

Bachelor's Thesis

Information Technology

Embedded Software

2011

Petri Tuononen

LLVM TOOLCHAIN SUPPORT
AS A PLUG-IN FOR ECLIPSE
CDT

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Embedded Software

Completion of the thesis: 3/2011| Total number of pages: 59

Instructor: Lic.Tech. Jari-Pekka Paalassalo

Author: Petri Tuononen

TURUN AMMATTIKORKEAKOULU THESIS

The mission of the thesis was to develop LLVM toolchain support as a plug-in for Eclipse CDT.
There are multiple reasons why such a plug-in was worth to make. First, it is proven that LLVM
with Clang front-end can compile C/C++ and Objective C program code faster than GCC.
Secondly, currently LLVM tools are mostly run on command prompt and the commands tend to
need option flags. The newly created plug-in integrates the LLVM toolchain tools with readily
configured default option flags. The plug-in allows users to create C/C++ projects in Eclipse
which use LLVM toolchain with Clang or LLVM-GCC compiler, among others. Building a project
becomes a one click operation via graphical user interface.

The main point of the plug-in is the pure easiness of building C/C++ projects with one of the
industry‟s most efficient C/C++ compiler. Eclipse was chosen as IDE, because it is one of the
most popular open-source IDEs available. Eclipse provides a full-blown software development
environment for even the most conscious developers and now it is available in LLVM based
development. Although the LLVM tools are pre-configured by default, they can be configured
easily in Eclipse.

Using LLVM from Eclipse is efficient and user-friendly which saves valuable time and thus
money. The LLVM toolchain and Eclipse IDE complement each other by creating a coherent
C/C++ development environment with advanced and modern features. The environment is fully
open-source and operating system independent.

Another research topic was to find out how to contribute to Eclipse Foundation.

KEYWORDS:

LLVM, Clang, llvm-gcc, Eclipse, CDT, plug-in, toolchain, open-source compiler, contribution to
Eclipse, open-source contribution.

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ
TURUN AMMATTIKORKEAKOULU

Tietotekniikan koulutusohjelma | Sulautetut ohjelmistot

Opinnäytetyön valmistumisajankohta: 3.2011 | Sivumäärä: 59

Ohjaaja: TkL Jari-Pekka Paalassalo

Tekijä: Petri Tuononen

LLVM TYÖKALUKETJUN TUKI ECLIPSE CDT:IIN
LISÄOSANA

Opinnäytetyön tavoitteena oli kehittää LLVM työkaluketjun tuki Eclipse CDT:iin lisäosana. Syitä
lisäosan tekemiseen löytyy monia. Ensiksi on todistettu, että LLVM työkaluketju yhdessä Clang
kääntäjän kanssa kääntää C/C++ ja Objective C ohjelmakoodia nopeammin kuin GCC. Toiseksi
nykyisin LLVM työkaluja käytetään pääasiassa komentorivin kautta ja komennot vaativat
yleensä valintalippuja. Lisäosa integroi LLVM työkaluketjun työkalut ennalta konfiguroiduilla
valintalipuilla. Lisäosa luo käyttäjille mahdollisuuden luoda C/C++ projekteja Eclipsessä, mitkä
käyttävät LLVM työkaluketjua yhdessä esim. Clang tai LLVM-GCC kääntäjän kanssa.
Sovellusprojektin ajokelpoinen ohjelma voidaan saada aikaan vain yhdellä käyttöliittymän
painikkeen napsautuksella.

Pääajatus lisäosan takana on C/C++ projektien erittäin helppo rakentaminen yhdellä alan
tehokkaimmalla kääntäjällä. Eclipse valittiin ohjelmointikehitysympäristöksi, koska se on yksi
suosituimmista ohjelmointikehitysympäristöistä. Eclipse tarjoaa kokonaisvaltaisen ympäristön
ohjelmistokehitykselle jopa kaikista vaativimmille käyttäjille ja nyt se saadaan käyttöön myös
LLVM pohjaisessa kehityksessä. Vaikka LLVM työkalut ovatkin ennalta konfiguroituja, voidaan
ne konfiguroida Eclipsestä käsin vaivatta.

LLVM:n käyttäminen Eclipsessä on tehokasta ja helppokäyttöistä, mikä säästää aikaa ja siten
rahaa. LLVM työkaluketju ja Eclipse ohjelmointikehitysympäristö täydentävät toisiaan luoden
koherentin ympäristön C/C++ ohjelmistokehitykselle kehittynein ja modernein toiminnallisuuksin.
Ympäristö on täysin avointa lähdekoodia ja on käyttöjärjestelmäriippumaton.

Tutkimuksen kohteena oli myös ottaa selvää kuinka Eclipse Foundationiin toimitetaan
kontribuutio.

ASIASANAT:

LLVM, Clang, llvm-gcc, Eclipse, CDT, lisäosa, työkaluketju, avoimen lähdekoodin kääntäjä,
Eclipse kontribuutio, lahjoitus avoimen lähdekoodin yhteisölle.

CONTENT

LIST OF ABBREVATIONS

1 INTRODUCTION 1

2 BACKGROUND INFORMATION 2

2.1 What is LLVM? 2

2.1.1.1 LLVM C/C++ compiler (llvm-gcc/llvm-g++) 4

2.1.1.2 Clang (LLVM native compiler) (clang, clang++) 5

2.1.1.3 Assembler (llvm-as) 6

2.1.1.4 Disassembler (llvm-dis) 6

2.1.1.5 Linker (llvm-ld) 6

2.1.1.6 Archiver (llvm-ar) 6

2.1.1.7 Optimizer (opt) 6

2.1.1.8 LLVM Static Compiler (llc) 6

2.1.1.9 LLVM Execution Engine (lli) 6

2.2 Advantages of LLVM 7

2.2.3.1 Further modularization 8

2.2.3.2 New projects using LLVM libraries 8

2.3 Companies using LLVM 8

2.4 Companies using Eclipse CDT 8

2.5 What is Eclipse platform? 9

2.6 What is Eclipse CDT? 9

2.7 What is Eclipse plug-in? 9

2.8 Initial preparations 10

2.8.1.1 Linux environment 11

2.8.1.1.1 Compiling LLVM with Clang and LLVM-GCC front-ends on

Linux 11

2.8.1.2 Windows environment 12

2.1.1 LLVM toolchain tools 4

2.1.2 LLVM file formats 7

2.2.1 Efficiency 7

2.2.2 GCC replacement in C/C++ development 7

2.2.3 Future possibilities provided by the LLVM toolchain 8

2.8.1 Installing/compiling LLVM with front-ends 11

2.8.1.2.1 LLVM installation instructions for Windows using MinGW

compiler suite 13

2.8.1.2.2 LLVM installation instructions for Windows using Cygwin

compiler suite 15

2.9 Creating an Eclipse plug-in 17

2.10 Creating feature project 18

2.11 Creating Eclipse update site 19

2.12 Project website 19

2.13 Project mailing list 21

2.14 Contributing to the Eclipse Foundation 22

3 REQUIREMENT ANALYSIS 24

3.1 Functional specifications 24

3.2 Contributing project as part of Eclipse CDT for Eclipse Foundation 25

3.3 LLVM integration should not disturb initial functionality of CDT 26

4 IMPLEMENTATION 27

4.1 Overview of the LLVM plug-in architecture 27

4.2 CDT bug/feature patches 28

2.8.2 Development configuration: Installing Eclipse PDE with CDT SDK 17

2.8.3 End-user configuration: Installing Eclipse CDT 17

2.8.4 System Environment variable settings 17

2.9.1 Creating a plug-in wizard template 18

2.9.2 Structure of the Eclipse plug-in 18

2.11.1 Hosting for the project update site 19

2.12.1 Version tracking 20

2.12.2 Issue tracking 21

2.12.3 Wiki 21

3.1.1 Integration with a popular graphical IDE 24

3.1.2 Supported platforms 24

3.1.3 LLVM tools 24

3.1.4 Tool options 25

3.1.5 LLVM front-ends 25

3.1.6 CDT Internal builder and GNU make builder support for LLVM toolchain 25

3.1.7 User interface for LLVM specific configuration 25

3.1.8 Additional system environment path variables 25

4.3 Extending the Eclipse CDT Managed Build System 29

4.4 Testing 43

4.5 Test cases 50

5 VALIDATION 51

5.1 User feedback 51

5.2 CDT developers feedback 51

6 DISSEMINATION 52

6.1 Contacting Chief Architect of the LLVM Compiler Infrastructure 52

6.2 Contacting Eclipse CDT lead developer 52

6.3 Posting to cdt-dev mailing list 52

6.4 Publishing plug-in to Eclipse marketplace 53

6.5 Becoming Eclipse CDT committer 54

7 FUTURE PLANS 56

7.1 Integrating plug-in to CDT and contributing to Eclipse Foundation. 56

7.2 Additional features 56

7.3 Activating open-source developers to contribute towards the project 56

7.4 Keeping the project development continuous 56

8 SUMMARY 57

REFERENCES 58

4.3.1 Configuring LLVM tools for Eclipse 31

4.3.2 Configuring template associations 34

4.3.3 Configuring content types 34

4.3.4 Configuring scanner discovery profiles 34

4.3.5 Configuring dependency calculators 35

4.3.6 Environment variable supplier: discovering LLVM, MinGW, Cygwin and C++

Standard Library paths 37

4.3.7 Creating preference page for LLVM specific settings 39

4.3.8 Creating and configuring extension for help files 41

4.3.9 Adding include paths, libraries and library paths to Tool‟s options 41

4.4.1 Testing LLVM environment supplier 43

4.4.2 Creating a new project 44

4.4.3 Building LLVM toolchain projects 45

4.4.4 Testing scanner configuration discovery profiles 49

4.4.5 Testing toolchain configuration 50

APPENDICES

Appendix 1. Plugin.xml configuration schema
Appendix 2. Layered package diagram

FIGURES

Figure 1. LLVM Architecture ... 3

Figure 2. The transformation of file formats with different commands 4

Figure 3. LLVM GCC design ... 5

Figure 4. Eclipse extension point scheme ... 10

Figure 5. Eclipse project tree .. 18

Figure 6. Project website .. 20

Figure 7. Subversion repository tree ... 21

Figure 8. LLVM project with Eclipse package dependencies 27

Figure 9. LVM project class dependencies and inheritances 28

Figure 10. CDT Managed Build System Architecture .. 29

Figure 11. Managed build model elements ... 30

Figure 12. C/C++ Build settings .. 33

Figure 13. llvm.scannerconfig package ... 35

Figure 14. makegen.llvm package dependencies ... 36

Figure 15. llvm package dependencies ... 38

Figure 16. LLVM Preferences page .. 39

Figure 17. preferences package dependencies and inheritances 40

Figure 18. llvm.util package dependencies ... 42

Figure 19. Build environment variables ... 43

Figure 20. C Project creation in Linux ... 44

Figure 21. IDE view of C project release build with Clang on Windows 45

Figure 22. C and C++ debug and release builds with Clang 46

Figure 23. C and C++ debug and release builds LLVM-GCC 47

Figure 24. Clang release build with linker‟s verbose mode enabled on Windows 47

Figure 25. Clang release build with Make builder on Windows 48

Figure 26. Paths and symbols for project‟s build configuration 49

Figure 27. Toolchain editor for project‟s build configuration 50

Figure 28. LLVM plug-in on the Eclipse marketplace .. 54

TABLES

Table 1. LLVM file formats .. 7

Table 2. Compiling LLVM with Clang and LLVM-GCC front-ends on Linux 12

Table 3. LLVM installation instructions for Windows using MinGW compiler suite....... 15

Table 4. LLVM installation instructions for Windows using Cygwin 16

LIST OF ABBREVATIONS

API Application Programming Interface.

Back-end Back-end uses intermediate representation to produce

code in a computer output language.

Bug Flaw in software.

Bugzilla Bug tracking software.

Bytecode Binary file format used by LLVM.

CDT C/C++ Development Tools plug-in for Eclipse IDE.

Clang „LLVM native‟ C/C++/Objective-C compiler front-end.

Committer Committer is an individual who has been given write

access to codebase hosted by someone.

Cross-platform Platform (operating system) independent.

Cygwin Linux-like environment for Windows.

Eclipse Popular open source software tool platform featuring a

GUI and IDE.

ELF Executable and Linkable Format.

Front-end Initial stages of a process i.e. interface between the

user and the back-end. Translates source code into an

intermediate representation.

GCC GNU Compiler Collection.

GNU GNU's Not Unix!

GUI Graphical User Interface.

IDE Integrated Development Environment.

IR Intermediate Representation.

Java Computer language.

JIT Just-In-Time.

JUnit Unit testing framework for the Java programming

language.

LLVM Low-Level Virtual Machine.

LLVM-GCC LLVM C front-end which compiles C/ObjC programs

into native objects, LLVM bytecode or LLVM assembly

language.

Mach-O Mach object file format.

MBS CDT Managed Build System.

MinGW “Minimalist GNU for Windows”, is a minimalistic

implementation of essential GNU software

development programs as native Windows

applications.

Patch Piece of software which fixes software problems e.g.

bugs.

PDE Plug-in Development Environment.

PE Portable Executable.

Plug-in In this context, a plug-in is software aimed to provide

additional functionality on top of Eclipse platform.

Subversion/SVN Revision Control System.

Toolchain Chain of programming tools used to build a computer

program.

UML Unified Modelling Language.

URL Uniform Resource Locator.

1

BACHELOR‟S THESIS | Petri Tuononen

1 INTRODUCTION

The initial work started in spring by Leo Hippeläinen, a Senior Software

Technology Specialist at Nokia Siemens Networks. After I joined Nokia

Siemens Networks in June as a summer trainee I continued the development of

the plug-in and collaborated with another summer trainee and the Senior

Software Architect. I decided that the work I started in Nokia Siemens Networks

would become the topic of my thesis. In the end I was the only Nokia Siemens

Networks employee working on the project on day-to-day basis. By the end of

August the plug-in still needed further development and I planned to continue

on winter 2011.

Nokia Siemens Networks was interested in making a plug-in for Eclipse which

allows using LLVM toolchain within Eclipse IDE. This allows C/C++ developers

to work in fully open-source environment without any dependencies on

commercially licensed software.

LLVM toolchain plug-in for Eclipse CDT provides a cross-platform development

environment which uses one of the most efficient and modern compiler

architectures available for C and C++ languages at the moment.

The plug-in is released under Eclipse Public License 1.0 and is freely available

for anyone to download. Nokia Siemens Networks wanted to contribute to open-

source community by releasing it with such a license that allows anyone to

contribute i.e. modify source code of the plug-in. It was planned that the plug-in

would be donated to Eclipse Foundation which would ensure the further

development of the plug-in.

2

BACHELOR‟S THESIS | Petri Tuononen

2 BACKGROUND INFORMATION

2.1 What is LLVM?

LLVM (Low Level Virtual Machine) is a collection of advanced cross-platform

compiler technology i.e. infrastructure which consists of libraries, toolchain and

compiler tools. It started as a research project at the University of Illinois in 2000

by Chris Lattner and Vikram Adve. The initial release was in 2003. Currently it is

developed by LLVM Developer Group, numerous individual contributors and

industry and research groups. LLVM uses University of Illinois Open Source

License which allows individuals to see and modify the project‟s source code.

[1]

Although LLVM was originally implemented for C/C++ and also written with

C++, its language-independent virtual instruction set and type system allows

creation of front-ends for other computer languages. [1] [2]

The strengths of the LLVM infrastructure are its extremely simple IR

(Intermediate Representation) design which is easy to learn and use, source-

language independence, powerful and modular mid-level optimizer, clean and

modular code generator, automated compiler debugging support, extensibility,

and its stability, reliability and performance of the generated code. [3][4] LLVM

also supports a so-called life-long compilation model which includes link-time,

install-time, run-time, and offline optimization. [5]

The LLVM provides reusable modular components (libraries and tools) that

allow building compilers, optimizers, JIT (Just-In-Time) code generators, and

many other compiler-related programs easily and with reduced time and cost.

[4][6] Tools that LLVM contains e.g. assemblers, automatic debugger, linker,

code generator and modular optimizers are also made by using the LLVM

libraries and are shared across different compilers. [2] [4]

“The core of LLVM is the intermediate representation (IR). Front ends compile code from a

source language to the IR, optimization passes transform the IR, and code generators turn the

IR into native code.” [6] LLVM IR design allows LLVM to analyze and optimize code

3

BACHELOR‟S THESIS | Petri Tuononen

as early as possible and compile-time optimizations can be run also at link-time.

[4] Low-level instruction set (the virtual object code) enables powerful program

analysis and transformation capabilities at link-time and run-time. [7]

“The LLVM code representation is designed to be used in three different forms: as an in-

memory compiler IR, as an on-disk bitcode representation (suitable for fast loading by a Just-In-

Time compiler), and as a human readable assembly language representation. This allows LLVM

to provide a powerful intermediate representation for efficient compiler transformations and

analysis, while providing a natural means to debug and visualize the transformations. The three

different forms of LLVM are all equivalent.” [8]

LLVM is nowadays a project with multiple contributors which include members

from industry, research groups and individuals. [2]

Figure 1. LLVM Architecture [9]

The above figure shows how source program code is fed to Clang or LLVM-

GCC compiler and the files produced are then linked together and optimized at

link-time. This is the phase where developer site ends and user site begins.

After the linking process the file might be optimized by Runtime Optimizer or

4

BACHELOR‟S THESIS | Petri Tuononen

Offline Optimizer before ending up to either Static Code Generator or JIT. Both

Static Code Generator and JIT share the same shared LLVM libraries.

Figure 2. The transformation of file formats with different commands

The above figure shows how Clang and LLVM-GCC front-ends can create .ll,

.bc, .s, .o and ELF files. Assembler (llvm-as) can also create .bc files from .ll

files. From .bc files linker (llvm-ld) can create platform specific executable file,

static compiler (llc) can create .s file and JIT compiler can fast load them.

2.1.1 LLVM toolchain tools

LLVM toolchain contains multiple tools for multiple purposes and that is one

reason what makes it modular.

2.1.1.1 LLVM C/C++ compiler (llvm-gcc/llvm-g++)

GCC consists of three major parts which are front-end, optimizer and code

generator. The LLVM C/C++ compiler replaces optimizer and code generator,

but still uses GCC C/C++ parser and runtime libraries. [2] LLVM C/C++ compiler

also differs from GCC in a way that .o files (that are created after compilation of

C/C++ file) contain LLVM IR/bytecode, not machine code and executable can

5

BACHELOR‟S THESIS | Petri Tuononen

be bytecode or machine code. [5] Linking LLVM and GCC compiled code stays

safe despite the differences in compilers. It is also safe to call into libraries built

with other compilers. LLVM C/C++ compiler features a link-time optimizer which

further improves performance. Compile time and code execution time is

reduced by LLVM‟s optimizations and code generation. [2]

Figure 3. LLVM GCC design

2.1.1.2 Clang (LLVM native compiler) (clang, clang++)

Clang is a GCC compatible compiler front-end for the C, C++, Objective-C and

Objective-C++ programming languages and uses the Low Level Virtual Machine

as its back-end. [10]

Clang on top of LLVM is aimed as a replacement of the GCC stack. Clang is

designed to reduce memory footprint, disk space and compilation time

compared to GCC. Clang also increases program execution speed. Clang is

highly modularized with codebase significantly simpler than GCC‟s which

makes it more flexible than GCC and thus developers can extend it with less

effort and coding skills. [10][11]

Clang features expressive diagnostics and that was one of the main reasons for

its development along with the fact that GCC libraries had become more and

more complex during the decades due to open-source nature of its license and

also the development had become stagnated. [12][2] Although Clang is also

developed under open source license it has not suffered from large or complex

codebase issues due to its modular architecture.

Clang Static Analyzer is a notable feature of Clang that uses algorithms and

techniques to analyze source code in order to find bugs. This feature is useful

even as a standalone tool. [13]

6

BACHELOR‟S THESIS | Petri Tuononen

The downside of the Clang is the fact that compilers tend to take time to mature

as in case of GCC and being such a new compiler it has to gain approval of the

mainstream. [14]

2.1.1.3 Assembler (llvm-as)

The assembler transforms the human readable LLVM assembly to LLVM

bytecode and finally writes the result into a file or to standard output. [15]

2.1.1.4 Disassembler (llvm-dis)

The disassembler transforms the LLVM bytecode to human readable LLVM

assembly code. [15]

2.1.1.5 Linker (llvm-ld)

Links multiple .bc (LLVM bytecode) files together into a single bytecode file. [16]

2.1.1.6 Archiver (llvm-ar)

The archiver produces an archive containing the given LLVM bytecode files

which can then be linked into an LLVM program. [15]

2.1.1.7 Optimizer (opt)

LLVM optimizer features standard scalar optimizations, loop optimizations and

interprocedural optimizations. [17]

2.1.1.8 LLVM Static Compiler (llc)

The llc tool compiles LLVM source inputs into assembly language for a

specified architecture. [18]

2.1.1.9 LLVM Execution Engine (lli)

The lli tool uses a Just-In-Time compiler if it is available and otherwise LLVM

interpreter. JIT emits machine code into memory instead of ".s" file and uses

7

BACHELOR‟S THESIS | Petri Tuononen

same code generator as Static Code Generator. Interpreter is simple and very

slow but portable. [19]

2.1.2 LLVM file formats

File format Description

.ll LLVM human-readable assembly language in text format.

.bc LLVM bytecode in binary format.

.s LLVM Assembler code.

.o Machine code generated by a compiler from source code module.

Used by linker to form a completed program from multiple object

files.

Table 1. LLVM file formats

2.2 Advantages of LLVM

2.2.1 Efficiency

Selecting LLVM toolchain can lead to faster compilation and code execution

time in most cases. There are huge amount of debates going on with multiple

architectures, compiler versions and software to be compiled with. It is not that

straightforward which compiler takes the overall speed champion trophy after

all. There are still some cases where some compiler performs better than the

other considering the equal and fair environment for all contenders. Efficiency is

one of the reasons to choose LLVM to compile programs.

2.2.2 GCC replacement in C/C++ development

The main reason for LLVM project was to provide an alternative to stagnated

and old GCC compiler with modular and better performing compiler, which is

easy to use. LLVM provides modern features and a new code base which is

easy to learn and the modular architecture of LLVM infrastructure makes

possible to create new compilers using LLVM libraries and tools. [2]

8

BACHELOR‟S THESIS | Petri Tuononen

2.2.3 Future possibilities provided by the LLVM toolchain

LLVM provides a new compiler system for the current generations which consist

of multiple separate projects nicely integrated together and the organizational

status on behalf of Apple Inc. provides a nice playing ground for new

experiments.

2.2.3.1 Further modularization

Modular architecture of LLVM allows the improvement of one tool at a time

(without compromising others) e.g. optimizer which is used during link-time and

compile-time that makes optimizations even better and faster which in turn

makes the whole compilation process to perform better.

2.2.3.2 New projects using LLVM libraries

LLVM could become an integral part of new compiler designs aimed for

embedded system architecture. For example compiler front-ends for multiple

target embedded system architecture and multi-OS support which use LLVM

libraries as back-end. [20]

2.3 Companies using LLVM

Apple Inc. is probably a company using LLVM most widely and part of the

reason is that Apple hired the main author of LLVM. Apple uses LLVM on

Xcode IDE and Mac OS X operating system. Adobe Systems Incorporated uses

LLVM Optimizer and JIT codegen for the Hydra language. NVIDIA uses LLVM

on OpenCL runtime compiler. Cray Inc. uses LLVM as a back-end for the Cray

x86 compiler on their supercomputers. [21]

2.4 Companies using Eclipse CDT

Companies using Eclipse CDT include e.g. ARM, Freescale Semiconductors,

IBM, Intel and Nokia. [22]

9

BACHELOR‟S THESIS | Petri Tuononen

2.5 What is Eclipse platform?

The Eclipse platform is a development framework that was donated to open

source community by IBM. This platform allows anyone to build tools that

integrate seamlessly with the environment and other tools. The method to

integrate tools seamlessly is by plug-ins. In fact everything except a small

runtime kernel is a plug-in in Eclipse. [23] Eclipse platform on the other hand is

a sub-project of Eclipse which provides the core frameworks and services upon

which all plug-in extensions are created. [24] Eclipse platform is the core

component of Eclipse IDE and everything else i.e. subprojects are built on top

of it.

The platform is defined by components whose development is handled as their

own projects. These projects include Ant integration, platform runtime and

resource management, CVS integration, generic execution debug framework,

release engineering, integrated search facility, Standard Widget Toolkit, generic

team and compare support frameworks, text editor framework, help system,

initial user experience, cheat sheets etc., platform user interface and dynamic

update/install/field service. [23] These projects form a generic development

base for new extensions.

2.6 What is Eclipse CDT?

The CDT (C/C++ Development Tools) project goal is to provide C and C++

Integrated Development Environment (IDE) for the Eclipse platform. [25] That

implies that Eclipse CDT is a plug-in itself.

2.7 What is Eclipse plug-in?

Plug-in provides additional functionality to Eclipse IDE platform. Plug-ins can be

made by using Plug-in Development Environment and utilizing Eclipse libraries.

A plug-in requires an extension point to plug into in order to function. [26]

Furthermore an update site project can be generated and uploaded to a web

server and anyone can then install the plug-in by downloading it from online

10

BACHELOR‟S THESIS | Petri Tuononen

within Eclipse UI. Plug-ins are an easy way to add functionality as PDE provides

tools for developers to help their work and the installation of the plug-ins is easy

for the end-users.

Eclipse workbench and workspace provide an essential support for plug-ins.

They contain extension points that can extend user interface with views, dialogs

and events. Workspace's extension points allow to interact with resources e.g.

projects and files. [26] On other words Eclipse components are extended by

other plug-ins in order to achieve additional functionality. Debug and Release

components for example are used to launch programs. Help component is

useful for creating end-user documentation.

Figure 4. Eclipse extension point scheme

2.8 Initial preparations

Let's look at the initial preparations that are necessary in order to develop LLVM

plug-in or just use it as an additional toolchain with Eclipse CDT.

11

BACHELOR‟S THESIS | Petri Tuononen

2.8.1 Installing/compiling LLVM with front-ends

Preparations differ depending on the operating system in use. The most time-

consuming method is to compile LLVM libraries along with front-ends especially

on Windows. LLVM with Clang must always be built from sources on Windows.

LLVM-GCC front-end binaries are provided for MinGW and are usually

sufficient. Compiling LLVM-GCC can be tricky and very time-consuming thus

recommended only if necessary.

2.8.1.1 Linux environment

In case of major Debian based Linux distribution like Ubuntu, all necessary

LLVM related components can be installed via package manager. This is by far

the fastest and easiest method to install LLVM with Clang and LLVM-GCC

compilers. There are also two alternative options for Linux. Either to compile

just LLVM libraries if distributions package manager does not include such a

package and download front-end Linux binaries separately or compile front-

ends from sources. Compilation takes quite a lot of time (even hours) hence it is

recommended to compile only those packages that are necessary.

2.8.1.1.1 Compiling LLVM with Clang and LLVM-GCC front-ends on Linux

Note: These instructions are Ubuntu specific and may or may not work with

other Linux distributions. Administrator rights are more than likely needed to run

these commands.

Step Instructions

1. Download LLVM:

mkdir /usr/llvm

cd /usr/src (create if does not exist)

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

2. Download Clang :

cd /usr/src/llvm/tools

svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

12

BACHELOR‟S THESIS | Petri Tuononen

3. Configure and build LLVM with Clang:

mkdir /usr/build

mkdir /usr/build/llvm

cd /usr/build/llvm

/usr/src/llvm/configure --prefix=/usr/llvm

make -j# ENABLE_OPTIMIZED=1 (#=number of CPU cores)

4. Download LLVM-GCC binaries:

Download matching build of the LLVM-GCC binaries from

http://llvm.org/releases.

5. Install LLVM-GCC binaries:

extract llvm-gcc to /usr/build/llvm-gcc

mkdir /usr/build/llvm-gcc

Copy extracted llvm-gcc files to /usr/build/llvm-gcc

For example: cp -r /../llvm-gcc4.2-2.8-x86_64-linux/*

/usr/build/llvm-gcc (replace .. with a correct subdir)

6. Add paths permanently to PATH environment variable:

export PATH=/usr/build/llvm/Release+Asserts/bin:${PATH}

export PATH=/usr/build/llvm-gcc/bin:${PATH}

For example in Ubuntu the above lines should be added to .bashrc file:

gedit ~/.bashrc

and enable/update PATH variable: source ~/.bashrc

Table 2. Compiling LLVM with Clang and LLVM-GCC front-ends on Linux

2.8.1.2 Windows environment

There is no native way to install LLVM for Windows. Either Cygwin or MinGW

must be installed which provide a Linux-like-environment. This complicates

installation quite a lot, because Cygwin/MinGW needs additional software to be

installed and thus takes more time.

LLVM libraries and Clang front-end must be compiled with MinGW. LLVM-GCC

front-end is available as binary format. During MinGW installation MSYS and

g++ compiler need to be installed as well. MSYS version of Perl and libcrypt

13

BACHELOR‟S THESIS | Petri Tuononen

(Perl dependency) must be uncompressed into MSYS directory. Also binutils

package needs to be uncompressed into directory where LLVM-GCC MinGW

binaries were uncompressed if they were not compiled from sources. MinGW

bin directory, LLVM with Clang and LLVM-GCC front-end binary paths must be

added to PATH environment variable.

Cygwin needs more software to be installed and LLVM libraries with all front-

ends must be compiled. Getting LLVM compiler system working under Windows

takes more time with Cygwin than MinGW. Cygwin bin directory and LLVM

binary directory paths must be added to PATH environment path. Also CYGWIN

environment variable with value nodosfilewarning=0 must be added, because

by default Cygwin expects POSIX style path which results in error in Eclipse

without this solution.

2.8.1.2.1 LLVM installation instructions for Windows using MinGW compiler

suite

This might be the fastest, easiest and most of all the most likely to work solution

to get LLVM suite and front-ends working on Windows.

These instructions are tested to work with LLVM 2.8, Clang 2.8, LLVM-GCC 4.2

and newest MinGW installation (as of February 2011). These instructions are

not version dependent but download links are given to the newest versions

available at the moment of writing.

Step Instructions

1. Download LLVM and Clang source code and MinGW binary of LLVM-

GCC. Download site: http://llvm.org/releases/download.html#2.8 or

download the newest version of LLVM and Clang sources and LLVM

MinGW binaries from http://llvm.org/releases/.

2. Uncompress LLVM sources e.g. C:/llvm-2.8

3. Uncompress Clang sources to tools directory inside LLVM source

directory e.g. C:/llvm-2.8/tools and check/rename that the added

14

BACHELOR‟S THESIS | Petri Tuononen

directory is simple called 'clang' with no suffix e.g. version number.

4. Download MinGW compiler suite. Download site:

http://sourceforge.net/projects/mingw/

5. Install MinGW (Download latest repository catalogues) with MSYS and C

& C++ compiler which are checked in Wizard type installation.

6. Add Ming‟s "bin" directory to the PATH environment variable. e.g.

C:\MinGW\bin (Run sysdm.cpl and click Environment Variables...

button).

7. Download Perl MSYS binaries. Download link:

http://sourceforge.net/projects/mingw/files/MSYS/perl/perl-5.6.1_2-2/perl-

5.6.1_2-2-msys-1.0.13-bin.tar.lzma/download or download newest binary

package from http://sourceforge.net/projects/mingw/files/MSYS/perl/.

8. Uncompress Perl binary package into MSYS/1.0 directory (merge bin &

lib folders).

9. Download libcrypt MSYS binaries (Perl requires it). Download newest

version from http://sourceforge.net/projects/mingw/files/MSYS/crypt/.

10. Uncompress libcrypt binary package into MSYS/1.0 directory. (merge bin

folders).

11. Open MSYS command prompt (e.g. C:/MinGW/msys/1.0/msys.bat)

and navigate to directory where your LLVM sources are located e.g. cd

C:/llvm-2.8

12. Create folder for build files. e.g. mkdir C:/llvm-2.8/BUILD

13. Go to BUILD directory. e.g. cd BUILD

14. Run configure script: ../configure

15. Build the LLVM suite: make -j# ENABLE_OPTIMIZED=1

(-j number_of_processor_cores for parallel compilation)

(ENABLE_OPTIMIZED=1 to perform a Release (Optimized) build and

ENABLE_OPTIMIZED=0 to perform a Debug build).

If building fails for some reason, try building it again or alternatively run

'make clean' command first. If building gets stuck at some point (as it

does quite often) close the shell and run the make command again.

15

BACHELOR‟S THESIS | Petri Tuononen

16. Add C:\llvm-2.8\BUILD\Release+Asserts\bin (or

../Debug+Asserts../bin) directory to your PATH.

17. Uncompress MinGW LLVM-GCC binary files to some directory e.g.

C:/llvm-gcc.

18. Uncompress the binary binutils MinGW package into your LLVM-GCC

binary directory. Download link:

http://sourceforge.net/projects/mingw/files/MinGW/BaseSystem/GNU-

Binutils/binutils-2.21/binutils-2.21-2-mingw32-bin.tar.lzma/download or

download the newest binary package from

http://sourceforge.net/projects/mingw/files/MinGW/BaseSystem/GNU-

Binutils.

19 Add LLVM-GCC's "bin" directory to your PATH environment variable.

e.g. C:/llvm-gcc/bin

Table 3. LLVM installation instructions for Windows using MinGW compiler suite

2.8.1.2.2 LLVM installation instructions for Windows using Cygwin compiler

suite

Step Instructions

1. Download Cygwin from http://www.cygwin.com.

2. Install Cygwin with following packages:

Development

 gcc4-core

 gcc4-g++

 make

 subversion

Interpreters

 perl

3. Open Cygwin bash shell.

16

BACHELOR‟S THESIS | Petri Tuononen

4. Create directories.

mkdir /usr/build

mkdir /usr/build/llvm

mkdir /usr/build/llvm-gcc

5. Get LLVM, Clang and LLVM-GCC sources.

cd /usr/src

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

svn co http://llvm.org/svn/llvm-project/llvm-gcc-4.2/trunk

llvm-gcc

cd /usr/src/llvm/tools

svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

6. Build LLVM with Clang (release build).

cd /usr/build/llvm

/usr/src/llvm/configure --prefix=/usr/llvm

make -j# ENABLE_OPTIMIZED=1 (#=number of cpu cores for

parallel compilation)

PATH=/usr/build/llvm/Release+Asserts/bin:${PATH}

7. Build and install the front-end.

cd /usr/build/llvm-gcc

/usr/src/llvm-gcc/configure --enable-languages=c,c++- --

enable-llvm=/usr/build/llvm

make -j# ENABLE_OPTIMIZED=1 (#=number of cpu cores)

make install

PATH=path_to_llvm-gcc_bin_dir:${PATH}

8. Rebuild and install the LLVM.

cd /usr/build/llvm

make -j# ENABLE_OPTIMIZED=1

make install

9. Check build.

make check

Table 4. LLVM installation instructions for Windows using Cygwin

17

BACHELOR‟S THESIS | Petri Tuononen

2.8.2 Development configuration: Installing Eclipse PDE with CDT SDK

In order to create Eclipse plug-ins, Plug-in Development Tools must be included

in Eclipse installation along with CDT SDK. CDT packages must be imported

into workspace as source projects. LLVM plug-in source codes can be checked

out from SVN using subversion/subversive SVN client within Eclipse. CDT SDK

is needed, because LLVM plug-in has many dependencies to CDT sources.

CDT SDK should be newest possible, because along the process many CDT

source files had to be modified to suit LLVM plug-in‟s needs and those patched

versions of files are included in the newer versions of CDT (>8.0.0).

2.8.3 End-user configuration: Installing Eclipse CDT

End-user who does not plan to develop LLVM plug-in and just use it as a

toolchain to compile C/C++ program code needs only to install Eclipse IDE for

C/C++ Developers or Eclipse IDE with CDT plug-in and LLVM plug-in from

Eclipse update site. Similar to development environment LLVM with front-ends

must be built and set, because LLVM plug-in is dependent on those binaries.

2.8.4 System Environment variable settings

Regardless of the operating system LLVM back-end and front-end binaries shall

be added to the PATH environment variable. In UNIX derived operating

systems LD_LIBRARY_PATH environment variable should be appended with

C++ Standard Library path. These paths can also be added via plug-in‟s LLVM

preference page.

2.9 Creating an Eclipse plug-in

Creating working versions of LLVM-plug-in for Eclipse was a multiple step

process. First PDE (Plug-in-Development) environment advices to create plug-

in project, feature project and update site for just one project after all. Sooner

you will notice that update site must be transferred to a web-server in order that

18

BACHELOR‟S THESIS | Petri Tuononen

anybody has access to download the plug-in you just made. This plug-in can be

fully open-source, but Eclipse allows using licenses for commercial use too.

2.9.1 Creating a plug-in wizard template

 Creating a plug-in template goes through many internal features of Eclipse

platform. Eclipse has come up with an easy to use wizard, but an overall plan

for the plugin must be made first. Project wizard asks for project name, version,

vendor and some other settings.

2.9.2 Structure of the Eclipse plug-in

Plug-in project in Eclipse workspace contains at least plug-in project based

dependencies, Java libraries, plugin.xml file, manifest file, some property files

and project source files.

Figure 5. Eclipse project tree

2.10 Creating feature project

An Eclipse Feature project must be created in to the workspace in order to

create an Eclipse update site project. At least ID, version, name and provider

along with supported operating systems are necessary to be set. Feature

description, copyright notice and license agreement were also written in LLVM

feature project. Finally a plug-in must be added to the feature and

19

BACHELOR‟S THESIS | Petri Tuononen

dependencies checked and added if necessary. All of these configurations are

done in feature.xml file.

2.11 Creating Eclipse update site

An update site project shall be created into the workspace after an Eclipse

feature project is created. Category is first created and then feature added to

that category. ID, name and description are written in category properties.

Clicking „build all‟ command in site.xml file‟s site tab generates files that are

necessary for the update site.

The files contained in the update site project must be uploaded to a web server

preferably under a directory named “update”. Now update site can be added in

Eclipse by navigating Help -> Install New Software… Add. After selecting the

added update site URL the plug-in can be installed. During the installation

process plug-in description, version etc. are shown and license must be

accepted.

2.11.1 Hosting for the project update site

A web server is needed to host the contents of the update site project. Initially

my personal domain and hosting server is used to host the plug-in update site

but later on when the plug-in is integrated into the CDT release the Eclipse

Foundation will host the plug-in source files along with the update site.

2.12 Project website

Project website contains general information about the project as well as wiki

pages, downloads, source code browsing, commits and other updates, issue

tracker and project members. Anyone can apply to become a committer or a

contributor for the project by contacting project owner and specifying the reason

how he/she would like to contribute towards the project.

Link to the project website: http://code.google.com/p/llvm4eclipsecdt/.

20

BACHELOR‟S THESIS | Petri Tuononen

Figure 6. Project website

2.12.1 Version tracking

Subversion version tracker was used to keep track of new revisions and to be

able to revert back and compare different revisions. Version tracker provides a

21

BACHELOR‟S THESIS | Petri Tuononen

secure way to manage project and allows others to participate too by creating

new access rights to the SVN repository.

Figure 7. Subversion repository tree

2.12.2 Issue tracking

An issue tracker was maintained as a source of keeping list of bugs and

creating new entries of issues that may need to be fixed. Anonymous users

were given rights to write new entries and some people came up with a decent

and helpful manner to find defects in the project.

2.12.3 Wiki

Project wiki is a place for documentation aimed for developers. It contains

instructions on how to setup the development environment suitable for LLVM

plug-in. It also informs about necessary dependencies.

2.13 Project mailing list

Anyone can subscribe to LLVM plug-in for Eclipse CDT project development

mailing list to get all development specific updates directly to his/her email

address. Mailing list contains discussions and notices of project commits, new

issues and wiki changes. Person can also view the Google group site in regular

basis if he/she does not want email messages. However if one wants to be

22

BACHELOR‟S THESIS | Petri Tuononen

aware of the latest changes what happens in the project development then

subscription to the mailing list is recommended. Everyone can subscribe to the

list.

Link to project mailing list: http://groups.google.com/group/llvm4eclipsecdt/.

2.14 Contributing to the Eclipse Foundation

The company Nokia Siemens Networks where I worked for and started

developing this plug-in allowed me to publish this project under an open-source

license (EPL) and contribute towards Eclipse Foundation. I immediately liked

the idea for multiple reasons. The number one reason is that the open-source

license allows everyone to enjoy the achievements of the work which ultimately

leads to LLVM‟s wider use in C/C++ project development. Contributing to the

CDT on the other hand forms an integration that makes sense, because LLVM

plug-in is also aimed to compile C/C++ code. CDT community might also

become useful by providing development help and pretty good guarantee that

development is continued.

There are specific rules how to communicate with CDT developers and how to

contribute to Eclipse Foundation. CDT developers can be contacted by posting

to CDT developers‟ mailing list. It is worth to remind though that this is not a

CDT support mailing list. Instead its purpose is to function as a channel

between CDT developers. I posted a thread in order to notify developers that

this is coming to CDT on some point and also to spark interest and gain their

approval. I found out that the proper way to include this kind of project into the

CDT would be to create an Eclipse Bugzilla enhancement entry under CDT

tools. Contribution instructions are written to CDT Wiki. I obtained a fair share of

encouragement by kind feedback and some development ideas from the CDT-

DEV mailing list responders.

I was told that it was too late for CDT 8.0 release as it might take some months

for IP (Intelligence Property) reviewers to take a look and approve the code.

The CDT developers also want to test the new major release carefully and thus

23

BACHELOR‟S THESIS | Petri Tuononen

they build multiple milestone versions and nightly builds. A major addition like

this might compromise the overall stability and reliability of the CDT. I

completely agree with them as I want to make sure that the plug-in works as

well as possible before listing an enhancement entry to Bugzilla. There were still

multiple issues that had to be fixed and further testing to be done on other

operating systems than Linux distributions. This gave me more time to finish the

plug-in the way I wanted, because I did not need to rush in order to make it to

the next CDT release.

24

BACHELOR‟S THESIS | Petri Tuononen

3 REQUIREMENT ANALYSIS

The mission was to integrate LLVM toolchain with Eclipse CDT. The middleman

in this composition was the CDT plug-in for Eclipse which provides C/C++

developing environment on top of Eclipse platform. Libraries from the CDT

project had to be referenced especially from

org.eclipse.cdt.managedbuilder.core package, which can be seen from

Appendix 2.

3.1 Functional specifications

3.1.1 Integration with a popular graphical IDE

LLVM plug-in for Eclipse IDE does not already exist even though Eclipse is one

of the most popular open-source IDEs. Clang main page mentions “Allow tight

integration with IDEs”. Eclipse has a great functionality to help produce plug-ins

and its open-source library makes the creations legally possible.

IDE has a visibility across the entire project thus sharing an address space

across multiple files which provides intelligent caching and other techniques that

reduce analysis/compilation time. [11]

3.1.2 Supported platforms

The plug-in can be used on all operating systems which support Eclipse and

have some sort of Unix-like emulator which enables to execute LLVM binaries.

Top priority in the beginning is to support Linux, Mac OS X and Windows.

3.1.3 LLVM tools

Tools that shall be implemented in the LLVM plug-in are assembler, archiver,

linker, static compiler, execution engine aka JIT, Clang and LLVM-GCC

compiler.

25

BACHELOR‟S THESIS | Petri Tuononen

3.1.4 Tool options

Every tool has its specific options and some of them have to be included and

some are optional. This had to be taken into account by thoroughly reading

documentation and configuring all the options (most of which no value was

given). User must be able to change tool parameters by using a user-friendly

user Interface.

3.1.5 LLVM front-ends

Clang and LLVM-GCC front-ends needs to be added to the plug-in, because

they are the front-ends that compile C/C++ code.

3.1.6 CDT Internal builder and GNU make builder support for LLVM toolchain

Eclipse features two builders by default and the plan is to provide support for

both of them.

3.1.7 User interface for LLVM specific configuration

There shall be a GUI dialog where specific workspace-wide LLVM

configurations can be set.

3.1.8 Additional system environment path variables

Some additional system environment path variables need to be set in order to

find all the dependent LLVM binaries and C++ Standard Library.

3.2 Contributing project as part of Eclipse CDT for Eclipse Foundation

It is advantageous to release the plug-in with EPL (Eclipse Public License) and

donate it to Eclipse Foundation to ensure further development of the plug-in. As

a result everyone can benefit from the plug-in and wider audience promotes it

and thus drives the development onward.

26

BACHELOR‟S THESIS | Petri Tuononen

3.3 LLVM integration should not disturb initial functionality of CDT

In order to integrate LLVM plug-in as a part of the official CDT release it is

highly important that the plug-in does not affect the initial functionality of CDT

and that license is compatible. LLVM plug-in cannot ship with LLVM tools to

ensure that it meets all CDT project licensing rights.

27

BACHELOR‟S THESIS | Petri Tuononen

4 IMPLEMENTATION

4.1 Overview of the LLVM plug-in architecture

The LLVM plug-in architecture currently consists of 5 packages. As can be seen

from the diagram below the plug-in has major dependencies to CDT project

packages including org.eclipse.cdt.make.internal.core.scannerconfig,

org.eclipse.cdt.make.internal.core.scannerconfig.gnu,

org.eclipse.cdt.build.internal.core.scannerconfig2,

org.eclipse.cdt.build.core.scannerconfig, org.eclipse.cdt.core.settings.model,

org.eclipse.cdt.core.model, org.eclipse.cdt.managedbuilder.makegen.gnu and

org.eclipse.cdt.core.

Figure 8. LLVM project with Eclipse package dependencies

For a better view, see Appendix 2.

28

BACHELOR‟S THESIS | Petri Tuononen

The diagram below shows relations between LLVM plug-in packages and

classes.

Figure 9. LVM project class dependencies and inheritances

4.2 CDT bug/feature patches

CDT contained bugs that came on the way and had to be corrected first.

Necessary functionality missing from the released CDT 7.x had to be added.

Patches were submitted via Eclipse Bugzilla for CDT project and all of the

patches are included in the next major release of CDT (8.0). This means that at

least certain functionality may not work with older versions of CDT, but

backward compatibility may be provided by creating multiple versions of the

plug-in.

One of the added functionalities were getting library search paths from tool‟s

option in managed build system (MBS) which can be seen in figure „Managed

build model elements‟. This is listed in Eclipse Bugzilla as Bug 321040.

29

BACHELOR‟S THESIS | Petri Tuononen

A rare API change that affects plug-in‟s backward compatibility was also

created. This was not really necessary but as the deprecated class

org.eclipse.core.runtime.PluginVersionIdentifier showed as a warning on IDE I

decided to change it to org.osgi.framework.Version. The class was tagged as

deprecated meaning that it would be replaced at some point anyway. I thought

that better sooner than later so I created a patch and attached it to a bug entry I

created. This API change is from 7.1.0 onwards. This is listed in Eclipse

Bugzilla as Bug 318581.

4.3 Extending the Eclipse CDT Managed Build System

Eclipse CDT architecture consists of external and internal components. Internal

part consists of build file generator, CDT parser and UI component. External

part consists of UI elements and tool integrator. In order to add LLVM toolchain

support for CDT, additions through tool integrator and UI interfaces had to be

made.

Figure 10. CDT Managed Build System Architecture

Managed build model schema shows the architecture behind build

configurations. The figure below instructs how different elements are linked

together. This model came very handy in order to program functions which e.g.

30

BACHELOR‟S THESIS | Petri Tuononen

add library path to debug/release configuration‟s „LLVM with Clang‟ toolchain‟s

linker tool where library path is an option.

Figure 11. Managed build model elements [27]

31

BACHELOR‟S THESIS | Petri Tuononen

LLVM plug-in is basically a new toolchain added to Eclipse CDT. LLVM

toolchain definitions were added by plugging into the MBS tool definition

extension point, org.eclipse.cdt.managedbuilder.core.buildDefinitions. The

extension point defines an XML schema that lets describe tools in the toolchain.

4.3.1 Configuring LLVM tools for Eclipse

Tools that needed to be implemented in the LLVM plug-in were assembler,

archiver, linker, static compiler, execution engine aka JIT and Clang and LLVM-

GCC compilers.

LLVM tools were configured for Eclipse by managing plug-in extensions in

plugin.xml file. This was one of the most crucial steps in creating the LLVM

plug-in for Eclipse CDT. Build definitions were created in such a way that

toolchains configured for each platform and compiler (in case of Windows

platform also Unix-like environment) inherit as much as possible from abstract

toolchains that share similar options. Additional dissimilarity between platforms

is the executable format (output type).

Every toolchain configuration includes LLVM versions of archiver, assembler,

linker and CDT internal builder or Make builder which are provided by abstract

LLVM toolchain which acts as the most upper-level container. Every toolchain

must also include one of the four front-ends which are Clang, LLVM-GCC,

LLVM static compiler and JIT compiler. Platform specific Clang with LLVM and

LLVM-GCC with LLVM toolchains are themselves inherited from LLVM with

C/C++ Linker which is further inherited from highly abstract LLVM toolchain

which includes similar options for all LLVM based toolchains (builder, assembler

and archiver).

See Appendix 1. to get a clear view of the architectural design of toolchain, tool

and platform configurations.

The configuration of tools can be done through plugin.xml file‟s extensions tab

in Eclipse‟s GUI or optionally manually by writing pure xml code. The figure

below shows C/C++ build settings when LLVM plug-in is installed. The xml code

32

BACHELOR‟S THESIS | Petri Tuononen

demonstrates how build configuration (xml code on East side) and tool (xml

code on South) settings have been formed. Note that some Clang tool settings

are inherited from Abstract LLVM C/C++ compiler tool as can be seen from

Appendix 1. This means that some settings are not visible on the provided xml

listing. The plugin.xml file alone contains ~5000 lines of code.

33

BACHELOR‟S THESIS | Petri Tuononen

Figure 12. C/C++ Build settings

34

BACHELOR‟S THESIS | Petri Tuononen

4.3.2 Configuring template associations

Eclipse‟s project wizard defines few types of templates. LLVM based toolchains

are added to EmptyProject, HelloWorldCAnsiProject and HelloWorldCCProject

templates which are defined in org.eclipse.cdt.managedbuilder.gnu.ui package.

Every toolchain configuration is defined as an id for those three templates. In

other words templates are associated with toolchains.

4.3.3 Configuring content types

By extending org.eclipse.core.contenttype.contentTypes content types can be

created which define id, name, base type (such as text) and file extension for a

file type. File types can be associated with file extensions.

4.3.4 Configuring scanner discovery profiles

Scanner info collector, scanner info provider and scanner info console parser

are needed in order to add built-in include paths, library paths and preprocessor

definitions automatically to the paths and symbols preference page. Among

these three classes scanner info console parser and scanner info collector are

implemented from the GCC ones with minor modifications and scanner info

provider points directly to GCC scanner info provider

(org.eclipse.cdt.make.internal.core.scannerconfig2.GCCSpecsRunSIProvider).

Scanner info provider‟s function is to add correct information to the scanner info

collector when it is being called. Plugin.xml extension

org.eclipse.cdt.make.core.ScannerConfigurationDiscoveryProfile is added

separately for clang and clang++.

35

BACHELOR‟S THESIS | Petri Tuononen

Figure 13. llvm.scannerconfig package

4.3.5 Configuring dependency calculators

Dependency calculator provides the dependency calculation for a given tool.

LLVM specific dependency calculator was created by extending

DefaultGCCDependencyCalculator2 class. Implemented dependency

calculator‟s two overloaded methods with same name

getDependencySourceInfo return LLVM specific dependency calculator

commands class which is extended from

DefaultGCCDependencyCalculator2Commands.

36

BACHELOR‟S THESIS | Petri Tuononen

Figure 14. makegen.llvm package dependencies

37

BACHELOR‟S THESIS | Petri Tuononen

4.3.6 Environment variable supplier: discovering LLVM, MinGW, Cygwin and

C++ Standard Library paths

LLVM environment variable supplier‟s function is to provide and add LLVM

specific environment variable paths defined in LLVM preference page.

Environment variables are also added and visible in Project -> Properties ->

C/C++ Build -> Environment.

LLVM, MinGW, Cygwin and C++ Standard Library paths have to be set

automatically whenever a user creates a new project with corresponding

toolchain. Otherwise plug-in cannot find the files it is dependent on. User is only

expected to add LLVM, LLVM-GCC, MinGW and Cygwin build paths to system

environment path.

LLVM specific toolchains are only displayed in Eclipse‟s new project wizard if

the plug-in is able to find LLVM binaries. Class LlvmIsToolChainSupported is

used to notify if LLVM binary path can be found from LLVM environment

supplier by using getBinPath method inside LlvmEnvironmentVariableSupplier

class. In buildDefinition extension under LLVM toolchain the class

LlvmIsToolChainSupported is given as a parameter for isToolChainSupported

option. Class LlvmEnvironmentVariableSupplier is given as a parameter for

configurationEnvironmentSupplier option. These configurations make sure that

LLVM toolchain is only available for the user if LLVM binaries are found and that

LLVM specific environment variables are initialized when creating a new LLVM

specific project.

38

BACHELOR‟S THESIS | Petri Tuononen

Figure 15. llvm package dependencies

39

BACHELOR‟S THESIS | Petri Tuononen

4.3.7 Creating preference page for LLVM specific settings

Figure 16. LLVM Preferences page

LLVM preference page gives users an option to point location to LLVM

installation directory and add libraries, include paths and library search paths

e.g. for C++ Standard Library.

The starting point programmatically for the preference page was to create a

parent class (LlvmListEditor) for all lists. LlvmListEditor contains methods that

create buttons and selection listeners and actions for them. Then three classes

for different lists were implemented by extending LlvmListEditor

(IncludePathListEditor, LibraryListEditor and LibraryPathListEditor). Different

classes for lists were implemented, because they differ from the way what type

of value is added (file or path) and how they are added or removed from the

40

BACHELOR‟S THESIS | Petri Tuononen

preference store. LlvmPreferenceStore is like a memory bank where all

preferences are recorded. Preferences can be added, listed and removed.

PreferenceInitializer initializes the values from the preference store to the

workspace. PreferenceConstants features String definitions that cannot be

changed. LlvmPreferencePage implements the actual page which adds fields

for LLVM installation directory, include paths, libraries and library paths.

The LLVM preference page is added to Eclipse‟s Window –> Preferences

dialog by extending org.eclipse.ui.preferencePages. Also

org.eclipse.core.runtime.preferences shall be extended and PreferenceInitializer

defined as the initializer for the preference page.

Figure 17. preferences package dependencies and inheritances

41

BACHELOR‟S THESIS | Petri Tuononen

4.3.8 Creating and configuring extension for help files

Help extension is useful way to provide informative documents that end-users

can read. Documents itself are written in html format. In order to access

documents from Eclipse‟s Help -> Help Contents, we must extend

org.eclipse.help.toc and specify the path for table of contents xml file or index

file. In this project the table of contents xml file was created which is used as a

starting point to access other documents.

4.3.9 Adding include paths, libraries and library paths to Tool‟s options

In order to show files and paths in paths and symbols dialog (Project ->

Properties -> C/C++ General -> Paths and Symbols) that are added to LLVM

preference page it is not enough to only add them to the LLVM preference

store. The added files and paths might work even though they would not be

visible in paths and symbols dialog. However this might be really confusing for

the end-user, because paths and symbols dialog is the standard place to check

what dependencies are added.

Adding include paths, library files and library search paths to paths and symbols

dialog is not as straightforward as adding them to the LLVM preference store.

The reason is that everything set in LLVM preference page is aimed to be

workspace-wide such as all Eclipse Window -> Preferences configurations are.

First we should get all projects from the workspace. Then all build

configurations from every project. The file or path must be added independently

to every build configuration that is done by looping through every project‟s every

build configuration. We must get the right option from the right tool and append

the new value on top of the existing values. For that we need to know the option

id by giving tool and option value type as enumeration to getOptionId() method‟s

parameters. Next we set the tool‟s option by calling

ManagedBuildManager.setOption(IConfiguration config, IHoldsOptions holder,

IOption option, String[] value) method and saving the build configuration by

calling ManagedBuildManager.saveBuildInfo(final IProject project, final boolean

force) method. We must also be able to remove the added entries which is done

42

BACHELOR‟S THESIS | Petri Tuononen

by removing the specific entry in question from the existing list and setting a

new option list similarly as we would add a new entry. LlvmToolOptionPathUtil

class contains all necessary algorithms to make this all work.

Figure 18. llvm.util package dependencies

43

BACHELOR‟S THESIS | Petri Tuononen

4.4 Testing

4.4.1 Testing LLVM environment supplier

Figure 19. Build environment variables

Notice how INCLUDE_PATH, LD_LIBRARY_PATH, LIBRARIES,

LLVMINTERP, LLVM_BIN_PATH are new C/C++ build environment variables.

These variables have values if values are detected automatically via

LlvmEnvironmentVariableSupplier class or added via OS to these variables or

added via LLVM preference page.

44

BACHELOR‟S THESIS | Petri Tuononen

4.4.2 Creating a new project

Figure 20. C Project creation in Linux

Notice that toolchains featuring LLVM exist in toolchains window. This is true

only if LLVM binaries are found (from PATH or automatically via

LlvmEnvironmentVariableSupplier class).

45

BACHELOR‟S THESIS | Petri Tuononen

4.4.3 Building LLVM toolchain projects

Figure 21. IDE view of C project release build with Clang on Windows

Notice that src folder includes .bc file which is created by Clang compiler.

46

BACHELOR‟S THESIS | Petri Tuononen

Figure 22. C and C++ debug and release builds with Clang

These are Eclipse console views of Clang builds with C/C++ and debug/release

configurations.

47

BACHELOR‟S THESIS | Petri Tuononen

Figure 23. C and C++ debug and release builds LLVM-GCC

These are Eclipse console views of LLVM-GCC builds with C/C++ and

debug/release configurations.

Figure 24. Clang release build with linker‟s verbose mode enabled on Windows

With verbose mode option checked the user gets more descriptive console

output.

48

BACHELOR‟S THESIS | Petri Tuononen

Figure 25. Clang release build with Make builder on Windows

LLVM plug-in supports CDT internal builder and Make builder as seen in the

above figure.

49

BACHELOR‟S THESIS | Petri Tuononen

4.4.4 Testing scanner configuration discovery profiles

Figure 26. Paths and symbols for project‟s build configuration

If scanner configuration discovery profiles are set properly and scanner info

collector and scanner info console parser are programmatically correct then

paths and symbols dialog should show all LLVM/Cygwin/MinGW dependent

paths. The figure above shows C project includes.

50

BACHELOR‟S THESIS | Petri Tuononen

4.4.5 Testing toolchain configuration

Figure 27. Toolchain editor for project‟s build configuration

Shows available tools for the current toolchain and provides an option to

add/remove and replace tools. The important aspect here is to notice that all

necessary tools for the current toolchain are included.

4.5 Test cases

JUnit project was created to test several functionalities of the plug-in.

The first test finds out the current operating system in use and creates projects

compatible with that OS and compiles the projects.

The second test adds and removes values from LLVM preference page.

51

BACHELOR‟S THESIS | Petri Tuononen

5 VALIDATION

5.1 User feedback

Eclipse Marketplace provides user reviews and metrics of e.g. how many clicks

the plug-in page has received. This feature is helpful and allows developers to

follow how much popularity their plug-in has gained. The marketplace also

informs the amount of unsuccessful installs but does not seem to contain

information about all installations. The marketplace contains a bit over 1000

plug-ins at the moment and LLVM plug-in has received approximately 50 clicks

daily (even 85 on best days) and zero unsuccessful installations so far. I have

not received any user feedback from Eclipse marketplace yet, but one user has

marked the plug-in as his/her favorite.

5.2 CDT developers feedback

From the beginning the CDT developers have been encouraging to develop the

plug-in and interested in integration proposal. Many of them have promised to

support the development. The plug-in has gained approval from the CDT project

lead and one CDT committer has already submitted a patch for the plug-in.

52

BACHELOR‟S THESIS | Petri Tuononen

6 DISSEMINATION

6.1 Contacting Chief Architect of the LLVM Compiler Infrastructure

I decided to contact the primary author of LLVM in order to get llvm4eclipsecdt

plug-in as part of the http://llvm.org/ProjectsWithLLVM/ web site that lists LLVM

related projects. By listing the project on LLVM site, the project would get more

attention and at the same time the project is introduced to the main author of

LLVM. The original plan was to gain publicity before the plug-in finds its way

into official CDT release. However after a month or so the plug-in is not yet

listed on the site and it seems that it never will.

6.2 Contacting Eclipse CDT lead developer

Contacting the lead developer of CDT is understandable, because the plug-in

only works if CDT is installed to Eclipse IDE. Plug-in would be a great addition

to CDT and make the LLVM toolchain immediately available for Eclipse users (if

their system meets the plug-in requirements). The lead developer may help by

providing development help towards the process of donating the project to

Eclipse Foundation. He suggested posting to CDT developers‟ mailing list to

gain everybody‟s approval and interest and keep on working from that. He also

told that the proper way to include this kind of project into CDT would be to

create an Eclipse Bugzilla enhancement entry under CDT tools project.

6.3 Posting to cdt-dev mailing list

Cdt-dev is Eclipse CDT developers‟ mailing list and thus posting to that forum

brings the most attention amongst CDT developers. With my post I made clear

what I have been working on and the plan would be to integrate it to CDT and

make it an official sub-project. For this I need the help of the whole CDT

community and their approval. I promised to provide as much documentation as

I can and if needed to participate on conference calls held at Ottawa. The

teleconferences are only held once a month and only last about an hour.

53

BACHELOR‟S THESIS | Petri Tuononen

The first message posted on cdt-dev mailing list

(http://dev.eclipse.org/mhonarc/lists/cdt-dev/msg21163.html):

I feel like I have a great proposition to make. I have been working on LLVM
plugin for Eclipse CDT for some time now. This allows compilation of C/C ++
code with Clang or llvm-gcc front-ends using LLVM as a backend. LLVM static
compiler and JIT practically also implemented. Linux and Windows platforms are
targeted, but would work on Mac OS X too. This is the first ever LLVM plugin
targeted for Eclipse and development is in quite good shape regardless of the
man power. The plugin uses EPL open-source license and would be highly
appreciated if this project would get part of the 'official' CDT sub-projects in order
to ensure its further development.

The new LLVM toolchain would be just perfect addition to CDT don't you think?

I would like to be part of the following teleconferences etc. what is necessary and
introduce it further. Also documentation is widely available on request. I'm also
willing to help to work with this project further and would appreciate a committer
status as I have been fixing multiple amounts of CDT bugs lately. This committer
status could be targeted only to LLVM-CDT integration plug-in, because a proper
web hosting for update site would be appropriate.

Currently this is a plugin project hosted on Google code
http://code.google.com/p/llvm4eclipsecdt

SVN repository: https://llvm4eclipsecdt.googlecode.com/svn/

The plan would be to make this project as an integral part of CDT and for that I
need all the help the CDT community can provide.

I hope you all fellow developers take this as an option and think of the amount of
users it would affect and all the limitless options it may bring. Let's make CDT
even better!

Best Regards,
Petri Tuononen

6.4 Publishing plug-in to Eclipse marketplace

Eclipse marketplace is an easy to use method to search and download Eclipse

plug-ins directly from Eclipse IDE. LLVM plug-in for Eclipse CDT entry contains

a short description, info about author, license, version etc. By publishing LLVM

plug-in to Eclipse marketplace provides exposure to millions of Eclipse users

worldwide.

54

BACHELOR‟S THESIS | Petri Tuononen

Figure 28. LLVM plug-in on the Eclipse marketplace

6.5 Becoming Eclipse CDT committer

Along the project matures it will be more and more managed by Eclipse

Foundation. I try to maintain a steady developer status on the project and

therefore I try to get a committer access to at least parts concerning LLVM.

Committers can make immediate revision updates in contrast to patch

submitters who need to wait until their patch is approved and committed. I

would be able to review new patches and commit them thus speeding up the

LLVM plug-in development. The only downside is that individual can not just

apply committer status. One must be nominated by a current CDT committer

55

BACHELOR‟S THESIS | Petri Tuononen

and get enough votes from other CDT committers. The voting must also be

approved by Eclipse PMC and project lead must fill in CVS package and

employer information. Individuals who have made multiple or large contributions

to CDT are able to be nominated as committers.

56

BACHELOR‟S THESIS | Petri Tuononen

7 FUTURE PLANS

7.1 Integrating plug-in to CDT and contributing to Eclipse Foundation.

In order to contribute to the CDT project an official enhancement bug entry was

filed. A project of this size needs to be reviewed by Eclipse lawyers and tested

properly before publishing which leads to the fact that it was too late for the

CDT 8.0 release. Eventually the plug-in will be part of the CDT as I participate in

the migrating process in autumn.

7.2 Additional features

New upcoming tools that may bring interesting opportunities to known compiler

technology may be added later on.

7.3 Activating open-source developers to contribute towards the project

New opportunities to promote LLVM plug-in are constantly looked for. Main

mission is to get as much people to use LLVM toolchain as possible. This is

especially good for testing in the initial phase to get wider audience‟s feedback

how the plug-in suits their needs.

7.4 Keeping the project development continuous

It is my interest to co-operate and communicate with fellow developers if they

show interest towards developing the LLVM plug-in further. I will make sure that

the plug-in sees a smooth transition as a part of the CDT release.

57

BACHELOR‟S THESIS | Petri Tuononen

8 SUMMARY

The LLVM plug-in was developed according to specifications and is currently

released on the Eclipse Marketplace. While the plug-in was just a few weeks

late from the CDT 8.0 release it will eventually be released in the CDT 9.0

release and before that in CDT HEAD. When LLVM plug-in will get added to the

CDT it will be polished thus meeting user expectations. Overall the project was

a great success and will surely be a long waited feature for the CDT.

58

BACHELOR‟S THESIS | Petri Tuononen

REFERENCES

[1] Low Level Virtual Machine. Wikipedia article. Available from: http://en.wikipedia.org/wiki/Llvm
[cited 1.2011]

[2] Introduction to the LLVM Compiler System. PDF document. Available from:
http://llvm.org/pubs/2008-10-04-ACAT-LLVM-Intro.pdf [cited 1.2011]

[3] The LLVM Compiler Framework and Infrastructure Tutorial. WWW document. Available from:
http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html [cited 1.2011]

[4] The LLVM Compiler Framework and Infrastructure. PDF document. Available from:
http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.pdf [cited 1.2011]

[5] The LLVM Compiler Infrastructure. WWW document. Available from:
http://llvm.org/Features.html [cited 1.2011]

[6] How the LLVM Compiler Infrastructure Works. WWW article. Available from:
http://www.informit.com/articles/article.aspx?p=1215438&seqNum=2 [cited 1.2011]

[7] Vikram Adve. WWW document. Available from: http://cs.illinois.edu/people/faculty/vikram-
adve [1.2011]

[8] LLVM Language Reference Manual. WWW document. Available from:
http://llvm.org/docs/LangRef.html [1.2011]

[9] LLVM(Low Level Virtual Machine) - New Compiler Technology. WWW document. Available
from: http://iluvcompiler.springnote.com/pages/5381257 [cited 2.2011]

[10] Clang. Wikipedia article. Available from: http://en.wikipedia.org/wiki/Clang [cited 1.2011]

[11] Clang - Features and Goals. WWW document. Available from:
http://clang.llvm.org/features.html [cited 1.2011]

[12] Expressive Diagnostics (Clang). WWW document. Available from:
http://clang.llvm.org/diagnostics.html [cited 1.2011]

[13] Clang Static Analyzer. WWW document. Available from: http://clang-analyzer.llvm.org [cited
1.2011]

[14] The Short History of GCC development. WWW article. Available from:
http://www.softpanorama.org/People/Stallman/history_of_gcc_development.shtml [cited 1.2011]

[15] Getting Started with the LLVM System. WWW document. Available from:
http://llvm.org/releases/1.1/docs/GettingStarted.html [cited 1.2011]

[16] LLVM linker. WWW document. Available from: http://llvm.org/cmds/llvm-ld.html [cited
1.2011]

[17] Introduction to the LLVM Compiler Infrastructure. PDF document. Available from:
http://llvm.org/pubs/2006-04-25-GelatoLLVMIntro.pdf [cited 1.2011]

[18] LLVM static compiler. WWW document. Available from: http://llvm.org/cmds/llc.html [cited
1.2011]

[19] The LLVM Compiler Framework and Infrastructure. PDF document. Available from:
http://www.cs.cmu.edu/afs/cs/academic/class/15745-s09/www/lectures/lect3-llvm.pdf [cited
1.2011]

59

BACHELOR‟S THESIS | Petri Tuononen

[20] ELLCC - The Embedded LLVM Compiler Collection. WWW document. Available from:
http://ellcc.org [cited 1.2011]

[21] The LLVM Compiler Infrastructure: LLVM Users. WWW document. Available from:
http://llvm.org/Users.html [cited 2.2011]

[22] Members contributing to, or shipping products based on CDT. WWW document. Available
from: http://www.eclipse.org/membership/showMembersWithTag.php?TagID=13 [cited 2.2011]

[23] Eclipse Platform. WWW document. Available from: http://www.eclipse.org/platform [cited
1.2011]

[24] Eclipse Platform Overview. WWW document. Available from:
http://www.eclipse.org/platform/overview.php [cited 1.2011]

[25] CDT/User/FAQ: What is the CDT? Available from:
http://wiki.eclipse.org/CDT/User/FAQ#What_is_the_CDT.3F [cited 1.2011]

[26] Developing Eclipse plug-ins. WWW article. Available from:
http://www.ibm.com/developerworks/library/os-ecplug [2.2011]

[27] Eclipse Platform Overview. WWW document. Available from:
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.cdt.doc.isv/guide/mbs/extensibilityGui
de/Managed_Build_Extensibility.html [cited 2.2011]

Appendix 1

BACHELOR‟S THESIS | Petri Tuononen

Plugin.xml configuration schema

LLVM toolchain/tool/targetPlatform configuration architecture for LLVM Eclipse CDT plug-in.

Appendix 2

BACHELOR‟S THESIS | Petri Tuononen

Layered package diagram

The diagram represents various packages such as managedbuilder.llvm (North) which contains all LLVM plug-in related packages. On the middle is managedbuilder.core and
below it managedbuilder.makegen.gnu and some packages on the East side which all act as extension points for LLVM plug-in source code dependencies.

