

Bachelor’s Degree in Electronic Engineering

Development of Ultrasound Transducer
Characterization Software

Tero Hiltunen

Bachelor’s Thesis

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS
 Abstract
Field of Study

Technology, communication and transport
 Degree Programme

Degree programme in Electronic Engineering

Author(s)

Tero Hiltunen

Title of Thesis

Development of Ultrasound Transducer Characterization Software

Date 11 August 2011 Pages/Appendices 41/15

Supervisor(s)

Mr. Michael Zapf Mr. Arto Toppinen, Principal Lecturer

Client Organisation/Partners

Karlsruhe Institute of Technology, Karlsruhe, Germany.

Abstract

The aim of this thesis was to redesign and generalize the program structure of existing ultrasound
transducer characterization software. The secondary aim was to develop the functionality of the
software and to make the graphical user interface easier and faster for users to use.

This thesis was done for Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany. KIT
makes its own ultrasound transducers which need to be tested and characterized with the
measurement system for further development. Ultrasound transducers are built and developed to
be used in a project at KIT called USCT (Ultrasound Computer Tomography). USCT focuses on
early breast cancer detection.

The ultrasound transducer characterization software was first created in 2005 and has since been
extended and modified several times by several persons. Over time the program code got more
and more complex and disorganized, partly because of everyone’s own kind of style to program.
Also the GUI of the software became very complex, due to the amount of settings and parameters
able to be defined for the measurement.

To make the software structure generalized and more easily extendable, it was necessary to have
a proper concept. For this project, a concept that was used in another project at KIT was selected
to be implemented. The concept is called Table driven design and its basic principle is to separate
execution of the program from the control logic by placing the program control variables in an
external table. Table driven design is intended to generalize and simplify programs.

The result of this thesis was a simplified and generalized program structure by implementing the
Table driven design concept. A control table was created to control the flow of the program’s
execution, and separate functions were made for the logic and execution parts of the software.
Along with other upgrades, a help window was created to the GUI to make it easier to use. The
GUI became also faster to use, mainly because of a new function for redoing measurements.

Keywords
Ultrasound imaging, tomography, refactoring, table driven design

Confidentiality
Public

SAVONIA-AMMATTIKORKEAKOULU OPINNÄYTETYÖ
 Tiivistelmä
Koulutusala

Tekniikan ja liikenteen ala
 Koulutusohjelma

Elektroniikan koulutusohjelma

Työn tekijä(t)

Tero Hiltunen

Työn nimi

Ultraäänimuuntimien mittauslaitteiston ohjelmiston kehittäminen

Päiväys 11.8.2011 Sivumäärä/Liitteet 41/15

Ohjaaja(t)

Michael Zapf. Yliopettaja Arto Toppinen.

Toimeksiantaja/Yhteistyökumppani(t)

Karlsruhen Teknillinen Instituutti, Karlsruhe, Saksa

Tiivistelmä

Tämän opinnäytetyön tavoitteena oli uudelleensuunnitella ja yhtenäistää olemassa olevan
ultraäänimuuntimien mittauslaitteiston ohjelmiston rakenne. Tavoitteena oli myös parantaa
ohjelmiston toiminnallisuutta ja tehdä graafisesta käyttöliittymästä helppokäyttöisempi.

Opinnäytetyö tehtiin Karlsruhen Teknilliselle Instituutille (KIT) Kalrsruhessa Saksassa.
Ultraäänimuuntimien mittauslaitteisto on luotu KITillä tehtyjen ultraäänimuuntimien mittausta ja
karakterisointia varten. KITillä tehtyjä ultraäänimuuntimia käytetään rintasyövän havaitsemiseen
rintasyövän ollessa vielä varhaisessa kehitysvaiheessa.

Ohjelmisto luotiin alunperin vuonna 2005, jonka jälkeen sitä on paranneltu ja muokattu useaan
kertaan useiden henkilöiden toimesta. Ajan myötä ohjelmakoodista tuli todella monimutkainen,
osittain myös siitä syystä että jokaisella on omanlainen “käsiala” luodessaan ohjelmakoodia.
Myöskin ohjelmiston graafisesta käyttöliittymästä tuli erittäin monimutkainen, johtuen erilaisten
asetusten ja parametrien suuresta määrästä.

Että ohjelmiston rakenteesta saatiin yhtenäinen ja helpommin laajennettava, oli löydettävä
tarkoitukseen sopiva konsepti. Tätä projektia varten valittiin konsepti, jota käytettiin eräässä
toisessa projektissa Karlsruhen Teknillisessä Instituutissa. Konseptin nimi on Table driven design.
Sen perusperiaate on erottaa ohjelmiston logiikka ja suoritusosat toisistaan, sekä ohjata
ohjelmiston suoritusta taulukolla. Tämän konseptin tavoitteena on yhtenäistää ja yksinkertaistaa
ohjelmiston rakennetta.

Tämän opinnäytetyön tuloksena syntyi yhtenäinen ohjelmistorakenne käyttämällä konseptia, jossa
ohjelmiston suoritusta ohjataan ns. Ohjaustaulukko. Valittu konsepti täytti sille asetetut kriteerit.
Sen avulla ohjelmiston logiikka saatiin erotettua itse suoritusosasta. Graafisesta käyttöliittymästä
tuli helpompi ja nopeampi käyttää siihen tehtyjen parannuksien ansiosta.

Avainsanat
Ultraääni, tomografia, ohjelmiston rakenne, taulukkopohjainen

Luottamuksellisuus
Julkinen

Acknowledgements

This thesis was carried out in Germany during spring term 2011 in Karlsruhe Institute of
Technology. I would like to thank my supervisors, Mr. Michael Zapf from Karlsruhe
Institute of Technology and Mr. Arto Toppinen from Savonia University of Applied
Sciences for the opportunity to do this thesis and guiding me through the whole process.
I would also like to thank everyone else from KIT, who were somehow involved with the
pleasant six months I spent in Karlsruhe doing my thesis.

Tero Hiltunen

11 August 2011
Karlsruhe, Germany

CONTENTS

1 INTRODUCTION AND MOTIVATION.. 11

1.1 USCT ... 11

1.2 Measuring Station Hardware and Interfaces ... 14

1.2.1 Ultrasound Transducer ... 18

1.2.2 Hydrophone.. 19

1.3 Measuring Station Software.. 20

1.3.1 LabWindows/CVI 6.0 .. 21

1.3.2 Software Structure.. 21

1.3.3 GUI... 24

2 CONCEPT DEFINITION.. 25

3 IMPLEMENTATION... 26

3.1 Implementing the Selected Concept ... 26

3.2 Upgrades to the Software and GUI ... 27

4 RESULTS AND EVALUATION.. 31

4.1 Software Structure.. 31

4.2 Test Measurements.. 33

4.3 GUI Upgrades... 36

5 CONCLUSION .. 38

REFERENCES .. 40

 APPENDICES

Appendix 1 Program code of the main measurement loop
Appendix 2 Program code of the measurement preparation function
Appendix 3 Program code of the measurement time calculations function
Appendix 4 Program code of the XYZ holder positioning function
Appendix 5 Program code of the whole TAS configurations function
Appendix 6 Program code of the auto measurement Callback function

ABBREVIATIONS

AWG Arbitrary waveform generator
CVI C for virtual instrumentation
DAQ Data acquisition
ETA Estimated time of arrival
GPIB General Purpose Interface Bus
GUI Graphical user interface
IDE Integrated development environment
IPE Institute for Data Processing and Electronics
KIT Karlsruhe Institute of Technology
NI National Instruments
RS232 Recommended standard 232
TAS Transducer array system
USCT Ultrasound computer tomography

 11

1 INTRODUCTION AND MOTIVATION

The goal of this thesis was to redesign and generalize the structure of existing

ultrasound transducer characterization software. The software controls a measuring

station (Figure 1), which was created in 2005 at Karlsruhe Institute of Technology

(KIT) as a diploma thesis by Lars Petzold [1]. The measuring station was created to

test and to prove the quality of the ultrasound transducer made at KIT for Ultrasound

Computer Tomography (USCT) project. With the measuring station it is possible to

evaluate and characterize ultrasound transducers for further development.

Figure 1. Measurement water tank on the left, oscilloscope and arbitrary

waveform generator in the middle-top and control PC on the right.

1.1 USCT

USCT is a project at KIT focused on early breast cancer detection. The aim of the

project is to detect tumors in a woman’s breast at early stage, when the average

diameter of tumor is less than 5mm. The USCT promises high resolution three

dimensional pictures of the breast and it is based on thousands of transducers in a

water filled examination reservoir (Figure 2). [2]

 12

Figure 2. Examination reservoir with mounted transducer arrays filled with water

as medium. [3]

The idea of the USCT is that all the transducers in the measurement container emit

ultrasound one at the time, while other transducers are receiving the ultrasound

waves. [2] Tumor tissue is typically denser than the fatty and glandular breast tissue.

When the ultrasound waves interact with the dense tumor tissue, they are reflected

and scattered. [4] The ultrasound emitted by one transducer is then received by all

the other transducers and converted into electrical signals. [8] These signals are

captured with data acquisition (DAQ) hardware into measurement data. From the

data gathered with transducers and DAQ hardware, it is possible to locate possible

tumors inside women’s breast. The data is displayed and analyzed as 3D images on

a PC (Figure 3).

 13

Figure 3. USCT reflection image on the left screen and on right screen a MRT

image of the same breast phantom for comparison. [3]

The examination reservoir is mounted in a patient bed (Figure 4), which also has

DAQ hardware installed. The whole process of creating and developing transducers

for USCT project is done at KIT.

Figure 4. Patient bed with built-in examination reservoir and DAQ hardware. [3]

 14

1.2 Measuring Station Hardware and Interfaces

The ultrasound transducer measuring station is a complex system able to

characterize ultrasound transducers and hydrophones over several parameters. The

ultrasound transducers and hydrophones can be moved around the measurement

water tank with a three axis hydrophone/TAS holder. The excitation pulse from

arbitrary waveform generator (AWG) (figure 5) for transducers can be parameterized

by bandwidth, frequency, voltage, form, type, code and length.

Figure 5. Tektronix AWG2021 arbitrary waveform generator. Information of the

parameterized signal on the screen.

The excitation pulse and output signal of the hydrophone/TAS can be observed for

debugging purposes with an oscilloscope. Figure 6 shows an example of a CE

excitation pulse. On the y axis is the amplitude of the signal and on the x axis is the

bandwidth.

 15

Figure 6. CE signal used for excitation. The figure shows amplitude over time.

Data is acquired with a PC DAQ card. The used receivers and emitters can be

selected if the transducer is an array consisting of multiple sub transducers (Figure

7). It is also possible to do sweeps over some parameter, e.g. voltage sweep so that

the measurement is done over certain voltage range and increment selected by the

user.

 16

Figure 7. Transducer array system. [1]

The ultrasound measuring station is controlled by a PC, which is also used for

developing the software. The PC controls the three axis hydrophone/TAS holder via

two RS232 connections. The AWG is connected to the PC via one GPIB connection.

In addition, there is one RS232 for accessing the embedded microcontroller in the

transducer. In figure 8 is a block diagram of the measurement station hardware.

 17

Figure 8. Block diagram of the measurement station hardware. [1]

The list below shows the list of parts of the measuring station, which can also be

seen in Figure 9:

- Control PC for DAQ and developing the software

- Tektronix AWG 2021 for generating the excitation signal and triggering

- LeCroy LC334AM oscilloscope for monitoring input and output signals,

also for debugging

- Three axis hydrophone/TAS holder with a mounted on transducer and

ONDA HNC 0400 hydrophone, resolution 1mm.

- Three different transducer sockets with three different kind of transducers

- Water tank, dimensions: 51.6cm x 35.3cm x 38.5cm.

 18

Figure 9. Parts of the measurement station.

1.2.1 Ultrasound Transducer

A transducer, in general, is a device that converts one type of energy to another. The

transducers used in the USCT project are ultrasound transducers. Ultrasound

transducers convert sound pressure into electrical signals. [4] Figure 10 shows a

picture of an ultrasound transducer built at KIT for USCT project.

 19

Figure 10. An ultrasound transducer built at KIT.

1.2.2 Hydrophone

A hydrophone is a device for detecting changes in pressure underwater. A

hydrophone converts the underwater sound i.e. acoustic energy into electrical

energy. A hydrophone can only be used for listening unlike a transducer, which can

also be used for sending. Figure 11 shows a picture of the Onda HNC 0400

hydrophone used for testing the transducers built for the USCT project. In addition to

the hydrophone there is also a transducer in the picture. They both are attached to

the XYZ holder. [5] The XYZ holder has three axes to move the hydrophones and a

transducer around the measurement water tank. With the XYZ holder it is possible to

do measurements with various kinds of moving patterns, e.g. semicircle.

 20

Figure 11. Onda HNC 400 hydrophone and a test transducer attached to the XYZ

holder (not completely visible) inside the water tank.

1.3 Measuring Station Software

Over time the measuring station and its software has been extended several times by

several persons. Therefore, the measuring station and especially its software became

very complex and complicated. Part of the reason that the software structure became

so complicated is that everyone has their own kind of way to program and there was

not any particular concept defined to follow. For further development of the system, it

was necessary to redesign and generalize the structure of the program. To do that, it

was important to find a fitting concept for the program structure.

A big part of doing this thesis was to get acquainted with the existing program code.

Not only that the program was so vast and complex, it also was mostly commented in

German, which I, unfortunately, haven’t studied at all. But with the help of multilingual

colleagues and dictionaries provided by internet, there were no problems in

translations. Also to ease the way through the introduction phase, some smaller

upgrades were made to the program code and to GUI to get acquainted with the

program code and its structure.

 21

TortoiseSVN was used in this project for software versioning and revision control.

These kinds of subversion software are used to maintain current and old versions of

source files and documentation. TortoiseSVN is free software released under the

GNU General Public Licence (GNU GPL). [10]

1.3.1 LabWindows/CVI 6.0

The measuring station software is written in ANSI C in LabWindows/CVI 6.0, which is

an IDE developed by National Instruments. LabWindows/CVI provides a

comprehensive set of tools for creating test and control applications. It also provides

fast and easy to use tools for creating graphical user interfaces.

LabWindows/CVI has a user interface editor to create graphical user interfaces. A

GUI can consist of panels, command buttons, pull-down menus, graphs, strip charts,

knobs, meters, and other controls and indicators. To create a GUI with the user

interface editor, it is not necessary to write a single line of code. But it is also possible

to create a GUI programmatically by using function calls. The created GUIs are

stored in user interface resource files (*.uir). [6]

The connection between GUI and software code is done with Callback functions.

Different kinds of actions by the user lead into events, which lead into actions that are

determined in the corresponding Callback function. For example, if the user clicks the

“Start Measurement” button, the software starts to execute the code inside the

corresponding Callback function, in this case CVICALLBACK

StartAutoMeasurement(); function. [6]

1.3.2 Software Structure

At the beginning of the work the software structure was very complex and consisted

of many convoluted loops inside each other. It was an outcome of years of

development by several persons and of the lack of an appointed structure to follow.

The worst problems were at the main measurement loop, where the flow of the

program was controlled by many functions and if –else constructs inside each other.

Figure 12 illustrates the structure of the programs main measurement loop at the

stage it was at the beginning of this thesis. The sequence diagram was made with

 22

free online software called WebSequenceDiagrams [9]. The aim was to keep the

diagram as simple as possible, but still bring out the convoluted loop structure. From

the diagram we can see that there where different functions for different

measurement cases, e.g. whole TAS measurement for measuring all the senders and

receivers in a TAS or individual sender/receiver selection measurement, where single

sender or receiver can be selected for measurement. There is also some code

duplication perceptible from the diagram, e.g. “Read values from GUI”.

 23

Figure 12. Sequence diagram of the program structure in the main measurement

loop as it was in the beginning of the work. Y axis represents time and X axis parts of

the system.

 24

1.3.3 GUI

In software to control this kind of complex measuring system, the GUI (Figure 13) is

often very complex too. One goal of this thesis was to make the GUI easier and faster

to use. At the beginning of this work, it was difficult for new users to use the software

without instructions on a separate paper. The settings were placed quite

systematically on the GUI, so that the settings were supposed to be set in order from

up to down. But the user could set the settings in almost any order or leave some

important settings unset, which caused problems. Also some functions were

unfinished, e.g. the “Read measurement Parameter from folder” button, which would

be very helpful for redoing measurements.

Figure 13. GUI of the measurement station software in the beginning of the work.

 25

2 CONCEPT DEFINITION

To redesign and generalize the program structure of existing software, it was

necessary to find a fitting concept. Requirement for the concept was to be simple and

easily extendable. When selecting the concept, a concept used in another project at

KIT rose up. The idea was to control the flow of the program with tables. Based on

that idea, I started to do further research of table controlled designs.

Table driven design itself is a very old concept. Originally it was created and

implemented over 50 years ago. The basic idea of table drive design is that the flow

of the program is encoded in a table, so that the control logic is kept separate from

the execution of the program. The control table contains the variables which

somehow affect to the flow of the program. Each row of the table is then interpreted

with a given routine, in a processing loop. Figure 14 illustrates the use of control table

in an application. [7]

Figure 14. Generalized expression of usage of a control table in an application. [7]

 26

3 IMPLEMENTATION

This chapter discusses the implementation of the selected concept, improvements to

the software and the upgrades done to the GUI of the measurement station software.

3.1 Implementing the Selected Concept

The implementation of the defined concept started by radically modifying the program

structure. The idea of the table driven design is to separate the control logic from the

execution of the program. This was implemented by creating

measurementPreparation(); function for control logic and Do_Measurement_Loop();

function for execution. Some parts of the control logic are located also in other parts

of the program code, when the user sets the parameters and settings for the

measurement. The measurementPreparation(); function contains the actions that

needs to and can be done before the main measurement function. These actions are

initializations and definitions for the measurement.

The measurementPreparation(); function is executed after the user has pressed the

“Start measurement” button and the execution of corresponding CALLBACK function

has started. The CALLBACK function for “Start measurement” button is called

StartAutoMeasurement();. The StartAutoMeasurement(); function contains also the

main measurement loop function, the dim input function, read functions for the user

interface variables and writing of log files. The program code of the

StartAutoMeasurement(); CALLBACK function is presented in Appendix 6 and the

program code of measurement preparation is presented in Appendix 2.

The whole execution of the software is done in the Do_Measurement_Loop();

fuction. The program code of the main measurement loop is presented in Appendix 1.

Do_Measurement_Loop(); function contains three major function in addition to doing

the measurement itself. These three functions are listed and explained in a list below.

- ConfigWholeTAS();

o Configurations for the whole TAS measurement inside the main

measurement loop. Program code presented in Appendix 5.

- SetNewPosition();

o Function for setting the new position of the XYZ holder. Program

code is presented in Appendix 4.

 27

- CalcMeasTime();

o Function for calculating measurement times. Program code

presented in Appendix 3.

The control table was included to the software code after the structure was simple,

generalized and partly functional. The full functionality of the program was tested and

fixed in the results evaluation phase of this thesis.

The control table is modified as user sets setting and parameters for measurement,

before the main measurement loop. When the measurement is running, the only

variables which changes their values are the index number for the measurement

point (glob.CT[INDEXCOORD]) and the variable which determines the sweep over

senders and receivers (glob.CT[MEASSR]). The index variable for the actual

measurement point goes from 0 to the maximum number measurement point, e.g. 0

to 50. The variable for sweeping over senders and receivers changes its value if the

measurement is over all senders and receivers. Then its value is two at the

beginning, and after all senders are measured its value is changed into one, to get all

the receivers measured. All other variables remain their values throughout the

measurement loop.

The contents of the control table are shown below as a citation of the program code.

The variables are defined as constants, which are then used to indicate the index

number for the corresponding variable. Below is also explained the possible values of

the control table variables.

// Index numbers for the control table CT[] -Tero

//------Constant--Index#---Values------------------------------------

#define INDEXCOORD 0 // actual coord. point during measurement

#define MEASMODE 1 // 0=whole TAS, 1=individual S/R, 2=no ser. Com.

#define MOVEMENT 2 // 0= /automeander, 1=drive by file/auto koord

#define SIGNALGEN 3 // 0=off, 1=on

#define LOOPTYPE 4 // 0=BW, 1=MF, 2=chirplength, 3=voltage

#define MINILOOP 5 // 0=off, 1=on

#define MEASSR 6 // sweep over 0=sender, 1=receiver, 2=all s/r

// End of control table constants -----------------------------------

3.2 Upgrades to the Software and GUI

During the introduction phase, many upgrades were made to the software and its GUI

to make it easier and faster to use. Also during implementation phase the

functionality of the GUI was improved to achieve a user interface which is fast and

easy to use.

 28

To get rid of the instructions paper for new users, a help window (Figure 15) was

created. The help window is located in the upper right corner of the GUI. It tells the

user what to do next in order to get a measurement running. The help window has 14

different instructions to help the user in different situations. Figure 14 shows the

default value of the help window, which is shown at the startup of the program.

Figure 15. Help window gives instructions to the user.

In addition to help window, dim and undim functions were created to make it easier to

set all settings and parameters in right order. Earlier the user could basically set the

settings in any order he wanted or it was possible to run the measurement without

setting all required settings, and that caused some problems in execution of the

measurement loop. With the dim and undim functions it was possible to control which

parts of the user interface are dimmed and which are not. Usually, only the section of

the GUI is undimmed that the user needs to be able to modify. During measurement,

all the sections are dimmed, so that the user can’t modify any settings. Only the

STOP button is undimmed, so that the user can stop the measurement in case of

emergency.

One crucial upgrade to the GUI was the “Read Measurement Parameter from Folder”

button. It did already exist when starting this thesis, but the functionality was not yet

implemented. The idea of that button is that the user can redo any measurement

he/she has earlier parameterized with just few clicks. The user only needs to select

the measurement he/she wants to redo, and all the settings and parameters are filled

automatically just like they were at the first time. The functionality of the “Read

Measurement Parameter from Folder” button is implemented by writing all the

settings and parameters into *.txt file when the user has set all the settings and

parameters. Those settings are then read from the file and set into the GUI with

SetCtrlVal(); functions.

It is important for user to know how the measurement is progressing and how long

the measurement is going to take. For this purpose is the “Status” section (Figure 16)

in the lower left corner of the GUI. The “Status” section has progress bar, time per

 29

last coordinate point, average time per coordinate point and estimated time left to tell

the user how the measurement is progressing. The total number of measurement

points and the current measurement point are also shown.

Figure 16. Status section in the GUI.

In the upper right corner of the GUI right under the help window is the “New

measurement” button (Figure 17). The “New measurement” button becomes handy if

the user wants to do many measurements in a row. Earlier it was not possible to do

many measurements in a row without shutting down the software between

measurements, but with the “New Measurement” button it is now possible. The “New

measurement” button basically only initializes the GUI into the default values it had

when running the software for the first time. Also when doing multiple measurements

in a row, it is not necessary to do the reference positioning for the XYZ holder

because the position of the holder is still in the memory of the microcontrollers.

Figure 17. New measurement button below the help window.

At the beginning of the work the GUI and the software were partially in English and

partially in German. To make the software generalized by language, the GUI was fully

translated into English and most parts of the program code also. The translation was

 30

done with the help of dictionaries provided by internet and with the help of multilingual

colleagues.

One way to make the software to be less error prone was to minimize the usage of

GUI variables. The idea of minimizing the usage of GUI variables was to remove

code duplication and get rid of heavy usage of GetCtrlVal() functions. This means

that reading values from GUI into variables was reduced to its minimum, so that

every value is read only once from GUI. To make this kind of change it was

necessary to define global variables for the values. The global variables were placed

in a struct named “glob”. This way the naming was proper and it was easy to notice

that they are global variables, e.g. glob.ReceiverNr, which is a variable for the

number of selected receiver.

 31

4 RESULTS AND EVALUATION

This chapter discusses the results and evaluation of this thesis after the software

structure was generalized and the GUI improved.

4.1 Software Structure

The main measurement loop was the part of the program which was most in need of

redesigning. The old structure had multiple separate loops and functions for different

measurement cases. There were separate functions for whole TAS measurement,

individual sender/receiver selection and also for a measurement without serial

communication. But in the new one, there is only one “main” measurement loop to

cover all measurement cases. The number of hierarchical levels was reduced from

five in the old to two in the new. Also, quite a lot of code duplication was removed, by

minimizing the reading of the GUI variables to its minimum in a consistent and conflict

free manner.

Figure 18 shows a sequence diagram of the old main measurement loop software

structure, and Figure 19 shows a sequence diagram of the new structure. By

comparing these two pretty simple diagrams, it is possible to see how much simpler

the new structure is.

 32

Figure 18. Sequence diagram of the old main measurement loop structure. Y axis

represents time and X axis parts of the system.

 33

Figure 19. Sequence diagram of the new, generalized main measurement loop

structure. Y axis represents time and X axis parts of the system.

4.2 Test Measurements

To be sure that the measurement system and its software still worked properly after

such a big modification in the software structure, it was necessary to do test

measurements. Test measurements were done at least once with every possible

 34

setting and parameter. To cover all different settings and parameters, total of seven

measurements were done.

From the data of the first measurement, it was noticeable that the positioning of the

XYZ holder was not correct. The holder position was few millimeters off in all x, y and

z direction. First the positioning was tried to fix by checking the calculations of the

positioning from the program code, but everything seemed to be correct. After this,

the only way to get the positioning correct was to re-measure and calibrate the water

tank, the positions of the transducer sockets, dimensions of the hydrophone holder

and safety margins. After all measures and dimensions were re-measured, some

differences were found when comparing to the old measures. From the data of next

test measurement, the positioning was found to be correct.

All measurements and the used settings are listed in Figure 20. First column in the

table is the number of the measurement, second is the used hydrophone or

transducer. In column 3 is the socket which was used. In the fourth column is

determined whether serial communications was used or not. Fifth column is the

selected coordinate file for the measurement, and in the next column is shown the

used signal type. The last column tells whether the measurement was looping over

some parameter or not. While doing different measurements, some modifications

were done to the program code to get the measurements running properly. This was

an anticipated procedure, because some measurement cases were done for the first

time by me. After all, everything went better than expected.

Figure 20. Settings and parameters used in test measurements.

In figure 21 is data of measurement one, which was a semicircle measurement with

individual emitter selected. The radius of the semicircle was set to 2 cm in the

coordi2nation file, which also can be calculated from the figure. In the figure the red

color indicates that the amplitude of the received signal was strong. Other colors

indicate weaker amplitudes, dark blue being the weakest. On the X axis are the

numbers of measurements, in this case from 0 to 29. Y axis is time.

 35

Figure 21. Data from a semicircle measurement. X axis is the measurement

number and Y axis is time.

The figure tells how long it took from the signal to travel from transducer to

hydrophone for each measurement point. The distance can be calculated with

formula

 cts *= (1)

where s is length, t is time and c is speed of sound.

When calculated this way, we get distance 0.0196m when hydrophone is facing the

transducer at measurement point 17. The idea of a semicircle measurement is that

the distance between sender and receiver is same through the measurement. Only

the angle between transducer and hydrophone changes during the measurement.

With this kind of measurement, it is possible to characterize the angular divergence of

a TAS. From the figure we can see that the distance remains almost the same

through the measurement. The small difference in the distance is caused by the 1mm

resolution in the positioning hardware.

Figure 6 on page 15 shows a graph of the CE signal used in test measurement five.

The graph is taken from the measurement data which was received with hydrophone.

 36

In addition to the CE signal, there is also some noise visible in the graph. X – axis is

the bandwidth and Y – axis is amplitude.

4.3 GUI Upgrades

The most visible upgrade to the GUI is the help window located in the upper right

corner. With the help window users did not need separate instructions on a paper,

because the help window tells the user what to do next in order to get a

measurement running. With the help window and by dimming all unnecessary parts

of the GUI, setting all the settings and parameters was much easier and less time

consuming. Other upgrades visible to the user are located in the lower left corner in

the status section. The status section contains information about the measurement

progress in form of progress bar, time spent per position (average and last position)

and estimated time left. Also the total number of measurement points and the actual

measurement point are displayed.

In addition to these visible upgrades, the functionality of some buttons was either

finished or modified. The “Read Measurement Parameter from Folder” buttons

functionality was finished, in order to make it easier and faster to redo a

measurement. The users can now redo any measurement they have done earlier,

with just few clicks.

 37

Figure 22. Enhanced GUI with Help window in the upper right corner.

 38

5 CONCLUSION

The aim of this thesis was to redesign and generalize the structure of existing

ultrasound transducer measurement station software. The measurement station was

first created in 2005 and has since been extended several times. The software

structure became very complex and it was very hard for anyone to do further

development for the software. The software code was commented partly in German

and partly in English and there was no appointed coding style or policies to follow.

That is why a pretty long introduction phase was required to get into the software.

The outcome of this thesis was a generalized program structure by using Table

driven design. The created structure is simple and easily extendable for further

development, as the structure follows a certain concept. The table driven design was

well fitting for this project because of the program’s iterative nature of executing the

same code several times in a row.

The graphical user interface of the software became easier and faster to use as a

result of the upgrades made to it. The settings are easy to set with the guidance of

the help window and also because the order to set settings is systematic, going from

up to down. The GUI became faster to use because of the automated filling of

settings when redoing a certain measurement.

After implementing the selected concept and the upgrades to the GUI, the

functionality of the software was tested with several test measurements. Test

measurements were done at least once with every possible setting and parameter to

make sure that the software was fully functional. The amount of test measurements

was sufficient to ensure that the funcionality of the software was appropriate.

The structuring of my work and schedule were planned successfully. There was no

lack of time while doing my thesis, except while doing the test measurements. The

finishing of writing this thesis was done after the 6 months’ period. If I had to do the

same work again, I would do more documentation during the whole work, not just at

the end. It would then be a lot easier to do the documentation, when there were some

material ready to start with.

As a personal goal I had improving my skills at C programming and also improving

my linguistic skills in written and spoken English. I feel that I succeeded in both of my

 39

personal goals quite well. Also this was my first work as a part of a group primarily

focused on software development, and it was very educational for me.

 40

REFERENCES

1. Lars Petzold, Diplomarbeit. Aufbau eines Messplatz zur Ermittlung der

Schallfeldcharakteristik eines Ultraschallwandlers. [Reference made 07.06.2011]

http://www.ipe.fzk.de/~ruiter/DPA/Diplom.pdf

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4152113

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1535750

6. National Instruments Corporation (1998). Getting Started with LabWindows/CVI

[reference made 06.06.2011].

http://www.ni.com/pdf/manuals/320680d.pdf.

7. Cunneyworth, W. (1994). Table driven design. Data Kinetics Ltd. [reference made

08.06.2011]

http://www.dkl.com/html/Files/CMFiles/53table_driven_design.pdf

8. Rainer Stotzka, Helmut Widmann, Tim Muller, Klaus Schlote Holubek, Hartmut

Gemmeke, Nicole Ruiter, Georg Gobel. Prototype of a new 3D ultrasound computer

tomography system: transducer design and data recording. Forschungszentrum

Karlsruhe. 2004. August 4, 2005.

http://www.stotzka.de/Publications/stotzka2004.1.pdf

2. Nicole V. Ruiter, Gregor F. Schwarzenberg, Michael Zapf and Hartmut Gemmeke.

Conclusion from an Experimental 3D Ultrasound Computer Tomography. [Reference

made 07.06.2011]

 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4774292&tag=1

3. Karlsruhe Institute of Technology, Institute for Data Processing and Electronics.

Early Breast Cancer Detection with Ultrasound Computer Tomography [Reference

made 07.06.2011]

http://www.ipe.kit.edu/english/167.php

4. Nicole V. Ruiter, Gregor F. Schwarzenberg, Michael Zapf, R. Liu, Rainer Stotzka,

Hartmut Gemmeke. 3D ultrasound computer tomography: Results with a clinical

breast phantom. [Reference made 5.7.2011]

5. Gerald R. Harris. Hydrophone measurements of medical ultrasound devices.

[Reference made 4.7.2011]

 41

9. Hanov Solutions Inc. WebSequenceDiagrams

http://www.websequencediagrams.com/index.php

10. TortoiseSVN Subversion Client

http://tortoisesvn.tigris.org/

Appendix 1 1(3)

Program code of the main measurement loop

void Do_Measurement_Loop()

{

 int error = 0;

 char *msg = malloc(512);

 char buffer[512];

 char buffer2[512];

 char buffer3[512];

 memset(msg, 0, 512*sizeof(char)); // initialize msg

 // update logfile

 strcat(msg, "Measurement started:\n");

 strcat(msg, currentDateAndTime);

 writeLogFile(msg);

 memset(msg, 0, 512*sizeof(char));

 FileNameExtension = TRUE;

 // Set flag measurement started

 measuringStartet = 1;

 // initialize tas_index

 glob.tas_index = 0;

 //Coord loop start

 while (glob.CT[INDEXCOORD]<=MaxIndexKoord)

 {

 ProcessSystemEvents();

 if(glob.CT[MEASMODE] == 0) // if whole TAS measurement

 ConfigWholeTAS(glob.CT[MEASSR], 1, glob.CT[INDEXCOORD]);

// configurations for whole TAS measurement

 // Set coordinates

 SollPos.lX_Koord = Koords[glob.CT[INDEXCOORD]];

 SollPos.lY_Koord = Koords[(glob.CT[INDEXCOORD] +1)];

 SollPos.lZ_Koord = Koords[(glob.CT[INDEXCOORD] +2)];

 // Set coordinates into GUI

 SetCtrlVal(PANEL_2,PANEL_2_MP_NUM_1,

(Koords[glob.CT[INDEXCOORD]]));

 SetCtrlVal(PANEL_2,PANEL_2_MP_NUM_2,

(Koords[(glob.CT[INDEXCOORD] +1)]));

 SetCtrlVal(PANEL_2,PANEL_2_MP_NUM_3,

(Koords[(glob.CT[INDEXCOORD] +2)]));

 // Incerement of coord points

 glob.ActualCoordPoint = 1+glob.CT[INDEXCOORD]/3;

 glob.CT[INDEXCOORD] +=3; // Point on next one

 // Update actual coord. # and progress bar

 SetCtrlVal(PANEL_2,PANEL_2_AT_NUM_4, glob.ActualCoordPoint);

 SetCtrlVal(PANEL_2,PANEL_2_Progress_Bar,

glob.ActualCoordPoint);

 // set new position

 SetNewPosition(glob.CT[INDEXCOORD]);

2

 Delay(0.1); // small delay to calm the water after

positioning

 if (glob.CT[SIGNALGEN]) // if signal generator in use

 {

 // if miniloop measure only over first pos.

 if ((glob.CT[MINILOOP]) && (glob.inc>0))

 {

 glob.CT[LOOPTYPE]=1;

 glob.fC=100e3;

 }

 // Loop over fB, fC, chirplen or outputvoltage. Run once

even if not looping

 for(glob.loop_index = glob.loop_val; glob.loop_index <

glob.max; glob.loop_index += glob.inc)

 {

configInstr(glob.CT[LOOPTYPE],glob.loop_index,glob.fB,glob.fC,glob.ch

irplen,glob.voltage);

 ProcessSystemEvents();

 Do_GaGeMeasurement1(FALSE);

 if (glob.inc == 0)

 break; // to ensure run once break after one run

 }

 if (glob.CT[MINILOOP])

 {

 // ready the program to run normally with the

selected values

 glob.fC = glob.fC *1000000;

 // -> deactivate later freq. loops

 glob.max = glob.fC; glob.inc=0;

 // reset by init instrument

 configInstr(4,0,glob.fB, glob.fC, glob.chirplen,

glob.voltage);

 }

 }

 else //for NOT Signalgenerator

 Do_GaGeMeasurement1(FALSE);

 CalcMeasTime(glob.CT[INDEXCOORD],glob.numMeasurements);

// Calculate measurement time etc. -Tero

 if(glob.CT[MEASMODE] == 0) // if whole TAS measurement

 error = ConfigWholeTAS(glob.CT[MEASSR], 0,

glob.CT[INDEXCOORD]); // configurations for whole TAS measurement

 if(error == 1)

 return;

 } // end of coordloop

 glob.CT[INDEXCOORD] = 0;

 AT_Koord_Funk = 0;

 // Flag measurement finished

 glob.koordinatenLoopEnd = 1; // For loop over all

senders/receivers

 closeInstr();

3

 // Update log file

 strcat(msg, "Measurement ended:\n");

 strcat(msg, currentDateAndTime);

 writeLogFile(msg);

 memset(msg, 0, 512*sizeof(char));

 // Undimm New measurement button

 SetCtrlAttribute(PANEL_2, PANEL_2_New_Meas, ATTR_DIMMED, FALSE);

 // Update help textbox

 ResetTextBox (PANEL_2, PANEL_2_HELP_TEXTBOX, MEAS_FINISHED_HELP);

 // Beep -sound after measurement is finished

 Beep();

 // Dim STOP -button after measurement

 SetCtrlAttribute(PANEL_2,PANEL_2_NA_COMMAND,ATTR_DIMMED,TRUE);

 if(glob.CT[MEASMODE] == 0) // if whole TAS measurement

 ConfigWholeTAS(glob.CT[MEASSR],2, glob.CT[INDEXCOORD]); //

last configurations for whole TAS measurement

 return;

}

Appendix 2 1(4)

Program code of the measurement preparation function

int measurementPreparation(int mode)

{

 double chirp_Length;

 int j;

 switch(mode)

 {

 case 0: // whole TAS

 //reset loopcounter

 glob.currentSensorInLoop = 0;

 // Set the number of measurements i.e. number of loop

passes

 switch(glob.CT[MEASSR])

 {

 case 0:

 glob.numMeasurements = 4;

 break;

 case 1:

 glob.numMeasurements = 9;

 break;

 case 2:

 glob.numMeasurements = 13;

 break;

 }

 break;

 case 1: // individual sender/receiver selection

 if(glob.scheck == 0 && glob.rcheck == 0)

 {

 MessagePopup("Error", "Measurement cannot be started!

Sender or receiver must be selected!");

 return 0;

 }

 if(glob.scheck == 1) // transmitter selected

 {

 if(glob.snumber == 1 || glob.snumber == 2

||glob.snumber == 3 || glob.snumber == 4)

 {

 //ko.isSending=1;

 modifyKoordFile(glob.snumber);

 initSender(glob.snumber, glob.tasnumber); //1-->

Verst�ung // 1--> amplification

 glob.koordinatenLoopEnd = 0;

 glob.choosenSenderReceiver = glob.snumber;

 }

 else

 {

 MessagePopup("Error", "Sender number is not

entered correctly!!");

 return 0;

 }

 }

 if(glob.rcheck == 1) // receiver selected

2

 {

 // Check that receiver number is valid!

 if (glob.rnumber == 11 || glob.rnumber == 12 ||

glob.rnumber == 13 || glob.rnumber == 21

 || glob.rnumber == 22 ||glob.rnumber == 23 ||

glob.rnumber == 31 || glob.rnumber == 32

 || glob.rnumber == 33)

 {

 modifyKoordFile(glob.rnumber);

 initReceiver(glob.rnumber, glob.tasnumber,

glob.whichGain); //1--> Verst�ung // 1--> amplification

 glob.koordinatenLoopEnd = 0;

 glob.choosenSenderReceiver = glob.rnumber;

 }

 else

 {

 MessagePopup("Error", "Receiver number is not

entered correctly!");

 return 0;

 }

 }

 glob.numMeasurements = 1;

 break;

 case 2: // no serial communication

 glob.koordinatenLoopEnd = 0;

 glob.numMeasurements = 1;

 break;

 }

 if (glob.CT[SIGNALGEN])//signalgenerator)

 {

 GetCtrlVal(PANEL_2, PANEL_2_file, glob.file);

 StringUpperCase(glob.file);

 Fmt(glob.efile, "%s.EQU", glob.file);

 Fmt(glob.wfile, "%s.WFM", glob.file);

 glob.loop_val = 0; // initialize

 // check if some loop type is selected

 GetCtrlVal(PANEL_2, PANEL_2_fB_on, &glob.loop);

 if (glob.loop) glob.CT[LOOPTYPE] = 0;

 else {

 GetCtrlVal(PANEL_2, PANEL_2_fC_on, &glob.loop);

 if (glob.loop) glob.CT[LOOPTYPE] = 1;

 else {

 GetCtrlVal(PANEL_2, PANEL_2_fO_on, &glob.loop);

 if (glob.loop) glob.CT[LOOPTYPE] = 3;

 else {

 GetCtrlVal(PANEL_2,PANEL_2_CHIRP_LEN_on,

&glob.loop);

 if (glob.loop) glob.CT[LOOPTYPE] = 2;

 }}}

 switch (glob.CT[LOOPTYPE])

 {

3

 case 0 :

 glob.inc *= 1000000; // MHz/Hz-Conversion

 glob.max *= 1000000;

 glob.loop_val = glob.fB*1000000;

 break;

 case 1 :

 glob.inc *= 1000000; // MHz/Hz-Conversion

 glob.max *= 1000000;

 glob.loop_val = glob.fC*1000000;

 break;

 case 2 :

 glob.loop_val = glob.chirplen;

 break;

 case 3 :

 glob.loop_val = glob.voltage;

 break;

 }

 initInstr();

 if (instrHandel == NULL)

 return 0;

 } //end of signal generator code

 for(j=0;j<4;j++) // = {1,2,3,4}

 glob.SenderNr[j] = j+1;

 for(j=0;j<3;j++) // {11,12,13,21,22,23,31,32,33}

 {

 glob.ReceiverNr[j] = 11+j;

 glob.ReceiverNr[j+3] = 21+j;

 glob.ReceiverNr[j+6] = 31+j;

 }

 glob.nSender = 4;

 glob.nReceiver = 9;

 // Calculate chirp length

 chirp_Length = 1 / (glob.fB*1000000);

 // Set chirp length into GUI

 SetCtrlVal(PANEL_2,PANEL_2_CHIRP_LEN, chirp_Length);

 // Start signalpreview

 showType() ;

 glob.XYState = 1;

 glob.ZTState = 1;

 SetCtrlVal(PANEL_2,PANEL_2_AT_NUM_4,0);

 glob.ActualCoordPoint = 0;

 // Read the coordinates

4

 Read_Koords();

 // update coorpoints into GUI

 SetCtrlVal(PANEL_2,PANEL_2_AT_NUM_3,glob.CoordPoints);

 SetCtrlVal(PANEL_2,PANEL_2_AT_NUM_4,0);

 // Set progress bar maximum value

SetCtrlAttribute(PANEL_2,PANEL_2_Progress_Bar,ATTR_MAX_VALUE,glob.Coo

rdPoints);

 return 1; // return 1 if everything is ok

} // End of measurementPreparation()

Appendix 3 1(2)

Program code of the CalcMeasTime -function

// function for calculating measurement time etc.

int CalcMeasTime(int IndexKoord, int numMeasurements)

{

 unsigned int hilf_hour, hilf_min, hilf_sec, timeInSecGes,

currentSensorInLoop;

 unsigned int hilf_hour3, hilf_min3, hilf_sec3;

 double timeInSecGes2;

 static double diff, diff1;

 char buffer[512];

 char buffer2[512];

 char buffer3[512];

 static time_t oldTime;

 static time_t startTime;

 time_t nextTime;

 static int round;

 static int calc_index;

 static double sum;

 static int points;

 if (calc_index != 1)

 {

 // Print "Calculating" into GUI

 SetCtrlVal(PANEL_2,PANEL_2_suspectedExpTime,

"Calculating...");

 SetCtrlVal(PANEL_2,PANEL_2_suspectedExpTime_2,

"Calculating...");

 SetCtrlVal(PANEL_2,PANEL_2_suspectedExpTime_3,

"Calculating...");

 // Start time

 time (&startTime);

 oldTime = startTime;

 calc_index = 1;

 sum = 0;

 points = 0;

 return 0;

 }

 if(calc_index == 1)

 {

 // Get time

 time (&nextTime);

 // The time between last two measurements in seconds

 diff = difftime(nextTime, oldTime);

 oldTime = nextTime;

 // Seconds from the start of the measurement

 diff1 = difftime(nextTime, startTime);

 // estimated time left

 timeInSecGes = diff * (glob.CoordPoints -

glob.ActualCoordPoint);

2

 if(glob.ActualCoordPoint == 0)

 round++;

 // time/coord.pos (avrg)

 sum = sum + diff;

 points++;

 timeInSecGes2 = sum/points;

 if(timeInSecGes > 35999) // if time is more than 99:99:99,

set time to 0

 {

 timeInSecGes = 0;

 }

 // Time calculation for whole TAS measurement

 if(glob.CT[MEASMODE] == 0)

 {

 currentSensorInLoop = glob.currentSensorInLoop; //

Current sensor in measurement loop

 timeInSecGes = diff * ((numMeasurements *

glob.CoordPoints) - ((currentSensorInLoop * glob.CoordPoints) +

(1+(IndexKoord-9)/3)));

 }

 // Convert times from seconds into hh:mm:ss

 // Estimated time left

 hilf_hour = timeInSecGes / 3600;

 hilf_min = (timeInSecGes-(hilf_hour*3600))/60;

 hilf_sec = timeInSecGes - ((hilf_hour*3600)+(hilf_min*60));

 // Time between last 2 coord.points

 hilf_hour3 = diff / 3600;

 hilf_min3 = (diff-(hilf_hour3*3600))/60;

 hilf_sec3 = diff - ((hilf_hour3*3600)+(hilf_min3*60));

 // Format calendar time to string

 sprintf(buffer, "%02d:%02d:%02d",

hilf_hour,hilf_min,hilf_sec);

 sprintf(buffer2, "%2.2f",timeInSecGes2);

 sprintf(buffer3, "%02d:%02d:%02d",

hilf_hour3,hilf_min3,hilf_sec3);

 // Set calculated values into GUI

 SetCtrlVal(PANEL_2,PANEL_2_suspectedExpTime, buffer);

// estimated time left

 SetCtrlVal(PANEL_2,PANEL_2_suspectedExpTime_2, buffer2);

// time/coord.pos (avrg)

 SetCtrlVal(PANEL_2,PANEL_2_suspectedExpTime_3, buffer3);

// time between last 2 coordinate points

 }

 return 0;

}

//----------------------End of time calculations --------------------

Appendix 4

Program code of the SetNewPosition -function

/ positioning of the XYZ -holder

SetNewPosition(int indexcoord)

{

 int SendThreadError = 0;

 // XY moved, Z moving

 Set_TxBufferMP(PANEL_2, ZT);

 // Send ZT to DSP

 SendThreadError

=CmtScheduleThreadPoolFunction(DEFAULT_THREAD_POOL_HANDLE,

Send_BytesZT_ThreadFunction,NULL,&ThreadID[1]);

 // Show the text output

 if(SendThreadError !=0)

 Show_ThreadMessage(SendThreadError);

 else

 Show_ElseMessage(STATUS_1);

 CleanUpSendThreads(ZT_THREAD);

 // Z moved, XY moving

 Set_TxBufferMP(PANEL_2, XY);

 // Send XY to DSP

 SendThreadError

=CmtScheduleThreadPoolFunction(DEFAULT_THREAD_POOL_HANDLE,

Send_BytesXY_ThreadFunction,NULL,&ThreadID[0]);

 // Show the text output

 if(SendThreadError !=0)

 Show_ThreadMessage(SendThreadError);

 else

 Show_ElseMessage(STATUS_1);

 CleanUpSendThreads(XY_THREAD);

 // wait until both COM1 & COM2 positioned

 while(SollPos.lX_Koord!=AktPos.lX_Koord ||

SollPos.lY_Koord!=AktPos.lY_Koord ||

SollPos.lZ_Koord!=AktPos.lZ_Koord)

 {

 ProcessSystemEvents();

 }

 return 0;

}

Appendix 5 1(3)

Program code of the ConfigWholeTAS -funtion

// configurations during measurement for whole TAS measurement

ConfigWholeTAS(int sr, int phase, int index)

{

 int continueMeasurement = 0;

 int error = 0;

 static int previous = -1;

 char pathToOldData[MAX_PATHNAME_LEN];

 char *msg = malloc(512);

 memset(msg, 0, 512*sizeof(char)); // initialize msg

 if(phase == 1) // if before measurement

 {

 if((sr == 1) && (glob.tas_index < glob.nReceiver) &&

(glob.tas_index != previous)) // if receiver selected

 {

 // receiver conversion

 if ((glob.tas_index==0) || (glob.tas_index==3) ||

(glob.tas_index==6))

 {

 // Stop measurement for modifying the hardware

 sprintf(msg, "Please change the receiver to channel

%i. Continue measurement by pressing

'Yes'.",(int)((glob.tas_index/3)+1));

 continueMeasurement = ConfirmPopup ("Measurement

stopped", msg);

 memset(msg, 0, 512*sizeof(char));

 // Terminate measurement if "No" pressed

 if(continueMeasurement == 0)

 {

 MessagePopup("Measurement ended","Measurement

aborted by user!");

 return 1;

 }

 }

 createSubFolder(glob.pathToExp, glob.sensorName,

glob.PathToSensorFolder, glob.pathToLogFile,

glob.ReceiverNr[glob.tas_index]);

 modifyKoordFile(glob.ReceiverNr[glob.tas_index]);

 initReceiver(glob.ReceiverNr[glob.tas_index],

glob.tasnumber, glob.whichGain);

 ResetTextBox(PANEL_2, PANEL_2_serialStatus, "");

 sprintf(msg, "Receiver %d

active...",glob.ReceiverNr[glob.tas_index]);

 InsertTextBoxLine (PANEL_2, PANEL_2_serialStatus, 0,

msg);

 memset(msg, 0, 512*sizeof(char));

 SetCtrlVal(PANEL_2, PANEL_2_RNumber,

glob.ReceiverNr[glob.tas_index]);

 // Update variables

 glob.currentSensorInLoop++;

 glob.choosenSenderReceiver =

glob.ReceiverNr[glob.tas_index];

 glob.koordinatenLoopEnd = 0;

 glob.tas_index++;

 previous = glob.tas_index;

2

 glob.CT[INDEXCOORD] = 0;

 if(glob.tas_index > 9) // check if all receivers

measured

 glob.CT[INDEXCOORD] = MaxIndexKoord+1;

 }

 if((sr == 0 || sr == 2) && (glob.tas_index < glob.nSender) &&

(glob.tas_index != previous)) // if sender or sender&receiver

selected

 {

 createSubFolder(glob.pathToExp, glob.sensorName,

glob.PathToSensorFolder, glob.pathToLogFile,

glob.SenderNr[glob.tas_index]);

 modifyKoordFile(glob.SenderNr[glob.tas_index]);

 initSender(glob.SenderNr[glob.tas_index],

glob.tasnumber);

 ResetTextBox(PANEL_2, PANEL_2_serialStatus, "");

 sprintf(msg, "Sender %d

active...",glob.SenderNr[glob.tas_index]);

 InsertTextBoxLine (PANEL_2, PANEL_2_serialStatus, 0,

msg);

 memset(msg, 0, 512*sizeof(char));

 SetCtrlVal(PANEL_2, PANEL_2_SNumber,

glob.SenderNr[glob.tas_index]);

 glob.currentSensorInLoop++;

 glob.choosenSenderReceiver =

glob.SenderNr[glob.tas_index];

 glob.koordinatenLoopEnd = 0;

 glob.tas_index++;

 previous = glob.tas_index;

 glob.CT[INDEXCOORD] = 0;

 if((sr == 0) && (glob.tas_index > 4))

 glob.CT[INDEXCOORD] = MaxIndexKoord;

 }

 Read_Koords();

 }

 if(phase == 0) // if after measurement

 {

 if((sr == 1) && (index > MaxIndexKoord) &&

(glob.tas_index<glob.nReceiver))

 {

 glob.CT[INDEXCOORD] = 0;

 previous = -1;

 }

 if((sr == 2) && index > MaxIndexKoord)

 {

 if(glob.tas_index>=glob.nSender)

 {

 glob.CT[MEASSR] = 1; // sweep over receiver

 glob.hydrophon = 3; // send with tas holder

 continueMeasurement = ConfirmPopup ("Measurement

stopped", "Sender measurement complete. Prepare hardware for receiver

measurement and press 'Yes'");

3

 // Terminate measurement if "No" pressed

 if(continueMeasurement == 0)

 {

 MessagePopup("Measurement stopped","Measurement

aborted by user!");

 return 1;

 }

 glob.tas_index = 0;

 }

 glob.CT[INDEXCOORD] = 0;

 previous = -1;

 }

 }

 if(phase == 2) // if end of measurement

 {

 ///end message

 MessagePopup("Measurement completed","Measurement completed

succesfully!");

 strcpy (pathToOldData, glob.pathToExp);

 strcat (pathToOldData, PATH_SEPERATOR);

 strcat (pathToOldData, "Template, modTemplate und LogFile");

 if(FileExists(pathToOldData,0) == 0)

 {

 error = rename(glob.PathToSensorFolder, pathToOldData);

 }else

 {

 sprintf(msg, "cmd.exe /C rmdir /S /Q

C:\"%s\"",pathToOldData);

 error = LaunchExecutableEx (msg, LE_HIDE, NULL);

 memset(msg, 0, 512*sizeof(char));

 error = rename(glob.PathToSensorFolder, pathToOldData);

 }

 if(msg!=NULL)

 {

 free(msg);

 }

 }

 return 0;

}

Appendix 6 1(2)

Program code of the auto measurement Callback –function

nt CVICALLBACK StartAutoMeasurement (int panel, int control, int

event,

 void *callbackData, int eventData1, int eventData2)

{

 char *msg = malloc(512); // msg for writing parameters into

log file

 switch (event)

 {

 case EVENT_COMMIT | 3:

 // Undim STOP -button

SetCtrlAttribute(PANEL_2,PANEL_2_NA_COMMAND,ATTR_DIMMED,FALSE);

 // Dimm Start measurement -button

 SetCtrlAttribute(PANEL_2, PANEL_2_AT_COMMAND_1, ATTR_DIMMED,

TRUE);

 // Dimm all inputs during measurement

 Dimm_Input();

 // Update help textbox

 ResetTextBox (PANEL_2, PANEL_2_HELP_TEXTBOX,

MEAS_RUNNING_HELP);

 // msg for the logfile entries, allocate with 0

 memset(msg, 0, 512*sizeof(char));

 // Read the rest parameters/settings from GUI into global

variables

 GetCtrlVal(PANEL_2, PANEL_2_type, &glob.type);

// Signal type

 GetCtrlVal(PANEL_2, PANEL_2_fB, &glob.fB);

// Bandwidth

 GetCtrlVal(PANEL_2, PANEL_2_fC, &glob.fC);

// Center frequrency

 GetCtrlVal(PANEL_2, PANEL_2_Outputvoltage, &glob.voltage);

// Output voltage

 GetCtrlVal(PANEL_2, PANEL_2_CHIRP_LEN, &glob.chirplen);

// Chirp length

 GetCtrlVal(PANEL_2, PANEL_2_GPIG, &glob.gpig);

// Config AWG Y/N

 GetCtrlVal(PANEL_2, PANEL_2_id, &glob.id);

// GPIB map

 GetCtrlVal(PANEL_2, PANEL_2_addr, &glob.addr);

// GPIB adress

 GetCtrlVal(PANEL_2, PANEL_2_channel, &glob.channel);

// Channel

 GetCtrlVal(PANEL_2, PANEL_2_INC, &glob.inc);

// Inc. value for looping

 GetCtrlVal(PANEL_2, PANEL_2_MAX, &glob.max);

// Max value for looping

 GetCtrlVal(PANEL_2, PANEL_2_Gain, &glob.whichGain);

// Receiver attenuation 0=1.0, 1=0.5, 2=0.25, 3=0.125

 GetCtrlVal(PANEL_2, PANEL_2_AT_NUM_2, &MessSchuesse);

// Measurements per point

 GetCtrlVal(PANEL_2, PANEL_2_AT_NUM_1, &glob.uiAbstand);

// Distance between points

 // Read control variables into global control table

 GetCtrlVal(PANEL_2, PANEL_2_miniloop_on, &glob.CT[MINILOOP]);

// Miniloop on/off

 GetCtrlVal(PANEL_2, PANEL_2_on, &glob.CT[SIGNALGEN]);

// Signalgenerator on/off

 // Write parameters to experiment data log file

sprintf(msg,"%i\n%f\n%f\n%f\n%f\n%i\n%i\n%i\n%i\n%f\n%f",glob.type,gl

ob.fB,glob.fC,glob.voltage,glob.chirplen,glob.gpig,glob.id,glob.addr,

glob.channel,glob.inc,glob.max);

 writeExpLogFile(msg);

 memset(msg, 0, 512*sizeof(char));

 // Write parameter to log file

 sprintf(msg,"\nSelected parameters:\n\nBandbwidth:\t%llf

MHz\nCenterfrequency:\t%llf MHz\nOutputvoltage:\t%llf

Volt\n\n\n",glob.fB,glob.fC,glob.voltage);

 writeLogFile(msg);

 memset(msg, 0, 512*sizeof(char));

 ProcessSystemEvents();

 // Do preparations before running measurement

 if(measurementPreparation(glob.CT[MEASMODE]) == 0)

 return 0; // quit if any errors in

measurementPreparation();

 // the main measurement loop

 Do_Measurement_Loop();

 break;

 }

 if(msg!=NULL)

 {

 free(msg);

 }

 return 0;

}

www.savonia.fi

