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ABBREVIATIONS: 

 T       Traction 

∆S    Small sectional area 

∆F      Distributed forces 

𝜎        Stress quantity 

𝜎𝑛𝑜𝑟𝑚𝑎𝑙       Normal stress 

n⃗         Unit vector 

𝜗        Included angle 

𝑣𝑥⃗⃗⃗⃗       Componential vector in x-direction 

𝑣𝑦⃗⃗⃗⃗       Componential vector in y-direction 

𝑣𝑧⃗⃗  ⃗      Componential vector in z-direction 

𝜏         shear stress 

𝑇𝑥, 𝑇𝑦 , 𝑇𝑧       Stress vectors 

�⃗�          Total stress vector 

E         Elastic modulus of the material 

I          Moment of inertia of the cross-sectional area about neutral axis 

w(x)      Deflection of the beam in the vertical direction  

q         A distributed load 

G        Shear modulus of the material 

𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥)      Bending moment  

F          Surface load 
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c          Perpendicular distance from the neutral axis to a point farthest away 

from the neutral axis. 

 

t         Displacement of between point A and B on the beam 

P        Axial loads 

𝜖       Strain of the beam due to the axial loads 

L        Length of the beam 

T       Torsion 

∅       angle of twist 

𝐴𝑠𝑞𝑢𝑎𝑟𝑒       Cross section area of a square beam 

𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟        Cross section area of a rectangular beam 

𝐴𝐼−𝑏𝑒𝑎𝑚        Cross section area of a I beam  

 b         width of the cross section   

 h         height of the cross section 

V         shear force 
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1. INTRODUCTION 

 

1.1.1.  Background 

In engineering (exclusively in civil engineering), deflection analysis upon beams, 

which currently are exerted as the staple materials collaborated with concrete in 

construction industry, has been being recognised as a significantly indispensa-

ble process with the purpose of identifying the critical mechanical deformation 

magnitude to the beams under various realistic structures. The threshold of 

analysis is to figure out sorts of deflection which are typically occurred to beams 

made of different materials. The experimental method is to utilize COMSOL 

simulator to simulate the deflection that beams inflict when a stress is applied 

on. Generally, two delegative sorts of beam deflection commonly discussed are 

put in contrast which indicated visual disparities on angles at the end of ingredi-

ents, called Euler-Bernoulli beams and Timoshenko beams, respectively. The 

conclusions which is presented as well as data collection would be assessed by 

companies and engineers to predict the quality of texture in bridge constructions 

and so forth. 

 

1.1.2.  Objectives 

 

The research is conducted to investigate the deflection cases on beams with 

thickness in variety when stress applied. In this study, the objectives are com-

prised of following steps: 

⚫ Studying two main theories of beam’s deflection, called Euler-Bernoulli 

and Timoshenko theory respectively, comprehending all relevant con-

cepts. 

⚫ Comparing the disparities between these two theories, collecting proper-

ties data of ingredients (elasticity and rigidity etc.) doing data calculation 

on samples chosen, giving out the hypothesis on the simulation results. 
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⚫ Simulating the stress behaviour upon beams samples with COMSOL and 

compare the numbers obtained. 

⚫ Analysing the observations and offer the conclusion. 

 

 

1.1.3. Relevance to working life  

  
According to the conclusions which are determined within the research, realistic 

fields which are relevant to beam theory integrated on civil engineering, which is 

the construction of mansions, bridges, tunnels and so forth. Simultaneously, the 

identical theorem can also be the inspiration to relevance of materials selec-

tions. 

 

In addition, for beams with relatively low transverse shear stiffness, the Euler-

Bernoulli beam modelling underestimate the deflection. Moreover, the principle 

of bending vibration is determined based on Euler-Bernoulli theory (Adhikari 

2016). By comparison, Timoshenko Beam Theory behaves in transverse shear 

strain as the length-to-thickness ratio becomes large (Wang & Lee 2000) 

 

To enhance the understanding of two beam theories, some realistic examples 

are demonstrated as: 

Euler-Bernoulli Beam Theory: Three-point bending, cantilever beam  

Timoshenko Beam Theory: Thick beam under bending  
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2. LITERATURE REVIEW & THEORY DESCRIPTION 

 

2.1. Stress & Strain 

Stress and strain are two physical quantities which represent different mechani-

cal behaviour along a selected surface, either internal or external, of a body. 

Stress is associated with the strength of materials from which the body is made, 

while strain is a method of measurement which determine the deformation of 

the body (Hibbeler 2018). Moreover, when investigations of mechanical perfor-

mance are integrated on properties, materials are supposed to be considered 

as being continuous, consisting of a continuum or uniform distribution of matter 

possessing no voids. Materials must be cohesive, parts of which are connected 

firmly together (Hibbeler 2018 p.40).  

 

2.1.1. Stress 

The definition of stress is described as a property which expresses a distribution 

of force which loads on internal or external surface of the frame. Assuming a 

concrete body stands beneath a system of forces, whereas the stress field is 

the distribution of the internal “tractions” T which help balance the external “trac-

tions” and body faces. A concrete body can be subjected to both surface forces 

and distributed loadings. Surface loads act on a small area of contact are re-

ported by concentrated forces, while distributed loadings are acting over a large 

surface area of the body. 

To exhibit how stress preforms on surfaces, considering that a sectioned area 

of a substance to be subdivided into several small area ∆S (shown in Figure 1). 

Subsequently, a distribution of loads ∆F is applied at an arbitrary point P when 

the internal and external forces are acting at the chosen point in opposite direc-

tions till the whole system reaches to an equilibrium (Hibbeler 2018).  
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Figure 1. Internal and external forces acting on a body (Hibbeler 2018 p.40) 

 

The traction T is a bound vector which means it cannot slide to another spot 

with the same definition. Therefore, in a particular direction, the traction can be 

defined as below.  

                               𝜎 = lim
∆𝑠→0

∆𝐹

∆𝑆
=

𝑑𝐹

𝑑𝑆
                                     (2-1) 

To demonstrate how the internal and external forces are distributed across the 

intercepted surface at the arbitrary point, a coordinate system is established to 

reveal the direction of a force applied in the form of vectors n⃗  (𝑥, 𝑦, 𝑧). According 

to directions in discrepancy, the stress which is applied on the intercepted sur-

faces can be categorized into two types. 

1) normal stress  

Whereas the force is applied perpendicular to the chosen area ∆S. According to 

the diagram Figure 2, to demonstrate the external and internal force distributing 

across the exposed surface at the arbitrary point, the Cartesian Coordinate is 

used which indicates components of a force in three-dimension. Hence, normal 

stress can be described in general as: 

                              𝜎𝑛𝑜𝑟𝑚𝑎𝑙 = lim
∆𝑆→0

∆𝐹

∆𝑆
=

𝑑𝐹𝑧

𝑑𝑆
                                      (2-2) 
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Figure 2. Components of a force along dimensional coordinate. (Hibbleler 2018 p.40) 

 

The vector n⃗  is the semi-normal of the surface and acts as a unit vector (𝑥2 +

𝑦2 + 𝑧2 = 1). Consisting of three components as the cosines of the angles 𝜗 

between the vector and the coordinate axis (Silva 2006 p.10): 

                                            {

𝑣𝑥⃗⃗⃗⃗ = cos(𝑣, 𝑥) = 𝑥

𝑣𝑦⃗⃗⃗⃗ = cos(𝑣, 𝑦) = 𝑦

𝑣𝑧⃗⃗  ⃗ = cos(𝑣, 𝑧) = 𝑧

                                        (2-3) 

Therefore, the normal stress is determined as 𝜎𝑛𝑜𝑟𝑚𝑎𝑙 = 𝜎𝑐𝑜𝑠𝜗 =
𝑑𝐹𝑐𝑜𝑠𝜗

𝑑𝑆
, 

perpendicular to the area. According to the convention, stresses which are per-

pendicular to three different axes are inscribed as 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 respectively. 

2) shear stress (𝝉) 

The intensity of force acting tangent to the selected area, which is extending 

along two directions (presented in Figure 3) (Hibbeler 2018). 

                                            𝜏𝑧𝑥 = lim
∆𝑆→0

∆𝐹𝑥

∆𝑆
                                      (2-4)           

                                            𝜏𝑧𝑦 = lim
∆𝑆→0

∆𝐹𝑦

∆𝑆
                                      (2-5) 
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Figure 3. Stresses are characterized by three components acting on each face of the element. (Hibbeler 2018 p.41) 

 

Therefore, shear stresses are presented as: 𝜏 = 𝜎𝑠𝑖𝑛𝜗 =
𝑑𝐹𝑠𝑖𝑛𝜗

𝑑𝑆
, parallel to 

the chosen area.  

Where the subscript rotation of z-axis specifies the direction of the selected ar-

ea ∆S and other two axis reveal the surface along which the shear stress acts. 

Generally, shear stress is presented in form of 𝜏𝑖𝑗 with the first index showing 

the direction of coordinate surface and the second one the direction of the 

shearing stress vector. Since stress is regarded as a vector, the magnitude of a 

stress is determined positive when it extends to the same direction as the coor-

dinate axis (Silva 2006). 

 

2.1.2. Stress matrix 

A 3X3 matrix indicates components of a stress extending beneath different di-

rections referring to Cartesian Coordinates. This method of arranging is called 

stress tensor or stress matrix. A stress can be separated into nine components 

forwards to different direction in coordinates. There nine components, however, 

can be arrayed in a matrix. 
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                                          𝜎 = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑧 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑦𝑧 𝜎𝑧

]                                         (2-6) 

Considering when stresses act on a surface which is inclined inside a structure, 

the components in reference directions can be expressed straight in equation 

with mathematical methodology, by inserting stress vectors (Silva 2006). 

                                          {

𝑇𝑥 = 𝑥 ∙ 𝜎𝑥 + 𝑦 ∙ 𝜏𝑦𝑧 + 𝑧 ∙ 𝜏𝑧𝑥

𝑇𝑦 = 𝑦 ∙ 𝜎𝑦 + 𝑥 ∙ 𝜏𝑥𝑦 + 𝑧 ∙ 𝜏𝑧𝑦

𝑇𝑧 = 𝑧 ∙ 𝜎𝑧 + 𝑥 ∙ 𝜏𝑥𝑧 + 𝑦 ∙ 𝜏𝑦𝑧

                        (2-7) 

Rearrange into the form of matrix: 

                                           [

𝑇𝑥

𝑇𝑦

𝑇𝑧

] = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦 𝜏𝑧𝑦

𝜏𝑧𝑥 𝜏𝑦𝑧 𝜎𝑧

] [
𝑥
𝑦
𝑧
]                                 (2-8) 

Where, 𝑇 is the total stress vector (vector �⃗� ), 𝜎𝑖 is normal stress which is in right 

projection of the vector �⃗�  and 𝜏𝑖𝑗 is shear stress. 

According to the reciprocity of shearing stresses (Silva 2006), a relationship 

among shear stresses across surfaces in variety can be acquired as below: 

                                     (𝜏𝑥𝑦 = 𝜏𝑦𝑥, 𝜏𝑥𝑧 = 𝜏𝑧𝑥, 𝜏𝑦𝑧 = 𝜏𝑧𝑦)                       (2-9) 

Thus, the normal stress can be defined in term of 𝑇 as: 

𝜎 = 𝑥 ∙ 𝑇𝑥 + 𝑦 ∙ 𝑇𝑦 + 𝑧 ∙ 𝑇𝑧 

    = 𝑥(𝑥 ∙ 𝜎𝑥 + 𝑦 ∙ 𝜏𝑦𝑧 + 𝑧 ∙ 𝜏𝑧𝑥) + 𝑦(𝑦 ∙ 𝜎𝑦 + 𝑥 ∙ 𝜏𝑥𝑦 + 𝑧 ∙ 𝜏𝑧𝑦) + 𝑧(𝑧 ∙

         𝜎𝑧 + 𝑥 ∙ 𝜏𝑥𝑧 + 𝑦 ∙ 𝜏𝑦𝑧)  

   = 𝑥2 ∙ 𝜎𝑥 + 𝑦2 ∙ 𝜎𝑦 + 𝑧2 ∙ 𝜎𝑧 = 2𝑥𝑦 ∙ 𝜏𝑥𝑦 + 2𝑥𝑧 ∙ 𝜏𝑥𝑧 + 2𝑦𝑧 ∙ 𝜏𝑦𝑧   (2-10) 

Due to Pythagoras’s theorem, the resultant stress vector is defined as (Silva 

2006) 

                                                   𝑇2 = 𝜎2 + 𝜏2                                              (2-11) 
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2.1.3. Transformation of stress 

The general state of stress at the arbitrary point is determined by normal and 

shear stress’s components. However, the most identical case which engineers 

ever encountered is not in three-dimension.  

In Finite Element Analysis of beams, observation at cross-section is constantly 

adopted by engineers to clearly prove deflections, which calls forth a transfor-

mation of stress from 3D to 2D, in another word, to do plane stress analysis. 

 

Figure 4. Plane stress presenting. (Hibbeler 2018 p.464) 

 

The state of plane stress at the chosen point 𝑃 is exclusively described by two 

normal stress components and one component of shear stress which are ap-

plied on the element (Hibbeler 2018). After an anti-clockwise rotation of the co-

ordinate in an angle 𝜃, forces which are applied on the former coordinate must 

be transformed to the new frame. 

Hence, the matrix of stress converts: 

                     𝜎 = (

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑧 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑦𝑧 𝜎𝑧

) ⇒ 𝜎 = (

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑧 𝜎𝑦 0

0 0 0

)           (2-12) 

By creating a free-body diagram on the segment (Figure 5), it is accessible to 

have basic equations which indicate normal and shear stresses upon the arbi-

trary surface in term of rotative angle. 
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Figure 5. Free-body diagram which shows equilibrium on the segment. (Hibbeler 2018 p.465) 

 

According to the resultant free-body diagram of the segment, to satisfy the equi-

librium among physical quantities, normal 𝜎𝑥
′  and shear stress 𝜏𝑥𝑦

′  after rotation 

can be acquired as (Hibbeler 2018): 

𝜎𝑥
′ ∙ ∆𝐴 − (𝜏𝑥𝑦 ∙ ∆𝐴𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 − (𝜎𝑦 ∙ ∆𝐴𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 − (𝜏𝑥𝑦 ∙ ∆𝐴𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃 −

(𝜎𝑥 ∙ ∆𝐴𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃 = 0 ; 

𝜎𝑥
′ = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 + 𝜏𝑥𝑦 ∙ 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 .                                                (2-13) 

𝜏𝑥𝑦
′ ∙ ∆𝐴 + (𝜏𝑥𝑦 ∙ ∆𝐴𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 − (𝜎𝑦 ∙ ∆𝐴𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 − (𝜏𝑥𝑦 ∙ ∆𝐴𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃 +

(𝜎𝑥 ∙ ∆𝐴𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃 = 0 ; 

𝜏𝑥𝑦
′ = (𝜎𝑦 − 𝜎𝑥)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦(cos

2 𝜃 − sin2 𝜃) .                                          (2-14) 

 

To simplify,  

𝜎𝑥
′ =

𝜎𝑥+𝜎𝑦

2
+

𝜎𝑥−𝜎𝑦

2
cos(2𝜃) + 𝜏𝑥𝑦sin (2𝜃)                                            (2-15) 

𝜏𝑥𝑦
′ = −

𝜎𝑥−𝜎𝑦

2
sin(2𝜃) + 𝜏𝑥𝑦cos (2𝜃)                                             (2-16) 

Furthermore, by substituting 𝜃 with (𝜃 +
𝜋

2
) (Protter, Murray, Morrey & Charles 

1970), normal stress after rotation in y-axis direction can be determined as: 
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                       𝜎𝑦
′ =

𝜎𝑥+𝜎𝑦

2
−

𝜎𝑥−𝜎𝑦

2
cos(2𝜃) − 𝜏𝑥𝑦sin (2𝜃)               (2-17) 

Apart from this, it is crucial to identify the orientation that makes the normal 

stress reach to the maximum value. (Hibbeler 2018) This is named as in-plane 

principle stress, which determines both maximum and minimum magnitudes of 

normal stress applied on an element. Equation (2-15) is differentiated respect to 

the rotation angle 𝜃 which leads to a result as (Figure 6): 

Figure 6. Critical value of normal stress. (Hibbeler 2018 p.471) 

 

                    
𝑑𝜎𝑥

′

𝑑𝜃
= −

𝜎𝑥−𝜎𝑦

2
(2sin2𝜃) + 2𝜏𝑥𝑦 cos(2𝜃) = 0               (2-18) 

 

By solving Equation (2-18), the orientation 𝜃 of the plane of the maximum and 

minimum normal stress is: 

                                          tan 2𝜃 =
2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
                                    (2-19) 

                                        𝜃 =
1

2
tan−1(

2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
)                                     (2-20) 
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Where the function respect to 𝜃  possesses two roots, which are 𝜃1 =

𝜃 𝑎𝑛𝑑 𝜃2 = 𝜃+
𝜋

2
 due to the trigonometric function. Therefore, the correspond-

ing normal stresses are presented as (Hibbeler 2018): 

                                    𝜎1,2 =
𝜎𝑥+𝜎𝑦

2
± √(

𝜎𝑥−𝜎𝑦

2
)
2
+ 𝜏𝑥𝑦

2                              (2-21) 

By using the analogous method (Figure 7), the maximum shear stress is ac-

quired as (Hibbeler 2018): 

                       
𝑑𝜏𝑥𝑦

′

𝑑𝜃𝑠
= −

𝜎𝑥−𝜎𝑦

2
(sin2𝜃𝑠) + 𝜏𝑥𝑦 cos(2𝜃𝑠) = 0            (2-22) 

Figure 7. Critical value of shear stress. (Hibbeler 2018 p.472) 

Hence, 

                             𝜏max 𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = √(
𝜎𝑥−𝜎𝑦

2
)2 + 𝜏𝑥𝑦

2                      (2-23) 

 

2.1.4. Strain 

Strain is the physical quantity to express deformation of a body when a force is 

applied on. In general, the deformation is not uniform throughout the body. 

Thus, the change in geometry of any segment aligned within the frame may 

vary substantially along the length (Hibbeler 2018). Temperature variation or 

similar phenomena is also a possible elicitation of deformation. Analogously, 
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strain tensor is defined by same mathematical characteristics as the stress ten-

sor under the validity of the continuum hypothesis (Silva 2006). 

 

2.2. Two types of beam deflection 

Generally, two delegative sorts of beam deflection commonly discussed are put 

in contrast which indicated visual disparities on angles at the end of ingredients, 

called Euler-Bernoulli Beams and Timoshenko Beams, respectively. A beam is 

defined as a configuration where one of its dimensions is much larger than the 

other two. The axis of the beam is defined along that longer dimension and a 

cross-section normal to this axis is hypothesized to smoothly vary along the 

span or length of the beam (Bauchau & Craig 2009 p.173). Civil engineering 

structures constantly are comprised of an assembly or grid of beams with cross-

sections underneath shapes such as T’s or I’s. Machine parts also are beam-

like structures: lever arms, shafts and so forth. Eventually, several aeronautical 

structures such as wings and fuselages can also be treated as thin-walled 

beams (Bauchau & Craig 2009). 

 

2.2.1. Euler-Bernoulli Beam Theory 

Euler-Bernoulli Beam Theory is universally regarded as classical beam theory, 

which is a simplification of the linear theory of elasticity. This theory provides 

resolution to calculating load-carrying and deflection characteristics of beams. 

In addition, Euler-Bernoulli Theory underestimates the range of deflection at the 

end of the beam (due to shear strength effects). 

By elements analysis, considering the objective beam is split into numerous uni-

form-size cubes, arrayed perpendicular to the neutral axis (shown as Figure 8). 

There is a load P upwards at the vertex of the beam which provides a moment 

of bending.  
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Figure 8. Euler-Bernoulli Beam Theory. (accessed at 10/12/2019)  

 

 

Figure 9. Every single square remains the shape after bending. (accessed at 10/12/2019) 

 

The trait of Euler-Bernoulli Beam Theory, consequently, is summarized as any 

plane vertical to the neutral axis before bending will remain the same after the 

bending. The edge of the beam remains as 90 degrees throughout the defor-

mation. The Euler–Bernoulli Equation describes the relationship between the 

beam’s deflection and the applied load is as shown below (Gere & Timoshenko 

1997): 

                                         
𝑑2

𝑑𝑥2
(𝐸𝐼

𝑑2𝑤

𝑑𝑥2
) = 𝑞                                     (2-24) 
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Where E is elastic modulus, I is the second moment of inertia, w(x) describes 

the deflection of the beam in the vertical direction at some position x. q is a dis-

tributed load, in other words a force per unit length (Gere & Timoshenko 1997). 

 

2.2.2. Timoshenko Beam Theory 

Timoshenko Beam Theory is a unique case apart from Euler-Bernoulli Theory. 

In comparison, Euler-Bernoulli Theory does not involve the correction for rotary 

inertia or the correction of shear stress which means there will be a different 

stress distribution in transverse direction when either a torsion or shear moment 

occurs on the beam, since the rotation from shear deformation between the 

cross section and bending line is considered negligible under Euler-Bernoulli 

Beam Theory. Adversely, Timoshenko Theory considers both which further 

demonstrates that the correction of shear is approximately 4 times greater than 

that of rotatory inertia.  

  

Figure 10. Comparison between Euler-Bernoulli and Timoshenko theory. (accessed at 10/12/2019) 

 

The visual disparity between two types of beam theories is whether the shape 

of the end changes after bending (Figure 10). There is a strain which exists at 

the top and the bottom of the end. Consequently, this induces a deformation of 

shear. The angle at the vertex is no longer 90 degrees by contrast to the situa-

tion in Euler-Bernoulli Theory. 
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Beams which are either short or have colossal deflections are better modelled 

with Timoshenko theory. It includes that the added mechanisms of deflection 

effectively lower the stiffness of the beam. As a result, a large deflection under a 

static load and lower predicated eigenfrequencies occurs within a set of bound-

ary conditions since by contrast, the wavelength becomes shorter when fre-

quency climbs. Therefore, the distance between opposing shear forces decou-

ples (Timoshenko 1922). 

Likewise, in the static Timoshenko Beam Theory without axial effect, the rele-

vant equation is governed as (Gere & Timoshenko 1997): 

                                            
𝑑2

𝑑𝑥2
(𝐸𝐼

𝑑𝑤

𝑑𝑥
) = 𝑞                                 (2-25) 

Nevertheless, Timoshenko Beam Theory for static cases is equivalent to Euler-

Bernoulli Beam Theory when it caters for the condition below (Timoshenko 

1922): 

                                               
𝐸𝐼

𝑘𝐿2𝐴𝐺
≪ 1                                             (2-26) 

Where k is Timoshenko shear coefficient depending on the geometry. Normally, 

k= 5/6 for a rectangular section. L is the length of beam. A is the cross-section 

area and G means the shear modulus. 

 

2.3. Discrepancies between solid and beam elements  

Elements are consistently categorized in three main prevalent types which are 

solid, shells and line. Solid element is the most common type whose example 

can be linear tetrahedral. On the other side, one of the representatives of line 

element is beam. Generally, differences between solid and beam elements be-

ing applied throughout structural analysis can be distinguished via two aspects: 

the deviation on degree of freedom as well as the length-to-span ratios. 
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2.3.1. Degree of freedom 

Degree of freedom is a parameter which describes possibilities to mobilize a 3D 

object in directions along the axis under coordinate. To illustrate, a cube under 

a Cartesian coordinate possesses six means of degree of freedom since it can 

be not only moved along X, Y or Z axis but can be rotated about three axes as 

well. In finite elements, the degree of freedom is controlled at the corner nodes. 

It declares three main purposes which identifies the locations where loads are 

applied, nodes where the solver reports result back to the monitor and nodes 

where the movement is constrained (Ellobody, Feng & Young 2013).  

Nevertheless, disparities occur when it comes to comparing differences of what 

the concept support between beam elements and solid elements. Technically, 

beam elements support the definition which allows all six degrees of freedom.  

 

Figure 11. Six degrees of freedom of 3D beam elements between two nodes, accessed 26/02/2020.  

 

Whereas, adversely, degrees of freedom in rotation directions are not involved 

in solid mechanics. To be specific, when a beam element is treated, the console 

can control the object move in either translational or rotational way (Ellobody, 

Feng & Young 2013). However, it is not allowed to control the solid elements in 

rotational direction. 
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Figure 12. Three degrees of freedom of a 3D solid element, accessed 26/02/2020. 

 

2.3.2. Length-to-span ratios 

Apart from differing by degree of freedom, another trait which can reveals the 

discrepancy is length-to-span ratios. Beam elements are defined to be a single 

line representing the path of a beam with the cross-sectional moment of inertia, 

whereas solid elements are representing the entire geometry.  

By FEA testing and analytical calculations on deflection and stress (shown in 

Table 1 and Table 2), differences between solid and beam elements are con-

cluded as that Beam elements offer obvious accuracy for deflection below 

length-span ratios of 8:1. Solid elements indicate analogous accuracies to 

beams for deflections but higher errors for stresses. Reducing the solid-element 

mesh size would compensate for this error. 
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Table 1. Results of FEA testing and calculations for deflection which shows the 

differences between solid and beam elements by length-to-span ration. (GoEn-

gineer 2016, accessed on 27 Feb. 2020) 

 

 

Table 2. Results of FEA testing and calculations for stress which shows the dif-

ferences between solid and beam elements by length-to-span ration. (GoEngi-

neer 2016, accessed on 27 Feb. 2020) 

 

 

 



32 

 

 

2.3.3. Merits and demerits of using beam elements 

Consistently, beam elements are more widely applied than solid elements dur-

ing Finite Element Analysis on structures. However, there are abundant merits 

of using beam elements rather than solid elements (Clough 1960). For instance, 

the formulation of beam elements is straightforward, which facilitate the calcula-

tion process with a precise result. Beam elements are trivial for meshing which 

diminish the deviation which comes from mesh refinement in stress concentra-

tion regions. Another advantage is that the analysis process is curtailed. Moreo-

ver, beam elements can handle more complex structures without mesh. Hence, 

it is available to acquire various output variables including section forces and 

moments. Point load will not have much influence on stress singularity. 

 

On the contrary, there are also existing some demerits of using beam element 

instead of solid elements (Clough 1960). Significant simplifications are induced 

when beam elements are used. When beam elements are introduced to simula-

tions, not all stress components extending to different directions as well as dis-

tribution through the thickness can be captured.  
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3. METHOD 

Modelling elements are sketched and simulated by Comsol Multiphysics to indi-

cate that how deflection of the beams differs under two types.  

Solid mechanics as well as beam modulus are added into study to create com-

parison showing different effects. The function of solid mechanics is to define 

the quantities and features for stress analysis, general linear and nonlinear solid 

mechanics for the displacements. It enables large deformation with geometric 

nonlinearity and follower loads. On the contrary, beam modulus is exerted due 

to the strength of depiction of sectional properties such as second moment of 

inertia. Beam modulus, nevertheless, can also simulate frame structures, both 

in plane and in 3D. Synchronously, it can be coupled with other element types, 

such as for analysing reinforcements of solid and shell structures. To make the 

comparison of deflections more specific and concrete, beams are drawn vari-

ously with two different sections (normal beams with rectangular cross-section 

and ‘I’ beam).  

 

3.1. Material selection 

 

Table 3: Mechanical property of aluminium (Comsol Material Library). 

 

Young’s modulus is 𝐸 = 70𝐺𝑃𝑎 with Poisson’s ratio of 0.33 
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To cater for the primary orientation of this thesis, which is to compare the differ-

ences between deflections underneath Euler-Bernoulli and Timoshenko types, a 

material with sufficient elasticity and high rigidity ought to be applied to the 

models to undertake massive quantity of loads in the simulation. Sharpe deflec-

tions required to the observation. Hence, aluminium is selected as the material 

which is applied on both moulds. 

 

3.2. Finite Element Analysis in Comsol 

The definition of Finite Element Analysis is the simulation of any physical phe-

nomenon using the numerical technique called Finite Element Method (FEM). 

Nodes and elements are identical backbones of Finite Element Analysis used in 

Comsol. When a model is divided into several small parts, they are knitted to-

gether by characteristic points which are called nodes. Each element shares a 

common node in adjacent. By contrast, mesh is defined by connecting nodes to 

form a net-shape system which is covered full of the surface of the objectives. 

Meshed are crucial for precise result acquisition. By creating a mesh plot, it is 

visible to inspect on defects of the entities of the mould and to understand 

where low-quality elements are positioned. Constantly, mesh is widely applied 

by great many of computational software.  

 

3.3. Comsol modelling 

To differentiate demonstrations of Euler-Bernoulli Beam Theory and Timoshen-

ko Beam Theory, it is necessary to create beams with cross sections of three 

different geometries. According to the corresponding theory, beams designed 

for simulations are in cross section of square (thick), rectangular (thin) and I-

shape. To diminish the errors during the simulation due to dimensions of the 

beams, beams are designed underneath same dimensions of width as 0.08 me-

ters and varies on height. All beams are designed extending in depth direction 

by 0.6 meters. 
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Square cross-sectional  

In the first occasion, the beam is designed as a thick beam with a square cross 

section of dimension of 0.08 meters x 0.08 meters, which satisfy the Timoshen-

ko Beam Theory.  

 

Rectangular cross-sectional 

The second beam is sketched with a rectangular cross section which is thinner 

than the beam designed for the first case. The dimension is 0.08 meters x 0.03 

meters. Euler-Bernoulli Beam Theory will be displayed by the beam with thinner 

cross section. 

 

6- beam 

In the third occasion, I-beam is used to investigate how both two beam theories 

differ on beams with a different shape. The dimensions of I beam retain the 

same with the dimensions in early two occasions. The thickness of web part is 

0.02 metres. 

 
 
 

3.4. Loading 

In the process of simulation, load is applied in different occasions with different 

magnitudes to imitate the effects on deformation of the domain due to surface 

loading as well as compression along the depth and torsions. The emergence of 

the deformation is accounted of bending moment and torque as soon as the 

load is applied on domain. Since beam element is consisted of six degrees of 

freedom, it is straightforward to observe the deformation of the beam in rota-

tional direction when a force is applied along depth. 
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3.4.1. Bending 

In the first occasion, shear force is used to induce the deformation to the 

beams. A distributed load is applied perpendicularly to the surface which is uni-

formly distributed with a magnitude of 5000 N/m. The load, consequently, is 

3000 N. 

 

Figure 13. Free-body diagram of the surface load occasion, gao jie, 27/02/2020. 

 

Therefore, there will be a curvature of cantilever beam occur due to the bending 

moment in the respect of the free length under the distributed load elongating 

along the length of the beam. 

 

Figure 14. Deformation of an element under bending moment. (Hibbeler 2018 p.629). 
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In consequence, the bending moment from the shear force which is acting at 

the boundary edge of the beams can be calculated as (Bauchau & Craig 2009): 

                              𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥) = 𝐹𝑥 = 900 𝑁 ∙ 𝑚                         (3-1) 

Where, 

𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥) is the bending moment. 

F is the total load at surface. 

𝑥 is the distance between the boundary edge and the point where the load is 

applied on the surface. 

Since the beam is under a uniform distributed load which is applied vertically at 

the surface, the formulation of obtaining the maximum stress and displacement 

are presented in Figure 15 below:  

 

Figure 15. The angle of deformation and maximum displacement of a beam under a distributed load. (Hibbeler 2018 

p.830). 

 
Hence, by inserting magnitudes, the maximum displacement is obtained as: 

𝑡𝑚𝑎𝑥 = −6.45 𝑚𝑚. Moreover, the maximum normal stress in the member is cal-

culated as (Hibberler 2018 p. 313):  

                                                𝜎𝑚𝑎𝑥 =
𝑀𝑐

𝐼
= 75 𝑀𝑃𝑎                            (3-2) 

 
Where, 

c    is perpendicular distance from the neutral axis to a point farthest away from 

the neutral axis. 
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3.4.2. Axial load along direction of depth 

In the second occasion, an axial load is directly applied along the direction of 

depth, which is perpendicular to the cross section. Therefore, the normal stress 

which is acting at the cross section of the beams can be calculated as (Bauchau 

& Craig 2009): 

                                             𝜎 =
𝑃

𝐴
                                                 (3-3) 

Furthermore, the strain due to the axial load is determined as: 

                                              𝜖 =
𝑃𝐿

𝐴𝐸
                                                    (3-4) 

Generally, due to the assumptions of Euler-Bernoulli Beam Theory, it is availa-

ble to imitate the situation when the beam is subjected to distributed axial loads 

(Bauchau & Craig 2009). There are three fundamental assumptions which are 

concluded from Euler-Bernoulli Beam Theory. The first assumption states that 

the cross section of the beam is un-deformable in the selected plane. In another 

word, the cross section is infinitely rigid. The second assumption suggests that 

the cross section is able to deform and will retain plane after deformation, which 

implies an axial displacement region which consists of a rigid domain translation 

and two rigid domain rotations as well. The third assumption states that the 

cross section remains normal to the neutral axis of the beam after deformation 

(Bauchau & Craig 2009) (Figure 17). 

 

Figure 16. Decomposition of axial displacement region. (Bauchau & Craig 2009 p. 175) 
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3.4.3. Torsion 

In the third occasion, a torque is applied to demonstrate the degrees of freedom 

od beam elements in rotational direction. A torsion T is applied at the cross-

section surface which creates a shear stress at the transverse level to make the 

beam twist in a certain angle.  

 

 

Figure 17. FBD of torsion of a noncircular beam (Hibbeler 2018 p.247). 

 

The corresponding formula of torsion and twisted angle, therefore, is given as: 
 
 

Square: 

Table 4. The maximum shear stress and twist angle of a square cross section. 

(Hibbeler 2018 p.248) 
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Where T is torsion, L is the depth of the beam, G is the shear modulus of the 

material and ∅ is the angle of twist. 

 

Rectangular: 

The constant in torsion equations of a rectangular cross section depends on the 

ratio of width over height (Ugural & Fenster 1975).  

 

 

Figure 18. Torsion of rectangular cross section. (accessed from Engineering Library at 27/02/2020) 

 

The maximum stress of a rectangular beam occurs at the center of the long side 

and is given by: 

                                                      𝜏𝑚𝑎𝑥 =
𝑇

𝛼𝑏𝑡2
                                            (3-5) 

Where, 𝛼 is a relevant constant, b is the width of beam and t is the thickness.  

Therefore, the angle of twist of a rectangular beam is given as: 

                                                          ∅ =
𝑇𝐿

𝛽𝑏𝑡3𝐺
                                            (3-6) 

Where 𝛼 and 𝛽 are given in table 5 as: 

Table 5. Constant of torsion Equations (3-7) and (3-8) (Urugal, A.C & Saul K. 

Fenster 1975). 
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6- beam: 

 

Figure 19. Torsion of a I-section beam, (Megson 2005 p. 292) 

 

According to the diagram Figure 20, the maximum shear stress of a I-section 

beam is summarized as (Megson 2005): 

                                               𝜏𝑚𝑎𝑥 =
𝐺∅𝑐

𝐿
                                       (3-7) 

Where,  

𝑐 =
𝐷

1 +
𝜋2𝐷4

16𝐴4

[1 + (0.118 ln (1 −
𝐷

2𝑟
) −

0.238𝐷

2𝑟
) 𝑡𝑎𝑛ℎ

2∅

𝑟
] 

Where, 

A is the area of the cross section.  

 



42 

 

Moreover, the angle of twist of the I-section beam is given as Table 6. 

Table 6. The angle of twist of I-section beam due to torsion (engineer-

inglibrary.org. (n.d.). Beam Torsion | Engineering Library, accessed 27 Feb. 

2020). 
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4. RESULTS 

 

4.1. Mathematical calculations 

The cross section of the specimens lies in x, y axial direction and the specimens 

extend in z axial direction. According to the given dimensions, the cross-

sectional area of rectangular beam and I beam is regarded as 𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 and 

𝐴𝐼 for respective. 

Hence, in the first occasion, 

              𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑏 × ℎ = 0.08 × 0.08 = 6.4 × 10−3 𝑚2                 (4-1) 

Furthermore, the moment of inertia of the cross-sectional area about neutral ax-

is each is calculated as: 

          𝐼𝑠𝑞𝑢𝑎𝑟𝑒 =
1

12
𝑏ℎ3 =

1

12
× 0.08 × 0.083 = 3.41 × 10−6 𝑚4          (4-2) 

In the second occasion, the area of rectangular section is calculated as: 

             𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 𝑏 × ℎ = 0.08 × 0.03 = 2.4 × 10−3 𝑚2        (4-3) 

Therefore, the moment of inertia of the cross section is defined as: 

         𝐼𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
1

12
𝑏ℎ3 =

1

12
× 0.08 × 0.033 = 1.8 × 10−7 𝑚4     (4-4) 

In the third occasion, the I-section beam is designed under two different thick-

nesses by comparison to indicate the disparity of two beam theories during the 

simulation. For thin beam, which satisfy Euler-Bernoulli Beam Theory, the relat-

ed property is given as: 

                             𝐴𝐼−𝑏𝑒𝑎𝑚 = ∑𝐴 = 1.8 × 10−3 𝑚2                        (4-5) 

According to the formula which indicates the moment of inertia of I beam (Hib-

beler 2018, p316), the parameter related is: 
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𝐼𝐼−𝑏𝑒𝑎𝑚     = ∑ 𝐼 + 𝐴𝑑2 = 2 [
1

12
(0.08 𝑚)(0.01 𝑚)3 + 0.08 𝑚 × 0.01 𝑚 ×

(0.01 𝑚)2] + [
1

12
× 0.02 𝑚 × (0.01 𝑚)3] = 1.75 × 10−7 𝑚4             (4-6)            

Likewise, for thick beam, which satisfy Timoshenko Beam Theory, the related 

property is given as: 

                             𝐴𝐼−𝑏𝑒𝑎𝑚 = ∑𝐴 = 2.8 × 10−3 𝑚2                        (4-5) 

𝐼𝐼−𝑏𝑒𝑎𝑚 = ∑ 𝐼 + 𝐴𝑑2 = 2 [
1

12
(0.08 𝑚)(0.01 𝑚)3 + 0.08 𝑚 × 0.01 𝑚 ×

(0.035 𝑚)2] + [
1

12
× 0.02 𝑚 × (0.06 𝑚)3] = 2.34 × 10−6 𝑚4             (4-6) 

 

To make mathematical calculation of related parameters, for instance, in the 

occasion of section 3.4.1, a uniform load distribution is applied perpendicular to 

the top surface of the beam in negative direction with a magnitude of 5000 N/m.  

To demonstrate, for the rectangular cross-sectional beam: the surface load per-

pendicular to the beam is: 

                              𝐹 = 𝑞(𝑥)𝑥 = 5000 × 0.6 𝑁 = 3000 𝑁                        

The corresponding bending moment, consequently, is determined by Equation 

(3-1) as: 

                     𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥) = 𝐹𝑥 = 3000 × 0.3 = 900 𝑁 ∙ 𝑚              

The maximum normal stress is obtained as: 

𝜎𝑚𝑎𝑥 =
𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑥)𝑐

𝐼
=

900 × 0.015

1.8 × 10−7
 𝑃𝑎 = 75 × 106 𝑃𝑎 = 75 𝑀𝑃𝑎 

The equation above induces a bending deformation. Referring to Table 3. Me-

chanical property of aluminium, the Young’s modulus of aluminium is 𝐸 =

70𝐺𝑃𝑎. Inserting the related value of properties back to Equation (3-2). The 

displacement of deflection is determined as: 
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𝑡𝑚𝑎𝑥 = −
𝑞(𝑥)𝐿4

8𝐸𝐼
= 6.45 𝑚𝑚 

Afterwards, anticipating that the axial load is applied as 1000 N in the occasion 

of 3.4.2, the normal compressive stress at the cross section is determined via 

Equation (3-5) as: 

𝜎 =
𝑃

𝐴𝑠𝑞𝑢𝑎𝑟𝑒
= 0.16 𝑀𝑃𝑎 

The strain, likewise, is obtained via Equation (3-6) as: 

𝜖 =
𝑃𝐿

𝐴𝑠𝑞𝑢𝑎𝑟𝑒𝐸
=

1000 × 0.6

6.4 × 10−3 × 70 × 109
 𝑚 = 1.34 × 10−6 𝑚 

In the occasion of section 3.4.3, where torque is hypothesized as 𝑇 = 500 𝑁 ∙ 𝑚, 

the maximum stress occurs at the square-sectional beam. The shear modulus 

of silicon is determined by Young’s Modulus and Poisson’s Ratio as 𝐺 =

𝐸

2(1+𝑣)
= 26.32 𝐺𝑃𝑎 (Bauchau & Craig 2009) and the related twist angle are de-

termined as: 

𝜏𝑚𝑎𝑥 =
4.81 × 500

0.083
 𝑃𝑎 = 4.7 𝑀𝑃𝑎 

∅ =
7.1 × 500 × 0.6

0.084 × 26.32 × 109
 𝑟𝑎𝑑 = 1.976 × 10−3 𝑟𝑎𝑑 

Hence, to summarize the consequences of all cases in the tables below: 

Table 7. Mathematical results of surface load situation. 

Surface load 
Maximum normal 

stress (MPa) 
Maximum displacement 

(mm) 

Rectangular beam (0,08 m*0,03 m) 
75 6,45 

Square beam (0,08 m*0,08 m) 10,55 0,339 

I-beam (0,03 m thick) 77,14 6,61 

I-beam (0,08 m thick) 15,4 0,495 
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Table 8. Mathematical results of axial load situation. 

Axial load 
Maximum normal 

stress (MPa) 
Maximum displacement 

(mm) 

Rectangular beam (0,08 m*0,03 m) 
0,42 3,57E-03 

Square beam (0,08 m*0,08 m) 
0,16 1,34E-03 

I-beam (0,03 m thick) 0,56 4,78E-03 

I-beam (0,08 m thick) 0,36 3,06E-03 

 

Table 9. Mathematical results of torsion situation. 

Torsion 
Maximum normal 

stress (MPa) 
Twist angle (rad) 

Rectangular beam (0,08 m*0,03 m) 
26,7 0,021 

Square beam (0,08 m*0,08 m) 4,7 1,98E-03 

I-beam (0,03 m thick) 77,14 0,661 

I-beam (0,08 m thick) 15,4 4,27E-03 
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4.2. Simulation by Comsol 

Mesh results from the tetrahedral mesh size of ‘extra fine’ setup which specify 

the element size as well as relative tolerance value.  

 

Figure 20. Extra fine meshed square cross-sectional elements, gao jie, accessed 16/03/2020. 

 

Objectives are consisted of numerous meshed elements of designed beams in 

sections above, which are square cross-sectional, rectangular cross-sectional 

and I-beam. Euler-Bernoulli and Timoshenko formulation are set as counter-

parts. 

Moreover, it is necessary to compare different results by applying beam modu-

lus analysis and solid mechanics analysis on beams, which makes the dispari-

ties on the concept of degree of freedom between two nodes more concrete to 

see.  

 

4.2.1 Bending simulation 

Rectangular beam: 

Firstly, underneath solid mechanics analysis, a distributed load of 5000 N/m is 

applied uniformly at the surface of the beam. The beam element will bend due 

to the load. In addition, labels which contain related information such as values 

of either maximum or minimum stresses among stress distribution as well as 

titles defining diagrams are plotted after running the computation. For instance, 

Figure 21 explains the reaction of thin beam under the uniform load distribution. 
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It is coloured to differ the contour of principal stress of normal stress in unit of 

MPa.  

 

Figure 21. Maximum normal stress of rectangular beam due to bending, solid mechanics, gao jie, accessed 

19/03/2020. 

 

 

Figure 22. Displacement of rectangular beam under solid mechanics computation, gao jie, accessed 19/03/2020. 
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Observation of how principal stress displays at cross section, which clearly re-

veals how stress is transforming along the chosen surface. In the diagram be-

low, relevant principal stress at the cross section of the beam indicates different 

effects using solid mechanics. 

 

Figure 23. Stress distribution at cross section of rectangular beam by bending moment, gao jie, accessed 20/03/2020. 

 

Afterwards, it is identical to compare results which are obtained from the coun-

terpart study. Under beam modulus, beam formulation is detected in Comsol 

before commencing the computation for later contrast. To illustrate, initially, it is 

defined to use Euler-Bernoulli Theory (Figure 24). 

 

Figure 24. Formulation of Euler-Bernoulli is used for analysis, gao jie, 19/03/2020. 
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Rather than creating a 3D object analysed beneath under solid mechanics, the 

object can be built in segment by vectors in the occasion of using beam modu-

lus. Based on the concept of length-to-span ratios, the beam can be defined to 

be a single line segment representing the path of a beam with the cross-

sectional moment of inertia. This method provides more precise critical stress 

magnitude once the ratio reaches certain value below 8:1.  

 

To demonstrate, rectangular, square and I-beam are tested by applying bending 

on the entity to inspect if the result is collected with smaller error. Procedures of 

related simulation are presented as follow: 

Since the length of object is designed as 0.6 meters, vectors are set as (0, 0.6) 

in length direction whereas, default values are exerted for other two directions in 

window of coordinate (Figure 25). 

 

Figure 25. Build a line segment by vectors, gao jie, accessed 19/03/2020. 

 

Aluminum is selected as material applied on the object. Subsequently, the 

shape of the transverse section with related properties can be defined in win-

dow of data definition (Figure 26), where numbers are inserted to imitate the 

segment to objective beams (rectangular, square and I-beam). In this occasion, 

load is applied at the vertex of segment while another one is fixed constraint, 

where the section is considered as a mass particle. 
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Figure 26. Cross section definition of rectangular beam, gao jie, accessed 19/03/2020. 

 

Therefore, under Euler-Bernoulli formulation, for rectangular beam: 

 

Figure 27. Critical stress rectangular beam undertakes under beam modulus by bending, Euler-Bernoulli formulation, 

gao jie, accessed 19/03/2020. 
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Figure 28. Displacement of rectangular beam under beam modulus by bending, Euler-Bernoulli formulation, gao jie, 

accessed 19/03/2020. 

 

Where, the maximum stress undertaken is 75 MPa whereas, the maximum dis-

placement due to mechanism is obtained as 6,45 𝑚𝑚. 

There is one more step to swap the formulation from Euler-Bernoulli to Timo-

shenko in the setting window: setups are switched to Timoshenko formulation 

and repeat analysis. (Figure 29). Different result of deformation is observed af-

ter computation. 

 

Figure 29. Timoshenko formulation is used for study, gao jie, accessed 20/03/2020. 
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When it uses Timoshenko formulation: 

 

Figure 30. Critical stress of rectangular beam under beam modulus by bending, Timoshenko formulation, gao jie, 

accessed 19/03/2020. 

 

 

Figure 31. Displacement of rectangular beam under beam modulus by bending, Timoshenko formulation, gao jie, 

accessed 19/03/2020. 
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Square beam: 

Solid mechanics: 

 

Figure 32. Critical stress and displacement of square beam by bending under solid mechanics, gao jie, accessed 

20/03/2020. 

 



55 

 

Beam modulus (by applying Bernoulli formulation): 

 

Figure 33. Critical stress square beam undertakes under beam modulus by bending, Euler-Bernoulli formulation, gao 

jie, accessed 19/03/2020. 

 

Figure 34. Displacement of square beam under beam modulus by bending, Euler-Bernoulli formulation, gao jie, ac-

cessed 19/03/2020. 

 

The maximum stress is obtained as 10.5 MPa and the displacement reaches a 

critical number of 3.39 × 10−4 𝑚 
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Turn to Timoshenko formulation, the maximum normal stress remains still 

whereas, the critical displacement becomes larger: 

 

 

Figure 35. Critical stress and displacement of square beam under beam modulus by bending, Timoshenko formula-

tion, gao jie, accessed 19/03/2020. 

 

The maximum stress is obtained as 10.5 MPa and the displacement reaches a 

critical number of 3.45 × 10−4 𝑚 
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Thin I-beam (thickness of 0.03 m): 
 
To make the results more convincible, I-beams are inspected in addition for 

proof of disparities. Under solid mechanics: 

 

Figure 36. Critical stress and displacement of thin I-beam by bending under solid mechanics, gao jie, accessed 

20/03/2020. 
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Beam modulus: modify the cross-section definition with H-shape beams and in-

sert the designed dimensions before embarking with the computation. 

 

Figure 37. Cross section definition of thin I-beam, gao jie, accessed 19/03/2020. 

 

By using Euler-Bernoulli formulation: 

 

Figure 38. Critical stress undertaken of thin I-beam under beam modulus by bending, Euler-Bernoulli formulation, 

gao jie, accessed 19/03/2020. 

 



59 

 

 

Figure 39. Displacement of thin I-beam under beam modulus by bending, Euler-Bernoulli formulation, gao jie, ac-

cessed 19/03/2020. 

 

By using Timoshenko formulation, results remain still: the maximum normal 

stress is collected as 77.1 MPa and displacement reaches 6.61 mm for critical. 

 

  



60 

 

Thick I-beam (thickness of 0.08 m): 

Solid mechanics: 

 

Figure 40. Critical stress and displacement of thick I-beam by bending under solid mechanics, gao jie, accessed 

20/03/2020. 
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Beam modulus (by using Bernoulli formulation): 

 

Figure 41. Cross section definition of thick I-beam, gao jie, accessed 19/03/2020. 

 

 

Figure 42. Critical stress undertaken and displacement of thick I-beam under beam modulus by bending, Euler-

Bernoulli formulation, gao jie, accessed 17/04/2020.  
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Switch to Timoshenko formulation, result is collected as: 

 

Figure 43. Critical stress and displacement of thick I-beam by bending under beam modulus, Timoshenko formula-

tion, gao jie, accessed 20/03/2020. 
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To summarize analytical results of beams under surface load case: 

Table 10. Results of surface load occasion. 

Surface load 
Rectangular 

(0,08m*0,03m) 
Square 

(0,08m*0,08m) 
I-beam 

(0,03m thick) 
I-beam 

(0,08m thick) 

Mathematical cal-
culation   

Maximum normal 
stress (MPa) 75 10,55 77,14 15,4 

Maximum dis-
placement (mm) 6,45 0,339 6,61 0,495 

Solid mechanics 
  

Maximum normal 
stress (MPa) 79 13,7 79,6 20,8 

Maximum dis-
placement (mm) 5,75 0,308 6,64 0,521 

Euler-Bernoulli 
formulation   

Maximum normal 
stress (MPa) 75 10,5 77,1 15,4 

Maximum dis-
placement (mm) 6,45 0,339 6,61 0,496 

Timoshenko for-
mulation   

Maximum normal 
stress (MPa) 75 10,5 77,1 15,4 

Maximum dis-
placement (mm) 6,45 0,345 6,61 0,517 
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4.2.2 Axial load simulation 

Likewise, make analogous experiments and compare results from two different 

analysis moduli. Axial load is defined as 1000 N which is applied vertical to 

transverse section of beams. To illustrate, Rectangular beam under solid me-

chanics analysis: 

 

Figure 44. Critical stress and displacement of rectangular beam under solid mechanics analysis by axial load, gao 

jie, accessed 20/03/2020. 
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Under beam modulus: by Euler-Bernoulli formulation when axial load is applied:  
 

 

Figure 45. Critical stress and displacement of rectangular beam by Bernoulli formulation under beam modulus by 

axial load, gao jie, accessed 20/03/2020. 
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By Timoshenko formulation: 

 

Figure 46. Critical stress and displacement of rectangular beam by Timoshenko formulation under beam modulus by 

axial load, gao jie, accessed 20/03/2020. 

 
No difference is captured between results when formulation is switched. 
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Square beam: 

Under solid mechanics: 

 

Figure 47. Critical stress and displacement of square beam under solid mechanics analysis by axial load, gao jie, 

accessed 20/03/2020. 
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Under beam modulus: (for both Euler-Bernoulli and Timoshenko formulation) 

 

Figure 48. Critical stress and displacement of square beam by both Euler-Bernoulli and Timoshenko formulation 

under beam modulus by axial load, gao jie, accessed 20/03/2020. 
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Hence, to summarize, results which are collected from analysis of beams with 

different under various moduli are shown in table below: 

Table 11. Results of axial load occasion. 

Axial load 
Rectangular 

(0,08m*0,03m) 
Square 

(0,08m*0,08m) 
I-beam 

(0,03m thick) 
I-beam 

(0,08m thick) 

Mathematical cal-
culation   

Maximum normal 
stress (MPa) 0,42 0,16 0,56 0,36 

Maximum dis-
placement (mm) 3,57E-03 1,34E-03 4,78E-03 3,06E-03 

Solid mechanics 
  

Maximum normal 
stress (MPa) 

0,527 0,221 0,744 0,532 

Maximum dis-
placement (mm) 3,56E-03 1,33E-03 4,75E-03 3,05E-03 

Euler-Bernoulli 
formulation   

Maximum normal 
stress (MPa) 0,42 0,16 0,56 0,36 

Maximum dis-
placement (mm) 3,57E-03 1,34E-03 4,76E-03 3,06E-03 

Timoshenko formu-
lation   

Maximum normal 
stress (MPa) 0,42 0,16 0,56 0,36 

Maximum dis-
placement (mm) 3,57E-03 1,34E-03 4,76E-03 3,06E-03 
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4.2.3 Torsion simulation 

A torque of 500 𝑁 ∙ 𝑚 is induced on objective beams to simulations. Results are 

aggregated in the table below which contains related numbers showing critical 

stress as well as displacement. Data which is collected from various moduli are 

shown in table below: 

Table 12. Results of torsion occasion. 

Torsion 
Rectangular 

(0,08m*0,03m) 
Square 

(0,08m*0,08m) 
I-beam 

(0,03m thick) 
I-beam 

(0,08m thick) 

Mathematical cal-
culation   

Maximum normal 
stress (MPa) 26,7 4,7 72,14 15,4 

Twist angle (rad) 
0,021 1,98E-03 0,661 3,07E-03 

Solid mechanics 
  

Maximum normal 
stress (MPa) 

29,4 5,41 74,4 16,9 

Twist angle (rad) 
2,80E-02 2,03E-03 4,75E-03 3,15E-03 

Euler-Bernoulli 
formulation   

Maximum normal 
stress (MPa) 26,6 4,7 72,1 15,4 

Twist angle (rad) 
0,021 1,98E-03 0,661 3,08E-03 

Timoshenko for-
mulation   

Maximum normal 
stress (MPa) 26,7 4,7 72,1 15,4 

Twist angle (rad) 
0,021 1,99E-03 0,662 3,11E-03 
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5. DISCUSSIONS 

There are 24 simulation occasions presented in total which are experimented to 

demonstrate discrepancies between Euler-Bernoulli Beam Theory and Timo-

shenko Beam Theory while applying to beam elements. Additionally, differences 

between solid mechanics analysis and beam modulus as well are compared in 

pairs. Each shape of beams is modelled under solid mechanics and beam 

modulus where two formulations are exerted in sequence. Further, both stress 

and displacement of the beam are collected after that simulations are complete. 

Results which contain the maximum stress and displacement of the beam by 

bending conducted by distributed surface load using solid mechanics as well as 

comparison of exerting Euler-Bernoulli and Timoshenko formulation under 

beam modulus are summarized in tables (Table 10) from the last section. 

Likewise, results from other occasions are compared and inscribed in tables 

which are presented in the former section (Table 11&12), where stress and dis-

placement (twisted angle) of beams with different shapes of cross section by 

axial load and torsion as well using solid mechanics and beam modulus are in-

volved (listed below for convenience of inspection). 

 

In conclusion, by using beam modulus for analysis, to a large degree, results 

are acquired more accurate when compared with the mathematical calculations 

on both critical values of stress and displacement than ones from solid mechan-

ics. This is due to disparities on degrees of freedom where solid mechanics in-

cludes three directions heading to axes which leads to a higher error during 

computation. Since beam modulus allows all six degrees of freedom which 

means in rotary directions where motions are included which produces more 

precise data. The stress is aggregated around the fixed end and becomes loose 

at the free end. In vertical direction, stress is higher at the surface and decou-

ples symmetrically when it approaches to the neutral axis. The maximum stress 

is obtained at the corner of the beam at the fixed end from the computation re-

sults. This result is conducted since when a shear load is applied at the free 
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end, a moment arm which is the right distance from the force to the fixed 

boundary produces the bending moment, after which there will be a defor-

mation. By investigating plot of principal stress, stress is disseminating from the 

location where it is applied to the fixed end. Moreover, since the resistance at 

the surface level at the fixed constraint boundary is larger to be counter, which 

makes the region more difficult to stretch, the stress hence becomes denser 

than the area near the neutral axis. 

 

Another distinction which is visible after study is that for a beam object with a 

certain length, when beams are encountering a uniform distributed surface 

load, which induces a bending moment further, thin beams (square beams and 

I-beam with thickness of 0.03 metres) simulated under beam modulus with Eu-

ler-Bernoulli formulation perform same maximum stress and displacement as 

when beams are analysed under Timoshenko formulation (Table 10). In con-

trast, thick beams provide differences on the magnitudes of maximum dis-

placement when there is a replacement of formulation during the study. Timo-

shenko formulation produces a larger critical displacement of the beam than Eu-

ler-Bernoulli formulation. An analogous finding is spectated under torsion occa-

sion when Timoshenko formulation is applied, thick beams offer twisted angle 

with a higher number than Euler-Bernoulli formulation. Nevertheless, situations 

appear different when axial load is applied in use. To investigate the other simu-

lation results, beams which are studied under axial load disobey the regulation 

captured by contrast of that in bending occasion since axial load do not produce 

shear deformation.  

 

Hence, it is concluded that when objects of a still length are under study for 

both bending and torsion cases, if the thickness of beams increases, Timo-

shenko Theory can result more precise on deformation (larger displacement at 

free end) than Euler-Bernoulli Theory. Since a rotation which is derived from a 

shear deformation, not included in a Bernoulli Theory, displays under Timo-

shenko formulation. Furthermore, another parameter which may affect the final 

findings is the length of the beam. Referring to the concept mentioned in litera-

ture review, length-to-thickness ratio somehow will influence precision of results. 
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Hereby, how precise the results are will depend on the length-to-thickness ratio 

rather than only relying on thickness of the beam. 

 

However, experiments still involve flaws. There ought to be a fundamental dif-

ference visible to readers. For Euler-Bernoulli Beams, the free end stays per-

pendicular to the neutral axis after bending while Timoshenko Beams offer an 

acute angle. This is not captured within simulations above. It is due to relation 

between length and thickness which is considerably large that gives technical 

errors. For Timoshenko Beams, the length should be designed shorter (which 

induces to a higher eigenfrequency).  
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6. CONCLUSIONS 

The main orientation of the thesis is to present and compare the discrepancy 

between two delegative beam theories which are prevalently applied in both civ-

il engineering and structural analysis. The objectives of the thesis are eventually 

achieved via Comsol computation and by observing the stress distribution along 

the entity of beam elements and deformation after importing either a force or 

moment to the domain. Beams with different thickness as well as different 

shapes are used to make contrast which demonstrates the differences between 

Euler-Bernoulli Beam Theory and Timoshenko Beam Theory.  

For instructions, to anyone who is newly involved to this related project, a tutori-

al which is listed in Comsol application libraries.  

 

Figure 49. Tutorial read for new engineers, gao jie, accessed 20/04/2020. 

 

In conclusion, when objects of a still length are under study for both bending 

and torsion cases, if the thickness of beams increases, Timoshenko Theory can 

result more precise on deformation (larger displacement at free end) than Euler-

Bernoulli Theory. Since a rotation which is derived from a shear deformation, 

not included in a Bernoulli Theory, displays under Timoshenko formulation. Fur-



75 

 

thermore, another parameter which may affect the final findings is the length of 

the beam. Referring to the concept mentioned in literature review, length-to-

thickness ratio somehow will influence precision of results. Hereby, how precise 

the results are will depend on the length-to-thickness ratio rather than only rely-

ing on thickness of the beam. Moreover, by using beam modulus for analysis, to 

a large degree, results are acquired more accurate when compared with the 

mathematical calculations on both critical values of stress and displacement 

than ones from solid mechanics. 

 

For further investigation, this thesis furnishes rather obscure conclusions to Eu-

ler-Bernoulli Beam Theory and its counterpart as well, since the tool used is not 

representative enough to publish more accurate find-outs. Methods as well as 

dimension of objectives are remaining flaws which failed to investigate the dis-

tinct on the angle of the end after bending. Other computation methods ought to 

be used such as Matlab and so forth to explore more evidence for demonstra-

tion. Meanwhile, more beams with different shapes are recommended to be in-

put for case study. 
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8. APPENDIX 
 
Table 1. Results of FEA testing and calculations for deflection which shows the 

differences between solid and beam elements by length-to-span ration. (GoEn-

gineer 2016, accessed on 27 Feb. 2020) 

 

 

Table 2. Results of FEA testing and calculations for stress which shows the dif-

ferences between solid and beam elements by length-to-span ration. (GoEngi-

neer 2016, accessed on 27 Feb. 2020) 
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Table 3: Mechanical property of aluminium (Comsol Material Library). 

 

 

Table 4. The maximum shear stress and twist angle of a square cross section. 

(Hibbeler 2018 p.248) 

 

 

 

 
 
 
 
 
 
Table 5. Constant of torsion Equations (3-7) and (3-8) (Urugal, A.C & Saul K. 

Fenster 1975). 
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Table 6. The angle of twist of I-section beam due to torsion (engineer-

inglibrary.org. (n.d.). Beam Torsion | Engineering Library, accessed 27 Feb. 

2020). 

 

 
 
 
 
Table 7. Mathematical results of surface load situation. 

Surface load 
Maximum normal 

stress (MPa) 
Maximum displacement 

(mm) 

Rectangular beam (0,08 m*0,03 m) 
75 6,45 

Square beam (0,08 m*0,08 m) 10,55 0,339 

I-beam (0,03 m thick) 77,14 6,61 

I-beam (0,08 m thick) 15,4 0,495 
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Table 8. Mathematical results of axial load situation. 

Axial load 
Maximum normal 

stress (MPa) 
Maximum displacement 

(mm) 

Rectangular beam (0,08 m*0,03 m) 
0,42 3,57E-03 

Square beam (0,08 m*0,08 m) 
0,16 1,34E-03 

I-beam (0,03 m thick) 0,56 4,78E-03 

I-beam (0,08 m thick) 0,36 3,06E-03 

 

 

 

Table 9. Mathematical results of torsion situation. 

Torsion 
Maximum normal 

stress (MPa) 
Twist angle (rad) 

Rectangular beam (0,08 m*0,03 m) 
26,7 0,021 

Square beam (0,08 m*0,08 m) 4,7 1,98E-03 

I-beam (0,03 m thick) 77,14 0,661 

I-beam (0,08 m thick) 15,4 4,27E-03 
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Figure 10. Comparison between Euler-Bernoulli and Timoshenko theory. 

(accessed at 10/12/2019) 

 

 

 

Figure 24. Formulation of Euler-Bernoulli is used for analysis, gao jie, 

19/03/2020. 
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Table 10. Results of surface load occasion. 

Surface load 
Rectangular 

(0,08m*0,03m) 
Square 

(0,08m*0,08m) 
I-beam 

(0,03m thick) 
I-beam 

(0,08m thick) 

Mathematical cal-
culation   

Maximum normal 
stress (MPa) 75 10,55 77,14 15,4 

Maximum dis-
placement (mm) 6,45 0,339 6,61 0,495 

Solid mechanics   

Maximum normal 
stress (MPa) 79 13,7 79,6 20,8 

Maximum dis-
placement (mm) 5,75 0,308 6,64 0,521 

Euler-Bernoulli 
formulation   

Maximum normal 
stress (MPa) 75 10,5 77,1 15,4 

Maximum dis-
placement (mm) 6,45 0,339 6,61 0,496 

Timoshenko for-
mulation   

Maximum normal 
stress (MPa) 75 10,5 77,1 15,4 

Maximum dis-
placement (mm) 6,45 0,345 6,61 0,517 
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Table 11. Results of axial load occasion. 

Axial load 
Rectangular 

(0,08m*0,03m) 
Square 

(0,08m*0,08m) 
I-beam 

(0,03m thick) 
I-beam 

(0,08m thick) 

Mathematical cal-
culation   

Maximum normal 
stress (MPa) 0,42 0,16 0,56 0,36 

Maximum dis-
placement (mm) 3,57E-03 1,34E-03 4,78E-03 3,06E-03 

Solid mechanics 
  

Maximum normal 
stress (MPa) 

0,527 0,221 0,744 0,532 

Maximum dis-
placement (mm) 3,56E-03 1,33E-03 4,75E-03 3,05E-03 

Euler-Bernoulli 
formulation   

Maximum normal 
stress (MPa) 0,42 0,16 0,56 0,36 

Maximum dis-
placement (mm) 3,57E-03 1,34E-03 4,76E-03 3,06E-03 

Timoshenko formu-
lation   

Maximum normal 
stress (MPa) 0,42 0,16 0,56 0,36 

Maximum dis-
placement (mm) 3,57E-03 1,34E-03 4,76E-03 3,06E-03 
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Table 12. Results of torsion occasion. 

Torsion 
Rectangular 

(0,08m*0,03m) 
Square 

(0,08m*0,08m) 
I-beam 

(0,03m thick) 
I-beam 

(0,08m thick) 

Mathematical cal-
culation   

Maximum normal 
stress (MPa) 26,7 4,7 72,14 15,4 

Twist angle (rad) 
0,021 1,98E-03 0,661 3,07E-03 

Solid mechanics 
  

Maximum normal 
stress (MPa) 

29,4 5,41 74,4 16,9 

Twist angle (rad) 
2,80E-02 2,03E-03 4,75E-03 3,15E-03 

Euler-Bernoulli 
formulation   

Maximum normal 
stress (MPa) 26,6 4,7 72,1 15,4 

Twist angle (rad) 
0,021 1,98E-03 0,661 3,08E-03 

Timoshenko for-
mulation   

Maximum normal 
stress (MPa) 26,7 4,7 72,1 15,4 

Twist angle (rad) 
0,021 1,99E-03 0,662 3,11E-03 

 


