

Duong Minh Chinh

A SMART TO-DO APPLICATION FOR

PRODUCTIVITY AND ENTHUSIASTS

WITH REACT NATIVE

Technology and Communication

2020

ACKNOWLEDGEMENT

Firstly, I would like to send my appreciation and many thanks to my teachers at

Vaasa University of Applied Sciences, who inspired me on my journey of study-

ing at VAMK. I appreciate the passion and the encouragement from Mr. Timo

Kankaapää, my thesis supervisor, for being supportive and for his working op-

portunities for students. Timo did provide me many projects to improve my pro-

fessional skills as a Software Engineer and I thank him for that.

I would like to give my special thanks to Mr. Seppo Mäkinen for being a great

teacher throughout my academic years at VAMK. His earnest and care for stu-

dents is highly appreciated, and it has affected my determination to be strict, care-

ful and truthful on my career path.

Furthermore, I would like to thank the online community of developers including

Stack Overflow, Github and Expo’s forum of being helpful at my questions.

Without the helps, this thesis might have not been accomplished in time.

I also would like to send my gratitude towards my teammates and especially my

friend, Ha Nguyen, for providing ideas of the thesis, as well as supporting me

along the way. Her dedicated management drove the project forward.

Finally, I would thank my parents for supporting me unconditionally on the path

of completing my degree at VAMK. Their encouragement and love provided me

confidence and belief in my chosen career.

Helsinki, 08.02.2020

Duong Minh Chinh

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Duong Minh Chinh

Title A Smart To-do Application for Productivity and Enthusiasts

With React Native

Year 2020

Language English

Pages 97

Name of Supervisor Timo Kankaanpää

The thesis was done based on the urge of creating an innovative to-do mobile ap-

plication with the goal of helping people to reach their best productivity perfor-

mance. There are several major to-do mobile applications serving different kinds

of planning tasks in the market, but none of them simplifies the methods (the way

of planning) or helps users stay motivated enough. Quint, the name of the mobile

application that this thesis worked on, defines all the matters and unifies useful

features from each major application, as well as provides new ones in order to

help users stay “hydrated”.

Quint is a cross-platform mobile application. To be more concise, Quint includes

two main parts to form a completely useable application. We separate them as

Front-end and Back-end parts. The Front-end part was mainly built with React

Native and Expo. The Back-end part was built with Nodejs (Express) and Fire-

base. This thesis focuses on the implementations of Quint in both Front-end and

Back-end sides at the time Quint reached its beta testing phase.

Quint has reached it first milestone, which is to be released for beta testing in iOS

(TestFlight). At the time writing the thesis, Quint has already received over 50

feedbacks from public testers with 100+ download times despite the shortness and

the lack of advertisements.

Keywords Quint, React Native, Nodejs, Express, Firebase

1

CONTENTS
1 INTRODUCTION .. 6

1.1 Background and Motivations .. 6

1.2 Objectives ... 7

1.3 Scope and Limitations... 7

1.4 The Structure of the Thesis ... 8

2 TECHNICAL BACKGROUND .. 9

2.1 The Front-end side .. 9

2.1.1 React and React Native ... 9

2.1.2 Expo .. 10

2.1.3 Redux .. 11

2.1.4 Redux Persist ... 14

2.1.5 React Navigation ... 14

2.1.6 ImmutableJS .. 16

2.2 The Back-end side... 17

2.2.1 Expressjs and Nodejs .. 17

2.2.2 Firebase ... 17

2.2.3 SendGrid ... 19

3 APPLICATION DESCRIPTION ... 20

3.1 General Description .. 20

3.2 Quality Requirements ... 20

3.2.1 The Front-end side .. 20

3.2.2 The Back-end side ... 23

3.3 Use Case Diagrams ... 23

3.3.1 The Front-end side .. 24

3.3.2 The Back-end side ... 25

3.4 Class Diagrams ... 26

3.4.1 The Front-end side .. 27

3.4.2 The Back-end side ... 35

3.5 Sequence Diagrams ... 38

3.5.1 The Front-end side .. 39

3.5.2 The Back-end side ... 48

2

4 DATABASE DESIGNS & GUIS .. 52

4.1 The Front-end side .. 52

4.1.1 Task Database Design ... 52

4.1.2 Category Database Design .. 57

4.1.3 Completed Task Database Design .. 59

4.1.4 Database Designs of Day, Week, Month and Year Statistics 62

4.2 The Back-end side... 65

4.2.1 User Database Design ... 66

4.2.2 Verification Token Database Design .. 67

4.2.3 Referral Code Database Design .. 68

5 IMPLEMENTATIONS & RESULTS .. 69

5.1 The Front-end side .. 70

5.1.1 The application structure ... 70

5.1.2 Redux store, reducers and actions ... 73

5.1.3 Add a task implementation.. 77

5.2 The Back-end side... 83

5.2.1 Client-side account registration... 84

5.2.2 Server application structure .. 88

5.2.3 Send email verification ... 89

6 CONCLUSION .. 93

3

LIST OF FIGURES AND TABLES

Figure 1 Apps that use React Native ... 10

Figure 2 React without Redux updating indirect components 12

Figure 3 Redux with Redux updating indirect components .. 13

Figure 4 Quint's React Navigation basic setup .. 15

Figure 5 Using the App Use Case diagram ... 24

Figure 6 Managing Remote Requests User Case diagram .. 25

Figure 7 Class diagram for creating a new task ... 28

Figure 8 Class diagram for editing a task .. 29

Figure 9 Class diagram for displaying statistics and charts ... 31

Figure 10 Class diagram for CRUD rewards and tracking main reward 33

Figure 11 Class diagram for signing up a new account, sign in and sign out with email

and password method ... 36

Figure 12 Class diagram for running initial checks ... 38

Figure 13 Sequence diagram for creating a task .. 39

Figure 14 Sequence diagram for editing a task ... 40

Figure 15 Sequence diagram for editing multiple tasks .. 41

Figure 16 Sequence diagram for deleting a task .. 42

Figure 17 Sequence diagram for deleting multiple tasks .. 44

Figure 18 Sequence diagram for updating statistics and charts 44

Figure 19 Sequence diagram for CRUD operations of rewards 45

Figure 20 Sequence diagram for purchasing a reward .. 47

Figure 21 Sequence diagram of CRUD operations of categories 48

Figure 22 Sequence diagram for account registration ... 49

Figure 23 Sequence diagram for validating user subscription and expiration 50

Figure 24 Database design for Day tasks .. 53

Figure 25 Example of a Day task's detail .. 54

Figure 26 Detailed properties of the Day task example .. 55

Figure 27 Database design for categories .. 57

Figure 28 GUI example of the default category .. 58

Figure 29 Database design for Day completed tasks ... 59

4

Figure 30 Uncompleted state of the example task ... 60

Figure 31 Completed state of the example task ... 61

Figure 32 Database design for general statistics.. 62

Figure 33 Monthly completion calendar and summary when completing the example task

 .. 64

Figure 34 Week & Month Progess Chart when completing the example task 65

Figure 35 Database design for user-related data.. 66

Figure 36 Database design for verification tokens .. 67

Figure 37 Database design for referral codes .. 68

Figure 38 The structure of the client side .. 70

Figure 39 Image of package control file .. 71

Figure 40 Image of Redux's store configurations – store.js .. 73

Figure 41 Reducer of Day tasks... 74

Figure 42 Action of adding a task.. 75

Figure 43 Connector of the component in charge of creating a new task 77

Figure 44 Implementation of adding a task - part 1... 79

Figure 45 Implementation of adding a task - part 1... 80

Figure 46 Result of adding Day tasks .. 82

Figure 47 Code snippet of client-side signing up function .. 84

Figure 48 Code snippet for validating the input referral code 85

Figure 49 Screenshot of sign-up screen ... 86

Figure 50 Email verification sent dialog ... 87

Figure 51 The structure of the server ... 88

Figure 52 Code snippet for sign-up route handler – part 1 .. 89

Figure 53 Code snippet for sign-up route handler – part 2 .. 90

Figure 54 Screenshot of the account verification email .. 92

5

LIST OF ABBREVIATIONS

URL Uniform Resource Locator

CRUD Create, Remove, Update, Delete

UI User Interface

API Application Programming Interface

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

SPA Single-page Application

SQL Structured Query Language

NoSQL Not Only Structured Query Language

6

1 INTRODUCTION

1.1 Background and Motivations

Technology is growing in a fast pace nowadays. It facilitates a large part of people’s

burdens, as well as improves people’s lives. Besides, with the growth of technology, there

are more and more tech start-ups, which are founded by young people. These start-ups

may have a short life, or they may last long and become big companies. Interestingly, the

results depend on humans since although technology is great, it must be used efficiently

and smartly by people. We all know that to run a start-up is not an easy job. It takes time

and effort of many people to live up to their dreams. Thus, some may feel discouraged

along the way. Quint is initiated with the idea of helping people work more productively

by providing simplified planning methods and constructing self-reward systems so people

will stay motivated doing what they plan to do.

Quint provides an importance priority matrix for managing tasks. The matrix consists of

4 levels of importance, which helps users define the ones that should be prioritized and

be done first. In addition, Quint lets users decide their own rewards. Because there are no

ways to identify proper rewards for all users, it is better to have users creating their own

ones. When using Quint, users can set up points for each task so they can get those points

when completing tasks. There is a shopping feature in Quint, where users define their

wanted rewards and they can purchase those rewards with earned points. Quint also pro-

vides a purchase history so that users can easily trace bought items with 3 identifiers:

what, when and how many. The idea of self-reward system came from daily needs of

people. People momentarily purchase an item just because they have the urge of buying

it, without a hesitance of re-thinking and considering its costs and benefits. In other words,

people always want to treat themselves with rewards but normally those treats have bigger

values than what people think. Quint makes people work for what they want as treats.

7

1.2 Objectives

The main goal of the thesis is to reach the first stage of Quint, which is beta testing for

iOS via TestFlight app. At this stage, Quint is usable and can be downloaded by down-

loading via TestFlight app provided by Apple. When using TestFlight, simply enter

Quint’s TestFlight url to download Quint. After finishing downloading, Quint is available

for usage.

There are two memberships, one is a Free plan and other is a Premium plan. Free plan

has limited features while Premium plan has full access to all current and incoming fea-

tures. At the first stage, to use Quint at its finest, users will be prompted a notification

window that advices to register an account to test as a Premium member.

Although Quint is out for beta testing in iOS, it is still possible to develop and publish in

Android. All it takes just a few changes due to different requirements in environments

between iOS and Android. In the past, to develop a mobile application is expensive and

cumbersome as there are 2 different developing teams working on 2 major mobile envi-

ronments: Android (Java) and iOS (Swift, Objective C). Nowadays, the limitations are

heavily reduced because of the appearances of cross-platform languages such as React

Native and Flutter. With cross-platform technologies, it is possible to make “develop

once, ship everywhere” mobile applications.

1.3 Scope and Limitations

The thesis contains a scope of the first stage version of Quint, which meets the major

requirements:

• Users should be able to perform CRUD operations on tasks.

• Users should be able to register a new account and login/logout with in-

tents or forces by the application.

• Users should be able to make an upgrade from Free plan to Premium plan

through a subscription system.

8

• Users should be able to see their completion analytics in graphs.

• Users should be able to make their own rewards, to gain points from com-

pleting tasks and to purchase those rewards with earned points.

• Users should be able to see their purchase histories.

• The application should do double-check for receipts whenever users make

an upgrade from Free plan to Premium plan.

• The application should check whether users have already logged in and

whether their accounts are Free or Premium to determine the next steps

when being opened (from background/inactive to foreground/active).

• The application should be able to store task data on disk so that whenever

we push a new update on the merchant (iOS or Android), the application

will not lose its old data. In other words, it should be able to preserve data

over updates.

At the time writing the thesis, due to time constraints tests could not be carried out. All

the testing results in this thesis were manual testing or laboratory testing. To test the app

thoroughly, one should make attempts of using Jest, a testing framework made for JavaS-

cript, especially for React and React Native, to unit-testing the application. Thus, we can

use Jest to test in the Back-end side as well, since we use Nodejs (JavaScript) for control-

ling our server.

1.4 The Structure of the Thesis

In Chapter 2, we will discuss the relevant technologies and what knowledge is required

to for specific features.

9

2 TECHNICAL BACKGROUND

2.1 The Front-end side

2.1.1 React and React Native

Firstly, to be able to understand about React Native more thoroughly, one should have

enough knowledge about React.

React has been one of the most popular frameworks over recent years. It has been men-

tioned everywhere in the job markets for developers. Thus, developers are using it inten-

sively for scaling and rapid developments. So, what is React? In short, React is a JavaS-

cript framework for building UIs. Developers use React for building a web-based SPA.

React is mostly known for its effectiveness, optimizations and controllable props, states.

When using React, developers code for components. Those components can be re-ren-

dered by updating their properties (props) or states. Therefore, it is easier for developers

to control which components should update and when they should perform a re-render.

This pattern leads to better performance and effortless debugging.

React Native powers mobile apps with its React-like syntax and easy-to-use APIs. Tradi-

tionally, building native mobile applications mean one should use either Xcode (Swift,

Objective C) or Android Studio (Java). It makes building a mobile app time-consuming,

costly, and more error-prone. With React Native, developers can use JavaScript to build

native mobile apps and have them cross-platform seamlessly. This way of developing

helps decreasing the cost, the time and the effort to build 2 separate platform applications.

Although the feature of “develop once, ship everywhere” is great, React Native still has

drawbacks. Android and iOS are two completely different mobile platforms. Thus, React

Native may have one API supported by iOS but not by Android and vice versa. When this

kind of inconvenience happens, it is likely that there are external libraries fixing the issue.

External libraries are open-source libraries, which are developed and maintained by de-

velopers and other developers can use them freely, or even contribute to the source code

(for example: fixing a feature, pull some new refactor codes, etc.). However, external

libraries are not always trustworthy to use since they can be abandoned by the authors so

10

the versions would not be compatible with the current version of React Native. Develop-

ers should take it into consideration to use external libraries since they have the respon-

sibilities to persist the compatibilities of the libraries contained in their apps. Another

drawback is due to using JavaScript, React Native may not be ideal for building heavily

calculating applications compared to Java or Swift.

React Native is widely used todays. Here are some of popular apps that are powered by

React Native:

Figure 1 Apps that use React Native

2.1.2 Expo

Expo is a framework and a platform built for React Native applications. It has a set of

tools and services that enables developers to quickly develop, build, deploy and publish

on iOS, Android and web apps.

Developers can choose whether to use or not to use Expo. This depends on the application

requirements. There are two major workflows in Expo.

The first one is managed workflow. When creating a new React Native with Expo, devel-

opers will be recommended to use this workflow. The workflow eases the publishing

11

process for developers, which Expo will take care of automatically for both Android and

iOS. Of course, to be able to publish an app to iOS, one should be publishing it via a

MacOS system. Furthermore, using the managed workflow provides some useful

APIs/components for developers to use. For example, there is one component called

Splash Screen in a mobile app, which developers use for displaying the icon of the appli-

cation while initializing the app with required data. This Splash Screen component cannot

be easily achieved when using only React Native or native tools such as Android Studio

or Xcode.

The other workflow is ejected workflow. This workflow is closer to apps created by React

Native Command Line Interface, but it does provide useful components such as In App

Purchases component, which I used in the thesis for making subscriptions. Another fea-

ture of Expo is that it is a platform, which gives developers a fast way to develop appli-

cations. While using React Native, ones must be using Android Studio or Xcode to per-

form simulations on real devices or emulations on virtual devices. Expo allows using only

Node or any Expo integrated command line tools to do simulations that avoids using

Xcode and Android Studio (Even though one can still do simulations and emulations on

Xcode and Android Studio as normal with Expo).

The thesis will be discussing ejected workflow as Quint involves In App Purchases com-

ponent from Expo.

2.1.3 Redux

The reason I picked up Redux and Redux Persist is that Redux has a similar way of han-

dling data as state compared to React. To be frank, Redux is not a library customized for

React. They accidentally have interchangeable ways of controlling, manipulating and pro-

cessing data flows.

Now we know that React Native uses React as its core for syntax and APIs. Since React

treats every UI element as a component and control their states to be able to update them,

Redux can join the party and empower the process. Without Redux, components created

12

by React can only manage their own states, which means it will cause a big load of head-

ache to easily update a component whenever we want. We shall examine the following

diagram:

Figure 2 React without Redux updating indirect components

As the figure shows the relationship between components (parent-children relationship)

in React, it is difficult for Component 1 to update Component 2.1.1, which does not

belong to Component 1. To be able to update Component 2.1.1, Component 1 should

make indirect updates via APP to Component 2 to Component 2.1 and to Component

13

2.1.1 (Following the red arrow’s path). Nowadays, React offers useContext for func-

tional components (alternative for traditional class components) to easily achieve the

above functionality.

Now let’s take a look at the following figure with Redux integrated:

Figure 3 Redux with Redux updating indirect components

The red arrows indicate a more implementable way to handle updating indirect compo-

nents. Component 2.1.1 does not need to be updated by complex callings via APP or

Component 2 or Component 2.1 anymore. Instead, Redux State Tree plays the role as

a “global state” for the whole application and in case we want to update any components

at anywhere in the app’s structure, we can simply have those components listen to Redux

State Tree so that they will be updated whenever Redux State Tree changes.

14

2.1.4 Redux Persist

When using Redux, it is common to mention about a Redux store. A redux store holds

the whole state tree of the application. It means Redux State Tree in Figure 1 and Figure

2 is contained by a Redux store. In the application that the thesis is working on, Redux

store is where the app stores all the task data as well as relevant user data. Basically,

Redux store acts as a storage for the Front-end side.

The problem with a normal Redux store is that its data gets removed every time we close

the application. This is a terrible user experience and as a to-do mobile application, we

prioritize the app to be device-first, which means Quint should be working offline without

the Internet connection. To overcome the issue, I used a third-party library called Redux

Persist. Redux Persist helps persisting the Redux store so that the saved data remains at

the disk. It makes pushing a new version of Quint into the App Store easier since old data

stays as the same as before, which results in having a better user experience as every

created task, reward or action that users made are reserved.

2.1.5 React Navigation

When using a mobile application, one should notice different screens provided by the

app. One application may have as many screens as it wants. Quint is not exceptional. To

be able to achieve the ability of creating separate screens, I chose a third-party library

called React Navigation.

React Navigation provides easy-to-use APIs built for iOS and Android. Users using Quint

should feel the smooth animations and gestures when navigating between screens. Alt-

hough React Navigation does come with a default animation setting, developers can still

completely customize its APIs to fit their own intents.

The following figure describes the basic setup for screens of Quint:

15

Figure 4 Quint's React Navigation basic setup

16

2.1.6 ImmutableJS

React Native is all about managing states. States play the most important role in the ap-

plication. States define when and where the components should be updated. Thus, han-

dling states in React Native is an essential for all developers to make their apps faster,

more reliable and more error-proof.

State in React Native is an object. One should not mutate this object so that React Native

knows whether state is changed. What is mutating? Mutating means changing an object’s

content but not its reference (or origin). Mutation is usually unwelcomed in React world

since mutated objects cannot trigger React/React Native to re-render the intended com-

ponents. Therefore, developers should always ensure their states remain immutable,

which means every time they make an update of those states, they should return totally

new ones. The reason behind this is because React/React Native can only do reference

checks on the old and new states (Reference checks means checking their stored origin in

the memory).

Why are we talking about states and mutations? Because to make objects immutable in

JavaScript is no easy job. It may cause a tremendous drag-down in term of performance

for applications. In addition, to immutate a nested object with several levels in React/Re-

act Native is such a boring, error-prone and time-consuming activity. Since there are sce-

narios that applications need their states to be totally immutable, which means every level

of the states are immutable and developers have to do the processes.

I picked up ImmutableJS, a third-party library developed and maintained by Facebook,

to deal with the situation. ImmutableJS provides easy-to-use APIs and shows to be dras-

tically efficient in term of performance.

17

2.2 The Back-end side

2.2.1 Expressjs and Nodejs

I used Nodejs and Expressjs to build a server for Quint. Nowadays, there are many lan-

guages that can be used to develop a server such as PHP, Java, .Net, Python, and Golang.

However, the reason I picked Nodejs is I have an adept knowledge in JavaScript and

Nodejs offers a quick, scalable, and future-proof development.

Nodejs is a JavaScript runtime built on Chrome’s V8 JavaScript engine, which is fa-

mously known for its efficiency for hosting JavaScript. On the other hand, Nodejs is an

asynchronous event-driven JavaScript runtime and is designed to build scalable network

applications.

When building a Nodejs server, one can simply use JavaScript and APIs that Nodejs pro-

vides or one can use extensional libraries built to support Nodejs further like Expressjs.

Expressjs is a framework built especially for Nodejs. The reason it stands out is because

of its minimal and flexible design, which provides a robust set of features for both web

and mobile applications.

2.2.2 Firebase

Firebase, in short, is a SaaS cloud service provided by Google. Firebase is widely trusted

and used by top applications at the time this thesis is being conducted. With Firebase’s

providing services, software applications can be speedily developed and thus, developers

can focus more on the customer needs.

Firebase offers many robust functionalities to help developers build better apps. Some of

the popular services provided by Firebase are:

- Cloud Firestore: is a real-time NoSQL database. We can use Cloud Firestore to

store, retrieve and sync data between our apps with the database in the cloud.

Cloud Firestore has proven its popularity by being used by thousands of apps due

18

to its scalability and performance. In this thesis we will be using Cloud Firestore

instead of Realtime Database.

- Cloud Storage: with a similar concept to Cloud Firestore, Cloud Storage is where

developers can store, retrieve and serve files. We can use Cloud Storage to store

such as images, videos, and files under binary or blob files. Cloud Storage addi-

tionally provides the ability to download contents as well. We will be using the

service in this thesis.

- Realtime Database: is a cloud-hosted NoSQL database that lets software appli-

cations store and sync data in realtime. Originally, Firebase Realtime Database is

the first and original cloud-based database. Therefore, using Firebase Realtime

Database will suffer some disadvantages compared from using Firebase Cloud

Firestore as Firestore is a successor of Realtime Database. And since it is a suc-

cessor, it will be improved and better than the origin.

- Cloud Functions: is a cloud-hosted service that allows building serverless soft-

ware applications. Developers can run their backend code with Cloud Functions

and so, the service will only execute the code whenever an event is triggered.

Thus, the number of redundant networking requests will be reduced, which will

avoid being error prone and server-overload. Because developers do not have to

handle the backend (Google Cloud Functions will do it), there are so less work to

do in term of maintaining the server. Another benefit of using Google Cloud Func-

tions is that the backend code that we push will be securely kept and will be private

from any outside intruders. This service is mentioned due to its popularity and, at

this stage of the thesis, it will not be implemented.

- Authentication: provides an easy way to sign in the applications with any plat-

form. The service supports end-to-end identity solution, email and password

method, phone authentication, and Google, Twitter, Facebook, GitHub login, etc.

At the time writing the thesis, there is a drawback of using Google Authentication,

is that when using email and password method, we do not have a proper way to

handle email verifications whenever users register new accounts. In order to sur-

pass this issue, I combined using Google Authentication with SendGrid to accom-

plish the goal.

19

2.2.3 SendGrid

SendGrid is a popular email service nowadays. SendGrid is capable to provide many im-

pactful things in term of marketing. In this thesis, SendGrid is used as an email provider

to send email verifications to newly registered emails. In combined with Firebase Au-

thentication, it allows us to form a complete process of registering new accounts for

Quint.

20

3 APPLICATION DESCRIPTION

This section includes the general description of the thesis, as well as the quality require-

ments that the thesis holds. In addition, the section discusses different diagrams for dif-

ferent functionalities emerged in the thesis.

3.1 General Description

The main goal of the thesis is to build a to-do mobile application that can work on both

major platforms: iOS and Android. However, the application, Quint, is differentiated

from other to-do mobile applications such as TickTick, Todoist, or Microsoft To Do since

it collects “good” functionalities from major apps and gets rid of “bad” functionalities as

well. Furthermore, Quint provides its own innovative ways to motivate users so they can

be interactive and motivated to complete their defined tasks.

In this thesis, the project is divided into two major parts: Front-end and Back-end imple-

mentations. Hence, we dive into each part and within each part, we discuss different cru-

cial functionalities.

3.2 Quality Requirements

For each section: Front-end and Back-end side, the requirements are different. Addition-

ally, each section contains three type of quality requirements based on the priorities,

which are must-have, should-have and nice-to-have. The must-have functionalities, or

features, are the core of the project, and hence, the major must-have features will be in-

vestigated closely in this thesis. The should-have features are important features, but not

vital. The thesis will also discuss some of the should-have features. Finally, the nice-to-

have features are features that either have been already implemented or will be imple-

mented in the future. These features can be categorized as Future Work.

3.2.1 The Front-end side

Reference Description Priority

21

F1 Perform CRUD operations on to-do tasks. 1

F2 Perform CRUD operations on categories, which contain

separate to-do tasks. Update a category results a change in

each task about the category data of that task contained in

the category

1

F3 Users can edit a single task. 1

F4 Users can edit multiple tasks. 1

F5 Perform complete/uncomplete operations on tasks. 1

F6 Tasks are classified into three types: Day, Week and

Month.

1

F7 Tasks are put into correspondingly dates when users navi-

gate the horizontal calendar in Journal View.

1

F8 Tasks with different priorities provide different points

when completing/uncompleting.

1

F9 Users can delete a task partly, meaning at a specific date,

and delete a task completely, meaning at every set date.

1

F10 Users can view the points they earn in each day of a spe-

cific month of a specific year in Progress View.

1

F11 Users can view the total Day, Week, Month tasks com-

pleted due to the selected month of the selected year.

1

F12 Users can view the stacked bar chart of completed tasks in

a specific month of a specific year in term of priority.

1

22

F13 Perform CRUD rewards in Reward View. The Create and

Update operations are up to the users.

1

F14 Users can view the history of earned rewards. 1

F15 Users can gain points to purchase rewards as products in a

normal shop by completing defined tasks. In contrast, un-

completing tasks result the point balance to be withdrew.

1

F16 Users can receive notifications at the start of a day, a week

and a month about how many tasks there are to complete.

2

F17 Users can login, logout by using email and password

method.

2

F18 Users can sync data when already logging in as a member. 2

F19 There should be a subscription model for users, who want

to upgrade their plans so that they will get engaged more

into the app. The benefits are included in the model.

2

F20 Users can use Google and Facebook sign-ins. 3

F21 The app should appear in the phone’s widget so that users

can easily complete their tasks.

3

F22 There should be more interactive animations for a better

user experience.

3

F23 Users can drag-and-drop tasks and categories in their lik-

ings.

3

F24 The app should have an on-board tutorial for new users. 3

F25 Users can rate the app and send feedbacks. 3

23

3.2.2 The Back-end side

Reference Description Priority

B1 Handle email and password authentication method using

Firebase Authentication.

1

B2 Update the user information with Firebase Firestore and

Firebase Cloud Storage.

1

B3 Register the subscription receipts of each subscription that

users make to prevent frauds.

1

B4 Identify the free plan and premium plan users in order to

provide appropriate functionalities.

1

B5 Handle push notifications so that the server can send a no-

tification to multiple users.

2

B6 Handle Google and Facebook sign-ins. The server should

act accordingly to each type of provider sign-ins so that the

app can store proper user information.

2

B7 Integrate with SendGrid’s APIs to notify users about new

updates of the app by emails.

3

B8 Apply Stripe instead of using iOS and Android subscrip-

tion systems.

3

3.3 Use Case Diagrams

In the last section, the thesis concludes that there are two primary parts of the project,

which are the Front-end side and the Back-end side. The last section provides the must-

24

have and should-have requirements from each side, and thus, in this section, we discuss

more about the Use Case diagrams of each side.

3.3.1 The Front-end side

Figure 5 Using the App Use Case diagram

Figure 5 illustrates the relationship between a user and the application (Quint), the rela-

tionship between the application and key features and the relationship between key fea-

tures and the data storages.

From the diagram, it shows that to be able to access to Quint, a user must be using a

mobile phone or a tablet. At the time writing the thesis, Quint is supported in iOS phones

(iPhones) and tablets (iPads). Furthermore, there are three databases used for three main

tasks: relevant tasks about To-do Tasks, relevant tasks about Categories and relevant tasks

about Rewards. In fact, the project contains more storages or databases such as storages

for completed tasks to track the timestamp, points, task type in order to provide necessary

25

information for charts and statistics in Progress View. The User Case diagram above only

displays the abstract of the project’s implementation.

3.3.2 The Back-end side

Figure 6 Managing Remote Requests User Case diagram

In the above figure, it is shown that the user can still access to Quint app via mobile

phones and tablets. Note where there is no text of that connection displayed between the

Actor and the Quint App, readers should consider the action is the same as in Figure 5.

A user can sign in into the app by using an existing account. Currently, the app supports

email and password method and thus, in the near future, Quint will support Google and

Facebook logins for a better user experience. After logging in, the user is allowed to per-

form changes involving directly the database and storage. Quint is using Firebase’s client

APIs to manipulate the interactions with Firestore and Cloud Storage, which benefits high

performance and low-latency connections. The model does not need to be concerned with

security issues since Firebase provides a safe method to protect the transactions between

26

the client and its services. In case the user does not have an existing account, a new ac-

count can be registered inside the app. When submitting the new account’s information,

the server will perform updates in Firebase with a unique register token, which is used to

identify between accounts, and then call the SendGrid’s APIs in order to send a email

verification to the user. When the user verifies, the link in the email will trigger a request

to the server and it completes the rest process of the account’s registration. We will dive

deeper into mentioned processes later.

3.4 Class Diagrams

Because of using JavaScript, a procedural programming language, which is not followed

by Object Oriented Programming paradigm, the Class Diagrams shown in the thesis will

be considered Module instead of Class.

Since the project’s scope is big, there will be two types of Class (Module) Diagrams. The

first type are diagrams to illustrate functionalities of the Front-end side and the second

type are diagrams to illustrate functionalities of the Back-end side.

27

3.4.1 The Front-end side

28

Figure 7 Class diagram for creating a new task

Figure 7 explains the relationships between classes (or modules) implemented in the pro-

ject. App.js is the entry module, which serves the application and acts as the top-most

parent module of the whole app. In this module, I handle the implementations of Redux’s

store so that the app can have a centralized state tree to use across components. Another

important method is setReady. setReady method indicates the current state of the appli-

cation, which decides what contents to firstly deliver to the users. For example, when

users open the app, the app will then run some checks about user current subscriptions,

or rehydrating (make available) the Redux’s store or even rescheduling some notifica-

tions properly.

BottomTab.js module is a child component of App.js. In fact, every other component is

a child component of App.js. Each child component either renders views (visualizations)

or contains exportable functions. In some cases, one may contain both aspects. Bottom-

Tab.js contains AddTaskButton.js and OverlayModal.js. Users can enable Overlay-

Modal.js, which is a modal displaying input fields and option buttons for users to adjust

their desire tasks, by pressing the button rendered in AddTaskButton.js.

When users open the modal, they can input tasks title and description, as well as make

some changes of their repetitions, schedules, categories, priorities and rewards by press-

ing each defined button. All changes will be saved to a temporary object for the new task

called taskObjectTemp. taskObjectTemp can be accessed globally since it is a state in

the Redux’s store. When finishing tailoring desire tasks, users can press the confirm but-

ton provided by CreateTask.js. Then, addTask function in CreateTask.js module dis-

patches an action called CreateTaskAction.js to the Redux’s store.

29

Figure 8 Class diagram for editing a task

Figure 8 illustrates the process in editing a task in Quint. As stated above, there is a Re-

dux’s store, which is the global state tree or the global store for every individual compo-

nent to gain access to. Thus, each action emerged from the requirements are in fact, action

to update the store.

30

Normally, App.js is the entry module of the application. JournalTab.js is a child module

of App.js, which is a screen component. A screen component acts as a wrapper container

for a group of relational features. In this case, JournalTab.js is the screen that contains

components relevant to task managements, such as to edit, delete, create, sort or use hor-

izontal calendars to observe specific tasks at specific dates. JournalTab.js has three child

views: DayJournalTab.js, WeekJournalTab.js, MonthJournalTab.js. Each view is

conditionally rendered based on the chosen of wanted viewing type of tasks of a user.

When finishing choosing a view, users can then see related tasks existing in that view

(users can choose a date to view date-related tasks as well). Clicking on the desire task

will fire up the editing modal containing the information of that task, which allows users

to modify wanted fields. Later, when finishing editing, the updated task is saved to the

Redux’s store through a dispatch of action.

31

Figure 9 Class diagram for displaying statistics and charts

Progress.js module is the screen for monitoring the progress of user activities. By navi-

gating to this screen, users can keep track of how productive they are and how perfor-

mantly they have been completing their defined tasks. Progress.js consists of three com-

ponents: MonthCalendarAnalytics.js, TotalCompletesInMonth.js, Charts.js.

MonthCalendarAnalytics.js module displays a calendar, which users can manipulate to

show different months. With each shown month, the app then displays according com-

pleted points in term of every day in that month, every week in that month and the points

earned in total of that month. TotalCompletesInMonth.js module presents the total

amounts of each type of completed tasks in the chosen month from the calendar of

MonthCalendarAnalytics.js (Day, Week, Month). Chart.js has a method called

chooseChartType, which allows users to choose what type of charts to display and a

method called chooseCalendar, which will prompt a calendar accordingly to chosen type

of chart when being invoked. Every mentioned component needs data to be able to update

correctly. Therefore, those components subscribe to the Redux’s store so that every time

32

the store is updated, those components are informed about the update and then perform

appropriate actions.

33

Figure 10 Class diagram for CRUD rewards and tracking main reward

34

The picture above shows the relationships between modules in Quint of performing

CRUD reward operations and tracking the main reward in advance.

Firstly, for CRUD reward operations, RewardScreen.js module is the screen module that

undertakes the wrapping functionality. The module contains three major components,

which are TrackingReward.js, BalanceHolder.js and Rewards.js. Each component

subscribes to the Redux’s store so that they will get notified when the store is updated.

TrackingReward.js is where the app handles the work for the main reward. Users can

track the wanted reward there to see the progress of the task so that they can focus even

more. BalanceHolder.js is the component displaying the current amount of points that a

user has. This component will be changed each time a user completes/uncompletes a task

or purchases a reward. Rewards.js module handles the CRUD operations of rewards.

Users can buy or get a defined reward from here. Earned rewards are displayed in the

screen module PurchaseHistoryScreen.js. This module also subscribes to the store and

has a function to delete a date containing purchased rewards within that date to free up

space.

35

3.4.2 The Back-end side

36

Figure 11 Class diagram for signing up a new account, sign in and sign out with email

and password method

There are two main screens in Quint that are responsible for signing up accounts and

logging in the system. First, SignUpScreen.js module is the screen component that al-

lows users to create new accounts. At the time this thesis is being conducted, Quint re-

quires two mandatory fields for new accounts, which are emails and passwords. refer-

ralCode is an input field for new accounts in order to earn a free month access of Pre-

mium package. To be able to have a referral code, users can achieve one via online events

generated by the Quint team, or subscribe to new letters at the website, or get from a

friend who already has a Quint account. Every time an account is created, it will gain a

coupon code known as referral code. Account owner can give away that code to anyone

in exchange of a free month Premium access if the code is used when a new account is

created.

When hitting the button for registering an account, the app then sends a request to

Server,js, which is the entry point of our server. Then, the server will find the proper

route to handle the request. In this case, the request is processed in SignInRoute.js firstly.

After running every method, the module sends an email verification to the registering

email address. When clicking on the link shown in the email, a request is sent to verifyE-

mailRoute.js module and the app proceeds to finish the rest of the new account’s regis-

tration. In case the verify link has not been clicked for 24 hours, the token will expire

leading to the link becomes no longer valid. In such case, the server will schedule a cron

job to clean up the temporarily created data in the database to free up space.

37

38

Figure 12 Class diagram for running initial checks

When a user opens the application, the app will run certain checks. It is important to note

that those checks will be only ran when the application is initialized, which is not the case

that the app comes to foreground (active) from background (inactive). When being

opened, the app shows a loading screen, which is LoadingScreen.js module. In this

phase, two functions are executed: validateSubscription and validateEx-

pireTimestamp. Both methods involve communications with the server and the route,

which is responsible for handling relevant requests, is located in UserRoute.js module.

After receiving the responses from the server, LoadingScreen.js dispatches an action

called updateGeneralSettingsAction.js to update the respective state in the Redux’s

store. Lastly, App.js calls the function setReady so that Quint is ready to serve.

3.5 Sequence Diagrams

In this section, the thesis discusses sequence diagrams of specific functionalities in Quint.

For clarity, followed are two main sections containing respective sequence diagrams: the

front-end sequence diagram and the back-end sequence diagram. With these diagrams,

readers can have a clearer view over how functionalities in Quint work in general.

39

3.5.1 The Front-end side

Figure 13 Sequence diagram for creating a task

Above is the figure showing the implementation of creating a single task in Quint. Basi-

cally, the app has four main screens: Journal, Progress, Rewards and Settings screen.

Journal screen is where users can gain access and controls over their tasks. Firstly, to

create a task, user must navigate to the Journal screen. The button for adding new tasks

is only available when users are at that screen. When clicking on the button, a modal

containing necessary fields and options for a task prompts up allowing users to modify

their wanted tasks.

There are chances that users are creating a new task but then change their minds. Therefor,

the app creates a temporary object for the ongoing process to save users inputs, which

later loads those inputs again when users decide to continue with the process. Lastly,

when finishing adjustments, an action will be dispatched to the Redux’s store in order to

update the state tree. At the same time, components, which subscribe to updated proper-

ties of the state tree (reducers), are sequentially re-rendered with new data.

40

Figure 14 Sequence diagram for editing a task

The update operation for a single task in Quint is illustrated in Figure 14. When a task is

created, it will be displayed in a list in Journal screen. To display a list of tasks, Quint

depends on two criteria: date and category. For example, a user creates a task with the

schedule option of 15th of May 2020 (15/05/2020) and the task belongs to the Work cat-

egory. In addition, because Quint is a productivity app, each task is repeated indefinitely

by default (with an interval of one day/week/month). Thus, if the user wants to view the

created task with the type of Day, the repetition of default (every day), he/she must navi-

gate to 15th of May 2020, or 16th of May 2020, or 17th of May 2020, etc while choosing

the Work category from the Drawer.

After selecting the correct task to edit, a user can click on that task, which brings up a

modal containing the task’s information. He/she can directly edit the task’s fields in the

modal and those actions will be dispatched to the store to update the state tree.

41

Figure 15 Sequence diagram for editing multiple tasks

In the above diagram, the workflow of updating multiple tasks is shown clearly. As being

said, Journal screen is where a user can control his/her tasks. Quint supports editing a

bulk of tasks at a time. By design, users can only update tasks that are in the same cate-

gory. However, there is a category called “All tasks”, which basically is the common

category containing all created tasks. Furthermore, there are a limit of options that users

can edit when updating multiple tasks. Currently, users can edit the schedule and category

options in update-in-bulk mode only. The reason behind it is that there are difficulties and

unnecessary logics for users to understand, which also are not easy to implement in a

developer’s perspective as well.

42

Figure 16 Sequence diagram for deleting a task

The diagram in Figure 16 illustrates the workflow of deleting a single task, which repre-

sents how Quint implements the deletion of tasks. To understand the work further, readers

need to understand that deleting or updating a task results in a chain of required re-calcu-

lations of points, total task completions, completions of task types and completions based

on date. All those calculations are mandatory to display correct statistics and charts in

Progress screen. There are two types of deletions implemented in Quint. The first type is

to delete a task at a specific date. The second one is to delete a task at its every date

(completely removal). The first type of deletions recalculates the task’s statistics in a spe-

cific date. For example, there is a Day task starting at 20th of May 2020 with the default

repetition (repeat every day). A user can delete the instance of that task at 25th of May

2020, which results a deletion of statistics of May 25th, 2020 in Progress screen. On the

other side, a complete removal of that task emerges a cut down of statistics of all date

starting from 20th of May 2020 in Progress screen.

43

44

Figure 17 Sequence diagram for deleting multiple tasks

The sequence diagram in Figure 17 illustrates the implementation of deleting multiple

tasks in Quint. Like deleting a single task, there are two options for users to choose

whether they want to delete at a specific date, or they want to remove selected tasks com-

pletely. By selecting tasks, there will be a temporary array to hold the selected task ids so

that the system can perform correct changes upon those tasks. Two types of deletions in

deleting multiple tasks work similarly compared to deleting a single task.

Figure 18 Sequence diagram for updating statistics and charts

As shown in Figure 18, the workflow of updating statistics and charts in Progress screen

is quite straightforward. Normally, when a user performs CRUD operations of tasks in

Journal screen, three main components in Progress screen will get updated accordingly.

To be specific, when a task is marked completed, its defined points will be calculated and

saved to the state tree. Not only saving the points, Quint also counts the completion of the

task itself in several ways. For instance, TotalComponentInMonth component displays

the total completions of each task type (Day, Week and Month). The completions of Day

task type will increment by one if a Day task is completed. The logic is applied to Week

and Month tasks as well.

45

Figure 19 Sequence diagram for CRUD operations of rewards

The Reward screen allows users to perform CRUD operations on rewards. There is no

limit of defining a reward. It is totally up to users to define their deserved rewards, as long

as those rewards are reasonable and motivative. The CRUD operations are described in

the sequence diagram in Figure 19. There is a list of rewards displayed in Reward screen,

whose parent component subscribes to the Redux’s store and gets updated whenever the

subscribed property of the state tree changes. All operations eventually dispatch actions

to the store in order to update the state tree, which in return updates the list of rewards.

46

47

Figure 20 Sequence diagram for purchasing a reward

When completing defined tasks, users receive points. In Quint, points are the main cur-

rency to purchase goods, which in this case are defined rewards. Points are not fixed by

the system. Users can change a task’s points based on their desires. In most cases, Quint

encourages users to relate to points as their in-used normal currencies such as euros, US

dollars, Japanese yen. Having enough points allows users to get their wanted rewards for

their productivities. Of course, to get a reward means in return a withdraw from the point

balance of a user. The Reward system in Quint, indeed, works as a common grocery shop.

Furthermore, users have the ability to review their purchased rewards so that they will not

forget to actually treat themselves. Later when finishing treatments, users can delete a

purchase record to clean the view.

48

Figure 21 Sequence diagram of CRUD operations of categories

3.5.2 The Back-end side

49

Figure 22 Sequence diagram for account registration

50

When a user wants to purchase the Premium package, or they want to sync data to the

database (cloud), they need a Quint account to do so. The sequence diagram in Figure 22

explains the process of account registration in Quint. At the time writing the thesis, users

can only create a new account within the app. This behaviour is certainly going to be

changed in a short time.

To handle registering a new account, there are two implementations that developers need

to put in mind. The first one is to handle the request sent from the form filled by a user

in the app. This request contains important information such as email and password and

is sent to Server, where it will be processed and forwarded to the right route handler. In

this route, the server puts a temporary user data to the database with a unique registration

token in order to validate the correct user when verifying email. Then if everything suc-

ceeds, Server responses back to the app and inform the user about a verification email

sent to their registering email address. Step 2 is the last step, which handles the email

verification and user update in Firestore.

Figure 23 Sequence diagram for validating user subscription and expiration

When the app firstly initializes or wakes up from a cold start, this implementation will be

run to make certain that the logged-in user has the up-to-date subscription status. The

system sends two requests to the server if it is a Premium account. The first operation is

51

to check whether the account’s Premium features are expired, which helps the app provide

the most proper features to the user. The second operation is to check the validation of

the user’s subscription, which means to check whether the Premium package of the user

wore off. Currently, subscription is implemented by using Apple’s In-App-Purchase ca-

pability. For that reason, iOS subscription is what being validated in this process.

52

4 DATABASE DESIGNS & GUIS

In this chapter, the thesis discusses the GUI implementation of Quint, along with its da-

tabase designs. The way of how this chapter works is for each database design, there will

be explanation coming along with pictures of relevant GUI figures. In addition, this chap-

ter is divided into two main sections: the Front-end side and the Back-end side as normal.

4.1 The Front-end side

It is important to remind that all the app’s GUIs, colors and images are not designed by

the author of the thesis. The credit goes to the design team, which is formed by close

friends of the author. The design team is young in experience but still passionate about

digitally UX & UI design in general. However, all animations of the app are implemented

by the author despite of the fact that they are quite simple and plain.

Another important note is that in the Front-end side, Quint uses disk storage as the data-

base. To implement the backbone of the database, the app uses ImmutableJS to perfor-

mantly do general CRUD operations. There are multiple databases in Quint, such as a

database for tasks, a database for completed tasks, a database for categories and a database

for charts & statistics. Each database is a map created by ImmutableJS and rehydrated by

Redux Persist. We will discuss this issue later in the thesis. The reason I chose using Map

over List (Array) is that ImmutableJS provides a better querying performance with Map

since Map does not require indexing (Quint does not need to index tasks in most cases so

it is safe to use).

To keep this section short and readable, we are going to focus on the processes of Day

tasks only as the processes of Week and Month tasks are pretty similar.

4.1.1 Task Database Design

There are three task types in Quint: Day, Week and Month. Each task type has a database

in order to split up created tasks into smaller chunks.

53

Figure 24 Database design for Day tasks

dayTasksModel can be considered as the name for the model of the database for Day

tasks. Apparently, the database stores multiple Day tasks in key-value pairs. The key is a

Day task’s Id. By using this method, it is faster and more convenient to do CRUD opera-

tions on an intended task.

A Day task is also a Map, which unifies the idea of immutable programming across the

application. To be exact, almost every object in Quint is converted to Map or Ordered-

Map, either is every array converted to List. There are common properties existing in

Day, Week and Month tasks. Those properties are id, title, description, category, goal,

priority, reward. Remained properties, which are repeat, schedule, end, will vary de-

pending on the type of task, the type of repetition and the type of chosen ending option.

Properties keys followed by ? are optional (based on different chosen types).

54

In order to understand more about the issue, we will investigate a Day task created by

default. The task has a title of “Work on some features”, a description of “Take a look at

notes”, a priority of “Do first” (highest level), a reward of 5 points and a goal of complet-

ing 1 time a day. In addition, it belongs to the Inbox category, starts at 22nd March 2020

and ends at the same date as well.

Figure 25 Example of a Day task's detail

As we can see, the Figure 25 displays the GUI of the Day task created with a title of

“Work on some features”. Here comes the detailed implementation of the task.

55

Figure 26 Detailed properties of the Day task example

This Day task was created by default, meaning I did not alter any option of it except for

its title and description for a clearer recognition. It is important to know that id contains

a cryptographically-strong random values generated by a package called RFC4122

UUIDs. By using such an identifier, it is certain that the app does not incidentally create

a task with an existing id. category property contains a category’s id, to which this task

belongs. In this example, “inbox” is the id of category Inbox.

56

The property repeat has several variations based on the task type. Day task type has three

repetition types, Week task type has two repetition types while Month task type has only

one. For a Day task as the one in this example, there are “daily”, “weekly” and “monthly”

repetition type. By default, Quint makes a Day task repeat daily. The property interval’s

value indicates how often the task should happen daily, or weekly, or monthly. In our

example, the task occurs every day. The property goal’s max presents how many times

the task should be completed during the occurrence. The property end has three types in

total: “never”, “on” and “after”. The “never” end type means the task goes on indefinitely.

The “on” end type is followed by endAt property indicates the date that the task should

stop. The “after” end type provides occurrence property to refer how many times the task

should happen. For instance, the task in the example stops after showing up for one time,

even when the repetition value is every day. The property schedule includes essential

data about the starting date of the task. In this case, it encloses the starting year, month

and the day-in-month.

There are four priorities in Quint and each priority implies a different emergent and im-

portant meaning. In the example, the task is prioritized as “Do first”, which has the most

important indicator. The property priority’s value contains the “Do first” id. Lastly, the

property end’s value displays the reward point that a user will get if he/she completes the

task.

57

4.1.2 Category Database Design

Figure 27 Database design for categories

The model of a category is rather small. A category will contain its identifier, name, color

and the number of tasks it possesses. The property color is to help people categorize the

list of categories more easily since they can assign different colors to different categories.

In this section we discuss the default category which Quint sets up initially for users.

58

Figure 28 GUI example of the default category

As we can see in Figure 28, there is a category named Inbox. This is the mentioned default

category. The property id of the category is defined as “cate_0” by default. For remained

created category, their ids are uniquely generated similarly to task ids. The property name

has a value of “Inbox” apparently. The property color has a value of “#F78096”, which

is displayed in hex value format. The property taskQuantity equals to 1 as there is only

one task belonged to the category – the example task with the title of “Work on some

features” in section 4.1.1. Currently, Quint has a limit for free users, which restrains them

to create only 5 categories in total. By upgrading to Premium plan, users can create up to

99 categories. The property plan indicates whether this category was created during the

“free” phase (meaning the first 5 categories) or during the “paid” phase (if users upgrade

to Premium plan). The property createdAt refers to at what time the category was created.

59

4.1.3 Completed Task Database Design

Figure 29 Database design for Day completed tasks

Because Quint displays tasks via dates, it is mandatory to keep track of a task’s comple-

tion timestamp so that the app does know whether the task is completed or not. In Figure

29, the model for Day completed tasks are illustrated. It is a Map containing multiple

Maps of completed tasks. The property category is the category’s id that the task be-

longed at the time it is completed. This helps the app eliminate children task completion

records when deleting a category. The property completionTimestamp indicates the

completion timestamp of the task. The property currentGoal refers to the number of

completion times that the user has made. This value does not exceed the defined goal

value of the task. When the value equals to the defined goal value, meaning the task is

completely accomplished. The property totalPoints is the total task reward points gained

at the time the task is completed. The property currentPriorityValue tracks the latest

priority level that the task is at. The property completedPriorityArray is a List contain-

ing 4 number-type items, which represents for the priority levels of Quint (Do first, Plan,

Delay and Delegate). This List allows the app to update correct task-related completions

in Progress screen, which will be shown later.

60

Figure 30 Uncompleted state of the example task

Figure 30 represents the uncompleted state of the example task used along this chapter.

The task has a text of “0/1” saying that this task has a goal value of 1 and it has not been

accomplished yet.

61

Figure 31 Completed state of the example task

By completing the task one time, the task now is completed since it only requires to be

completed once.

dayCompletedTasksModel is updated with new data. A Map with the example task’s id

is added into the database. The property completionTimestamp is changed to the com-

pletion date in milliseconds. The property currentGoal is equal to 1. When the user un-

completes the task, the record remains and currentGoal is updated to 0. In the near future,

uncompleting a task to its goal zero-value will result a deletion of the record in the data-

base to free up space of the disk. The property totalPoints will be 5 as the reward value

of the task is 5 and it is completed only one time. The property currentPriorityValue is

62

“Do first” priority’s id. The property completedPriorityArray results in [1, 0, 0, 0] by

the order of [“Do first”, “Plan”, “Delay”, “Delegate”]. Furthermore, completion-

Timestamp of Day, Week and Month completed tasks database will be calculated based

on the task type as following: Day task type results in calculating the milliseconds of the

date including year, month and day that the completion occurs, Week task type results in

calculating the milliseconds of the date including year, month, and the first day of the

week that the completion occurs, Month task type results in calculating the milliseconds

of the date including year, month, and the first day of the month that the completion oc-

curs.

4.1.4 Database Designs of Day, Week, Month and Year Statistics

Figure 32 Database design for general statistics

Figure 32 shows the general database design model in Quint. The app consists of 4 types

of statistics databases representing for Day, Week, Month and Year as Progress screen

requires detailed information about task completions. The property timestamp is similar

to completedTimestamp mentioned in section 4.1.3, which is the completion date in

milliseconds calculated based on the type of the database. The property totalPoints is

similar to the totalPoints in section 4.1.3. The property completedPriorityArray’s ex-

istence depends on the type of the statistics database. If it is the Day statistics database,

then there is no completedPriorityArray. The value of it also varies based on the type

and the timestamp value. For example, completedPriorityArray in the Week statistics

database is a list consisting of 7 values representing for 7 days in a week. On the other

hand, it may consist of 30 values representing for 30 days in a month when for instance,

63

the timestamp is the first day of April. Every completed Day, Week, Month task updates

all 4 databases in advance.

64

Figure 33 Monthly completion calendar and summary when completing the example task

65

Figure 34 Week & Month Progess Chart when completing the example task

Figure 33 and 34 displays the sequential implementation of statistics and charts in Pro-

gress screen. The example task was completed at 22nd March 2020 with the goal value of

one and the reward point of 5.

Above are crucial databases in Quint. Clearly there are many unmentioned databases.

However, they are not mandatory to know to understand the project and to keep the thesis

concrete and not too long, let move on to the next chapter.

4.2 The Back-end side

Quint uses Firestore to store user data, to validate subscriptions and expirations and as

well as to sync data in the near future. In this chapter, I will provide database designs

(collection and document designs in term of Firestore’s methodology) of registration-re-

lated process and validation process.

66

4.2.1 User Database Design

In Quint, I use the User database for managing user-related processes such as new account

registration, subscription validation and expiration validation.

Figure 35 Database design for user-related data

Figure 35 displays the database design model of user-related data. The property userId

is automatically generated by Firestore, which is definitely unique and easy for Firestore

to index documents in the collection (rows in a table). The property avatarUrl holds a

string exposing the url of the uploaded avatar if in case, a user updates his/her profile with

an image. The uploading process will be handled with Firebase Cloud Storage and the url

is retrieved from it as well. The property emailVerified indicates whether this account is

validated or not. In case it is not, the server will schedule a cron job to delete it in order

to free up space. The property expiraryTimestamp holds the date in milliseconds of the

time that a user loses his/her Premium access. The property iosLatestReceipt has an en-

crypted string containing the receipt from the latest subscription that a user has made in

iOS. By using this receipt, Quint knows whether the user’s account is still subscribing to

the plan or not. The property package’s renewalTimestamp indicates the time that the

67

account should be charged again for extending the subscription. The property refer-

ralCode is the coupon granted when registering the account. The property usedRefer-

ralCodeData’s referUuid indicates the userId property of another existing Quint ac-

count, which provides its referral code to the current account in order to gain a free month

of Premium plan, if any.

4.2.2 Verification Token Database Design

Figure 36 Database design for verification tokens

 The database is used to store tokens for verifying registered Quint accounts. The property

tokenId is generated by default by Firestore. The property tokenValue is the exact value

of the token, which will be compared once a user verifies his/her account. When clicking

on the verifying url, the user is redirected to Quint’s server email verification page, where

the server should validate the verification token, as well as the user id. The property cre-

atedAt is to record the time in milliseconds that the token was created. The value is used

to decide whether the verification link is expired. Normally, in Quint, the email verifica-

tion link expires after 24 hours if there is no action performed, meaning the user does not

click the link to verify the email. By doing this, the app certainly provides a strong secu-

rity method to prevent false account registrations.

68

4.2.3 Referral Code Database Design

Figure 37 Database design for referral codes

At the time writing the thesis, Quint uses referral code marketing strategy to leverage the

number of users. The way the referral codes works is that a referral code can be gained

by participating online events arranged by the Quint team or when creating a new account.

With this referral code, a user can grant a free month access of Premium plan to whomever

used the coupon when signing up a new account. In return, the code owner also receives

a free month of Premium plan as well. Certainly, there is no limit of using the referral

code, meaning as long as the code is used to create verified Quint accounts, the owner

receives a free month per account.

The property createdAt will be used in the future, when the campaign reaches its goal

and the Quint team decides to limit the time of a referral code being used. The property

usedHistory is an array containing objects about data of accounts registered along with

the referral code such as their user ids and the times in milliseconds when the code was

used (in other words, when the accounts were verified).

69

5 IMPLEMENTATIONS & RESULTS

Chapter 5 is where I address and analyze the implementations of critical requirements in

Quint. For each explanation, there will be figures of its practical code, possible workflow

diagrams and realistic results cropped from my Quint app in my device iPhone 7 Plus. As

normal, the chapter will be broken down into two major sections: the Front-end side and

the Back-end side. However, because this thesis is about to build a mobile application

with React Native, so the Front-end side will be focused heavily.

70

5.1 The Front-end side

5.1.1 The application structure

Figure 38 The structure of the client side

Above is the figure of the application structure used in the project. At the beginning, when

starting the project using Expo’s Command Line Interface, the project had a boilerplate

for developing a React Native application. The default folders and files are such App.js,

index.js, node_modules, package.json and package-lock.json. The App.js file is the

entry file of the application, at where the highest level parent component is held. The

71

index.js file is the register file, which helps Expo and React Native recognize and run

the application.

Figure 39 Image of package control file

Figure 39’s content is about the content of the file package.json. As React Native uses

JavaScript and requires a Node developing environment, it is mandatory that the project

must have a file called package.json (the name is reserved) to control the project’s infor-

mation such as its name, author, version, to define command scripts in order to run in

those in the CLI, and to manage installed packages (modules) and their package versions

from the Node ecosystem. Installed packages must be compatible with React Native and

72

in most cases, they require additional set up steps to fully complete the installations. By

having this file, it is easier for developers to keep track of currently existing packages in

a application, as well as fixing compatibility problems when upgrading or downgrading

package versions.

In the application structure, the components folder is where I keep all the business logic

code. The folder contains child components of the app such as a screen, a navigator, a

button. The store folder contains files belonged to Redux’s store. The files are the con-

figurations of the store. Lastly, the reducer folder contains Redux reducers, which are

used in the app. The Redux store includes multiple reducers in order to help update the

state tree.

73

5.1.2 Redux store, reducers and actions

Figure 40 Image of Redux's store configurations – store.js

For persisting the Redux’s state tree, Quint is using redux-persist package. In the image

above, the file exports two variables: store and persistor. The variable store holds the

configurations for the Redux’s store, which consists of middlewares. Middlewares are

external packages used to achieved specific desires from developers. For example, a

thunk middleware from redux-thunk allows developers to have an intermediate function

before dispatching an action to the store. Meanwhile, batchDispatchMiddleware from

redux-batched-actions provides the ability to batch or group multiple actions in one dis-

patch, which improves a lot in term of performance. The variable persistor is used to

initialize the Provider wrapper component used in App.js, which enables the state tree’s

persistence. One last thing, the variable rootReducer is imported from the root file of the

reducers folder, which contains all used reducers in the app. The root reducer is a func-

tion generated by using the method combineReducers provided by the package redux.

74

Let’s take a quick look into the reducer for updating Day tasks.

Figure 41 Reducer of Day tasks

The reducer for Day tasks is expressed as day_tasks function. The function takes two

arguments: the current state of Day tasks (database of it) and the dispatched action from

associated components. The state is initialized as a Map, as we discussed above that Quint

is using Maps as databases to store data. The initial value of the state is, if converted to

object, {}. The function will return the updated state in different cases. For example, when

the action has a type of UPDATE_DAY_TASK, which is to add or edit a Day task, the

reducer returns a new state (immutated one with a different origin in the memory) adding

or editing that task. The method for updating is provided by ImmutableJS. To break

down, keyPath is the task’s path in the Map, notSetValue is the value that will be set if

there is no provided value in the updater, and updater is the function to update the Map.

75

Figure 42 Action of adding a task

As being said, Quint uses thunk middleware from redux-thunk to create an intermediate

function, which will dispatch an action at the end, after executing some business logic.

The function addTaskThunk is a thunk. At the end of the function, there is a method to

dispatch action of dispatch(batchActions(actions_array)). The method batchActions

from redux-batched-actions is in use due to the reason that the thunk has many actions

to dispatch. If in case Quint does not use batchActions, each action will be dispatched

separately and it will hurt the performance a lot since each dispatched action results a re-

render of the connected component (imagine the component is very expensive, contains

76

multiple pictures and big modules to load). With the help from redux-batched-actions,

the app just has to dispatch one action at the end. The method batchActions groups all

defined actions in an array and send them when ready. This gives a great boost in term of

performance since the app should re-render only once based on the actions-batched dis-

patch.

77

5.1.3 Add a task implementation

Figure 43 Connector of the component in charge of creating a new task

78

Above is the connecting component of the component which is responsible for creating a

new task in Quint. The component being responsible for creating a new task and rendering

the view is named BottomOptionsHolder, which will be shown below. In Quint, every

component that wants to alter the global state tree must be connected or subscribed to the

Redux’s store.

The connector consists of two major functions, which are mapStateToProps and

mapDispatchToProps. The function mapStateToProps is the one getting necessary

states from the state tree. By using the function, it allows the component re-renders when

the state tree updates. The function mapDispatchToProps is the function used to pass

the dispatch functions to the connected component. By using this function, the subscribed

component can dispatch an action to the store in order to update the state tree. Using such

the described connectors are helpful in preventing developers accidentally to dispatch an

action directly to the store and to receive mass updates from it causing performance is-

sues. Besides, it is tidy and easy to read in term of clean coding.

At the end, the connector is a High-Order React component, which receives the compo-

nent BottomOptionsHolder as the input component and returns a new component

providing a subscription to the store.

79

Figure 44 Implementation of adding a task - part 1

80

Figure 45 Implementation of adding a task - part 1

Creating a task in Quint is the most important requirement. Above are two figures con-

taining the shorten code in action. To be able to examine the implementation clearly, I

will explain the workflow and ideas in each line separately.

At the line 125, this is the start of the class containing the button component for confirm-

ing a task creation in Quint. By following the syntax of defining a class, the app is using

81

the traditional way of React. At the time writing the thesis, React has introduced a new

way of writing code with Hooks. The function _createTask at line 126 is the adding task

function which will be invoked when a user clicks on the button. At the line 127, the

function starts with a conditional statement block in order to allow executing the task

creation only when the task has a tittle (not an empty string). From the line 128 to the line

140, the function determines the correct type of the creating task to be created. There are

3 task types in Quint, which are Day, Week and Month. Therefore, the function initializes

necessary variables with the Day type, then if in case the creating task has a type of Week

or Month, it then changes those variables accordingly. The variable task_id is the task’s

id using uuidv1() method to create a unique random string. The variable re-

set_new_task_type declares the action type of the resetting-temporary-creating-task-ob-

ject action as every action in Redux needs a type so that associated reducers can distin-

guish an action in order to update the state tree correctly. The variable add_task_type is

the action type of the action of creating a new task. The variable new_task in the line 142

holds the temporary task Map-converted data from the parental property received from

the connector in Figure 43. The variable category_id is the category’s id retrieved from

the temporary task data. The variable category_quantity at the line 145 gets the quantity

of belonged tasks of the mentioned category. This variable is used in order to increase the

number of tasks in the category in case the function successfully creates the task. From

the line 156 to 210, the function implements the code for determining whether it should

perform the task creation based on the usage of a user. The rest lines show how Quint

performs the task creation process. To immutably add the task to the corresponding task

database, a clone of the creating task (or temporary task) is created. The next lines of code

are the process of updating that copied Map and finally the clone is the one to be added

into the database.

82

Figure 46 Result of adding Day tasks

Above is the screenshot of adding tasks in Quint. I have added 4 Day tasks with different

titles, goals, repetitions and priorities. On the right most side of each task, there is a red

circle indicating the category that the task belongs to. In this case, all tasks belong to the

default category “Inbox”. On the left most side of each task, there is a coloured vertical

bar indicating the priority of each. The “Do first” priority is red, the “Plan” priority is

yellow, the “Delay” priority is purple, and the “Delegate” priority is grey. Under each

title there is the goal of the task. As you can see, the goal for the task “Mediate” is 2 and

the task is completed once. Therefore, it is not counted as “completed” and there is an

undo symbol near the category circle indicator on the left of the task.

83

Because the source code of each requirement’s implementation has too many lines and

requires a lot of words to explain, I will deliver the most crucial requirement in Quint

which is the creating-a-task implementation shown above. Nonetheless, the remained re-

quirements have the similar workflow and logic so to understand the implementation of

creating a task is to understand almost all existing code in Quint.

5.2 The Back-end side

In this section, the thesis discusses about the sign-up implementation in Quint. There will

be figures for in used code and the results of the work.

84

5.2.1 Client-side account registration

Figure 47 Code snippet of client-side signing up function

In the figure 47, the code snippet explains how the client-side collects user information

and process them. At the start, the function _signUp is an asynchronous function, which

has the ability to wait and execute related code (event-based) without blocking the JavaS-

cript thread. By using this function, the app continues to execute other code in line but

still resolves the incoming response from a http request. The function firstly stores user

inputs such as full names, emails, and passwords from the line 200 to the line 206. After

85

that, it runs several validations on the received full name, email and password from the

line 207 to 213. If all inputs are valid, the function sends a POST http request to the server

containing all necessary user data. It is important to note that the server’s url must be

secured (https) in order to work in iOS and Android as the providers have updated their

policies recently. From the line 228 to 245, the function carries the request sending by

applying a try-catch block in order to handle any possible errors. If the request is sent

successfully the function will execute the method _activeSuccessBanner, which prompts

an informative dialog about a verification email has been sent to the registered email. If

the request fails, the function call _deactiveSucessBanner to inform the occurred error.

Figure 48 Code snippet for validating the input referral code

The function _checkReferralCode is used to validate the input coupon that a user gives.

Normally, a user does not need to fill the field. He/she can leave the field empty and still

proceeds the account registration. In case the user inputs some things, the function

86

_checkReferralCode will be invoked to validate the coupon with Firestore. From the

line 290 to 295, the client-side Firestore API is used to establish the connection with the

database. Specifically, the database (or collection) has the name of “referralCodes”. In

the database, there are tables (or documents). Each table or document has an identifier to

be a randomly unique generated referral code. The function calls the GET query from

Firestore and Firestore returns a promise. From the line 295 to 343, the code resolves the

response from the promise if everything works out. Otherwise, it handles the rejection or

error returned.

Figure 49 Screenshot of sign-up screen

The above figure displays the sign-up screen in Quint. Clearly shown in the picture, the

user has filled all necessary information such as his name, email (fake one), password and

87

confirmed password. Because this screenshot was taken in the real device (iPhone 7 Plus)

with is ability to capture the screen, the password-related fields are whitened out due to

privacy policy of Apple. In addition, the user also inserted a referral code. Certainly, this

code is false and used for the demonstration purpose only.

Figure 50 Email verification sent dialog

The dialog is shown because the account registration succeeded. Apparently, I used a

made-up information to register an account. However, all register-related data will be

processed in the server and the server will send an actual email verification to the regis-

tered email. Due to that action, the fake account cannot be used to login as it is not verified

88

by me (of course it is a fake one so I cannot activate the account) leading to the fact that

it is a security method for ghosting or uncontrolled accounts in Quint.

5.2.2 Server application structure

Figure 51 The structure of the server

The server’s application structure follows a structuring paradigm called “Fractual” de-

sign. The structure helps the code base easier to read and look clean. It enables a quick

on-boarding procedure for new developers since each feature has its own “Fractual” struc-

ture.

89

5.2.3 Send email verification

Figure 52 Code snippet for sign-up route handler – part 1

90

Figure 53 Code snippet for sign-up route handler – part 2

Figure 52 and 53 shows the code implementation of how Quint handles the account reg-

istration sent from the client side. Firstly, from the line 27 to 86, the function validates

the existence of the registered email in Firestore. There are two cases. The first case is

that the registered email does not exist in the database. The execution part of this case

91

starts from line 35 to 59. In this situation, because of using Firebase Authentication to

manage user accounts and Firestore to store user account data, it is mandatory to update

those two places with provided user data. The method ACTIONS.auth._createUse-

rAuth handles the user account creation in the Authentication user pool so that Firebase

can gain controls over registered accounts. The method _setTemporaryUserInDB cre-

ates a document or a table containing requested user data in the collection/database “us-

ers” in Firestore. The second case is that whether the registered email already exists (ver-

ified) or it has been registered before but has not yet been verified. From the line 65 to

70, the code handles the scenario that the email exists, in which the server responses an

error request. From the line 72 to 84, there is a repletion of the method setTemporaryU-

serInDB in order to create a moment user collection in the database for further usages.

Moving next in the code, from the line 88 to 98, the server creates a cryptographically

strong random string as the verification token for the account by using the method

crypto_random_string. As being said, this token will expire in 24 hours starting from

the time it is saved to the database by the method ACTIONS.verificationTo-

kens._setVerificationToken. The remained code invokes the function _sendVerifica-

tionEmail to send an email verification to the registered email. In addition, the route ends

by send back to the client a response saying that the verification email has been sent.

92

Figure 54 Screenshot of the account verification email

By clicking the “Verify Email” button, the registered account is verified and able to login

into the Quint app. If in any cases that a user forgets to verify the account for over 24

hours, the email is still there but clicking the button results in a redirected website saying

that the verification token is expired and he/she must register the account again.

93

6 CONCLUSION

The thesis was conducted with the goal of building a mobile application with React Native

and providing an innovative to-do application that fits many levels of user dedications.

From a personal point of view, the designing phase with database schemas and diagrams

was done well by spending time to research ideal approaches. Furthermore, the technol-

ogy choices were proved to be working well since the author had firm experience of rel-

evant tech stacks. There were many difficulties emerging in the project due to little expe-

rience and knowledge in mobile development. As the time went by, the difficulties were

solved one by one with the help of online developer communities, as well as countless

open source code in GitHub.

The thesis has many potentials and it can be improved greatly with future work. There

were unimplemented features, which were planned at the beginning and along with the

development time. The app can be applied with TypeScript in order to strongly type the

variables leading to better developing experience. Tests were being applied partly in the

application. However, to have automated testing implemented will be a must-have ad-

vantage in term of product quality management.

To summarize, the thesis has done explained, not all everything, but the most important

material about Quint at its very first-stage of beta testing phase.

94

REFERENCES

React Native: https://reactnative.dev/

Expo: https://expo.io/

Firebase: https://firebase.google.com/

Stack Overflow: https://stackoverflow.com/

Heroku for hosting the server: https://www.heroku.com/

GitHub: https://github.com/

Apple Developer Documentation: https://developer.apple.com/documentation/

Google Developer Documentation: https://developer.android.com/docs

Font Awesome Icons: https://fontawesome.com/

Figma for UI frames: https://www.figma.com/

ExpressJS: https://expressjs.com/

NodeJS: https://nodejs.org/

Namespace Pollution Mechanism (NPM): https://www.npmjs.com/

https://reactnative.dev/
https://expo.io/
https://firebase.google.com/
https://stackoverflow.com/
https://www.heroku.com/
https://github.com/
https://developer.apple.com/documentation/
https://developer.android.com/docs
https://fontawesome.com/
https://www.figma.com/
https://expressjs.com/
https://nodejs.org/
https://www.npmjs.com/

