

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

30 April 2020

Risto Salama

“Down With Regression!”
– Generating Test Suites for the Web

PREFACE

I want to give thanks to my caring wife, who took the main role of looking after our
firstborn baby and household in these difficult times of epidemic. This helped me im-
mensely to focus on finishing the project described in this thesis in time.

Helsinki, 29 April 2020
Risto Salama

 Abstract

Author
Title

Number of Pages
Date

Risto Salama
“Down With Regression!” – Generating Test Suites for the Web

62 pages + 2 appendices
30 April 2020

Degree Master of Engineering

Degree Programme Information Technology

Instructors

Ville Jääskeläinen, Principal Lecturer
Mikko Mäkipää, Director, ICT and digitalization

Software regression can and have caused problems in the software industry. Regression
can be mitigated by extensive test suites and laborious manual testing, both which cost
time and money.

Web accessibility is a topic that helps to ensure that Internet is accessible to everyone;
Internet should not be restricted by abilities or disabilities of a person. There exist guide-
lines and tools that can help to ensure accessibility of a website.

The goal of this project was to create a testing tool that could help to automate tests both
for regression and accessibility. This tool should be on a level of a proof of concept; it
should demonstrate that it is indeed possible to test both the regression and accessibility of
a website. There was no need to make it so ready in the scope of this thesis that it could
be used in a production.

This tool was implemented using key technologies such as crawling, scraping, Lighthouse,
Puppeteer, etc. First a list of specifications was generated and the implementation of the
proof of concept managed to accomplish them all. However, many things can be improved
or implemented at a later stage.

Keywords regression, crawling, accessibility, testing

 Abstract

Tekijä
Otsikko

Sivumäärä
Aika

Risto Salama
“Down With Regression!” – Generating Test Suites for the Web

62 pages + 2 appendices
30 April 2020

Tutkinto Master of Engineering

Koulutusohjelma Information Technology

Ohjaajat

Ville Jääskeläinen, Principal Lecturer
Mikko Mäkipää, Director, ICT and digitalization

Sovellukselle tehdyistä muutoksista aiheutuvat virheet ovat pitkään olleet ongelma IT-
alalla. Näitä virheitä pystytään estämään laajoilla automaatiotesteillä ja manuaalisella tes-
taamisella, mutta molemmat maksavat aikaa ja rahaa.

Saavutettavuudella autetaan ihmisiä pääsemään käsiksi nettisivustojen sisältöön ja toimin-
toihin, huolimatta siitä minkälaisia fyysisiä, teknillisiä tai psyykkisiä esteitä käyttäjällä on.
On olemassa oppaita ja teknologioita mitkä voivat auttaa varmistamaan nettisivun saavu-
tettavuuden.

Tämän projektin päämääränä oli tehdä testaustyökalu, joka voisi auttaa automatisoimaan
testejä muutosten aiheuttamia virheitä sekä saavutettavuusongelmia vastaan. Työ rajattiin
niin, että testaustyökalusta tehdään versio, joka riittää osoittamaan työkalun olevan toteu-
tuskelpoinen.

Työkalu toteutettiin käyttäen erilaisia teknologioita kuten nettisivustojen crawlaus ja taltioin-
ti sekä Lighthouse ja Puppeteer. Työssä määriteltiin lista ominaisuuksista mitä testaustyö-
kalu vaatii ja nämä toteutettiin onnistuneesti projektissa. Testaustyökalussa on kuitenkin
monta ominaisuutta mitä voitaisiin päivittää sekä myös mahdollisesti lisätä uusia ominai-
suuksia, mikäli työkalua päätetään jatkokehittää.

Avainsanat virheet, crawlaus, saavutettavuus, testaus

Contents

Preface

Abstract

List of Abbreviations

1 Introduction 1

2 Project Specifications 6

2.1 Current State Analysis 6

2.2 Specifications 7

3 Accessibility 11

3.1 Web Content Accessibility Guidelines 12

3.2 Accessibility Tools 15

4 Theoretical Background 21

4.1 Web Crawling 21

4.2 Web Scraping 21

4.3 UI Testing Tools 22

4.4 Visual Regression Testing 23

5 Implementation of Proof of Concept 24

5.1 Project Setup 24

5.2 Configuration 25

5.3 Crawling & Recording 28

5.4 Verifying 34

5.5 Accessibility 40

5.6 Testing 45

5.7 Reports 47

6 Conclusions 59

6.1 Challenges 61

6.2 Future Improvements 62

References

Appendices

Appendix 1. Code Listing For Crawling

Appendix 2. Accessibility Rules

List of Abbreviations

CI Continuous Integration

CLI Command Line Interface

CMS Content Management System

CSA Current State Analysis

DOM Document Object Model

FIOH The Finnish Institute of Occupational Health

GUI Graphical User Interface

POC Proof of Concept

SPA Single Page Architecture

SVG Scalable Vector Graphics

UI User Interface

UX User Experience

WCAG Web Content Accessibility Guideline

1

1 Introduction

As new features are added into an application, old features removed from the applica-

tion, bug is fixed or some software dependency is updated to a newer version, there

exists a chance that one or more other features break creating unwanted changes.

This is called regression and it can occur at any point in software’s lifecycle. Regres-

sion can be mitigated to a degree by an extensive test suite, continuous development,

manual acceptance testing and good coding practices.

When it comes to software with GUI (Graphical User Interface), like most web applica-

tions, there are often multiple different tests to be run with different purposes. End-to-

end testing for use cases that touch every part of the software from database to GUI,

integration testing for API, unit testing for granular class or function level testing and

user interface (UI) testing for testing the GUI itself, to which the topic of this thesis fo-

cuses on.

Creating an extensive test suite for the UI to prevent regression can require a lot of

repetitive work. However, this work can be automated. Bots, such as googlebot, have

technology to crawl and roam the websites by going through one link to another, infor-

mation which they can use for indexing for example. Document Object Model (DOM) of

website can be utilized with headless browsers to click any element and check if DOM

or webs address changes as a result. These changes can be recorded and a test suite

generated for the website that, when executed, will either pass or fail depending if the

recorded changes were resolved or not.

The Finnish Institute of Occupational Health (FIOH) is a multidisciplinary research and

specialist organization that focuses on well-being at work, research, advisory services

and training [1]. Organization operates under the Ministry of Social Affairs and Health

as an independent legal entity, and has around 500 employees.

FIOH commissioned a tool that can help with regression of website functionality and

accessibility. Accessibility is covered later in this chapter but briefly it can be described

that website is accessible if any person with any abilities or disabilities is able to use it,

accessibility is a way to measure how accessible is the website. This commissioned

tool uses as much existing technology as possible.

2

The idea was to create a tool for developers to programmatically test a user interface of

an application by commanding a browser to click through links and press buttons and

record all changes to DOM and all other actions that were taken. When the tool is rerun

against the same application on a later time, it will compare the results of the rerun to

those recorded. Changes from the comparison are recorded in such a form that it is

useful for developer to identify what has changed.

If nothing has changed from previous recording, then a developer can safely presume

that everything is working as intended. If something has changed, however, then a de-

veloper must check that changes are desired. In case changes were desired, then de-

veloper can just make a new recording with the tool to be used with any future runs. In

case changes were not wanted, then developer has to fix the issue causing them until

tool passes the check without any changes. Following activity diagram in Figure 1 de-

scribes the flow of these two use cases.

Figure 1. Activity diagram of the test tool

3

Note that the tool can be also executed in CI (Continuous Integration) environment as

one of the tests to be checked before build passes. In such a case it can be useful to

have an option in CI to automate the recording of a new test suite. This option can be

useful when the changes to the tested project are desired.

An accessibility directive set on place by European parliament came into effect on

22.12.2016 [2]. In the directive accessibility is stated as such: “In the context of this

Directive, accessibility should be understood as principles and techniques to be ob-

served when designing, constructing, maintaining, and updating websites and mobile

applications in order to make them more accessible to users, in particular persons with

disabilities.” [3]. This accessibility directive sets minimum level of accessibility for online

services provided by a public administration. The directive also describes methods how

implementation of the accessibility guidelines is moderated.

In Finland legislation requiring online services provided by public administration to

reach desired level of accessibility was set into effect on 1.4.2019 and the goal to reach

the required level of accessibility starts stepwise 23.9.2019:

 23.9.2018 and after published websites must be accessible by 23.9.2019

 Websites published before 23.9.2018 must be accessible by 23.9.2020

FIOH has some online services that have been published before 23.9.2018 and legisla-

tion demands that they must be accessible by 23.9.2020. This thesis attempts to find a

reasonable answer in a form of a developer tool to the following research questions:

 How unwanted changes can be noticed better?

 How can the accessibility of a website be automatically tested?

The target of this thesis is to create a POC (proof of concept) testing tool that allows

testing both the regression and the accessibility of a website. From the scoping point of

view, it is enough that the tool can be used with some websites, the tool does not have

to work with all websites and it does not have to be error free. Deployment of the tool is

not part of this thesis. Excluded from the scope are also items of Web Content Acces-

sibility Guideline (WCAG) that cannot be automatically tested using current tools and

libraries.

4

Figure 2. Phases of project work.

The development of the test tool was done in the following order. First a Current State

Analysis (CSA) on different software projects inside FIOH was conducted, with empha-

sis on frontend projects and accessibility. After the CSA was done, specifications for

the POC tool were made. Researching and picking suitable tools and libraries for the

POC was the next step. Implementation of the POC took place after and finally the re-

sults were tested and verified.

This thesis has been divided into 6 sections. The first and current section, Introduction,

is an introductory section of this thesis that had covered briefly the main topics of this

thesis. The second section, Project Specifications, contains both CSA and the specifi-

cations of the test tool. The third section, Accessibility, covers the topic of accessibility

in a greater detail. The fourth section, Theoretical Background, describes technologies

and topics related to this thesis and to the POC. The fifth section, Implementation of

Current state
analysis

Specifications

Research
tools

Implementation

Results and
verification

5

Proof of Concept, goes through the implementation of POC; how it works and demon-

strates different reports the testing tool generates. The last section, Conclusions, goes

through what was achieved, what challenges there were and what improvements can

be made in the future.

6

2 Project Specifications

This section lists the specifications needed for the tool that tests both the regression

and the accessibility of a website. This section also introduces the automated testing

situation of some of the applications in FIOH, some of which are under active develop-

ment and some which are in a maintenance phase. These applications are discussed

here only in a surface detail and what those applications are or what they are used for

is left unmentioned on purpose.

2.1 Current State Analysis

Investigated applications can roughly be divided into two sections: front-end applica-

tions with a single page architecture (SPA) and back-end applications. The architecture

of applications has been implemented utilizing micro services approach and different

combinations of those services are used for different products.

Back-end applications have been implemented either in Java using Spring Boot

Framework [4] or in JavaScript utilizing Node.js [5]. All back-end applications have at

least unit tests used with them. Back-end applications with a database access usually

also have integration tests which tests the application together with a database schema

utilizing Flyway [6] or Knex [7] database migration tools together with Docker[8].

More recently developed front-end applications are implemented utilizing Vue.js [9]

framework while legacy applications have been implemented with AngularJS [10]

framework. All front-end applications have at least unit tests used for automated test-

ing.

Two of the products use end to end test suites, which encompass most if not all the

micro services used to form the product. These end to end test suites usually test only

the most common use cases but they test multiple layers of those products together

from a user interface to a database layer and back.

All these tests are used together with CI to ensure that no software builds which fail to

pass the tests are deployed to staging or production environments. Besides tests, CI

also runs lint tasks to ensure that code follows good coding practices and is uniform.

7

Most of the products also have some automated accessibility tests and they are includ-

ed also in CI. However as accessibility rules are not yet enforced in most of the prod-

ucts, if software build fails to pass the accessibility tests, it does not affect deployment

of application as other tests do. There is one product that enforces passing accessibil-

ity, search engine optimization (SEO) and some best practices test suites before de-

ployment. The project also has some performance tests implemented, but the current

performance tests are deemed too fragile to be part of the deployment checks.

Accessibility tests are not however all encompassing, and having them automated

does not ensure WCAG guidelines are completely followed. Tools and test frameworks

used for automated accessibility testing do not support some more complicated HTML

elements, for example SVG (Scalable Vector Graphics) or canvas. FIOH’s Work-life

Knowledge Service has stated following [11]: “The website of the Work-life Knowledge

Service has been implemented mostly in accordance with level A of the Web Content

Accessibility Guidelines (WCAG 2.1).” It is not necessary feasible to achieve certain

level of WCAG with an application and maintain that level due to problems described

with the tools and the cost of testing accessibility manually to ensure it never fails to

meet accessibility guidelines.

In case new subpages are added into the product, the automated accessibility tests

must currently be manually updated to include those subpages. One of the products

has functionality implemented to scan for new subpages that can be added to the ac-

cessibility tests, but the functionality scans only for subpages in a very specific group

and cannot find any subpages excluded from that group.

2.2 Specifications

This section contains the list of specifications intended for the tool used for both re-

gression and accessibility testing. Section also explains the purpose of each specifica-

tion.

8

Table 1: Specifications of the Proof of Concept

Specification / Attribute / Characteristic Purpose

Crawler To find all the subpages of the website

Scraper To record DOM on all the subpages

Captures Screenshots Captures screenshots of the web pages

in the website to be used for both verifi-

cation and reporting

Storing the scraped content with screen-

shots

Scraped content with screenshots must

be stored for later verification use

Verification Verifies whether the website has

changed

Reporting via command line interface (CLI) Reports all the changes found during

verification

Visual report Generates visual report listing all the

changes found during verification

Accessibility checks The tool tests the accessibility of web-

9

site

Ability to log in The tool can be used to crawl private

websites

Ability to ignore marked content Some content like time changes all the

time and should be ignored during veri-

fication

Configurable The tool can be configured to run on

different websites requiring different

information like log in credentials

Support static website The tool can be run against a static

website

Support SPA The tool can be run against SPA

The tool has to be able to crawl a webpage to find all the possible subpages. If the

webpage is not crawled, then the subpages cannot be automatically found and thus

would have to be parameterized separately.

The tool has to be able to scrape the contents of the crawled webpage. DOM of the

webpage and its subpages must be gathered. This is required for verification and helps

to ensure that structure of the webpage is intact.

The tool has to take screenshots of webpage and its subpages. This is also required

for verification and ensures that the visuals of the webpage are intact.

10

The tool has to be able to store the scraped DOM and captured screenshots of the

webpage. This is required for verifying that there is no regression. The stored infor-

mation can optionally be overwritten in case there is no regression and the changes to

the webpage are desired.

The tool has to be able to verify whether the webpage has changed or not. Verification

is made by comparing the recently scraped data against previously stored scraped

data and by comparing recently captured screenshots against previously stored

screenshots.

The tool has to be able to report to the user all the changes verification process finds.

This report should be outputted in the used command line interface tool and should

specify the changed content. Also visual report should be generated, so user can see

how the screenshots compared differ on various subpages.

The tool has to be able to check and report what accessibility problems are identified

on the webpage and its subpages. This includes only accessibility problems that can

be automatically tested.

The tool has to able to log in to a webpage. Some webpages on FIOH require that user

logs in to be able to access the content. In order to test such a webpage, the tool must

be able to log in with given credentials.

The tool can be configured to run against different websites with different parameters.

The tool should ideally have configuration files which contain the address of the web-

site and possibly login information required by website.

Lastly the tool should support both static websites and websites made with popular

SPA technologies. These two implementation approaches differ greatly from each oth-

er, but they are both very common and the tool should be able to adequately support

both of them.

11

3 Accessibility

This sections covers topic of the accessibility: what the accessibility means and the

reasons why the accessibility is important. Following subsections go through Web Con-

tent Accessibility Guidelines (WCAG) and the tools related to the accessibility.

“The power of the Web is in its universality. Access by everyone regardless of disability

is an essential aspect.” as stated by Tim-Berners-Lee, inventor of the World Wide Web.

Regardless of what is person’s location, ability, language, software or hardware the

Web has been fundamentally designed to serve everyone. Purpose of Web accessibil-

ity is that people with disabilities can use websites, tools and technologies [12]. When

web pages are accessible, they serve diverse audience of people with different back-

grounds and both mental and physical abilities. Accessibility is an essential aspect for

organizations that want to create websites and web tools and do not want to exclude

people from using their products and services.

Accessibility encompasses all disabilities that can affect the access to the Web whether

they are related to vision, hearing, physical, speech or mental abilities. Accessibility is

also beneficial to the people who use different devices like mobile phones or screen

readers, have temporary disabilities like broken arm, have situational limitations such

as being in noisy environment where they cannot listen to audio and even people with

slow Internet connection.

If web page has a low color contrast ration between text and background, such as us-

ing black and gray colors, that particular content can be inaccessible for a person with

poor vision. Likewise, if the color contrast ratio would be good, but the font size of the

text would be too small, the person with poor vision could not again properly see the

content. If web page has multiple clickable elements that are close to together, that

may very well be usable with mouse but could be frustrating or even impossible to use

with touch sensors of mobile screen rendering those elements inaccessible to mobile

user. If web page has audio content but does not provide subtitles that particular con-

tent is inaccessible to a deaf person. If there are elements on a web page that cannot

be reached using keyboard commands, it makes those elements inaccessible to a per-

son using only keyboard. Even whole webpage can be made inaccessible to a person

if the content requires user action to continue and blocks other elements of the web

12

page. Example for such a case can be a simple notification for user that requires user

to click some button that is not accessible.

Web has removed many physical barriers for people to partake in vast amounts of in-

formation, education, entertainment, different tools and can also enable people to con-

tribute to those areas. But if tool or website has not been designed with accessibility in

mind, it can create barriers to people to use or access the content.

Accessibility testing is either a manual or automatic process or combination of both to

ensure that GUI is usable by people of all abilities and disabilities. Ideally website is

tested both with automated tests and manual tests, particularly manual tests made by

users with varying disabilities. Arranging manual tests with users that have disabilities

can be quite challenging for small organizations to arrange [13].

3.1 Web Content Accessibility Guidelines

Web Content Accessibility Guidelines (WCAG) 2.1 [14] by the World Wide Web Con-

sortium (W3C) contains recommendations for making Web content more accessible.

Guidelines are not specific to any particular technology but are intended to apply for all

different Web technologies that exist in the present and in the future. Success criteria in

WCAG 2.1 are written as testable statements. WCAG 2.1 extends previous 2.0 -

version so that if content that conforms to 2.1 then it also conforms to 2.0. However, it

is recommended that the current version of WCAG is utilized when updating accessibil-

ity policies for a website.

These recommendations provided by WCAG are categorized into four main categories

called principles. The four principles and their definitions provided by WCAG are shown

in the following Table 2:

13

Table 2: WCAG recommendations

Principle Definition

1 Perceivable Information and user interface components must be pre-

sentable to users in ways they can perceive

2 Operable User interface components and navigation must be opera-

ble.

3 Understandable Information and the operation of user interface must be un-

derstandable.

4 Robust Content must be robust enough that it can be interpreted by

a wide variety of user agents, including assistive technolo-

gies.

Guidelines such as having text alternative for any non-text content like images or

guideline that color is not alone used to convey information are categorized under the

first principle: Perceivable. Guidelines like bypassing blocks of content utilizing anchors

or guideline that all functionality is operable with keyboard interface are categorized

under the second principle: Operable. Guidelines such as that language of the Web

page is programmatically determinable or guideline which states that context sensitive

help is offered to the user are categorized under the third principle: Understandable.

The last principle, Robust, contains guidelines like compatibility with user agents so

that there are no duplicate identifiers in content made with markup language..

Web page conforms to WCAG 2.1 only if one of the conformance levels is reached,

that is all the requirements indicated by conformance level are satisfactory met. There

are three different conformance levels A, AA and AAA. Levels are hierarchical; in order

14

for Web page to reach conformance level AA, all level A requirements must also be

met in addition to level AA requirements. Note that conformance level AAA is not rec-

ommended to be general policy for the entire site because it is considered impossible

by W3C for all the content to satisfy level AAA requirements.

Generally it can be considered that requirements of a higher conformance level affects

the Web page design and development more than the lower and requires more work to

achieve. For example, while captions for prerecorded audio content is mandatory to

reach even level A, level AAA requires that there is also a sign language interpretation

for the audio.

W3C has also provided quick reference tool [15] for checking WCAG requirements and

techniques how those requirements can be fulfilled. The tool provides filtering options

so user can filter rules that are connected to animation for example.

15

Figure 3. WCAG Quick Reference Tool

The quick reference tool is shown in action in Figure 3. The tool provides information

about techniques that are enough to meet the requirement. The tool also provides ad-

vices what techniques can additionally be used and explains the failure cases.

3.2 Accessibility Tools

This section covers briefly what kind of accessibility tools exists. Mostly tools can be

divided into three categories: online tools that are often commercial, browser plugins

16

and command line tools. Some of the tools are able to show wide range of accessibility

violations in the website while others are narrower. However none of the tools encom-

pass all possible issues as outlined by WCAG 2.1 and there are even arguments that it

is not even technologically feasible to cover them all.

As stated by Marcy Sutton, team member of axe core libraries, accessibility issues

have to be able to be detected with code that works cross platform and has no false

positives [16]. Mrs. Sutton further states that some of the trickier items in WCAG 2.1

cannot be automatically tested due to lack of web platform APIs. This means that web-

site developers and designers should keep in mind that not every item in WCAG can

be automatically tested and manual testing might be required to confirm that website’s

accessibility achieves some level of WCAG 2.1. Still testing of many items outlined by

WCAG 2.1 can indeed be automated. Furthermore the website tested may not even

have content such as audio or video thus eliminating need to test items in WCAG 2.1

altogether.

Axe

A popular toolset (452,922 weekly downloads for axe-core as reported by npm [17] in 8

Sep 2019), axe [18] provides both tools to test the accessibility of web page and api for

other tools to use axe’s open source accessibility rule libraries.

17

Figure 4. Axe plugin in action on Firefox.

In Figure 4 is a demonstration what Axe plugin run on Firefox browser outputs. It de-

scribes the violations and displays the location of the issue in the DOM tree.

Lighthouse

Lighthouse [19] is an open-source, automated tool for improving quality of web pages.

It provides both plugin for browsers if not already integrated (see Figure 4) and com-

mand line interface. Besides accessibility, Lighthouse audits web pages for variety of

topics including performance, progressive web application and search engine optimiza-

tion. It uses axe’s core libraries for accessibility rules.

18

Figure 5. Lighthouse plugin

As shown in Figure 5, Lighthouse can also be run in either mobile or desktop to see

potential flaws in both forms as many websites can have some functionality that is hid-

den in one of the modes and the visual style can be vastly different between the vari-

ous screen sizes. There’s also support for throttling which can help developers to see

how the website manages on slower machines or connections.

19

Color Contrast Accessibility Validator

Color Contrast Accessibility Validator [20] by a11y is an online tool for checking color

contrast of a webpage’s foreground and background colors. However, it states that it is

not able to analyze color contrast of text embedded in images and may misdiagnose.

Figure 6. Color Contrast Accessibility Validator

20

Color Contrast Accessibility Validator is shown in action in Figure 6, where it has as-

sessed that a webpage has sufficient color contrast and passes the test. It also

demonstrates samples of color-pairs on webpage with good contrast.

21

4 Theoretical Background

This section describes the relevant topics that are used in this thesis. Some of the top-

ics are related to crawling while others are related to accessibility, verification and re-

porting. This is not intended to be a comprehensive listing of applicable tools but to

highlight couple different technologies to choose from or which are related to the topic

somehow and provide a reasoning why this area is important.

Note also that this section focuses on the tools that are intended to be used with pro-

gramming languages that were selected for implementing the proof of concept: some

JavaScript but mostly its superset TypeScript. This choice for programming languages

was partially determined by the current technology stack used in the organization.

4.1 Web Crawling

A web crawler [21] also referred as spider or search engine bot, searches the website

primarily for search engine purposes. Crawler goes through the webpage, going

through subpages of the webpage by all the links it can find and gathers all the relevant

data it finds for search engine indexing. Thus a crawled website can be found in a

search engine like Google Search by its name, keyword or content it has.

Since one of the purposes of this thesis work is to automate regression testing process

of a website as much as possible, mainly by automatically finding subpages of the

website and navigating through them, this is a relevant technology.

Googlebot

Googlebot is a name used to describe Google’s web crawlers [22]. There are two types

of web crawlers used by Google: one for mobile devices and another for desktops and

they both simulate users. Googlebots are designed to scale and to be run simultane-

ously on thousands of machines.

4.2 Web Scraping

Web Scraping is a term for technology that is used to scrape websites for a meaningful

data. It can be used for various purposes such as research, price comparisons or ex-

tracting contact information. It is somewhat connected to Web Crawling as indexing

22

technology relies on scraping the website to get the meaningful content to show on

search engines.

As the proof of concept created during this thesis aims to scrape the DOM tree of the

website for verification purposes for regression testing, this is a relevant technology.

Scrapy

Scrapy [23] is a framework for extracting data from a website. The framework enables

developer to create custom crawlers that can be instructed to scrape some data from a

website. Scrapy is an open source project written in Python.

4.3 UI Testing Tools

One approach to make the website crawling is to use existing tools. Many UI testing

tools are already geared towards testing client implementations on a browser; they

allow executing code on the browser and even capturing screenshots of the browser

window which can both be useful for verification purposes.

Headless Browser

Headless Browser [24] is a web browser that is run without any GUI. Headless Brows-

ers can be used for example to scrape data from a website or to test web pages pro-

grammatically. They are often default choice when running automation tests and

browsers like Firefox and Chrome provide headless mode to run them.

Nightwatch.js

Nightwatch.js [25] is an end-to-end testing framework for Node. It can be used to test

websites or web applications. Nightwatch.js uses W3C Webdriver [26] under the hood

and supports multiple browsers.

Puppeteer

Puppeteer [27] provides a high-level API for controlling Chrome or Chromium browsers

over the DevTools Protocol [28]. It is a Node-library and runs browser’s in headless

mode by default but can easily be configured to run on non-headless mode. Among

other features it provides supports for capturing screenshots, UI testing tools and run-

ning code in browser. However, it does not directly support browsers besides Chrome

and Chromium.

23

4.4 Visual Regression Testing

Visual regression testing aims to test the visual appearance of website. There are few

tools written for visual regression testing, but many of them are not maintained any-

more. Nevertheless parts of them can be useful for researching how to implement

screenshot comparison.

Wraith

Written in Ruby, Wraith [29] is a responsive screenshot comparison tool that can either

be used to compare two different websites or compare history of one site by regularly

adding new screenshots.

24

5 Implementation of Proof of Concept

This section describes the implementation of POC. Following seven subsections cover

most of the project’s implementation details. The first subsection is Project Setup,

which explains the structure and tools selected for the project. The second subsection

is Configuration, which describes what configuration options were implemented and for

what purpose they are used. The third subsection, Crawling & Recording explains both

the crawling process in greater detail and how crawling results were stored. The fourth

subsection, Verifying, explains how the tool verifies that there have been no regres-

sions. The fifth subsection is Accessibility and covers in detail how accessibility was

covered with this tool.

Last two subsections cover the topics testing and reporting. The sixth subsection is

about testing, describes how the tool was tested and what kind of testing utilities were

used. The last subsection demonstrates how and what kind of reports the tool outputs.

5.1 Project Setup

CLI version of LightHouse was decided to be utilized for accessibility testing since it is

free, open source, actively developed and has already been used in other projects in

FIOH. For crawling purposes, Puppeteer was decided to be utilized primarily for the

same reasons as LightHouse. As these are both JavaScript libraries, it made lot of

sense to utilize Node.js a JavaScript runtime, together with Node Package Manager

(npm) [30].

Programming language for the project was selected to be primarily TypeScript [31]. It is

a superset of JavaScript that brings static type definitions, which allows describing ob-

jects and that enables both better documentation, as the object itself documents what it

is, and allows TypeScript compiler to validate that code is working correctly. JavaScript

was still used for some sections, particularly related to the testing of the tool.

25

Figure 7. Directory structure

In Figure 7 is shown the directory structure of the project. Very popular Git [32] is used

as a version control system. ESlint [33] is being used as linter to help ensure that code

quality is good. It is run primarily and automatically in commit hooks, ensuring that no

badly formatted code can enter version control. Jest [34] is a JavaScript testing frame-

work, and here it is used with accessibility tests. Folder containing test data has all the

crawled and recorded websites to be used with regression testing. The test folder con-

tains tools used for making different scenarios for manually testing the tool.

5.2 Configuration

Configuration is necessary for running the tool against different websites. Also different

websites might require user login and potentially different rules for what content to ig-

nore while scraping the DOM. There is a base configuration file which contains inter-

face for configuration that all other configuration files implement.

interface TimeConfig {
 wait: number;
 loadWait: number;
}

enum IgnoredContentType {
 TAG, ATTRIBUTE
}

26

interface IgnoredContent {
 value: string;
 contentType: IgnoredContentType;
}

interface Config {
 name: string;
 website: string;
 needsLogin: boolean;
 login(webSocketDebuggerUrl: string): Promise<void>;
 timeConfig: TimeConfig;
 ignoredContent: IgnoredContent[];
}

Listing 1. Configuration interfaces.

In Listing 1 is shown the configuration interfaces. Interface TimeConfig is utilized while

crawling; some websites require more time as the page or the dynamic content loads.

Interface IgnoredContent is used for leaving out some content while scraping the DOM

of crawled sites. Some content can be, for example, time based and change on every

run; running regression tests against such content would practically almost always fail.

POC supports ignoring whole html elements (tags) or just attributes of elements.

There is a flag used for checking whether the login is necessary for testing the website,

and if login is required, function for handling the login must be provided by object im-

plementing Config interface. Name given to the configuration could be a project name

for example and website in configuration has to be a web address to the website to

test.

const defaultConfig: Config = {
 website: 'http://localhost:5005/',
 name: 'default',
 needsLogin: false,
 login: (): Promise<void> => {
 return Promise.resolve();
 },
 timeConfig: {
 wait: 20,
 loadWait: 1000,
 },
 ignoredContent: []
};

Listing 2. Default configuration.

27

In Listing 2 is shown the default configuration, which is used for testing the POC with

different scenarios. No login is necessary so login method simply returns and empty

promise. Units in time configuration are milliseconds.

const telluConfig: Config = {
 name: 'tellu',
 website: 'http://localhost:3500/#/fi/',
 needsLogin: false,
 login: (): Promise<void> => {
 return Promise.resolve();
 },
 timeConfig: {
 wait: 300,
 loadWait: 5000,
 },
 ignoredCon-
tent: [{value: 'svg', contentType: IgnoredContentType.TAG}]
};

Listing 3. Configuration for project titled tellu.

In Listing 3 is an example of configuration with some content ignored. Project tellu has

lots of SVG elements generated runtime with different chart libraries and they have

different attributes each time. In that context it is logical to leave out all the svg-

elements from scraped content to enable regression testing against rest of the site

without lots of false negatives.

const solmuConfig: Config = {
 name: 'solmu',
 website: site,
 needsLogin: true,
 login: async (webSocketDebuggerUrl: string): Promise<void> => {
 const puppeteerBrowser = await puppeteer.connect({browserWSEndpoin
t: webSocketDebuggerUrl});
 const page = await puppeteerBrowser.newPage();
 await page.goto(login);
 await page.content();
 await page.waitForSelector('#loginForm');
 await page.type('.user-data-field:first-child', 'fioh@fioh.fi');
 await page.type('.user-data-field:last-child', 'fiohfioh');
 await page.click('button.btn[type=submit]');
 },
 timeConfig: {
 wait: 100,
 loadWait: 1500,
 },
 ignoredContent: []
};

Listing 4. Configuration for project titled solmu.

28

In Listing 4 is an example of configuration with login functionality. Puppeteer is instruct-

ed to login to the solmu’s website using variety of selectors and mimicking user actions

like typing and clicking.

...
"scripts": {
 "crawl:tellu": "tsc && node
 -e 'require(\"./dist/index.js\").main(\"tellu\").crawlAndMake()'",
 "verify:tellu": "tsc && node
 -e 'require(\"./dist/index.js\").main(\"tellu\").verify()'",
 "accessibility:tellu": "jest --configName='tellu'",
...

Listing 5. Scripts for configuration in package.json.

In order to add a configuration for a new website to be tested, the configuration must

be imported into the configuration util and scripts for using the configuration have to be

added to package.json -file like in Listing 5. The script “crawl:tellu” instructs the tool to

run crawl operation with configuration for tellu project, The scripts “verify:tellu” and “ac-

cessibility:tellu” are likewise used to run the tool to verify there is no regression or to

check that accessibility audits pass on tellu.

5.3 Crawling & Recording

Since only the web address is given from the website to use for testing, tool relies on

crawling the website for recording the DOM and all the possible subpages. Crawling is

done utilizing puppeteer which launches a headless browser instance and then goes

through the website.

export const launchBrowser = async (config: Config,
 headless: boolean = true): Promise<Browser> => {
 const browser = await launch({
 headless,
 defaultViewport: {width: 1920, height: 1080},
 args: [
 '--no-sandbox',
 `--remote-debugging-port=${REMOTE_DEBUGGING_PORT}`,
 '--disable-web-security',
 '--ignore-certificate-errors',
 '--allow-insecure-localhost'
]
 });
 if (config.needsLogin) {
 logger.info('Login required. Logging into the service');

29

 const resp = await request.get({uri: `http://localhost:${REMOTE_DE
BUGGING_PORT}/json/version`});
 const {webSocketDebuggerUrl} = JSON.parse(resp);
 await config.login(webSocketDebuggerUrl);
 }
 return browser;
}

Listing 6. Launching the browser with Puppeteer.

Function for launching the browser instance is shown in Listing 6. In order to test sites

with localhost and with potential cross origin resource sharing issues CORS [35]

browser instance must be launched with flags that allow certificate errors, allow inse-

cure localhost and disables web security. Function utilizes the login method in passed

configuration parameter for websites that require user to make a login to properly test

the site. Remote debugging port flag is required in order to use WebSocket [36] link

provided by browser to make a successful login attempt to the site.

async function crawl(config: Config, action: CrawlAction):
 Promise<TestData> {
 const browser = await launchBrowser(config, false);
 const baseHref = config.website;
 logger.info('START of crawling');
 const screenshotFolder =
 getScreenshotFolderAndCreateIfItDoesNotExist(
 config.name ? config.name : config.website,
 action);
 const page = await browser.newPage();
 await page.goto(baseHref, {waitUntil: 'networkidle2'});
 const crawler = new Crawler(config, screenshotFolder);
 await crawler.crawlInternal(page, baseHref);
 browser.close();
 logger.info(`Found ${crawler.crawledPages.length} sites`);
 logger.info('END of crawling');
 return {
 pagesAndDoms: crawler.crawledPages,
 siteTested: baseHref,
 name: config.name
 };
}

Listing 7. Main function for crawling.

Main function for crawling as shown in Listing 7 is given the configuration object which

contains the web address to crawl through among other required configurations. Func-

tion from Listing 6 is called at start then browser is instructed to navigate to the base

webpage where the crawling begins.

30

Screenshot folder is determined using passed action parameter. There are two differ-

ent actions crawling function is used for. The first action is to record crawled results in

which case all the data is stored into the test data folder and it is going to be used in

the future regression and accessibility test runs. The second action is to verify the site,

which is used to run those regression tests against the previously stored data. Screen-

shots for verify action are written under temporary folder which is purged every time

verification is rerun.

Main function creates a crawler object that handles the actual crawling through its

crawlInternal method. Lastly the main function returns an object which contains name

of the configuration, the website tested and an array containing crawled pages and

their respective DOMs. Browser instance is shut down after the crawling has complet-

ed.

const DOM = await page.evaluate((): string => document.body.innerHTML)
const screenshotFile = `${this.screenshotFolder}/
 ${this.screenshotIdentifier++}.jpg`;
await page.screenshot({path: screenshotFile, fullPage: false,
 type: 'jpeg', quality: 25});
this.crawledPages.push({page: path, dom: this.cleanDOM(DOM),
 screenshotFile});

Listing 8. Scraping the DOM and taking a screenshot of the crawled page.

In Listing 8 Puppeteer’s evaluate function is utilized to retrieve the DOM from the page.

Evaluate function’s contents are executed inside the browser’s console and this ena-

bles retrieving DOM of the page. Lower quality screenshot is also taken of the page.

Retrieved DOM is also removed from any content that is configured to be ignored. Both

the screenshot and DOM are stored along the page address inside the array in the

crawler object. This functionality happens inside crawlInternal method.

private cleanDOM(dom: string): string {
 let cleanedDom = dom.replace(/<\/span>
`/gi, '');
 try {
 this.ignoredContent.forEach((ignored: IgnoredContent): void => {
 if (ignored.contentType === IgnoredContentType.ATTRIBUTE) {
 const regEx = new RegExp(`${ignored.value}="[^"]*"`, 'gi');
 cleanedDom = cleanedDom.replace(regEx, '');
 } else if (ignored.contentType === IgnoredContentType.TAG
 && dom.includes(`<${ignored.value}`)) {
 // This presumes dom is proper HTML with end tags"
 const splitDom = cleanedDom.split(`<${ignored.value}`);
 cleanedDom = splitDom[0];
 for (let i = 1; i < splitDom.length; i++) {

31

 cleanedDom += splitDom[i].split(`</${ignored.value}>`)[1];
 }
 }
 });
 } catch (e) {
 logger.warn(`Could not clean ignored content. Error: ${e}`);
 }
 return cleanedDom;
}

Listing 9. Removing ignored content from the DOM.

In Listing 9 is shown how the DOM is removed from ignored content. First there is a

chance that span element that is used to indicate to the crawler that the web page has

been loaded has not been removed. This is removed using regular expression with

replace method. Afterwards ignored content is removed from retrieved DOM within a

loop. In the case ignored content type is an attribute then regular expression is used to

remove the specified attribute from all the elements. In the case ignored content is tag,

then all html elements with same tag name, including their child elements, are removed

from the DOM.

Already crawled pages should not be re-crawled as it would very likely end in an infinite

loop. Likewise leaving the website to crawl other web pages is not desirable as tool

could potentially end crawling finite but vast Internet. Both of these scenarios are pre-

vented by the tool.

let items = await page.evaluate((obj): string[] => {
 const ret = [];
 for (const item of document.querySelectorAll(obj.sel)) {
 const href = item.getAttribute('href');
 const target = item.getAttribute('target');
 if (href
 && !href.includes('mailto:')
 && !href.includes('tel:')
 && !target
 && (!obj.base.includes('#') || (href.includes('#')
 && href.startsWith('#' + obj.base.split('#')[1])))
 && href.split('#').length < 3 // excludes anchor links in spa
 && (!href.includes('http') || href.includes(obj.base))) {
 ret.push(href);
 }
 }
 return ret;
}, {sel: 'a', base: this.baseHref});
items = items.filter((item: string): boolean => this.isNotAlreadyFound
(path, item));

Listing 10. Fetching the suitable links from the web page.

32

In the Listing 10 the crawler is trying to search for suitable links inside the DOM of visit-

ed page. Puppeteer’s evaluate function is again utilized to execute anonymous function

to search for the suitable links to click and navigate to.

Suitable links must not have following properties:

 Attributes mailto or tel as they indicate links are used for sending email or
calling with a phone.

 Attribute target as it is usually used to open new tabs in the browser and
that could confuse the crawler.

 SPA links that have different route than potentially specified in the config-
uration.

 Anchor links with SPA as they use the same symbol.

 Links should not have protocol defined unless the web address crawled is
part of the link’s href attribute value.

 Link should not be already found during the current crawling.

As the crawler crawls through the subpages of the website it must wait until the page

has been loaded and possibly wait until JavaScript of the page has finished executing,

which is especially important in the case of many SPA webpages. Without this wait, the

web page might not have properly loaded and the DOM that is retrieved from it might

be incomplete and cause lot of false negative results during verification. As the crawler

clicks on the links it has found, it must wait until the new content has been loaded or

JavaScript has been executed.

await page.evaluate((loadReadyFlag): void => {
 let counter = new Date().getTime();
 const resetCounter = (): void => {
 counter = new Date().getTime();
 }
 const observer = new MutationObserver(resetCounter);
 observer.observe(document.body,
 {attributes: true, childList: true, subtree: true});
 setInterval((): void => {
 if (new Date().getTime() - counter > 500) {
 const span = document.createElement('span');
 span.id = loadReadyFlag;
 document.body.appendChild(span);
 }
 }, 50);
}, LOAD_READY_FLAG);

33

await page.waitForSelector(`#${LOAD_READY_FLAG}`, {
 timeout: this.timeConfig.loadWait});
;

Listing 11. Waiting until the page has loaded before crawling it.

The crawler is utilizing experimental technology called MutationObserver [37] in Listing

11 to wait until no more changes to the DOM can be detected. Counter is used to de-

tect if enough idle time has passed to mark the page loading ready by creating a span

element with a specified id attribute. If observer detects any changes in the DOM it will

reset the counter. Puppeteer is instructed to wait until css selector finds the span with a

specified id attribute or until the configured time for waiting loading has passed, in

which case an error is thrown by Puppeteer. In case of an error there is a fallback and

Puppeteer is instructed to wait for 500 milliseconds instead for the page to load.

for (const item of items) {
 try {
 await page.waitForSelector(`[href="${item}"`);
 await page.evaluate((element): void => {
 document.querySelector(element).scrollIntoView();
 return;
 }, `[href="${item}"`);
 await page.waitFor(this.timeConfig.wait);
 await page.click(`[href="${item}"`);
 await page.waitFor(this.timeConfig.wait);
 await this.waitForPageLoad(page);
 try {
 const url = await page.evaluate((): string =>
 window.location.href);
 await this.crawlInternal(page, url, depth + 1);
 } catch (e) {
 logger.error(e);
 }
 } catch (e) {
 logger.error(`Could not click the link ${item} on ${path}.
 Error: ${e}`);
 }
 await page.waitFor(this.timeConfig.wait);
 await page.goto(path, {waitUntil: 'networkidle2'});
 await this.waitForPageLoad(page);
}

Listing 12. Crawling through the links found on the web page.

In Listing 12, the crawler is going through all the eligible links it has found while scrap-

ing the current web page. As crawlInternal method is recursive function, it is all that is

needed to go through the links in web page. If error is caught while crawling through

the subpages, it is logged into the console but not otherwise allowed to interrupt the

program. Code for the method waitForPageLoad is shown in Listing 11, and here it is

34

used two occasions. The first time the method is used to ensure that subpage has

been loaded after clicking the link. The second time the method is used to ensure that

the page where the link to subpage is loaded properly before clicking the link for the

next subpage in the loop. The whole code listing for the crawler object can be found in

the Appendix 1.

const makeTestDataFiles = (testData: TestData): void => {
 createRootFolderIfItDoesNotExist();
 const name = testData.name ? testData.name : testData.siteTested;
 const siteFolder = createSiteFolderIfItDoesNotExist(name);
 fs.writeFileSync(`${siteFolder}/site`, JSON.stringify(
 testData.pagesAndDoms), {encoding: 'utf8'});
 logger.info(`Crawling results written to ${siteFolder}/site`);
}

Listing 13. Storing the crawled website to filesystem.

After the test tool has made a crawl of the web page for recording action, the results of

the scraping are stored into the filesystem for later verification purposes as shown in

Listing 13. The result of the latest crawl is stored inside root test folder and into a folder

named after the name specified or the website crawled.

5.4 Verifying

In order to verify that the website is unchanged from previous run, tool has to make a

new crawl on the website. Afterwards the results can be verified against the previously

stored run.

const verifyTestData = async (testData: TestData,
 config: Config): Promise<void> => {
 reportBuilder = new ReportBuilder();
 const storedResults: PageAndDom[] = getWebsitePagesAndDoms(
 testData.name ? testData.name : testData.siteTested);
 for (const page of storedResults) {
 await verifyPageAndDom(page, testData.pagesAndDoms, config, true);
 }
 const pageNotFoundInOriginal: PageAndDom[] = testData.pagesAndDoms
 .filter((siteAndDom: SiteAndDom): boolean => {
 for (const site of storedResults) {
 if (site.site === siteAndDom.site) {
 return false;
 }
 }
 return true;
 });
 for (const page of pageNotFoundInOriginal) {

35

 await verifySiteAndDom(page, storedResults, config);
 }
 reportBuilder.buildReport();
 logger.info('End of test');
}

Listing 14. Verifying the tested website against previous recording.

After the crawling has completed, results of the crawl are passed into the function listed

above. Function will fetch the previously stored results and compare the output by loop-

ing contents of both test runs. Both test runs must be verified against each other, as

there could be missing subpages from the new test run or new test run has more sub-

pages. There is an additional html report built after the verification is done.

There are four different scenarios for verification not passing:

1. Subpage existed in the original crawling but not in the current test run

2. Subpage existed in the new test run but not in the original crawling.

3. DOMs of the subpages are not matching.

4. Screenshots of the subpages are not matching.

const verifyPageAndDom = async (pageAndDom: PageAndDom, pages: PageAnd
Dom[], config: Config, original: boolean = false): Promise<void> => {
 …
 let pageFound: PageAndDom = undefined;
 let passes = false;
 let screenShotsAreSame = false;
 for (const page of pages) {
 if (page .dom == pageAndDom.dom && page.page == pageAndDom.page) {
 screenShotsAreSame = await verifyScreenshots(pageAndDom, page);
 passes = screenShotsAreSame;
 pageFound = page;
 } else if (page.page == pageAndDom.page) {
 pageFound = site;
 screenShotsAreSame = await verifyScreenshots(pageAndDom, page)
 }
 }
 …
}
Listing 15. Checking that web page is found and DOM and screenshot matches

36

Checking that web page is found between the two different crawls is rather straightfor-

ward as the Listing 15 demonstrates. If DOM and screenshot are also matching be-

tween the two instances of web page, then the web page is considered to have suc-

cessfully passed the regression test. If DOM between the two instances of the web

page are not matching then checking and reporting what is not matching is a bit more

challenging.

const findDifference = (dom1: string, dom2: string,
 selectorPrefix = '>'): Level[] => {
 let difference: Level[] = [];
 const nodes1 = convertToNodeArray(dom1);
 const nodes2 = convertToNodeArray(dom2);
 nodes1.forEach((node: string, index: number): void => {
 if (index > nodes2.length) {
 difference.push({level: 'path',
 msg: getSelector(selectorPrefix, node)});
 difference.push({level: 'error', msg: 'NODE WAS NOT FOUND'});
 difference.push({level: 'old', msg: `${node}

 `});
 } else {
 const nodeInSecondList = nodes2[index];
 if (nodeInSecondList != node) {
 if (hasChildren(node) && hasChildren(nodeInSecondList)) {
 const differenceFromChildren = findDifference(
 getChildren(node), getChildren(nodeInSecondList),
 `${getSelector(selectorPrefix, node)} >`);
 if (differenceFromChildren.length > 0) {
 difference = difference.concat(differenceFromChildren);
 } else {
 difference = difference
 .concat(getTextDifferenceFromNodes(selectorPrefix,
 node, nodeInSecondList));
 }
 } else {
 difference = difference
 .concat(getTextDifferenceFromNodes(selectorPrefix,
 node, nodeInSecondList));
 }
 }
 }
 });
 if (nodes2.length > nodes1.length) {
 difference.push({level: 'error', msg: 'FOLLOWING NODES ARE NEW'});
 for (let index = nodes1.length; index < nodes2.length; index ++) {
 difference.push({level: 'new',
 msg: `${getSelector(selectorPrefix, nodes2[index])}
 ${nodes2[index]}

 `});
 }
 }
 return difference;
}

37

Listing 16. Finding what is different between two DOMs.

Function findDifference tries to recursively find the HTML elements that differ between

two DOM trees. Both DOM trees are converted into two arrays consisting of node ob-

jects at the top level of DOM hierarchy utilizing JSDOM library. This recursive function

checks that matching element is found in the same position and it checks the node

children as well. Finally it also checks whether the second DOM tree it is comparing to

have elements that are not part of the first DOM tree. Following flowchart (see figure 5)

describes the decision process of the above function.

Figure 8. Flowchart describing decision process for findDifference function.

As shown in Figure 8 the findDifference function goes through each node in the first

DOM at the top level. First it checks that if there is a node at the same position in the

38

second DOM. If there is no node in the same position in the second DOM as there was

in the first DOM, log message is added to be reported to show the difference. If node is

found in the second position, it checks whether the nodes are identical. In the case

nodes are not identical it will recursively check node’s children until all the nodes that

differ are found, and their differences are added into the log message.

const getDom = (dom: string): HTMLCollection => {
 return new JSDOM(dom)
 .window.document.querySelector('body').children;
}

const getChildren = (node: string): string => {
 return [...getDom(node)[0].children]
 .map((element: Element): string => element.outerHTML)
 .reduce((previous: string, next: string): string =>
 previous.concat(next), '');
}

const convertToNodeArray = (dom: string): string[] => {
 return [...getDom(dom)]
 .map((element: Element): string => element.outerHTML);
}

Listing 17. Three functions that are utilized when finding difference in DOMs.

In Listing 17 is shown three different functions that are used for checking the differ-

ences in two DOMs. Function getDom utilizes JSDOM to convert DOM in string form to

HTMLCollection, which makes it easier fetch topmost elements in DOM tree which is

utilized by convertToNodeArray function that maps nodes to an array of strings by their

outerHTML property. Function getChildren also utilizes the getDom function but in this

case children of the passed node are returned as array of strings and that is utilized by

the recursive findDifferences function shown in Listing 16.

const equal = require('image-equal');
const load = require('image-pixels');

const verifyScreenshots = async (page1: PageAndDom, page2: PageAndDom)
: Promise<boolean> => {
 const screenshot1 = await load(page1.screenshotFile);
 const screenshot2 = await load(page2.screenshotFile);
 if(!equal(screenshot1, screenshot2)) {
 logger.error('Screenshots of the sites were not matching');
 return false;
 }
 return true;
}

Listing 18. Verifying the screenshots of the pages.

39

Comparison which determines whether the screenshots are same or not utilizes

NodeJS library called image-equal [38], which compares images pixel by pixel. Com-

paring screenshots of two instances of the web page ensures finding regression in the

visual appearance. Even small change in styles can make drastically different web

pages, which might cause undesired side effects. In Listing 18 is shown the function

that makes comparison between two screenshots utilizing image-equal library.

Figure 9. Output of the verification script.

In Figure 9 is shown the output of the verification process. First configuration used is

logged into console and then the crawling starts. After the crawling is completed the

script will start verifying the different web pages found by the crawling process compar-

ing the results to previously recorded results. The verification script will output both the

path to the node and what has changed. The verification script will also run some ac-

40

cessibility audits and output also their results but that topic will be covered in the follow-

ing section.

5.5 Accessibility

There exists three ways to view accessibility audits on the website with the testing tool.

One way is to run verification for the website which outputs the failed audits to the con-

sole. Verification script also creates a HTML report for the tested website that contains

the failed audits per page and can simply be opened with a browser. The last way is to

run accessibility test suite for the configuration which requires that the website has

been crawled previously so all the web pages are found for the accessibility test suite

to audit.

Accessibility test suite utilizes Jest test framework to run and verify the audits, puppet-

eer to launch the browser instance and lastly Lighthouse CLI to run the audits on the

browser. Lighthouse CLI allows running tests for other categories besides accessibility

such as performance but those were not implemented in POC.

export async function audit(url: string,
 logLevel: string = 'info'): Promise<RunnerResult> {
 const report = await lighthouse(url, {
 port: REMOTE_DEBUGGING_PORT,
 output: 'json',
 logLevel,
 }, config);
 return report;
}

export async function getResult(report: RunnerResult,
 property: string): Promise<string> {
 const propertyType = new Map();
 for (const rule of accessibilityRules) {
 propertyType.set(
 rule.name, await report.lhr.audits[rule.lighthouseRule].score);
 }

 const score = new Map()
 .set(0, 'Fail')
 .set(1, 'Pass')
 .set(undefined, 'Pass')
 .set(null, 'Pass');

 const result = await score.get(propertyType.get(property));

 return result;
}

41

Listing 19. Functions for auditing the web page and fetching the results.

In Listing 19 is shown the audit function which executes asynchronous lighthouse

command passing to it the same port that is used for logging into the website. Desired

output is in json format so it is programmatically easier to parse and utilize in the tests.

Also given to lighthouse function is the logging level which defaults to logging level info

and lighthouse configurations which are retrieved from a file named lighthouse-

config.json. Function getResult is utilized to retrieve a result of single audit by a given

property. Result of the audit property is mapped into a string with value pass or fail,

depending on the score.

const config = getConfig(argv['configName'] as string);

let browser: Browser;

beforeAll(async (): Promise<void> => {
 jest.setTimeout(100000);
 browser = await launchBrowser(config);
});

afterAll(async (): Promise<void> => {
 await browser.close();
});

logger.info('CONFIGURATION:');
logger.info(JSON.stringify(config));
const storedResults: PageAndDom[] = getWebsitePagesAndDoms(config.name
 ? config.name
 : config.website);
const pages = storedResults.map((page: PageAndDom): string =>
 page.page);
for (const page of pages) {
 runAccessibilityOnPage(page);
}
logger.info('End of test');

Listing 20. Code for running the accessibility tests.

42

In Listing 20 is shown the code used for running the accessibility tests. First the config-

uration name that is passed as a command line parameter is used to fetch the configu-

ration. Functions beforeAll and afterAll are hooks provided by Jest and all the tests are

executed after beforeAll function is executed and before afterAll function is executed

respectively. Function beforeAll is used to launch the browser instance used by light-

house and make a login to the website if required by configuration. Function afterAll is

used to close the browser after all the audits and tests have been run. Finally the

crawled website is retrieved from the filesystem using the configuration and the runMet-

ricsOnSite function is executed for every web page.

const runAccessibilityOnPage = async function(page: string):
 Promise<void> {
 let report: RunnerResult;

 describe('Accessibility', (): void => {

 beforeEach(async (): Promise<void> => {
 jest.setTimeout(100000);
 report = report || await audit(page);
 });

 it(`${page }: accessibility score`, async (): Promise<void> => {
 const accessibilityScore = await getScore(report,
 'accessibility');
 expect(accessibilityScore).toBeGreaterThanOrEqual(100);
 });

 it(`${page }: passes accessibility level A checks`,
 async(): Promise<void> => {
 const rules = getRulesByAccessibilityLevel(
 AccessibilityLevel.A);
 const rulesNotPassing: AccessibilityRule[] =
 await getNotPassingRules(rules, report);
 expect(checkAllRulesPassed(rulesNotPassing)).toBeTruthy();
 });

 …

 });
};

Listing 21. Accessibility tests.

43

In Listing 21 some of the accessibility tests are shown. Function beforeEach is another

Jest hook function that is run before each test case and it sets Lighthouse report to a

variable. Here are two test cases shown in Listing 21. The first test case expects that

accessibility score for the web page calculated by Lighthouse is at least 100 percent.

The second test case checks that accessibility rules of Lighthouse, that are defined

here to belong to conformance level A of WCAG 2.1, all pass on the web page.

enum AccessibilityLevel {
 A, AA, AAA, NOT_DETERMINED
}

interface AccessibilityRule {
 lighthouseRule: string;
 description: string;
 name: string;
 accessibilityLevel: AccessibilityLevel;
 url: string;
}

const accessibilityRules: AccessibilityRule[] = [
 {
 lighthouseRule: 'color-contrast',
 description:
 'The visual presentation of text and images of text has a
 contrast ratio of at least 4.5:1',
 name: 'Contrast',
 accessibilityLevel: AccessibilityLevel.AA,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#contrast-minimum'
 },
 {
 lighthouseRule: 'image-alt',
 description:
 'All non-text content that is presented to the user
 has a text alternative that serves the equivalent purpose,',
 name: 'Image Alt Text',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#non-text-content'
 },

Listing 22. Accessibility rules defined in the POC.

44

In Listing 22 is shown some accessibility rules and associated definitions that are used

for POC. First there is an enumeration AccessibilityLevel which is used to determine if

the rule belong to one of the conformation levels of WCAG 2.1. Accessibility rule has

five variables: the first is the name of the Lighthouse audit that rule refers to, the sec-

ond variable provides description for the rule, the third variable is the name of the rule,

the fourth variable is the conformance level rule belongs to and the last variable is a

web address to the rule in WCAG 2.1 Quick Reference guide. Complete list of accessi-

bility rules used for POC can be found in Appendix 2.

Figure 10. Output of the accessibility script.

45

Figure 10 shows output of the accessibility tests. In the screenshot you can see the

tests that failed and passed for each web page first and then Jest outputs the failures in

greater detail.

5.6 Testing

Testing of the tool is handled by running different versions of a website. Test folder of

the tool contains JavaScript file which creates a HTML files and launches a server on

localhost serving the generated static content. This test utility provides different ver-

sions of the website and utilizing a script to launch different scenarios of the website

provides a quick manual process to test the actual tool’s website crawling, regression

testing and accessibility testing capabilities along with the reporting capabilities. Differ-

ent workflows for testing the tool are listed in Table 3.

Table 3: Different possible workflows for testing the tool

Test Scenario Steps

1 Crawling a web-

site

1. Serve version one of the test website by executing:

npm run scenario:1

2. Execute: npm run crawl

3. Check that TESTDATA folder contains the scraped

data and screenshots for default configuration

2 Checking that

regression tests

pass

1. Do the steps in Test Scenario 1.

2. Execute: npm run verify.

3. Check that there are no regression errors outputted

into console or in HTML report

3 Checking that

regression tests

1. Do the steps in Test Scenario 1.

2. Stop the server serving version one of the website

46

fail 3. Serve version two of the test website by executing:

npm run scenario:2

4. Execute: npm run verify

5. Check that there are regression errors outputted into

console or in HTML report

4 Running accessi-

bility tests

1. Do the steps in Test Scenario 1.

2. Execute: npm run accessibility

The tool provides a default configuration which contains the local web address for the

served test website. How different versions of the website are served is shown in List-

ing 23.

const SCENARIOS = [require('./scenario1'), require('./scenario2'), req
uire('./scenario3'), require('./scenario4')];

const TEST_FOLDER = 'test/testsite/';

const addHTML = (dom) => {
 if (dom.includes('<head>')) {
 return `<html>${dom}</html>`;
 }
 return `<html><head></head>${dom}</html>`;
}

const SCENARIO = SCENARIOS[argv.scenario];
if (fs.existsSync(TEST_FOLDER)) {
 fs.rmdirSync(TEST_FOLDER, {recursive: true});
}
fs.mkdirSync(TEST_FOLDER);

fs.writeFileSync(`${TEST_FOLDER}index.html`, addHTML(SCENARIO.HOME), {
encoding: 'utf8'});
if (SCENARIO.ABOUT) {
 fs.writeFileSync(`${TEST_FOLDER}about.html`, addHTML(SCENARIO.ABOUT)
, {encoding: 'utf8'});
}

if (SCENARIO.COOKIES) {
 fs.writeFileSync(`${TEST_FOLDER}cookies.html`, addHTML(SCENARIO.COOK
IES), {encoding: 'utf8'});
}

connect().use(serveStatic('test/testsite')).listen(5005, function(){
 console.log('Server running on 5005...');
});

47

Listing 23. Code for serving the test website

Different versions of the website are stored in their respective JavaScript files as shown

in the Listing 23. Runtime argument named scenario instructs which version of the

website to generate into the filesystem. Lastly the Node libraries serve-static [39] and

connect [40] are used to serve the static website on localhost post 5005.

const HOME = `
 <body>
 <h1>Test Title</h1>
 <p>Lorem Ipsum</p>
 Cookies
 </body>
`;

const COOKIES = `
 <body>
 <h1>Cookies and Milk!</h1>
 <p>Yum!</p>
 Home
 <body>
`

module.exports = {HOME, COOKIES};

Listing 24. Third version of the test website

In Listing 24 is shown the third version of the website that contains only two web pag-

es. Adding new versions of the test website requires following: a new JavaScript file

that has the DOM of the pages that are to be served, adding that version to the array of

scenarios and instructing node execute the JavaScript file that creates the test website

and runs the server with appropriate scenario command line argument.

5.7 Reports

Verification script in the tool also generates a HTML report. The generated report

shows following things for each page that regression test was run on: information

whether the site passed regression test, differences in DOM between stored original

run and the latest run and screenshots from both runs. The generated report also

shows following items for accessibility of the each web page: conformation level to

WCAG 2.1, accessibility score calculated by the Lighthouse and all the audits that

failed.

48

Figure 11. Generated HTML Report

In Figure 11 is shown a generated HTML report for a website that contained three dif-

ferent web pages. In the report each web page passed the regression tests but did not

pass the accessibility audits, that is not even the conformation level A of WCAG 2.1

was reached. Each page element can be toggled to show or hide the details of the veri-

fication. In Figure 11 screenshots of the original and the latest run are shown side by

side. Accessibility section on opened page element also lists all the checks that did not

pass during the audit providing for each item a name and a description. Also if there is

link provided for accessibility item, the name acts as a link.

49

Figure 12. Generated HTML Report where regression test did not pass

A generated HTML report where regression test did not pass is shown in Figure 12.

The reason why the regression test did not pass was that screenshots were different:

screenshot on left has a white background while screenshot on right has a pink back-

ground.

50

Figure 13. Another HTML Report where regression tests did not pass.

In Figure 13 is another example of a report where regression tests did not pass. Code

differences between two instances of the home web page of the tested site were differ-

ent. Since the link to about page was missing on the instance on the right side in Figure

13, it changed the order of elements and that is the reason both links are shown to be

different between the instances. As about page was missing in the verification run the

screenshot of about page on the report is also missing; no code differences are shown

for the missing site.

51

Rest of this section goes over sections of code describing how the report is generated.

First interfaces and class for building reports are listed and explained. After that is

shown how accessibility part of the HTML report is generated. And lastly is shown how

verification script utilizes previous parts to generate HTML report.

interface ReportHalf {
 mismatches: string[];
 screenshot: string;
}

interface ReportSection {
 page: string;
 original: ReportHalf;
 current: ReportHalf;
 screenshotsMatch: boolean;
 accessibility: AccessibilityReport;
}
Listing 25. Interfaces used for building report

Listing 25 shows two interfaces used for building HTML report. As regression testing is

comparing two different instances of the same page, instance specific code is stored

into their own halves called ReportHalf, which contains array of differences in DOM

between two instances of the web page and screenshots of a web page made from the

instance. These are stored into ReportSection as original and current values, original

being the previously crawled and stored webpage and current the webpage from the

recent crawling. In addition to those two values, ReportSection also contains the page

address, information whether the screenshots were matching and lastly and accessibil-

ity report object.

class ReportBuilder {
 private sections: ReportSection[] = [];

 public createSection(page: string,
 screenshotOriginal: string, screenshotCurrent: string,
 screenshotsMatch: boolean,
 accessibility: AccessibilityReport): void {
 if (this.sections.some((section): boolean =>
 section.page === page)) {
 return;
 }
 const original: ReportHalf = {screenshot: screenshotOriginal,
 mismatches: []};
 const current: ReportHalf = {screenshot: screenshotCurrent,
 mismatches: []};
 this.sections.push({page, original, current, screenshotsMatch,
 accessibility});
 }

52

 public addMismatch(page: string, original: string,
 current: string): void {
 const convertedOriginal = convertDom(original);
 const convertedCurrent = convertDom(current);
 const section = this.sections.find((section): boolean =>
 section.page === page);
 section.current.mismatches.push(convertedCurrent);
 section.original.mismatches.push(convertedOriginal);
 }

 public buildReport(): void {
 let content = ''
 ...
 // Sections are converted to DOM string here
 ...
 const template = fs.readFileSync('./report/template.html',
 { encoding: 'utf8'});
 const report = template.replace('{{}}', content);
 fs.writeFileSync('./report/report.html', report, {encoding: 'utf8'
});
 }

}

Listing 26. ReportBuilder Class.

Class used for building report is shown in Listing 26. Builder class contains array of

report sections, one section for each web page on the report. Builder class also has

three public methods. Method for creating section can be used once per web page,

function simply returns if web page is already contained in one of the sections. Method

for adding differences in DOM between two instances of web page is called addMis-

match, which will convert the DOM strings passed into it to escaped HTML so the tags

can be displayed in the HTML report and then adds them into respective halves of re-

port section. Last method in the Builder class is used to actually build the report, report

sections are converted into HTML elements and they are stored into a HTML file utiliz-

ing an existing template.

<html>
<head>
 <title>Testmaker Report</title>
 <link rel="stylesheet" href="report.css" />
 <script src="./report.js" ></script>
 <meta charset="UTF-8">
</head>
<body onload="registerListeners()">
 {{}}
</body>
</html>

53

Listing 27. Template used for generating HTML report.

In Listing 27 is the template used for generating HTML report. Basically only the brack-

ets inside body element are replaced by the generated DOM from the report builder.

Toggling page sections on the report is enabled by calling a function that adds required

event listeners.

interface AccessibilityReport {
 page: string;
 score: number;
 levelReached: AccessibilityLevel;
 failingAudits: AccessibilityRule[];
}

const runAccessibilityTestsOnPage = async (page: string, config: Confi
g): Promise<AccessibilityReport> => {
 logger.info(`RUNNING ACCESSIBILITY TESTS ON: ${page}`);
 const browser: Browser = await launchBrowser(config);
 const report: RunnerResult = await audit(page, 'silent');
 const accessibilityScore = await getScore(report, 'accessibility');
 const rulesNotPassing = await getNotPassingRules(accessibilityRules,
 report);
 await browser.close();
 return {
 failingAudits: rulesNotPassing,
 score: accessibilityScore,
 levelReached: getLevelReached(rulesNotPassing),
 page
 }
}

Listing 28. Interface for accessibility report and a function that generates the report.

In Listing 28 is shown an interface AccessibilityReport that contains following infor-

mation: web page that accessibility report is run on, score calculated by Lighthouse,

conformance level of WCAG 2.1 reached by the web page and array of any audits that

did not pass. Function that generates accessibility report object also runs the Light-

house audits on the web page. The function utilizes the launchBrowser function that

launches the browser instance and makes a login attempt on the site if necessary.

Conformance level reached is determined by the following logic:

 Conformance level A is reached if all accessibility rules related to it have

passed.

 Conformance level AA is reached if all accessibility rules related to it and to

conformance level A have passed.

54

 Conformance level AAA is reached if all accessibility rules related to it and to

conformance levels A and AA have passed.

The function to run accessibility audits and to generate the accessibility report is called

during verifying whether there is regression on the web page. Lighthouse audit is initi-

ated with logging level silent so only the failed audits are outputted on the terminal.

const verifyPageAndDom = async (pageAndDom: PageAndDom,
 pages: PageAndDom[], config: Config,
 original: boolean = false): Promise<void> => {
 ...
 // Code that does initial verification and comparisons are left out
 ...
 const accessilibityReport: AccessibilityReport = await
 runAccessibilityTestsOnPage(pageAndDom. page, config);
 reportBuilder.createSection(pageAndDom. page,
 screenshotOriginal, screenShotCurrent,
 screenShotsAreSame, accessilibityReport);
 if (!passes) {
 ...
 storeDifferenceForReporter(pageAndDom, pageFound);
 }
 ...
 // Code that does rest of the verification is left out
}

const verifyTestData = async (testData: TestData, config: Config):
 Promise<void> => {
 reportBuilder = new ReportBuilder();
 ...
 // Here is the logic that calls verifypageAndDom function for each
 // web page
 ...
 reportBuilder.buildReport();
 logger.info('End of test');
}

Listing 29. Parts of regression testing related to building the HTML report

Function that does the regression verification creates a ReportBuilder object as shown

in Listing 29. The same function calls verifyPageAndDom function for each web page

found during the crawling process. This function is used to check if there is any regres-

sion in the web page but it also adds the web page along with generated accessibility

report to the builder in the form of report section. In case there is any regression found,

the function also calls function named storeDifferenceForReporter, which is a recursive

function that has logic as shown in Figure 13. Lastly verifyTestData function instructs

the report builder to build the HTML report.

55

Figure 14. Logic to store differences between two DOM trees to the builder.

In Figure 14 is shown how the function storeDifferenceForReporter goes through each

node in the first DOM at the top level. First it checks that if there is a node at the same

position in the second DOM. If there is no node in the same position in the second

DOM as there was in the first DOM, information that describes the difference is stored

to the report builder. If node is found in the second position, it checks whether the

nodes are identical. In the case nodes are not identical it will recursively check node’s

children until all the nodes that differ are found, and their differences are added into the

report builder as well.

56

Figure 15. Report of Work-life data service.

A report for a Work-life data service is shown in Figure 15. The website has received a

perfect accessibility score from Lighthouse audit and has reached conformation level

AA of WCAG 2.1 for many web pages. However, it did not pass all the Lighthouse au-

dits, one being the audit named tap targets and that particular audit is connected to

conformance level AAA of WCAG 2.1. Interestingly, the audit did not have a distin-

guishable part in Lighthouse accessibility score. Also of note, is that the website has

labels with attributes that can change on each page load on some of the web pages.

That causes the regression tests to not pass on some of the web pages and the tool

reports a false negative.

The rest of this chapter shows couple more examples of public websites this tool is run

against for demonstration purposes. This is done to demonstrate that the testing tool

can be used to test regression and accessibility of various websites.

57

Figure 16. Report of Metropolia website.

A report for a Metropolia website is shown in Figure 16. The website utilizes a Content

Management System (CMS) that seems to be the cause for the regression issue re-

ported. This issue is a false negative because it seems to be caused by a generated id

on runtime. Configuration option to ignore content can be utilized to prevent that partic-

ular false negative from reoccurring. The web page shown in Figure 15 has also not

reached conformance level A of WCAG 2.1 since it has not passed all the accessibility

audits that are labeled with conformance level A.

58

Figure 17. Report of Gofore website.

A report for a Gofore website is shown in Figure 17. Here a regression issue is caused

by having a time based data inside a HTML element. This issue is a false negative and

configuration option to ignore content can be utilized to remove this issue. Here con-

formance level A of WCAG 2.1 has not been reached due to Lighthouse audits for con-

trast and labels not passing.

59

6 Conclusions

This section covers what the POC project achieved. This was done mostly by checking

if all the specifications were actually implemented. Subsections describe what chal-

lenges were when implementing specifications of the POC and what could be improved

in the future.

Table 4: Checking Implementation of Specifications of the Proof of Concept

Specification Purpose Implemented

Crawler To find all the subpages of the web-

site

Yes

Scraper To record DOM on all the subpages Yes

Captures Screenshots Captures screenshots of the web

pages in the website to be used for

both verification and reporting

Yes

Storing the scraped con-

tent with screenshots

Scraped content with screenshots

must be stored for later verification

use

Yes

Verification Verifies whether the website has

changed

Yes

Reporting via command Reports all the changes found during Yes

60

line interface (CLI) verification

Visual report Generates visual report listing all the

changes found during verification

Yes by generating

a HTML report

Accessibility checks The tool tests the accessibility of

webpage

Yes

Ability to log in The tool can be used to crawl private

webpages

Yes

Ability to ignore marked

content

Some content like time changes all

the time and should be ignored during

verification

Yes but imple-

mented instead an

ability to ignore

content during

scraping

Configurable The tool can be configured to run on

different web pages requiring different

information like log in credentials

Yes

Support static website The tool can be run against a static

website

Yes

Support SPA The tool can be run against SPA Yes

61

As shown in Table 4, POC managed to implement every specification. Only small ex-

ception is the implementation detail of specification for ignoring content. To be specific,

POC does allow a user to ignore some content, but instead of during verification pro-

cess the content is actually ignored already during the scraping process.

6.1 Challenges

There were three major challenges during implementation of the POC. The first chal-

lenge was how crawling and scraping of the website could be implemented. There did

exists some examples in Internet on how to crawl and scrape the website but all of

them were either instructed to run against a specific web page instead of trying to crawl

through all the links or they could only work on static websites. Implementing the POC

to recursively crawl a website was challenging and especially challenging was to find

proper methods to wait for SPA site to load dynamically. Luckily experimental technol-

ogy MutationObserver allowed recursive crawling and scraping to work reliably with

websites that load dynamical content.

The second challenge, although a smaller one, was during regression testing. Particu-

larly finding the differences recursively in two instances of the website was tricky to

implement. Running the verification code successfully for a one website without errors

in the verification process itself might not work on another website, and changes were

required to the code. At one time JavaScript Runtime even crashed during verification

process as it did not properly manage the DOM hierarchy but ended up in infinite loop

instead.

The third challenge was related to accessibility. First there existed no tools that can

provide complete confirmation that a website conforms to WCAG 2.1 specifications as

many of the checks required to conform level A could not be automated reliably. Also

mapping the accessibility audits of the Lighthouse to the conformance levels and speci-

fications of the WCAG 2.1 proved challenging. For that reason many of the accessibility

rules used in POC listed in Appendix 2 have no conformance level or have a link to

WCAG 2.1 Quick Reference site.

62

6.2 Future Improvements

Some of the potential future improvements for the testing tool are about improving the

reports and making crawling and scraping process faster and more reliable. The testing

tool takes a considerable amount of time to process large websites, and this could po-

tentially be improved with multithreading and optimizing the code.

The visual report generated by the tool could be improved to be even more readable

and DOM comparisons could be enhanced. A nice feature would be to highlight what is

different between two nodes and also a feature to show the difference between

screenshots of the web page. Some user experience (UX) and UI designs could be

utilized to enhance the generated visual report.

One useful change that would require a major overhaul would be to change the crawl-

ing and scraping process to work on other interactive elements besides links such as

buttons and form controls. That change could potentially detect more changes that can

cause regression. Ability to ignore content could also be implemented during verifica-

tion process where user would be queried if he or she wants to ignore some dynamic

content in the future regression tests for the website.

The testing tool should also be added into the CI pipeline of different projects, where it

could potentially prevent builds that have regression or accessibility issues from being

deployed to production for example. This might require some changes in the tool itself

as well.

The testing tool also lacks unit tests that could verify its code is working as intended.

Particularly the logic related to crawling and verification are important to be automati-

cally tested but it can be also very useful to have tests for accessibility and report func-

tionality of the tool as well.

Lighthouse CLI contains also audits for SEO, performance and best practices. Those

audits could also be added into the testing tool with reasonable effort by adding results

of those audits into the reports and making new test suites.

References

1 About Finnish Institute of Occupational Health. https://www.ttl.fi/en/about-us/.
Accessed 23 Nov 2019.

2 Saavutettavuus. https://vm.fi/saavutettavuusdirektiivi. Accessed 26 Jan 2020.

3 DIRECTIVE (EU) 2016/2102 OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL. https://eur-lex.europa.eu/eli/dir/2016/2102/oj. Accessed 1 Apr.2020.

4 Spring Boot. https://spring.io/projects/spring-boot. Accessed 30 Apr 2020.

5 Node.js. https://nodejs.org/en/. Accessed 19 Apr 2020.

6 Flyway by Redgate – Database Migrations Made Easy. https://flywaydb.org/. Ac-
cessed 30 Apr 2020.

7 Knex.js – A SQL Query Builder for JavaScript. http://knexjs.org/. Accessed 30
Apr 2020.

8 Docker: Empowering App Development for Developers. https://www.docker.com/.
Accessed 30 Apr 2020.

9 Vue.js - The Progressive JavaScript Framework. https://vuejs.org/. Accessed 30
Apr 2020.

10 AngularJS - Superheroic JavaScript MVW Framework. https://angularjs.org/. Ac-
cessed 30 Apr 2020.

11 Accessibility Statement | Work-life Knowledge Service.
https://worklifedata.fi/#/en/accessibility. Accessed 19 Apr 2020.

12 Introduction to Web Accessibility.
https://www.w3.org/WAI/fundamentals/accessibility-intro/. Accessed 6 Apr 2020.

13 Brewer, J., Web accessibility highlights and trends. 2004. Proceedings of the
2004 international cross-disciplinary workshop on Web accessibility (W4A), pp.
51–55.

14 Web Content Accessibility Guidelines (WCAG) 2.1.
https://www.w3.org/TR/WCAG21/. Accessed 5 Apr 2020.

15 How to Meet WCAG (Quick Reference).
https://www.w3.org/WAI/WCAG21/quickref/. Accessed 19 Apr 2020.

16 Support for WCAG 2.1 in axe-core. https://www.deque.com/blog/support-for-
wcag-2-1-in-axe-core/. Accessed 5 Apr 2020.

17 Npm page for axe-core. https://www.npmjs.com/package/axe-core. Accessed 8
Sep 2019

18 Axe. https://www.deque.com/axe/. Accessed 8 Sep 2019.

19 Lighthouse. https://developers.google.com/web/tools/lighthouse. Accessed 19
Apr 2020.

20 Color Contrast Accessibility Validator. https://color.a11y.com/. Accessed 19 Apr
2020.

21 What is a Web Crawler? | How Web Spiders work.
https://www.cloudflare.com/learning/bots/what-is-a-web-crawler/. Accessed 29
Mar 2020.

22 Googlebot. https://support.google.com/webmasters/answer/182072?hl=en. Ac-
cessed 29 Apr 2020.

23 Introductions to Headless Browsers – Multidots.
https://www.multidots.com/introduction-to-headless-browsers/ . Accessed 30 Apr
2020.

24 Scrapy. https://scrapy.org/. Accessed 29 Apr 2020.

25 Nightwatch.js. https://nightwatchjs.org/. Accessed 29 Mar 2020.

26 W3C Webdriver. https://www.w3.org/TR/webdriver/. Accessed 29 Mar 2020.

27 Puppeteer. https://developers.google.com/web/tools/puppeteer. Accessed 29 Mar
2020.

28 Wraith Documentation. https://bbc-news.github.io/wraith/. Accessed 30 Mar 2020.

29 DevTools Protocol. https://chromedevtools.github.io/devtools-protocol/. Accessed
29 Mar 2020.

30 npm. https://www.npmjs.com/. Accessed 19 Apr 2020.

31 TypeScript: Typed JavaScript at Any Scale. https://www.typescriptlang.org/. Ac-
cessed 19 Apr 2020.

32 Git. https://git-scm.com/. Accessed 19 Apr 2020.

33 ESLint - Pluggable JavaScript linter. https://eslint.org/. Accessed 19 Apr 2020.

34 Jest – Delightful JavaScript testing. https://jestjs.io/. Accessed 19 Apr 2020.

35 Cross-Origin Resource Sharing (CORS). https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS. Accessed 19 Apr 2020.

36 WebSockets. https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API. Accessed 19 Apr 2020.

37 MutationObserver – Web APIs | MDN. https://developer.mozilla.org/en-
US/docs/Web/API/MutationObserver. Accessed 30 Apr 2020.

38 image-equal – npm. https://www.npmjs.com/package/image-equal. Accessed 19
Apr 2020.

39 serve-static – npm. https://www.npmjs.com/package/serve-static. Accessed 19
Apr 2020.

40 connect – npm. https://www.npmjs.com/package/connect. Accessed 19 Apr
2020.

Appendix 1
1 (4)

Code Listing For Crawling

import {Page} from 'puppeteer';
import {TestData, PageAndDom} from '../model/testdata';
import logger from '../config/testlogger';
import {Config, TimeConfig, IgnoredContentType, IgnoredContent} from '../config/config';
import {launchBrowser} from '../tools/browserutil';
import {getScreenshotFolderAndCreateIfItDoesNotExist} from '../tools/fileutil';

interface FoundLocation {
 path: string;
 item: string;
}

enum CrawlAction {
 RECORD, VERIFY
}

const LOAD_READY_FLAG = 'testmakerloadready';

const removeProtocol = (path: string): string => path.replace('https://', '').replace('http://', '');

class Crawler {

 private alreadyFound: FoundLocation[] = [];
 public crawledSites: PageAndDom[] = [];
 private readonly baseHref: string;
 private screenshotIdentifier: number = 1;
 private screenshotFolder: string;
 private timeConfig: TimeConfig;
 private ignoredContent: IgnoredContent[] = [];

 public constructor(config: Config, screenshotFolder: string) {
 this.baseHref = config.website;
 this.screenshotFolder = screenshotFolder;
 this.timeConfig = config.timeConfig;
 this.ignoredContent = config.ignoredContent;
 }

 private isNotAlreadyFound(path: string, item: string): boolean {
 if (item.includes('#')) {
 return !this.alreadyFound.some((found: FoundLocation): boolean => found.item === item);
 }
 if (!item.startsWith('/')
 && (path.endsWith(item)
 || this.alreadyFound.some((found: FoundLocation): boolean => found.path.concat(found.item).
endsWith(item)))) {
 return false;
 }
 let fullPath = item;
 if (fullPath.endsWith('/')) {
 fullPath = fullPath.substring(0, fullPath.lastIndexOf('/'));
 }
 fullPath = removeProtocol(path).concat(fullPath);

Appendix 1
2 (4)

 return !this.alreadyFound.some((found): boolean => {
 return found.path.concat(found.item).endsWith(fullPath);
 });
 }

 private async waitForPageLoad(page: Page): Promise<void> {
 try {
 await page.evaluate((loadReadyFlag): void => {
 let counter = new Date().getTime();
 const resetCounter = (): void => {
 counter = new Date().getTime();
 }
 const observer = new MutationObserver(resetCounter);
 observer.observe(document.body, {attributes: true, childList: true, subtree: true});
 setInterval((): void => {
 if (new Date().getTime() - counter > 500) {
 const span = document.createElement('span');
 span.id = loadReadyFlag;
 document.body.appendChild(span);
 }
 }, 50);
 }, LOAD_READY_FLAG);
 await page.waitForSelector(`#${LOAD_READY_FLAG}`, {timeout: this.timeConfig.loadWait});
 await page.evaluate((loadReadyFlag): void => {
 // Removing load ready element is done in loop, in case there are some that are left on previo
us load
 const elements = document.querySelectorAll(`#${loadReadyFlag}`);
 elements.forEach((element: Element): void => {
 document.body.removeChild(element);
 })
 }, LOAD_READY_FLAG);
 await page.waitForSelector(`#${LOAD_READY_FLAG}`, {hidden: true, timeout: this.timeConfig
.wait});
 } catch (e) {
 logger.warn(`Could not wait using observer, waiting for 500 ms instead. Error: ${e}`)
 await page.waitFor(500);
 }
 }

 private cleanDOM(dom: string): string {
 let cleanedDom = dom.replace(/<\/span>`/gi, '');
 try {
 this.ignoredContent.forEach((ignored: IgnoredContent): void => {
 if (ignored.contentType === IgnoredContentType.ATTRIBUTE) {
 const regEx = new RegExp(`${ignored.value}="[^"]*"`, 'gi');
 cleanedDom = cleanedDom.replace(regEx, '');
 } else if (ignored.contentType === IgnoredContentType.TAG && dom.includes(`<${ignored.val
ue}`)) {
 // This presumes dom is proper HTML with end tags"
 const splitDom = cleanedDom.split(`<${ignored.value}`);
 cleanedDom = splitDom[0];
 for (let i = 1; i < splitDom.length; i++) {
 cleanedDom += splitDom[i].split(`</${ignored.value}>`)[1];
 }
 }

Appendix 1
3 (4)

 });
 } catch (e) {
 logger.warn(`Could not clean ignored content. Error: ${e}`);
 }
 return cleanedDom;
 }

 public async crawlInternal(page: Page, path: string, depth: number = 0): Promise<void> {
 if (!path.includes(this.baseHref) || this.crawledSites.some((site: PageAndDom): boolean => site.
page === path)) {
 return;
 }
 logger.info(`Crawling page ${path} at depth ${depth}`)
 const DOM = await page.evaluate((): string => document.body.innerHTML);
 const screenshotFile = `${this.screenshotFolder}/${this.screenshotIdentifier++}.jpg`;
 await page.waitFor(this.timeConfig.wait);
 await page.screenshot({path: screenshotFile, fullPage: false, type: 'jpeg', quality: 25});
 this.crawledSites.push({page: path, dom: this.cleanDOM(DOM), screenshotFile});
 let items = await page.evaluate((obj): string[] => {
 const ret = [];
 for (const item of document.querySelectorAll(obj.sel)) {
 const href = item.getAttribute('href');
 const target = item.getAttribute('target');
 if (href
 && !href.includes('mailto:')
 && !href.includes('tel:')
 && !target
 && (!obj.base.includes('#') || (href.includes('#') && href.startsWith('#' + obj.base.split('#')[1]))
)
 && href.split('#').length < 3 // excludes anchor links in spa
 && (!href.includes('http') || href.includes(obj.base))) {
 ret.push(href);
 }
 }
 return ret;
 }, {sel: 'a', base: this.baseHref});
 items = items.filter((item: string): boolean => this.isNotAlreadyFound(path, item));
 this.alreadyFound = this.alreadyFound.concat(items.map((item: string): FoundLocation => {
 return {path: removeProtocol(path), item};
 }));
 for (const item of items) {
 try {
 await page.waitForSelector(`[href="${item}"`);
 await page.evaluate((element): void => {
 document.querySelector(element).scrollIntoView();
 return;
 }, `[href="${item}"`);
 await page.waitFor(this.timeConfig.wait);
 await page.click(`[href="${item}"`);
 await page.waitFor(this.timeConfig.wait);
 await this.waitForPageLoad(page);
 try {
 const url = await page.evaluate((): string => window.location.href);
 await this.crawlInternal(page, url, depth + 1);
 } catch (e) {

Appendix 1
4 (4)

 logger.error(e);
 }
 } catch (e) {
 logger.error(`Could not click the link ${item} on ${path}. Error: ${e}`);
 }
 await page.waitFor(this.timeConfig.wait);
 await page.goto(path, {waitUntil: 'networkidle2'});
 await this.waitForPageLoad(page);
 }
 }
}

async function crawl(config: Config, action: CrawlAction): Promise<TestData> {
 const browser = await launchBrowser(config, false);
 const baseHref = config.website;
 logger.info('START of crawling');
 const screenshotFolder = getScreenshotFolderAndCreateIfItDoesNotExist(config.name
 ? config.name : config.website, action);
 const page = await browser.newPage();
 await page.goto(baseHref, {waitUntil: 'networkidle2'});
 const crawler = new Crawler(config, screenshotFolder);
 await crawler.crawlInternal(page, baseHref);
 browser.close();
 logger.info(`Found ${crawler.crawledSites.length} sites`);
 logger.info('END of crawling');
 return {pagesAndDoms: crawler.crawledSites, siteTested: baseHref, name: config.name};
}

export {
 crawl,
 CrawlAction
}

Appendix 2
1 (10)

Accessibility Rules

const accessibilityRules: AccessibilityRule[] = [
 {
 lighthouseRule: 'color-contrast',
 descrip-
tion: 'The visual presentation of text and images of text has a contrast ratio of a
t least 4.5:1',
 name: 'Contrast',
 accessibilityLevel: AccessibilityLevel.AA,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#contrast-minimum'
 },
 {
 lighthouseRule: 'image-alt',
 description: 'All non-
text content that is presented to the user has a text alternative that serves the e
quivalent purpose,',
 name: 'Image Alt Text',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#non-text-content'
 },
 {
 lighthouseRule: 'aria-valid-attr-value',
 description: 'Contains valid values for all ARIA attributes',
 name: 'ARIA Attribute Values Are Correct',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'aria-valid-attr',
 description: 'Contains valid ARIA attributes',
 name: 'ARIA Attributes Are Correct',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'duplicate-id',
 descrip-
tion: 'In content implemented using markup languages, elements have complete start
and end tags, elements are nested according to their specifications, elements do no
t contain duplicate attributes, and any IDs are unique, except where the specificat
ions allow these features.',
 name: 'Duplicate Id',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#parsing'
 },
 {
 lighthouseRule: 'tabindex',

Appendix 2
2 (10)

 descrip-
tion: 'A value greater than 0 implies an explicit navigation ordering. Although tec
hnical-
ly valid, this often creates frustrating experiences for users who rely on assistiv
e technologies',
 name: 'No Tab Index Values Above 0',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'logical-tab-order',
 descrip-
tion: 'If a Web page can be navigated sequentially and the navigation sequences aff
ect meaning or operation, focusable components receive focus in an order that prese
rves meaning and operability.',
 name: 'Logical Tab Order',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#focus-order'
 },
 {
 lighthouseRule: 'aria-allowed-attr',
 description: 'Valid ARIA allowed attributes',
 name: 'ARIA Allowed Attributes',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'aria-required-attr',
 description: 'Valid ARIA allowed attributes',
 name: 'ARIA Required Attributes',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'aria-required-children',
 description: 'Valid ARIA required children',
 name: 'ARIA Required Children',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'aria-required-parent',
 description: 'Valid ARIA required parent',
 name: 'ARIA Required Parent',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {

Appendix 2
3 (10)

 lighthouseRule: 'audio-caption',
 descrip-
tion: 'Captions are provided for all prerecorded audio content in synchronized medi
a, except when the media is a media alternative for text and is clearly labeled as
such.',
 name: 'Audio Captions',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#captions-prerecorded'
 },
 {
 lighthouseRule: 'button-name',
 descrip-
tion: 'For all user interface components (including but not limited to: form elemen
ts, links and components generated by scripts), the name and role can be programmat
ical-
ly determined; states, properties, and values that can be set by the user can be pr
ogrammatical-
ly set; and notification of changes to these items is available to user agents, inc
luding assistive technologies.',
 name: 'Button Name',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#name-role-value'
 },
 {
 lighthouseRule: 'bypass',
 descrip-
tion: 'A mechanism is available to bypass blocks of content that are repeated on mu
ltiple Web pages.',
 name: 'bypass',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#bypass-blocks'
 },
 {
 lighthouseRule: 'definition-list',
 description: 'Valid definition lists',
 name: 'Definition List',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'dlitem',
 description: 'Valid definition list items',
 name: 'Definition List Items',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'document-title',

Appendix 2
4 (10)

 description: 'Web pages have titles that describe topic or purpose.',
 name: 'Document Title',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#page-titled'
 },
 {
 lighthouseRule: 'frame-title',
 descrip-
tion: 'For all user interface components (including but not limited to: form elemen
ts, links and components generated by scripts), the name and role can be programmat
ical-
ly determined; states, properties, and values that can be set by the user can be pr
ogrammatical-
ly set; and notification of changes to these items is available to user agents, inc
luding assistive technologies.',
 name: 'Frame Title',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#name-role-value'
 },
 {
 lighthouseRule: 'html-has-lang',
 descrip-
tion: 'The default human language of each Web page can be programmatically determin
ed.',
 name: 'HTML Has Language',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#language-of-page'
 },
 {
 lighthouseRule: 'html-lang-valid',
 descrip-
tion: 'The default human language of each Web page can be programmatically determin
ed.',
 name: 'htmlValidLanguage',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#language-of-page'
 },
 {
 lighthouseRule: 'input-image-alt',
 description: 'All non-
text content that is presented to the user has a text alternative that serves the e
quivalent purpose',
 name: 'Image Input Alternative Text',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#non-text-content'
 },
 {
 lighthouseRule: 'label',

Appendix 2
5 (10)

 descrip-
tion: 'Information, structure, and relationships conveyed through presentation can
be programmatically determined or are available in text.',
 name: 'Label',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#info-and-relationships'
 },
 {
 lighthouseRule: 'layout-table',
 descrip-
tion: 'When the sequence in which content is presented affects its meaning, a corre
ct reading sequence can be programmatically determined.',
 name: 'Layout Tables',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#meaningful-sequence'
 },
 {
 lighthouseRule: 'link-name',
 descrip-
tion: 'The purpose of each link can be determined from the link text alone or from
the link text together with its programmatically determined link context, except wh
ere the purpose of the link would be ambiguous to users in general.',
 name: 'Link Has Discernible Name',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#link-purpose-in-context'
 },
 {
 lighthouseRule: 'list',
 description: 'Valid lists',
 name: 'list',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'listitem',
 description: 'Valid list items',
 name: 'list Item',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'meta-refresh',
 descrip-
tion: 'Users do not expect a page to refresh automatically, and doing so will move
fo-
cus back to the top of the page. This may create a frustrating or confusing experie
nce.',
 name: 'Meta Refresh',

Appendix 2
6 (10)

 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#timing-adjustable'
 },
 {
 lighthouseRule: 'meta-viewport',
 description: '[user-
scalable="no"]` is used in the `<meta name="viewport">` element or the `[maximum-
scale]` attribute is less than 5. Disabling zooming is problematic for users with l
ow vision who rely on screen magnification to properly see the contents of a web pa
ge.',
 name: 'Meta Viewport',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'object-alt',
 description: 'All non-
text content that is presented to the user has a text alternative that serves the e
quivalent purpose, except for the situations listed below.',
 name: 'Object Alternative',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#non-text-content'
 },
 {
 lighthouseRule: 'td-headers-attr',
 descrip-
tion: 'Information, structure, and relationships conveyed through presentation can
be programmatically determined or are available in text.',
 name: 'Table Headers Attribute',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#info-and-relationships'
 },
 {
 lighthouseRule: 'th-has-data-cells',
 descrip-
tion: 'Information, structure, and relationships conveyed through presentation can
be programmatically determined or are available in text.',
 name: 'Table Headers Have Data Cells',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#info-and-relationships'
 },
 {
 lighthouseRule: 'video-caption',
 descrip-
tion: 'Captions are provided for all prerecorded audio content in synchronized medi
a, except when the media is a media alternative for text and is clearly labeled as
such.',
 name: 'Video Caption',

Appendix 2
7 (10)

 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#captions-prerecorded'
 },
 {
 lighthouseRule: 'video-description',
 description: 'For prerecorded audio-only and prerecorded video-
on-
ly media, the following are true, except when the audio or video is a media alterna
tive for text and is clearly labeled as such:',
 name: 'Video Description',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#audio-only-and-video-only-
prerecorded'
 },
 {
 lighthouseRule: 'custom-controls-labels',
 descrip-
tion: 'Custom interactive controls have associated labels, provided by aria-
label or aria-labelledby',
 name: 'Custom Controls Have Labels',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'custom-controls-roles',
 description: 'ARIA roles for custom controls',
 name: 'Custom Controls HaveRoles',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'focus-traps',
 descrip-
tion: 'If keyboard focus can be moved to a component of the page using a keyboard i
nter-
face, then focus can be moved away from that component using only a keyboard interf
ace, and, if it requires more than unmodified arrow or tab keys or other standard e
xit methods, the user is advised of the method for moving focus away.',
 name: 'focusTraps',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#no-keyboard-trap'
 },
 {
 lighthouseRule: 'focusable-controls',
 descrip-
tion: 'Custom interactive controls are keyboard focusable and display a focus indic
ator.',
 name: 'focusableControls',

Appendix 2
8 (10)

 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'interactive-element-affordance',
 descrip-
tion: 'Interactive elements, such as links and buttons, should indicate their state
 and be distinguishable from non-interactive elements.',
 name: 'interactive Elements Are Distinguishable',
 accessibilityLevel: AccessibilityLevel.A,
 url: ''
 },
 {
 lighthouseRule: 'link-text',
 description: 'All non-
text content that is presented to the user has a text alternative that serves the e
quivalent purpose',
 name: 'Link Text',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#non-text-content'
 },
 {
 lighthouseRule: 'structured-data',
 descrip-
tion: 'Information, structure, and relationships conveyed through presentation can
be programmatically determined or are available in text.',
 name: 'Structured Data',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#info-and-relationships'
 },
 {
 lighthouseRule: 'aria-roles',
 description: 'Valid Aria Roles',
 name: 'Aria Roles',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'image-aspect-ratio',
 description: 'Valid aspect ratios for images',
 name: 'Image Aspect Ratio',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'notification-on-start',

Appendix 2
9 (10)

 descrip-
tion: 'Users are mistrustful of or confused by sites that request to send notificat
ions without context. Consider tying the request to user gestures instead.',
 name: 'Notification on Start',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'geolocation-on-start',
 descrip-
tion: 'Users are mistrustful of or confused by sites that request their location wi
thout context. Consider tying the request to user gestures instead.',
 name: 'Geolocation on Start',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'valid-lang',
 descrip-
tion: 'The human language of each passage or phrase in the content can be programma
tical-
ly determined except for proper names, technical terms, words of indeterminate lang
uage, and words or phrases that have become part of the vernacular of the immediate
ly surrounding text.',
 name: 'Valid Language On Elements',
 accessibilityLevel: AccessibilityLevel.AA,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#language-of-parts'
 },
 {
 lighthouseRule: 'heading-levels',
 descrip-
tion: 'In content implemented using markup languages, elements have complete start
and end tags, elements are nested according to their specifications, elements do no
t contain duplicate attributes, and any IDs are unique, except where the specificat
ions allow these features.',
 name: 'Heading Levels',
 accessibilityLevel: AccessibilityLevel.A,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#parsing'
 },
 {
 lighthouseRule: 'managed-focus',
 descrip-
tion: 'If new content, such as a dialog, is added to the page, the user`s focus is
directed to it.',
 name: 'Managed Focus',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },

Appendix 2
10 (10)

 {
 lighthouseRule: 'use-landmarks',
 descrip-
tion: 'Landmark elements (<main>, <nav>, etc.) are used to improve the keyboard nav
igation of the page for assistive technology',
 name: 'Use of Landmarks',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'visual-order-follows-dom',
 descrip-
tion: 'DOM order matches the visual order, improving navigation for assistive techn
ology.',
 name: 'Visual Order Follows Dom',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'font-size',
 descrip-
tion: 'Font sizes less than 12px are too small to be legible and require mobile vis
itors to “pinch to zoom” in order to read. Strive to have >60% of page text ≥12px.'
,
 name: 'Font Size',
 accessibilityLevel: AccessibilityLevel.NOT_DETERMINED,
 url: ''
 },
 {
 lighthouseRule: 'tap-targets',
 descrip-
tion: 'The size of the target for pointer inputs is at least 44 by 44 CSS pixels',
 name: 'Tap Targets',
 accessibilityLevel: AccessibilityLevel.AAA,
 url: 'https://www.w3.org/WAI/WCAG21/quickref/#target-size'
 },
];

