimNotifies in Animation Blueprint Event Graph.

6.8 Future development

Many features and parts of the project need to be improved in the future. They

were left as they are because the timeframe meant for the thesis was too

short to get everything optimal on the very first time working with the

animation systems.

The most important part that must be done first is to make custom 3D models

or choose a set of models that can be used throughout the game. The models

need to be made from the same skeleton, otherwise the animation work will

be strenuous. When the custom models have been made it will be easier to fix

the jump flip problem. This is undoubtedly going to take a lot of time, and there

is a possibility that it needs a custom implementation instead of using the

CharacterMovement. After the problem with the models is solved it becomes

possible to make the Animation Blueprints inheritable. Another important

improvement is to make the Animation Blueprints easier to read. As they are

now all of the states are in one view and it is hard to find the correct transition

lines or states at times. Using Sub Anim Instances may help with this. It

would be good to look into them more to find out what is the proper way to use

them. If it turns out they are not a suitable solution for the bloated Animation
Blueprint, then other ways of tidying it up should be searched for.

7 CONCLUSIONS

The main objective for this thesis was to make inheritable Animation Blueprint

for the player character. The blueprint was then supposed to be inherited by

the NPC, and some of the key animation were to be overridden to give more

personal feel for the NPC. Other objectives were to learn how to use UE4’s

animation tools and to understand the workflow with animations in UE4.

The implementation was the part of this thesis where most was learned. It

must also be stated that even when following official documentation not

everything will work out as shown in the examples. More so if the assets and

scripts already in the project are not exactly setup the same way as what the

examples would prefer them to be.

While working on this thesis many new procedures were learned and some

old previously learned ones were reaffirmed. The most important aspect to

have learned was the reusing of the animations and Animation Blueprints,

and what all would have been needed for them to properly work. Also

experimenting with different ways to get the animation states to work has

given a better understanding of the kind of problems that may come up later.

This thesis may be good for others who wish to know more about animating

with UE4, and what should be considered before starting the actual work. It

might also help others not working directly with animation to understand it

more, and to see what all should be considered at the start of a project. This

thesis will also work as a documentation to help with the animation systems in

Chicken Quest, so that the information is not lost over time. Hopefully, this will

help with possible errors and problems that may arise in the future if parts of

the project are changed.

The largest problems encountered while making this thesis were the jumping

animation system and the transitioning after attacking and jumping back to

being idle or moving states. The need for 3D models made from the same

skeleton for reusing the Animation Blueprints also hindered the

implementation. This however can be fixed in the future.

The first objective was not accomplished. It is not detrimental to the project as

it helped gain important experience and information on the proper workflows.

However, working on this thesis has revealed what all assets would have

been needed before starting to work with the Animation Blueprints. This

helps in the future when the 3D models are acquired and can be added into

the game. They will be easier and faster to set up in the game. The other

objectives were accomplished and by the end of the thesis it was noted that

they were as important as the concrete goal of having made a reusable

Animation Blueprint. This thesis has proven that when some goals are not

met a lot more can be learned from the failure, than from accomplishing the

objectives on the first try.

References

2D Animation: Everything You Should Know About it. 2019. Renderforest.

Blog. Available at: https://www.renderforest.com/blog/2d-animation [Accessed

9 March 2020].

Adobe. 2020. Mixamo WWW document. Available at:

https://www.adobe.com/devnet/author_bios/Mixamo.html [Accessed 2

February 2020].

Blender. No year. About. WWW document. Available at:

https://www.blender.org/about/ [Accessed 2 February 2020].

Chang, A. 2020. The Process of 3D Animation. WWW document. Available at:

https://www.media-freaks.com/the-process-of-3d-animation/ [Accessed 1 April

2020].

Collins, T. 2018. 3D Modelling Pipeline. Updated 22 June 2018. Article.

Available at: https://medium.com/@homicidalnacho/3d-modelling-pipeline-

bd9be7dba136 [Accessed 1 April 2020].

Cooper, J. 2019. Game anim: video game animation explained. Boca Raton,

Florida, USA: CRC Press.

How animation for games is different from animation for movies. Pluralsight.

2014. WWW document. Updated 4 March 2020. Available at:

https://www.pluralsight.com/blog/film-games/how-animation-for-games-is-

different-from-animation-for-movies [Accessed 25 March 2020].

Sito, T. 2013. Moving innovation : a history of computer animation.

Cambridge: The MIT Press.

https://www.renderforest.com/blog/2d-animation
https://www.adobe.com/devnet/author_bios/Mixamo.html
https://www.blender.org/about/
https://www.media-freaks.com/the-process-of-3d-animation/
https://medium.com/@homicidalnacho/3d-modelling-pipeline-bd9be7dba136
https://medium.com/@homicidalnacho/3d-modelling-pipeline-bd9be7dba136
https://www.pluralsight.com/blog/film-games/how-animation-for-games-is-different-from-animation-for-movies
https://www.pluralsight.com/blog/film-games/how-animation-for-games-is-different-from-animation-for-movies

Unreal Engine. 2020a. Animation Blueprints. WWW document. Available at:

https://docs.unrealengine.com/en-

US/Engine/Animation/AnimBlueprints/index.html [Accessed 17 March 2020].

Unreal Engine. 2020b. Animation Retargeting. WWW document. Available at:

https://docs.unrealengine.com/en-

US/Engine/Animation/AnimationRetargeting/index.html [Accessed 24 March

2020].

Unreal Engine. 2020c. Animation System Overview. WWW document.

Available at: https://docs.unrealengine.com/en-

US/Engine/Animation/Overview/index.html [Accessed 13 March 2020].

Unreal Engine. 2020d. Blender to Unreal tools, Part 1 | Live from HQ | Inside

Unreal. WWW document. Available at: https://youtu.be/c3_xUMQ6hhs

[Accessed 17 April 2020].

Unreal Engine. 2020e. Features. WWW document. Available at:

https://www.unrealengine.com/en-US/features [Accessed 2 February 2020].

Unreal Engine. 2020f. Importing Static Meshes. WWW document. Available

at: https://docs.unrealengine.com/en-

US/Engine/Content/Types/StaticMeshes/HowTo/Importing/index.html

[Accessed 17 March 2020].

What is 3D Animation Compared to 2D Animation? The Core Differences.

2019. Bloop Animation. WWW document. Updated 25 March 2019. Available

at: https://www.bloopanimation.com/what-is-3d-animation/ [Accessed 10

March 2020].

https://docs.unrealengine.com/en-US/Engine/Animation/AnimBlueprints/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/AnimBlueprints/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/AnimationRetargeting/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/AnimationRetargeting/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://youtu.be/c3_xUMQ6hhs
https://www.unrealengine.com/en-US/features
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/HowTo/Importing/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/HowTo/Importing/index.html
https://www.bloopanimation.com/what-is-3d-animation/

White, T. 2006. Animation from Pencils to Pixels: Classical Techniques for the

Digital Animator. Burlington: Focal Press, Elsevier.

List of Figures

Figure 1. Idle system flowchart. .. 25

Figure 2. Idle system animation states in the project. 26

Figure 3. Custom events from Idle animation state set to

enable using them. ... 28

Figure 4. Calling EnteredIdleBC as an AnimNotify to add logic

from the Event Graph. .. 28

Figure 5. Reset idle AnimNotify for resetting the boolean for

playing extra idles animations. ... 29

Figure 6. Movement Blend Space. ... 29

Figure 7. Movement Blend state in the Anim Graph. 30

Figure 8. Transition between idle and movement state. 30

Figure 9. Jump script in the project. ... 31

Figure 10. Jump system in the project. ... 32

Figure 11. Character model position during jump flip. 38

Figure 12. Character collider during the jump animation. 39

Figure 13. Halving the height of capsule component. 40

Figure 14. Moving the character model to the collision

position during the jump flip. ... 41

Figure 15. Melee attack system. ... 43

Figure 16. Spell attack system. .. 44

Figure 17. Input for crouching. .. 45

Figure 18. Crouch Blend... 46

Figure 19. CrouchBlend state in the Anim Graph. .. 46

Figure 20. Spring arm settings to smooth camera movement

during crouch. ... 47

Figure 21. Settings for animation to be used in aim offset blend. 48

Figure 22. Aim offset wrong behaviour. .. 49

Figure 23. Aim offset correct behaviour. ... 50

Figure 24. Weird behaviour of the NPC model when trying to

use the same skeleton as the base character. ... 51

Figure 25. NPC with animations retargeted to the same skeleton. 52

Figure 26. Base skeleton with Retarget Manager options. 53

Figure 27. Rig options in the Retarget Manager. .. 54

Figure 28. Retargeting bone names in the Retarget Manager. 54

Figure 29. Retarget options for the NPC. ... 55

Figure 30. Retargeting selected animations. .. 56

Figure 31. Duplicating animations skeleton selection. 56

Figure 32. Retargeted skeleton on NPC with the NPC’s legs disfigured. 57

Figure 33. NPC’s retargeting fixed. .. 58

Figure 34. Player Character Blueprint Event Graph view. 60

Figure 35. Components panel with the player selected. 60

Figure 36. Player Details panel opened with the Pawn tab highlighted. 61

Figure 37. Components panel with Camera selected. 62

Figure 38. Camera’s Details panel open. ... 63

Figure 39. Components panel with CharacterMovement selected. 63

Figure 40. CharacterMovement details panel open. 63

Figure 41. Making a new Blueprint Class. .. 64

Figure 42. Making the new Blueprint into an AI Controller for the NPC. 65

Figure 43. Making the Character Pawn for the NPC from

the Blueprint Class. .. 65

Figure 44. Changing the mesh for the NPC Character pawn. 65

Figure 45. Pawn Sensing component on NPC Character Pawn. 66

Figure 46. Custom Event for moving the NPC to a random location. 67

Figure 47. Custom Event MoveTorandomLocation as

currently implemented in the project. .. 67

Figure 48. Calling the new event from the Begin Play. 67

Figure 49. NPC put to the level and Nav Mesh in the side menu. 68

Figure 50. Nav Mesh Bounds Volume added to the level and

scaled to cover a large area. .. 68

Figure 51.NPC animation states. .. 69

Figure 52. NPC animation update in the Animation

Blueprint Event Graph. ... 69

Figure 53. NPC Animation Begin Play in Animation

Blueprint Event Graph. ... 69

Figure 54. Idle system for the NPC using AnimNotifies in

Animation Blueprint Event Graph. .. 70

List of Tables

Table 1. Transition rules for idle system. .. 26

Table 2. Transition rules for jumping from idle. ... 34

Table 3. Transition rules for jumping from movement. 35

	1 Introduction
	2 Project
	3 Tools
	3.1 Blender
	3.2 Mixamo
	3.3 Unreal Engine 4

	4 Animation
	4.1 Traditional Animation
	4.2 Computer Animation
	4.2.1 2D Animation
	4.2.2 3D Animation

	4.3 Animation in Games

	5 Animation System in UE4
	5.1 Terms and concepts
	5.1.1 Animation Tools
	5.1.2 Skeleton Assets
	5.1.3 Animation Sequences
	5.1.4 Animation Notifications (Notifies)
	5.1.5 Animation Blueprints
	5.1.6 Blend Spaces
	5.1.7 Animation Montage
	5.1.8 Skeletal Control
	5.1.9 State Machines

	5.2 Animation Blueprints
	5.3 Reusing Animation Blueprints

	6 Implementation
	6.1 Original plan for implementation
	6.2 Assets
	6.3 Importing assets into UE4
	6.4 Finished animation logic and blueprints
	6.5 Implemented animation states
	6.5.1 Idle state
	6.5.2 Movement state
	6.5.3 Jump state
	6.5.4 Attacking state
	6.5.5 Crouching state
	6.5.6 Aim offset

	6.6 Retargeting animations to another character
	6.7 Other implemented features
	6.7.1 Camera
	6.7.2 Simple AI for NPC

	6.8 Future development

	7 Conclusions
	References
	List of Figures
	List of Tables

