PLC Controlling Program of an

Elevator

HANK

HAMEEN AMMATTIKORKEAKOULU
HAME UNIVERSITY OF APPLIED SCIENCES

Bachelor’s Thesis
Valkeakoski
Electrical and Automation Engineering
Spring 2020

Thai Nguyen

H A M K ABSTRACT

HAMEEN AMMATTIKORKEAKOULU
HAME UNIVERSITY OF APPLIED SCIENCES

Electrical and Automation Engineering

Valkeakoski

Author Thai Nguyen Year 2020
Subject PLC Controlling Program of an elevator
Supervisor(s) Mika Oinonen

ABSTRACT

Keywords

Pages

This thesis was commissioned by HAMK University of Applied Sciences. The
goal of the thesis was to create a PLC controlling program for a five-floor
elevator system for future educational purposes at HAMK University of
Applied Sciences.

The theory section discussed related background information such as the
definition and classification of elevators and PLCs. In addition, a description
of a PLC-based controlling system was added to explain the PLC’s role in a
realistic application along with other components.

The documentation contains a description of the program and guides for
building the project, which can be viewed as a teaching material in ladder
logic and function block diagram programming. The program controls
elevator operations such as car calls, floor calls, open, close buttons as well
as safety sensors. An HMI screen was also added in the project for
visualization and a better monitoring of the program.

The program was simulated and visualized successfully, therefore it is
reliable to be used as a teaching material in future courses. In addition, in
the author’s opinion, the program can potentially be adapted for testing
operations as wells commercial applications in small apartment buildings.

Elevator, Function Block Diagram, Ladder Logic, PLC.

63 pages

CONTENTS
1 INTRODUCTION ..iiiiiiiietiiiiteeeisiieeeessiiteeessiteeessiieteessastaeessataeessastaeessnsaeessnsseesssnssesesns 4
2 THEORECTICAL BACKGROUNDcciiiiiiieiiniiieensiteeeesireeessiiireessitaeesssaeessasnbeessnnsaeees 4
2.1 ElEVATON ettt e st e st e s te e s s bae e e sabreeesannes 4
2.1.1 Hydraulic €leVators......cueeeei it e et 4
2.1.2 Traction elevators with Machine ROOMccooviieveiciiie e 5
2.1.3 Machine-Room-Less (MRL) €levators.......cccceeeeieeeiivrveeeeeieeeeiiirneeeeeeeenn 6
2.2 Programmable Logic CONtroller (PLC)ccouueeeeeiueeeeeeieee et 7
2.2.1 Hardware COMPONENTSciiiiiiecciiiieieeeee e ctierere e e e eeerrreeeeeeeeernnseaeeeanas 7
2.2.2 TYPES OF PLC.oiiteeiee ettt ree e e et ae e sarae e sarae e e 8
S T O] o 1= T - L (o] Y =To [U =] o [l 9
2.2.4 COMMUNICATIONS .. e e 10
2.2.5 Programming LANGUAEESuuuvuruuuuururururnruuinrararnennnsnrannsasnnnsnsennsnsnnnnanane 10
2.3 PLC-based elevator controlling systemccccceeeiiiiiciiiieiee e e 11
2.4 Programming languages used in the program........cccccovvieeeeeiiiiiciiineeeeeesecciies 12
2.4.1 Ladder Logic Diagram (LAD)cccoueeeeeeuveeeeeeireeeeeetteeeeeetreeeeeetreeeeeerveeeeenns 12
2.4.2 Function Block Diagram (FBD)ccoccueeeeeeiiieeeciiieeeeciieeecevreeeeeiveee e 13
2 00 T o =4 [0l <3 o1 1= 13] [] o - 13
3 IMPLEMENTATION OF THE PROGRAM.......ccutttiieeeeeecete e eseee e eeee e eeae e 17
3.1 Description of the controlling Programccoceeeeeeiiiiciiiieie e 18
3.1.1 Controlled and simulated elevator componentscccccceeeeeeeennnnenn. 18
3.1.2 Programmed Operationsccccccoeeiiiiiieeie e e 18
3.2 Device coNfigUrationuueiiiiiiii et e e 19
3.3 Beginning ProgrammMiNg......ccuuuuieiieerieiiiiieeee e e eeee e eieeee e e e e e e eeraree e e e ereeeaeneeaes 22
3.4 Description of 0giC OPEratioNSccuvieeeciieieeiiieee ettt rre e eeabe e 24
I R Y 1NV | o ol or- | 24
3.4.2 Elevator 10Cation......coouiiiiiiiie ittt 25
3.4.3 Elevator direction assignment........cccccceeviieiiiiieie e, 29
3.4.4 Elevator MOVEMENT ...cocuiiiiieiie ettt ettt st e s srae e s neae e s 32
3.4.5 Stopping elevator and opening doOr.........cccccuiriieeeeeeeccciiieie e 37
3.4.6 ClOSING OOuuiiiiieeii ettt e e e e e ee e e e e ee e e nanae e s 39
3.4.7 Open button, overload sensor and obstacle sensor operation 40
3.4.8 Reset dOOr OPEN MEMOIY..cccciiiiieeiieiieeee e eeetereee e e e e eeeearee e e e e e e eraeaeaeas 43
3.5 Possibility of program scaling in taller buildings applicationsccccccc....... 45
4 VISULIZATION WITH WINCC HMI SCREENcciiiiiiieiiiiiie et siiee e svee s 45
LTI 11716 717 1T TS 48
5.1 NOIMal MOVEMENT ..cviiiiiiiiie ettt ettt e e s saaeee e s saabae e s saaaaeee s 48
5.2 Prioritized MOVEMENTeeeiiiie e ae e s 51
5.3 Explaining the reset condition of “up_memory”’ and “down_memory”......... 56
5.4 Stop motor and open the door when finishing a callcccoveeieiiieiiiienenns 57
LI T @1 [T 1o V=3 [o Yo Y PP 58

5.6 Operation with signals from open button and overload, obstacle sensors

6 CONCLUS

REFERENCES

TON L

1

INTRODUCTION

Programmable logic controllers (PLC) have long been the core element in
industrial automation. They provide machines with the possibility to
analyse data and cooperate in automated production and service lines.
Elevators are prime examples of such systems, since most of their
operations are automatically controlled by microprocessors, including
PLCs. This thesis will give an insight to the reader on how a PLC can control
a single elevator to perform safely and efficiently. It can be also viewed as
a tutorial of PLC programming for automation students, with thorough
step-by-step instructions and explanations of the program.

2 THEORECTICAL BACKGROUND

2.1

Elevator

An elevator or a lift is a means of transportation of people and goods in-
between floors of buildings. Common elevator systems are powered by
electric motors and counterweight systems cables for drive transaction
(Elprocus, n.d).

There are three main types of elevators: traction with a machine room,
machine-room-less traction and hydraulic (Archtoolbox, n.d).

2.1.1 Hydraulic elevators

Figure 1 describes the structure of a hydraulic elevator system. The car is
attached to a piston at the bottom that pushes it up when the electric
motor pumps some hydraulic fluid into the piston. It is moves down by
releasing fluid using a valve. Elevators of this type are used in buildings
with up to eight floors.

- OVERRIDE
Ju]
CAR
LANDING | ——F— el
£ (GUIDE
/ RAIL
BEYOMND)
LANDING —
T MACH
ROOM
LANDING | :
I PIT i
PISTON WELL
{IF REQ'D)
Figure 1. Hydraulic Elevator (Archtoolbox, n.d)

2.1.2 Traction elevators with Machine Room

As shown in Figure 2, traction elevators are moved using electrically driven
wheels, ropes and counterweights. They produce higher travel speeds and
hydraulic elevators and are used for mid and high-rise buildings.

A variation of this type, called a geared traction elevator is added with
gearboxes attached to the wheel’s motor. They can reach a maximum
travel speed of 153m/s and a maximum distance of about 75 meters.

OVER-
RIDE

MACHINE
‘noom .KO}
A

:

GUIDE RAIL
COUNTER
WEIGHT

Figure 2. Traction Elevators (Archtoolbox, n.d)

2.1.3 Machine-Room-Less (MRL) elevators

MRL Elevators, as shown in Figure 3, are traction elevators with no
machine room above the shaft. Instead, there are control boxes placed in
a control room above the highest landing floor. Although they produce the
same travel speed as geared traction elevators, MRL elevators are the most
reliable for mid-rise building thanks to their space and energy efficiency.

OVER-
RIDE
CAR CTRL
ROOM
UNDIN? —
LANDING
: 2
=
o E,_
& 25
= w
& 3=z

Figure 3. MRL Elevator (Archtoolbox, n.d)

2.2

Programmable Logic Controller (PLC)

A PLC is an industrial computer designed for data reading and controlling
field devices in an automatic process. PLCs varies in sizes by the amount of
inputs and outputs (I/0). A small device can have several 1/O cards, while
large and networked PLCs can have extended racks that contain hundreds
of 1/0 cards. Since often put in harsh industrial environment, PLCs have
robust designs that help them withstand extreme conditions such as cold,
heat, dust and moisture.

2.2.1 Hardware components

Figure 4 describes the typical hardware configuration of a PLC system that
includes a rack, a power supply unit and I/O modules and a CPU.

Figure 4. PLC installation (Muthukrishnan, n.d)

Rack or Chassis

A rack or chassis is a base used for mounting the power supply, the CPU
and I/O modules. It has a backplane at the rear that enables I/O to
communicate with the CPU.

Power Supply module

This module distributes power to all PLC components. It converts AC from
the power source to DC that powers the CPU and I/O modules. PLCs usually
require 24V DC power supplies. Other variations are supplied with isolated
power sources.

CPU

The most important part of the PLC is the Central Processing Unit (CPU). A
PLC’s CPU is an either a 16 or 32 bit microprocessor that consists of
memory chip and integrated circuits for monitoring, logic controlling and
communicating (Gonzalez, 2015). The CPU can be understood as the

master device and the actuator is the slave. It receives control algorithms
downloaded from a programming software, which then command the PLC
to carry out instructions like actuating devices, analyzing field data. The
CPU also makes routine memory checkups of the PLC to report back any
errors and ensure the memory is undamaged (Gonzalez, 2015). Like any
other common CPUs, PLC CPUs also have ROM (read-only memory) and
RAM (random access memory). ROM stores data permanently into the
operating system whereas RAM stores status data from field devices and
other values like timers, counters, etc.

Input and output modules (1/0s)

There are two types of 1/Os, digital and analog.

— Digital inputs (DIs) monitor a voltage over a specific threshold
(Lablack, n.d). If it exceeds the threshold, the DI is set by the CPU to
the value TRUE, 1 or HIGH. The value is set to 0, FALSE or LOW on the
other hand. A digital output (DO) allows the CPU to control a voltage.
If an output is set to TRUE, 1 or HIGH, it will produce voltage of about
5 or 3.3 V. If the value is FALSE, 0 or LOW, the output is connected to
ground and therefore produce no voltage.

— Analog input (Al) devices are sensors that measure environment
conditions like temperature, pressure and convert them into
voltages. These values are then converted to digital values which are
processable by the CPU.

— Difference between digital and analog I/0O: Digital 10s works on 2
states. This can be ON/OFF or TRUE/FALSE for input devices or
START/STOP mode for output devices. On the contrary, Als have
multiple values. They can be used to control DOs, for example
opening or closing a valve based on water level (DOF, 2015).

— Aninput device provides field data to the PLC in the monitoring
process. These devices can be pushbuttons, sensors (temperature,
motion, light). Their signal types vary from 4-20 mA, 24VDC, to 110
VDC (LabJack, n.d). A PLC can be enabled to accept all these signal
types by installing input cards for each type of signal. Output devices
are controlled by commands coming from the PLC. Controllable
outputs for the PLC can be light fixtures, motors, buttons, conveyers,
etc.

2.2.2 Types of PLC

— Integrated or Compact PLC: Figure 5 shows a sample design of a
compact PLC. These devices consist of several predetermined
modules within a single case. Therefore, their /O capabilities are
limited.

Figure 5. Integrated or Compact PLC (Elprocus, n.d)

— Modular PLC: Figure 6 shows a typical design of a modular PLC with a
power supply module connected to the left side of the CPU and I/O
modules connected to the righthand side. PLCs of this type allows for
multiple expansions and thus are more common in industrial uses.

Figure 6. Modular PLC (RS Automation & Controls, n.d)

2.2.3 Operation sequence

PLCs repeatedly carry out three basic steps in their functions. Prior to that,
the logic is checked by the programming software to detect any errors.
Figure 7 describes the order of the sequence

10

PLC System
Power supply
-—O_L i ! Central ! o m__J\/_
Input ! ol processing | 1 il Output
sensing o dn unit CPY) L ETe a @ toad
o] 1
ovices u] | Memoy__| | O — e
t ° i program data i el ———
Optical / t \Optical
Isolation = Isolation
=
Programming device
Figure 7. Operation Sequence (Gonzalez, p.2)

— Input scan: Read input values in /O cards and copy them to the
memory.

— Logic scan: Reads the input data and correspondingly execute the
program. In this step, the CPU regularly check on input status and
updates the output values.

— Output scan: Copy output values from the memory to the 1/O cards
that control output devices.

2.2.4 Communications

Common communication protocols for PLCs include 9-pin RS-232, EIA-485
or Ethernet (Gonzalez, 2015). Others are Modbus, BACnet, DF1 and
fieldbuses such as DeviceNet and Profibus. Modern PLCs communicate
over network connections with another system, such as SCADA
(Supervisory Control and Data Acquisition) system or web browser. In
systems where the I/O number is large, PLCs can cooperate through a P2P
(peer-to-peer) communication link. This enables individual controllersin a
complex system to exchange data between each other.

2.2.5 Programming Languages

Logic programs are designed or written in a computer software and
downloaded to PLCs through a network or a connection cable. There are
five PLC programming languages defined in the IEC (International
Electrotechnical Commission) 6113-3 standard: functional block diagram
(FBD), ladder diagram (LD), structured text (ST), instruction (IL) and
sequential functional chart (SFC) (Gonzalez, 2015). Their names imply the
logical organization of operation.

11

2.3 PLC-based elevator controlling system

A PLC controlled elevator requires a control room for placing a cabinet
which is connected to the motor. Therefore, these can be classified as MRL
elevators.

Figure 8 demonstrates the components inside the cabinet that controls the
elevator’s operation.

Figure 8. Controlling cabinet (KEB Automation, n.d)

The PLC is in charge of reading inputs such as push buttons, sensor signals
and make logic commands, which are sent to the elevator drive. Logic
programs can be downloaded into the PLC through a remote PLC gateway
or by plugging a USB device that contains the program.

The elevator drive directly controls the elevator motor that lifts or lower
the car.

The regenerative drive is a replacement for traditional braking resistors
that dissipates excess kinetic energy. Particularly, when lifting a fully
loaded car, the elevator drives transfer electrical power to the motor.
When the car descends, energy stored in the mechanical system is
converted back into electrical energy (KEB Automation, n.d). As a result,
the braking the resistor dissipates this energy as wasted heat. With the
addition of regenerative drive, it allows current to flow back in the system’s
DC circuit or onto the building power supply line.

The HMI (Human-Machine Interface) visualizes the activities of the
elevators and enable the operator to interact with the system.

2.4 Programming languages used in the program

2.4.1 Ladder Logic Diagram (LAD)

12

Ladder logic performs logic operations through symbolic notation in ladder
diagrams. It can be used to simulate automation-related tasks like
counting, timing, sequencing. As of today, ladder logic is still among the
most used PLC programming languages. The fundamentals of ladder logic
is shown in Figure 3 below.

Ralil Rail
Comments for Rung 1
Tag Name Tag Name Tag Name
Address Address Address
| | | | ()
Rung 1
’ || | | i
Comments for Rung 2 |
Tag Name Tag Name Tag Name
Address Address Address
| | | /| ‘1
Rung 2
’ | | I/ I N7
Comments for Rung 3 |
Tag Name Tag Name Tag Name
Address Address Address
| | | | ‘Y
Rung 3
) || | | bl
J \ J
b i Y
Inputs & Logic Expressions Outputs
Figure 9. Fundamentals of ladder logic (Ladder Logic World, n.d)

— Ladder diagram: A type of schematic diagram that illustrates logic
operations. A ladder diagram consists of two vertical power rails and

horizontal logic rungs to form a ladder.

— Rails: Vertical lines in a ladder diagram that runs down the far most

ends of the page.

— Rungs: Horizontal lines attached to rails that contains logic

expressions.

— Inputs: Signals that represent the states of input devices such as

sensors, buttons.

13

— Outputs: Signals that represent the states of output devices such as
motors, conveyors. Outputs are triggered by input signals.

— Logic expressions: The logic operations that the PLC performs based
on input and output data.

— Address Notation: Memory address of inputs and outputs in the PLC.

— Tag Name: A text line that describe the functions of inputs and
outputs.

— Comments: Texts shown at the top of each rung that explain their
functions.

2.4.2 Function Block Diagram (FBD)

FBD in PLC programming is a graphical language that express logic
operations through blocks. In FBD, function blocks are used to execute
functions and vyield output values. Figure 9 shows how a function is
expressed through a function block.

— Output
Inputs —— Function ——

Figure 10. Function block in FBD

2.4.3 Logic expressions

— AND Operation

An AND Operation is an operation in which an output is only energized
when there are two normally open switches. It can be understood in
control systems that two input states should be both TRUE, 1 or HIGH for
the output to be activated. Figure 11 shows the expression of AND
Operation in LAD and FBD. The output is only activated when both input A
and B in LAD, or 1 and 2 in FBD is true. Table 1 describes the relation
between the output values and each value of the inputs.

Table 1. Truth table — AND Operation

Inputs Outputs
A

=R [O|O
R O[Rr| Ol
OO |O

14

Input A Input B Output
—IN1 OUT|—

HHHH -

Figure 11. AND Operation in LAD and FBD

— OR Operation

On the contrary, an OR Operation output is energized when one of the two
inputs is on. Figure 12 shows the expression of this operation. Table 2
describes the relation between the output values and each value of the
inputs.

Table 2. Truth table — OR Operation

Inputs Outputs
A B
0 0 0
0 1 1
1 0 1
1 1 1

Input A Output >= 1

et B —]IN1 OUuTf—

— IN2

Figure 12. OR Operation in LAD and FBD

— NOT Operation
In a NOT Operation (figure 13), the output value is always the opposite to
the input value (Table 3). This operation is also known as an inverter.

Input Output

0 1

1 0
Table 3. Truth table — NOT Operation

Input A Output

—IN1 ouTD—

Figure 13. NOT Operation in LAD and FBD

— NAND (NOT AND) Operation

15

The NAND Operation (figure 14) is the combination of the AND Operation
and the NOT Operation. Unlike the AND Operation, the output of NAND is
the opposite to AND’s output (Table 4). Therefore, it can be activated in
three cases instead of 1.

Inputs Outputs
A B
0 0 1
0 1 1
1 0 1
1 1 0
Table 4. Truth table — NAND Operation
Input A Output
() :
Input B — IN1 ouTtO—
— IN2

Figure 14. NAND Operation in LAD and FBD

— NOR (NOT OR) Operation

This is another combination of the OR and the NOT Operation. The output
value in the OR operation is reversed in this case (Table 5). A NOR
Operation (figure 15) can also be formed when putting a NOT gate on each
input and then an AND gate for the output.

Inputs Outputs
A B

0 0 1

0 1 0

1 0 0

1 1 0

Table 5. Truth table — NOR Operation

16

=

Input A Input B Output
P P P —{IN1 oUT|O—

HHHOH

Figure 15. NOR Operation in LAD and FBD

— XOR (Exclusive OR) Operation

This is almost the same as the OR Operation, except that the output value
is 0 when both inputs are activated (Table 6). As shown in figure 16 below,
the output is True when only input A is True or only B is True. When both
inputs are true then no conditions are met.

Inputs Outputs
A B
0 0 0
0 1 1
1 0 1
1 1 0
Table 6. Truth table — XOR Operation

Input A Input B Output

(H

Input A Input B —IN1 OUTf|—

/ — IN2

Figure 16. XOR Operation in LAD and FBD

— Assignment

“Assignment’”’ (figure 17) is an instruction used when one several or inputs
can exclusively activate an output. This means that if the combined input
values or result of logic operation (RLO) has the value of “1” then the
output value is “1, otherwise it will return to “0”.

—0— =]

Figure 17. “Assignment’’ symbol in LAD and FBD

17

— Set output

The “Set output” instruction (figure 18) has less impact over an output
compared to Assignment. Particularly, the output is still activated when
the RLO has the value of “1”, but it will remain unchanged even if the input
condition is no longer met.

s

Figure 18. “Set output” symbol in LAD and FBD

— Reset output

The reset output instruction (figure 19) has the opposite role to set output.
When the RLO is “1”, the output will be deactivated, otherwise its state is
unchanged.

S

Figure 19. “Reset output” symbol in LAD and FBD

— TON (Generate on-delay)

A “Generate on-delay” instruction (figure 20) is used to delay the setting
of output “Q” by the programmed time (PT). It can be understood as a
“Assignment’’ with a timer. The PT is started when the RLO changes from
0 to 1 (positive signal edge). When the time is up, the output “Q” is set to
“1” until the RLO turned to “0”. The ET port represents the current time
value. It is also reset when RLO changes to “0”.

“TON_DB*
TON
“Tag_Start” TIME “Tag_Status® |
|} IN Q) |
“Tag_PresetTime" — PT ET }— "Tag_ElapsedTime*

Figure 20. Example of “TON” in LAD and FBD

3 IMPLEMENTATION OF THE PROGRAM

This chapter describes the details of the controlling program, step-by-step
instructions of making the program project and explanation of each
functions.

18

3.1 Description of the controlling program

In this section, features and logic commands made for the program are
mentioned and explained.

3.1.1 Controlled and simulated elevator components

The listed components below are classified as either inputs or outputs for
declaration in the program.

Floor door and cabin door (outputs): Since the car door and floor door
operates simultaneously in real time, there is one output signal that
simulates their operation.

Car motor (outputs): There are two output signals for moving the elevator
car upwards and downwards.

Sensors (inputs)

— Obstacle sensor: Detects if there is an object or person between the
door sides.

— Overload sensor: Detects if the elevator is overloaded.

— Floor level sensor: Indicate which floor the elevator is at.

Buttons (inputs)

— Open and Close buttons in elevator car.

— Car call buttons: Call buttons inside the elevator car.
— Floor call buttons: Call buttons on each floor.

3.1.2 Programmed operations

The elevator is designed to move between four floors. Initially, the car is at
the first floor, meaning that the it is at the very start of the operation. If
the elevator is at another floor from the beginning, it makes no problem
for the program. Signals from call buttons will activate the movement of
the car.

It will move in a power saving order, which means that if the car is moving
in one direction and there is another call to an opposite direction, it will
respond to all the calls in the initial direction before responding to the
latter. For example, if the elevator just went up from floor 1 to floor 3 and
there are two more calls to floor 5 and floor 1, it will continue moving up
to floor 5.

The elevator finishes a call when the call signal matches the floor level
sensor. For example, a call to the second floor is finished when the signal
from that floor’s level sensor is high and a floor call was made. Then, all
the call signal to the second floor is reset to 0. The door is then opened for

19

a fixed period then closed before the car moves to another floor. The car
can only resume moving when the door is fully closed. When the Open
button is pressed, the door is reopened if it is closing, if it is still opened
then the open time is reset. There is also a fixed period after the door is
fully closed again to wait for the Open button signal before the car moves
again.

If there is an obstacle between the doors or the elevator is overloaded,
then the door is remained opened or reopened if is closing.

An HMI screen will be shown in the simulation step to for visualization of
all operations.
3.2 Device configuration

The section demonstrates how to select the devices that is going to be
simulated in the program.

After creating a new project, select “Configure a device” in the opening
window “First steps”’.

First steps

Project: "Project8" was opened successfully. Please select the next step:

S

N 3| Configure a device @

!\: L Write PLC program

Configure
technology objects

I | Configure an HMI screen

Open the project view

Figure 21. “Devices & networks” option

Next up, select “Add new device” and choose a desired controller. If
project involves testing with real devices, then users should choose the
same model number as in the software. In this project the selected device
isa 1215 DC/DC/RIly CPU.

20

Add new device

@ Show all devices Device name:

@ Add new device 1]

~ [Controllers Device:
~ [SIMATIC 57-1200
[cru

» [CPU 1211C ACDCRIY
» [l cPU 1211€ DOIDCDC
» [l CPU 1211C DTDCRly
» [CPU 1212C ACIDCIRly
» (@ cPu 1212¢ DCIDCDC

» [CPU 1212 DADGIRly ApEiERe:
» [l CPU 1214C ATIDCIRIY Version: |@
» [CPU 1214C DOIDCIDC o
» [CPU 1214C DCIDCIRly Bl

HMI
g » [l CPU 1215C ACIDCIRlY wiork memory 125 KB; 24VDC power supply with

» [l CPU 1215€ DODTIDC DI14 x 24VDC SINKISOURCE, DQ10 xrelay and A2

[2]

Controllers

CFU 1215C DCDCIRlY

@ Configure networks
and AQ2 on hoard; 6 highspeed counters and 4

~ [cru 1215C DCiDCiRly pulse autputs on board, signal board expands

Bl i [l 5557 215-1HG31-0xB0 on-board li0; up to 3 communication modules
for serial communication; up to 8 signal
6ES HGA0-0XBO: W
e U modules for D expansion; 0.04 ms(1000
» .l CPU 1217C DAIDCIDC instructions; 2 PROFINET ports for programming,
» [CPU 1212FC DEDEIDC HMi and PLCt0-PLC communication

» [CPU 1212FC DC/DCIRlY
» [l cPU 1214FC DTDTIDC
» [CPU 1214FC DUIDCRlY
» [cPu 1215FC DCDEDE
» [l CPU 1215FC DC/DCIRlY
» [CPUSIPLUS

» [l Unzpecified CPU 1200

2 (8 tecmacifiad coL 1000

il]

i

[w] Open device view Add

Figure 22. Controller selection

After selecting a controller, an HMI Screen is also needed for visualization.
The selected device is a KTP700 Basic Panel.

Add new device

@ Show all devices Device name:
@ Add new device [Hu_1
~ B Hm Device: o ——
~ [SIMATIC Basic Panel
» [3" Display
=0
controllers > gl & Dipley
» (5 6" Display
~ [7" Display

td = KTP700 Basic PN
~ [KTP700 Basic

D a Aricleno.: |6AV2 123-2GB03-0RX0
HI » [KTP700 Basic Portrait Version: [15a00 =]
» [9" Display
» [=4 10" Display Description:
= isplay 7" TFTdisplay, 800 x 480 pixel, 64K colars; Key
@ Configure networks » [15" Display and Touch operation, 8 function keys; 1%
FROFINET, 1 xUSE

» [SIMATIC Comiort Panel
» [SIMATIC Mobile Panel
» [HM SIPLUS

PCsyztems

[Start device wizard [T]

Figure 23. HMI Screen

When an HMI is added, a new window will open showing the connection
between the devices. The PLC is connected to the HMI screen through a
PROFINET subnet.

21

HMI Device Wizard: KTP700 Basic PN

PLC connections

Figure 24. HMI Device Wizard

The hardware configuration of the system can be viewed by accessing the
“Device & networks” tab.

Figure 25. Hardware configuration

To view the PLC’s information, double click “PLC_1" in figure 25. A rack
installation of the CPU will pop up like in figure 26 below, then double click
“PLC_1" again. The general tab below the rack indicates the PLC’s data
such as its Ethernet address or the number of I/0 channels available.

22

03 102 10 2 3 4 5 6 7 8 9
Rack_0

<] i |
J General || 10 tags H System constants || Texts
b General =] et
= PROFINET interface [X1] RInEteugic e

General Interface networked with

Time synchronization Subnet: | PNIIE_2

Operating mode

b Advanced options
Web server access

i IP protocol
- DI 14iDQ 10 £
el i (®) Set 1P sddrecs in the praject
P Digital inputs B
» Digital outputs IPaddress: | 192 . 168 .0 . 1
0 addresses subnet mask: | 255 . 255 . 255 . 0
~ Al20AQ 2 [Use router
General - .
outeraddress: [0 0 0 0 |

}» Analog inputs
(O IPaddress is setdirectlyat the device

» Analog ocutputs

Figure 26. Information of the PLC

3.3 Beginning programming

This chapter demonstrates the preliminary steps prior to programming
tasks.

A program block can be opened by double clicking “Main’” or “Add new
device” under “Program blocks”/’PLC_1"" in the Project tree. It is also
recommended to declare all I/0 tags before programming. Tags can be
made in either the “Default tag table”” or in a new one under “PLC tags”.

23

Project tree m 4

Devices

* 7 Elevator Vi5.1 E
B Add new device M
gy Devices & networks

~ [1g PLC_1 [CPU 1215C DC/DC/RRY]
[I§ pevice configuration

5! Online & diagnostics
= [gl Program blocks
ﬁr'ﬁdd new block ¢
3 Main [OB1]
4 :@- Systemn blocks
v [Technology objects
b External source files
> f:d PLCtags
%5 show all tags

E’ ~dd newtag table
.3‘“' Defaulttag table [143] ¢

Figure 27. Open a new program block and a tag table

The program can be viewed both in LAD and FBD. Switching between these
languages is possible by right clicking the program block and select “Switch
programming language”’.

Ul Open

.b =
T M
-:'!! By Ig Copy Cedal
R :
CEIPL 9 Detete
g T Benarme
g o

2 Compile
o T

- 1 Download to device

11 D & Go online

] P ,:f =

Ay
e

¥ [HL_| Sy search in project

v ow W W W W W w

R Guik campare

L] I'E '-'“Bﬂ: = Generate source Fam blocks
F = Secur

:q.- e | 2 Croszreferences F11
¥ g} Comn i . "

r M Cressoeference informaten Shifi+F11
¥ [Docur 'T_
T | L

_. _ﬁLangl_ | It .&:.‘ngn-'nen'. list
(3 ' Omlne 8¢ —
b _’ Card Rea. Swrich Fragramming language

Call ztructure

Knowhaw pratectan
o Print.
—_— s
v | Details wif & P previes
ﬁ Fropertes . AlsErter

Figure 28. Switching between LAD and FBD

24

Figure 29 shows the view of program block. Default instructions which are
normally open and closed contacts, assignment, empty box, open and
close branch are placed on top of the network tabs. All other instructions
are included in the right-hand side window.

..5C DUDCRIy] » Program blocks » Main [OB1]

Kﬁ I(ﬁ -‘;; _;F'

L EE SR8 grEl o4

Main
Marne Data type Defau...
| 0~ Input [~
Z . Initial_Call Bool IE
[<] [] i

e s -y ¢

¥ Block title: “Main Program Sweep (Cycle)®

3 Network 1: call to floor 1

3 Network 2: call tofloor 2

2 Network 3: call tofloor 3

3 Network 4: call tofloor4

3 Network 5: call tofloors

] Network 6: car direction assignment

3 Network 7: motor up signal

3 Network 8: motordown signal

3 Metwork 9: stop elevator when finish a call to floor 1
b Network 10: stop elevator when finish s call to floor 2
3 Metwork 11: stop elevator when finish a call to floor 3
] MNetwork 12: stop elevatorwhen finish a call to floor 4
b Network 13: stop elevator when finish & call to floor 5
Figure 29. Instructions

3.4 Description of logic operations

3.4.1 Elevator calls

Options
[| Wl Wt e B
* |Favorites
—| v | Basic instructions =
Name Deteription Versian
“Y» [General
¥ [5i) Bitlogic operations V1.0
» [@] Timer operations V1.0
13 ‘-ﬂ Counter operations vi.0
L3 l Comparator operations
» [£] Math functions Vio
» [5] Move operations w23
b 2 Conversion operations
L3 "':Lr* Program control operati... V1
b L word logic operations V14
» &% Shiftand rotate
+ | Extended instructions
Mame Description Version
» [Date and time-ofday w21
» [string + Char V37
» [Distributed lio V26
» [| PROFlenergy vas
b [Interrupts viz2
» [Alarming via
» [Diagnostics V1.7
b [Pulse V1.1
» [Recipe and data logging Vi3
» [| Data block contral V1.3
» 71 Addrescina y1R

The first and most important logic operation is the elevator calls. These are
the signals that trigger the movement of the elevator. Elevator calls consist
of two types, car calls and floor calls. Car calls are requests made from
buttons inside the elevator car to instruct the car to move towards a
desired floor. Since there a total of five floors, there will be five car call
buttons, each representing the number of a floor. Floor calls are made by
pressing the call buttons on each floor. Therefore, there are also five floor
call buttons. Figures 30 and 31 describe the logic operation of an elevator

call.
Wa0 0.5
“carcall_F1" "F1_visit"
] L I 1
LI | 1)
Was

floorcall_fromF1

Figure 30. Elevator calls in LAD

»=1

@40

“carcall_F1" =

Was

*floorcall_fromF1" — sk

Figure 31.

Elevator calls in FBD

W0 5
"F1_wisit"

25

Since only buttons can activate a call, the “assignment” instruction is used
to activate the output. Tag name “carcall_F1” represents the car call to the
first floor. Tag name “floorcall_F1” represents the floor call to the first
floor. This syntax is the same for the other four calls.

3.4.2 Elevator location

In real life applications, floor level sensors are used to indicate elevator’s
location. This data can also be used to stop or move the elevator car. To
simulate the signals of the sensors, a memory input with a changeable
integer value is used (“step_count”). Its beginning value is 0. As the
elevator moves up or down, the value will be added or subtracted, which
gives out different values that represents a floor level signal. The logic
operation that controls this input is shown in figures below.

%WM100.5 Q7.1
“Clock_1Hz" “motor_up®
1 1 1 |
11 1T

WM100.5 WQ7.2
“Clock_1Hz" “motor_down®

Figure 32.

P_TRIG
CLK

%M6.0

"tag1”

P_TRIG
CLK

%M6.1

"tag2"

Q
TWIMW10
"step_count’

Q
TIMW10

“step_count”

Control “step_count” in LAD

ADD
Int
EN —
WMIMW10
IN1 out “step_count”
IN2 3¢
SuUB
Int
EN —
WMW10
IN1 out "step_count’

IN2

26

&
WM100.5
"Clock_THz" — ADD
U071 P_TRIG Int

“rnotor_up® — 3¢ — CLK Q—EN —
Y60
"tagl”

TMAWI 0 W10
"step_count” N1 OuUTF=— "step_count”
N2 s ENO —
&
1005
"Clock_THz" — sUB
%072 P_TRIG Int
"motor_down® — & — CLK Q—EN —
W61
"tag2"
WWI0 W10
"step_count” IN1 out "step_count”
I — 2. = ENO—

IH

Figure 33. Control “step_count” in FBD

In each output end, the “ADD’”’ and “SUB” (subtract) functions are
responsible for increasing and decreasing “step_count’ with the deviation
of 1. If only inputs “motor_up’ and “motor_down” (elevator is moving up
and down) are used then the outputs will be activated just once, which
means that “step_count” can only reach to “1”” at maximum. This is where
a clock memory bit comes in to continuously feed the output. Clock
memory bits are commonly used to activate flashing lights or to trigger
periodic activities. Each bit is assigned to a frequency. Bit number 7 is used
in the program since it best suited to the simulation speed for easy
monitoring.

Table 7 below shows the clock memory bits and their corresponding
periods and frequencies.

Table 7. Clock memory bits and frequency

Bit 7 6 5 4 3 2 1 0

Period (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1

Frequency | 0.5 0.625 | 1 1.25 2 2.5 5 10
(Hz)

27

\g Properties ||'.'j',|rifo i ”ﬁ Diagnostics

J General ” ID tags ” System constants ” Texts |
» PROFINETinterface [X1] =] Always 0 (low): [%M200.3 (AlwaysFALSE) | [~]
b DI 14/DQ 10
b Al2IAQ 2 Clock memory bits
b High speed counters (H5C)
¥ Pulse generators (FTOIPWIM) [#) Enable the use of clock memory byte
Starup = il Address of clock memory byte E

Cycle E {MEx): [100 |

Communication load ’ 10 Hzclock: [%M100.0 (Clock_10Hz}

System and clock memaory

5 Hzclock: [%M100.1 (Clock_5Hz)

¥ Vieb server
2.5 Hzclock: [%M100.2 (Clock_2.5Hz)

Multilingual support

Time of day 2 Hzclock: |%M|00.3 (Clock_2Hz}

|*<—‘i’-‘°mm-&ﬁ?ﬂ'-““n‘—| I_ﬂ‘z 125 Hzclock: |%M100.4 (Clock_1.25Hz)

Figure 34. How to enable clock memory byte in TIA Portal

Elevator’s corresponding location signal to the value of “step_count” is
shown in the figures below. “F1_sensor” means that the car is at the first
floor, the syntax is the same for other outputs. Since these outputs can
only be set when “step_count” reach a certain value and are reset when
the input changes, the “assignment” instruction is chosen for this
operation.

28

Figure 35.

Elevator location signals in LAD

. BMW10 . %23
step_count "F1_sensor”
= | I 3
Ulntl L
I_%‘.M'-‘u'm : w2 4
SIE coL " F2_senzor
= I \
IUlI‘It I L
. W10 . %2 5
tep_count "F3_sensor
N {0
|Ulnt| VoI
I_wwm . %26
step_count "F4 sensor”
= {
|Ulnt| LI
&
. MW 10 . %2 7
step count " F5_zenzor”
s I 4
| Uint | L |

AW 0
"step_count”

0

AW 0
"step_count”®

=

W0
“step_count”®

W10
*step_count”®

WIW10
"step_count”

8

INT

INT

INT

IN2

INT

INT

Uint

Uint

Uint

Uint

Uint

W23
"F1_sensor”

|z .4
"F2_sensor

W25
*F3_sensor

W26
"F4_sensor”

W27
"F5_sensor

Figure 36. Elevator location signals in FBD

3.4.3 Elevator direction assignment

29

As previously mentioned, the elevator’'s movement is designed to save
motor power efficiently. This is done by instructing it to finish all calls in
one direction (upward or downward) before responding to the remaining

calls. To do this, two input memories are made (“up_memory’

and

“down_memory”’) to represent the current direction of the elevator car.
The setting and resetting of these inputs can be seen in the figures below.

Q7. %l2.4 %MB.1

“maotor_up” “F2_sensor” “up_memory”
11 11 15}
17 117 %)

%l2.5
“F3_senzor”

Q.2 %l2.4 %MB.2
“motor_down” "F2_sensor” “down_memory”

11 11 (5}
L .

%MB.1 %2.7 %MB.1
“up_memory” “F5_sensor” “up_memory”

] I 11 l) 1
LI LI | \R

%MB.2 %123 %NB.2
“down_memory” "F1_senzor” “down_memory”

11 11 {R)
17 1T 7 .

Figure 37. Direction assignment in LAD

31

==1
W24
"FI_SENSQr" m
W2.5 & U ER
"F3_sensor” — UGT 1 *up_memory”
W2 6 “rnotor_up® — g

"Fd_sensar =— 3 i —_— —_—

:‘a-=1
Wz.a
"FI_SENSQr" m
W25 & 3.2
"F3_sensor — %072 A R
W2 6 "mator_down” — 5

"Fd_sensor” — 3t £ S— -

W31
"Up_memaory” ==

W27 ==1
"F5_sensar =— it —_— ITER]
"up_rnemory”

UGT 2 R

"motor_down” =k — —_—

3.2
*down_memaory” —

W2.3 »=1
"Fl_sensor” — ik e U3 2

*down_rmemory®

UHT 1 R

'mgtgr_up' —r E— I

Figure 38. Direction assignment in FBD

In the first rung in LAD and in the first set of blocks in FBD, the
“up_memory” memory output is set by an AND operation between
“motor_up” and the OR operation of “F2_sensor”, “F3_sensor” and
“F4_sensor”. This means that if the system responds to the upward signal
and the elevator goes to floor 2, 3 or 4 then the car is assigned with the
upward direction. The output is reset (in the third rung) if the car reaches
the fifth floor, which means that it can only go downward from this point.

One important notice is that direction assignment is only used when there
are calls from both directions, in order to prioritize one over another. For
example, if the upward direction is assigned to the car while it only has
calls from lower floors left, it will still go downwards.

32

Likewise, the car is assigned to the downward direction if there is a
downward signal at floors 2, 3, 4. The “down_memory” output is reset
when the car comes down to floor 1.

Outputs used for direction assignment can also be reset using motor
signals. The reason for choosing these inputs will be further explained in
section 5.3.

3.4.4 Elevator movement

The following networks represents the logic operation that triggers the
motor to move the elevator up or down.

33

Figure 39.

%AB.1
“up_memory”
]l L

*hM0.7
"F3_vist"
] L

Elevator upward movement in LAD

%l2.3 %MD.6 Q.
F1_senzor” F2_vidt" 'mctor_
1 11 {5}
—] | 11 ¥}
“hM0.7
“F3_vidt"
11
L |
%M1.0
"4 vist”
11
11
%M1
“FS_visit"
11
117
%l2.4 “hM0.7 %MD S5
"F2_zenzor” “F3_vist" F1_vist"
1 11 !
— | 117 i/
%M1.0 M5 SME.1
"4 visit” F1_vist" “up_memory”
11 11 11
17 1 f 1 F
MY
“FS_viat"
11
i
%l2.5 SM1.0 SMD.S “M0.6
“F3_senzor” R4 vist" F1_visit" F2_visit"
| 11]]
_‘l I 17 I/‘ I/:
%M1 SMD S SME.
FS_vist" F1_visit" “up_memory”
11 11 11
17 1 f 117
“MD.6
"F2_vist"
] |
17
%l2.6 %M1 Y SMD.S “MD.6 SMOL7
“F4_senzor” FS_visit" F1_visit" “F2_vidt" F3_vidt"
1 11 ! 1 !
— | 11 /} /1 /F—

34

Figure 40.

SM0.7
F3_visit”
1|

%M1.0
R4_visit”
| |

%M1
FS_visit”
11

Elevator downward movement in LAD

%12.7 %M1.0 %*@.2
“F5_sensor” “F4_visit” “motor_down”
| 1 11 15}
I L | \S !
%M0.7
F3_vist"
11
LI |
%MD.6
F2_vist"
11
L |
%MO.5
F1_vidt
] L
17
%12.6 %MO.7 %M1
“F4_sensor” F3_visit" FS_visit
!] L |
_| I LI} I/:
%MO.6 %M1 .1 %MB.2
F2_visit" FS_visit” “down_memory”
11 11 11
L | LI L}
%M0.S
“F1_visit”
11
1T
%12.5 %M0.6 %M1.0 %M1 .1
F3_zenzo F2_vist" R4_visit” °Fs_visit
1 11 | 1
_l I 11 l/: |/=
%MD.S %M1.0 %NB.2
“F1_visit” “F4_visit® “down_memory”
] L] L] L
17 1T 17
%M1 .1
FS_visit”
] L
LI
%12.4 %MO.S %M0.7 %M1.0 %M1
F2_senso” F1_visit® F3_visit" “F4_visit® FS_visit”
!] L |]]
— | i | V1 4, /—

35

Figure 41. Elevator upward movement in FBD

36

Figure 42. Elevator downward movement FBD

37

There are four cases where the elevator is instructed to move up:

— The first one is when the car is at the first floor and there are calls
from the upper floors.

— Inthe second case where the elevator is at the second floor, there is
another OR operation added to the initial condition which is similar
to the first case. The first additional input (“F1_visit”’) can be
understood as: if there is no request to the first floor and there are
calls from upper floors then the motor will go upwards. The second
and third inputs (“F1_visit” and “up_memory’”’) make use of the
direction assignment mentioned above. It means that if there are
simultaneous calls to the upper floors (upward calls) and to the first
floor (downward call) and “up_memory” is True (the car has just
moved up), then the car will continue to move upwards.

— Similar to the second case, when the car is at the third and the fourth
floor, it will move up on two conditions: there are only upward calls
or there are calls from both directions, but it has just moved up.

— The logic operation for motor moving down signal is the same as
moving up, with “down_memory’’ being the input to prioritize the
downward movement.

3.4.5 Stopping elevator and opening door

Figures 43 and 44 describe the operation of the elevator when it finishes a

call.
2.6 WM1.0 Q71
“F4_sensor” “F4_visit" *motor_up®
I} ¥ (®)
%72
motor_down"
{R}
%M20.1 Q7.0
“door_closing” *door_motor*

——/1 {s}
M35

“door_openedF4*
{s}

%B8
“delay_resetd”
%M20.0 TON %43
*door_closed" Time *carcall_F4"
— ———n Q {R}
t#25 — PT ET

5.0

floorcall_fromF4

——R }——

Figure 43. Stopping elevator and opening door in LAD

38

&
%2 3 & %071
“F1_sensor” — g “rmotor_up”
%MO.S R
“FI_vitit] gk SRR, b
®07.2
" rnotor_down”
R
& %07.0
" door_mator”
®M20.1 5
“door_dosing” -0 32 —_— —
%M3T
" door_openedF1°

s

®DB1

& “delay_reset]”
TON
%M20.0 e %40
" door_closed” —5% — N " carcall_F 1"
EF. T#0ms R
T FT q S

w45
" flooreal_fromF1°
R

Figure 44. Stopping elevator and opening door in FBD

The elevator is stopped by resetting “motor_up’’ and “motor_down”. The
condition for stopping the motor is met when the elevator’s floor number
matches call requests to the same floor. For example, if “F4_sensor’”’ and
“F4_visit” is both True then the motor is stopped.

The elevator and floor doors are open by setting “door_motor”. The input
memory “door_closing” will be explained in the following network.

“door_openedF(n)”’ represents the open-end signals, which indicates that
the door is fully opened. It will be used for door closing operations. In real
life applications this input is set by an actual open-end sensor, for example
a relay sensor.

The input memory “door_closed” represents the door’s close-end signal,
which means that the door is fully closed. The condition for setting it will
also be explained in the following networks. Before call buttons are reset
in the last rung, which will unforce stopping the motor, an on-delay timer
was added to wait if the open button was pressed to open the door again.

39

While the motor is stopped, “motor_up” and “motor_down” remains
False until call buttons are reset when the door is fully closed. This is to
disable the elevator from moving when the door is opened and to ensure
passenger’s safety in real life. For example, in the picture above, when
both calls are reset then “F4_visit” is also reset, meaning that “motor_up”
and “motor_down” are no longer reset. Then the elevator can start
moving again if there is any remaining call.

3.4.6 Closing door

The following networks illustrate the door closing operation when there is
no interference from the open button, the obstacle sensor and the
overload sensor.

%M3.6

“door_ocpenedF5*

Figure 45. Closing door in LAD

B2
“door_cpentime”
WM3.7 Ws.5 W21 W22 TON %W7.0
“door_openedF1* “open_button® “obstacle® “overload"” Time *door_motor*
1 1 | | | (R}
1T /1 /1 i IN Q {R}
t3s — PT ET—T:
WM3.3 %M20.1
“door_openedF2* *door_closing®
1 1
i | — }—
M34 %85
door_openedF3 *door
: } closetime1®
TON
M35 Time
“door_openedF4” IN
1 1 -
1T " PT

%@M20.0
*door_closed®
Q—
ET ;

=i
%37
" door_openedF1® —
%33
“door_openedF 2" e
A3 4
"door_openedF 3" ——
®M35
" door_ppenedFd e
%36 &
" door_openedF5” e ik —_—
%l5.5
“ppen_button” —0
w21
"obztacle —p
%22
“overload” —g sy
Figure 46

Whenever an open-end signal is set (“door_openedF(n)”), an on-delay
timer of is set to represents the time the door remains opened. After that,

=DB2
" door_opentime’

TON
Time

ET

Closing door in FBD

w07 0

" doar_motor®

R

%ht20.1

*door_closing”

%DBS

" door_
dosetimal”

TOM

Time

it
|
o

output Q of the timer makes the following instructions:
“door_motor” is reset to close the door.

— Input memory “door_closing” is assigned to block “door_motor”’

from being set in the previous network.
— Another timer is set to represents the time it takes the door to fully
close. After that “door_closed” is assigned.

3.4.7 Open button, overload sensor and obstacle sensor operation

This operation waits for signals from the open button, the door obstacle
sensor or the overload sensor to cancel the operation of the previous

network.

40

®M20.0

" door_dlosed”

w07 w072
“motor_up® “motor_down”

W55
“open_button”
11

%070
“door_motor*

——/} J

M203
*door_recpened”
11

is}
ISJ

w7
*motor_up”

W21
*obstacle”
11

ir}
IRJ

%072
“motor_down"

W22
“overload”

"

iR}
IRJ

DB 6

*reset_opentime”
W21 TON
“obstacle” Time

41

W55
*open_button”

i IN Q

%203
*door_reopened”

W22
“overload®
11

W5 7
"close_button”
1 1

{5}
ISJ'

W55
“open_button”

{R}

W70
*door_motor®

Figure 47.

HDBY
“reset_
closebutton”

Time

iR}
IRJ

Ws.7
"close_button®

Open button, obstacle and overload operation in LAD

IR}
IRJ

{B 1}
IRJ

Q7.0
“door_maotor”

—{ R }——

aMz20.3
*door_recpened”

—{R}—

42

3 .1
%15.5 “mdr_ v o %P0
“men_buln” — 7.2 “dar_mekr”
wM20.3 "mdr_doen” _a 5
“day_repenad’ - L.
w1
“matT_ug
R
B
“mix_dann”
"
&
%086
%122 e qpeniime
Tamled TON
%121 Time %15.5
“dhstedd o — N apen_butin’
3] R
= m qQ — L
-0
“dar_mika”
R
®M20.3
Ao _repmnad
R
=1
®I2.1 %M20.3
R *der_repemad
wi22 5
oelmd 3k B — =
w55
B "gpen_bulin”
%15.7 L
"die bultn” __jy) L
®7.0
“dax_mer”
R
%DE%
"resed
dmshuttn”
TON %157
Tume “dere butm®
N Er L5

Figure 48. Open button, obstacle and overload operation in FBD

The first scenario where the Open button is used is when the car finishes a
call and the door starts opening. At this time if the Open button is pressed
then the open time in the network shown in figure 45 or 46 is halted. When
the Open button is reset after three second (figure 47 or 48), the timer in
previous network is initialized again.

In the second scenario, when the door is closing (“door_motor” is reset),
if the open button is pressed then the door is reopened. The timer in the
previous network is also reinitialized after three seconds.

3.4.8

43

The third scenario happens when the door is fully closed and then the
Open button is pressed, which can be understood as when passengers
cannot come out of the car in the first attempt.

In all scenarios the three second timer cannot be activated if there is a
signal from either the obstacle or the overload sensor. The door will then
be remained opened until both signals are false.

When the door is closing and one of these signals is activated then memory
input “’door_reopened”’ is set, which then set “door_motor”’ and opens
the door. It is also remained open until both signals are false.

If all inputs are true (open button, obstacle and overload sensors), the
operation keeps the door opened until both obstacle and overload sensor
signals are False, then the open button is reset after three seconds.

Reset door open memory

Since “door_openedF(n)” inputs are used to close the door (section 3.4.6),
there must be a reset operation for them, otherwise they would be kept
closed even when the car finishes a call.

2.4 2.5 2.6 W2.7 M3.7

*F1_sensor" *F2_sensor" *F3_sensor" “F4_sensor” *F5_sensor" “door_openedF1*

A A A A {R}

%MO 5 %MO.6 %MO.7 %M1.0 M1.1 %M3.3
*F1_visit" *F2_visit" *F3_visit" *F4_visit" *F5_visit" “door_openedF2*

A A A A {R}

M3.4
“door_openedF3*

(R }——

M35
“door_cpenedF4”

(R }——

M3.6
“door_openedFs®

——R }——

Figure 49. Reset door open memory in LAD

%2 3
"F1_senzor” —o
%i2.4
"F2_zensor —o
%25
"F3_zenzor —g
W26
"F4 zenzor” —g

%27
"F5_sensor” —@sk

%®M0.5
"F1_visit! —o
%MD 6
"F2_visit! -
%MD 7
"F3_vizit" —g
%M1 .0
TP visit! -
%M1
"F5_visit" —oab

Figure 50.

%®M3 7
" door_openedF 17

%33
" door_openedF2”

®hi3 .4
" door_openedF3°
R

%®M3_5
" door_openedF &

%M3.6
" door_openedF5°
R

Reset door open memory in FBD

44

The first condition to reset these inputs is when the elevator leaves a floor
and no floor sensor is active. Therefore, a normally closed contacts for all
floor sensor inputs is used in the first rung. However, when there is no
other call then the car will just stay put, so at least one of the sensors will
be active. This require for another condition which is shown in the second
rung: there are also five normally closed contacts, but the inputs are
elevator calls to all five floors, meaning that if there is no call left then the
door open memory inputs will also be reset.

45

3.5 Possibility of program scaling in taller buildings applications

The controlling program is suitable to be adjusted for managing single

elevator systems for buildings with several more floors. The fundamental

logic would remain the same and require only the addition of pushbuttons,

floor level sensors and some changes to existing networks:

— More instructions for elevator calls will be added, in correspond to
additional call buttons.

— The elevator direction assignment network will be extended since
their logic is based on the elevator calls.

— Similarly, networks that instruct the motor to move the car up or
down will be added with inputs that indicates the elevator’s floor
location and call requests.

4 VISULIZATION WITH WINCC HMI SCREEN

The simulation screen shown in figure 51 consists of six types of signals,
which are Car Location, Floor Buttons, Car Buttons, Car Movement
(Direction), Door Status and Signal Triggers. These signals are represented
by the Button element in the HMI Toolbox (figure 52).

Car Location Floor Buttons Car Buttons

__Floors [calltofloor 5
_ Floora || Calltofloor 4

___Floor3 || calltofloor3
__Foor2 [calltofloor2

| Floor1 || calltofloor1

Car Movement Door Status Signal Triggers

v [opening |
_down |

Figure 51. HMI screen in WinCC

46

Options
R X Y E Darkdefaultwaluev L]

> [Basic objects

Elements
CEC []
3@—4 o 5

Figure 52. Button element in the HMI toolbox

1

Signal operations in simulation
“Car Location” signals which are “Floor 5, “Floor 4’, etc will turn
green if the elevator is at floor 5, 4 and likewise.

— “Floor Buttons” signals simulate call buttons from a floor, “Car
Buttons’’ simulate call buttons inside the elevator and open, close
buttons. These will turn green when pressed in the simulation.

— “Car Movement” signals indicate the direction of the elevator.
Therefore, “Up’” and “Down’’ will turn green in the simulation
corresponding to the movement.

— “Door Status” signal will turn green in the simulation if the door is
opening or not.

— “Signal Triggers” are pressable buttons to simulate signals from the
obstacle and the overload sensors.

Setting functions of elements

— Activate call buttons when pressed: When pressed, “Floor Buttons”
and “Car Buttons’ are set to activate inputs in the logic program. This
is done using the “SetBit” function in “Press’’, “Events” tab in the
element’s Properties settings. This also applies to “Signal Triggers”.
For example, in figure 36, button “call to floor 2" is set to activate
“floorcall_fromF2” in the logic program.

]g Properties rj‘.lnfo j)H %! Diagnostics

[Eroperﬁes ‘ Animations Events ﬂhr Texts [

|
LT BE X

Click
I3 Press v SetBit
Release Tag (Inputioutput) floorcall_fromF2
Activate b <Add function>
Deactivate N
Change W

Figure 53. Setting a tag with a “press” action in “Events’’ tab

— Activate and deactivate “Signal Triggers”: Button settings are slightly
different for Signal Triggers buttons. Since there are no events to
activate and deactivate the overload and obstacle sensors like in real

47

life situations, buttons are created to do this. In this case, the SetTag
function is used to activate and deactivate the signals. Tagged values
are “obstacle” and “overload”. The value is set to 1 to activate and
to 0 to deactivate. The reason for not using SetBit function is that
once a button pressed, the value cannot be reset unless there is a
reset logic operation.

|'d Properties [} Info)| %/ Diagnostics

JPropenies | Animations Events | Texts |

2T BE X

Click

i.'.f Press v SetTag
Release Tag (Output) obstacle
Activate | Value 1
Deactivate N <Add function>
Change

Figure 54. Activate an input using “SetTag” to set its value to 1

| & Properties ﬂ'j.,lnfo y[[& Diagnostics

| Properties | Animations Events | Texts]
2T BE X
Click
i’."ﬁess v SetlTag
Release Tag (Output) obstacle
Activate | Value 0
Deactivate N <Add function>
Change

Figure 55. Deactivate an input using “SetTag”’ to set its value to 0

— Change colour when input/output is true: Most buttons/elements are
set to turn green when its assigned PLC tag (inputs and outputs in the
logic program) is true. This is done in “Appearance’”/”’Display” in the
“Animations’” tab. For “Deact Obstacle’” and “Deact Overload”’, they
are set to be green when signals from the obstacle and overload
sensors are false to show their current state. Therefore, the initial
color of these signals at the start of the simulation is green.

48

Button_10 [Button] G, Properties @ Info ®|§"J Diagnostics L=

i Animations | Events | Texts : \
Appearance

» @ Tag connections Tag - Iype
v ® Display ‘Name: |floorcall_fromF2 [QE ehﬂﬂ'
B’ Add new animation Address: - O muttiple bits
ppearance Osimkbk
i Range a IBuIngmmdcolof]. ground color {:“ hing [

o [#I]239.235.... [~]Il49.52.74 [=]no [+]
B [l o.255.0 Wl o.52.74 No

Figure 56. Setting green color in simulation in “Animation’ tab

5 SIMULATION

51

This chapter describes the simulation of the previously made logic
operations. Since the operations in FBD in some networks are quite large,
which made inputs’ names hardly visible, only the LAD networks are
monitored and added to the report. It is noticeable that for sophisticated
operations, LAD networks provide a much more compact view, thus makes
it easier to understand the simulation.

Normal movement

In the simulation screen (figure 57), the elevator is moving up from floor 2
when there is a car call to the third floor.

T8 RT Simulator -

Root screen
SIMATIC HMI
Car Location Floor Buttons Car Buttons
[Foors
[Fioors_
_ Floor3 | calltofloor3 |
 Rewz

Call to floor 1

Car Movement Door Status Signal Triggers

Opening Door Obstacle

Overload

49

Figure 57. Up movement simulation in HMI screen

In figures 58 and 59, the logic operation for moving the elevator up is
indicated in the second rung in LAD and in the second lower block in FBD.
Active inputs are “F2_sensor’”’, “F3_visit” and a normally closed contact of
“F1_visit”, which activate the “motor_up” output. The call can also be
made by pressing “Call to floor 3"’ button.

W23
“F1_sensor “F2_wisit

WhOLT

Tl .0
"Ry visit"

Wk .1

= 0 - ar

e T I

kil .1
“F5_visit

2.6 i .1
“F4 sensor “F5_wisit”

ey I iy V—

L EE R B R

r
1
1

Figure 58.

l2. 4 ShDLT MO
“F2_sensor "F3_visit” “F1_visit”

1| 11] /1

11 11 1/
kil .0 kil 5 WhB.1
"R wisit” “FI_visit” “up_memony”
i1
“F5_wisit”

] F _____

%l2.5 .0 MOLS SMLE

“F4_wisit” “F1_visit” “F2_visit”

IS WhB. 1
TFI_visit® “up_memony”

Tl s s

FaMOL G
“F2_visit"

%MOLS %MILG SRMOLT
“FI_visit" “F2_visit" “F3_visit"

e

L5
“F1_visit”

WhB.1
“up_memony”

|
1
|
-
i

L
= R

HhOLG
“F2_visit"
11
sl hadad

“hLT
“F3_visit”

| [i ———

1

1
ale
.

1

1

1

1

Up movement simulation in LAD

50

R
“mugbor_up”

51

Similarly, a downward movement signal is made when the car is at the
second floor and there is a car call to the first one, which is shown in figure
59. In both cases there are no other calls from the upper floors.

B RT Simulator - ®

Root screen
SIMATIC HMI
Car Location Floor Buttons Car Buttons
s |
 Fows |
| Flowr3 || calltofloor3 |
reorz

Call to floor 1

Car Movement Door Status

Figure 59. Down movement simulation in HMI screen

5.2 Prioritized movement

Figures 60 and 61 represents a scenario where the car is at floor 3 and
there are calls from both directions. In this case, it has just moved up from
the second floor, which set “up_memory” and reset “down_memory”.
Since these two memory inputs are used when the car needs to prioritize
one direction over another, “motor_up” is set because “up_memory” is
True and “motor_down’ cannot be set because “down_memory” is False.
As a result, the car will move up to the fourth floor before it goes to the
second one.

| IR T St - #

SIEMENS

Lar Location Floor Buttons I Car Buttons

 Floors || Colltofoor 5 |

Call to floor 3

__ Flosrz || calltofioor 2

 Floari || calltofloor1
Car Movement Door Status

_wp | oOpening

Figure 60. Elevator reached floor 3 and needs to keep moving up

LR]
“Fi_sensar™

= fmmmmmmem

S iR

Wl 2.4
“F2_sensor

e

MO
“F2_visit”

“hil.0
“F4_wisit”

il .1
“F5_vidt"

ShOLT H%MOLS
“F3_vist" “F1_visit"

—-f prmeem i

Figure 61.

MILS
“F1_visit”

o
—]

1
i
1
1
0 “HaMOLE
: "FZ_visit
[

I

|

1

I
ale
e

|

|

I

ShOLT
“F3_visit

I_-____-__L_-____-_ﬁ

1 1
1 1
i i
! %M1 .0 : %MDLS TNE. 1
i “F4_visit™ i “FI_visit™ “up_memory”
:.-_--l |.--_-.=_-_--4 }.--_----_--l |.
1 1
| 1
i i
I il .1 =
L Fs_vist
i o i
e il
l2 5 bl .0 TS5 L&
“F=_snr “Fy visit “Fi_visit “F2_vigt
1A
S X % s s
il .1 TMOL5 B 1
“F5_visit” “FI_visit” “up_memony”
I RENN N ——
11
LMOLE
e it
i
T
%26 %Lha 1 LML %ML L0 T
"4 sansor” "5 yigt" “F1_visit" B2 yigt “F3_vidt"

B 1
"up_memory”

Prioritizing upward movement in LAD

53

W1
“mobor_up”

54

Similarly, the logic operation used for prioritizing the downward
movement is shown below.

EB RT Simulator - (] X

SIMATICHAN Root screen

Car Location Floor Buttons Car Buttons

Call to floor 5

Call to floor 4

Call to floor 3
Call to floor 2

Floor 1 Call to floor 1

Car Movement Door Status Signal Triggers

Door Obstacle

Figure 62. Elevator reached floor 4 and needs to keep moving down

Wl2.7
“F5_sensm”

(S —

bl .0
“Fi visit'

e Tl

DT
“F3_vidt"

TG
“F2_vidt"

l2.4
“F2_senso”

Figure 63.

55

.2
“motor_down”

— 5 J—

e s T et e

el ot S

1
%11 :
F5_visit” .

J

L5
TFI_visit®

LT
“F3_visit

ST
“F3_visit

Sl .0
“Fa visit'

—l

1
i

1

I

i

! b

11

:_____'I A —
i

1

i

1

I

i

1

i

i .1
“F5_visit”

I_-_-__-_-I._-_-__-_.l

%ML
1 yidt
b o] e o
%26 %KD T Wha 1
“F4_sensor “F3_visit” “F5_visit”
I | 1
| TS O SIESE PN PRSP EOSSTEST
T & Tl .1 B2
"F2_wisit” “F5_visit “diown_mem ony
11 R 11
1f 1 I 11
T 5
“F1_visit”
I e P
%25 %MDLE %LM1.O LR
“r3_sansor 2 widt "4 visit 5 _wigt"
i 1A 1A
— r“——‘r——“l F———'T‘—'—'u-"r ————————— I e R
i i
i 1
' %NS | %A 0 %NE 2
H “F1_visit™ I “F4_visit “down_memory”
i

et e

“hil .0
TR _visitt

i .1
“F5_visit

Motor prioritizing downward movement in LAD

56

5.3 Explaining the reset condition of “up_memory” and “down_memory”

In the simulation process, an error came up because the initial condition
for resetting “up_memory” and “down_memory” was inefficient.
Particularly, when the car was set to moving up and down between the
fourth floor and the second floor, both inputs are set. This makes the
elevator unable to prioritize calls when there are calls from both directions.
For example, when the car comes down to floor 2 from floor 3,
"down_memory” is set. Then after that the car moves up to floor 4,
“up_memory” is also set. If by that time, there are simultaneous calls to
floor 5 and floor 2 then the elevator cannot go up because “motor_down”
is also set. This is shown in the figures below.

EE T simulstor - b'e

Root screen

SIMATIC HMI

_. Car Location | Floor Buttons | Car Buttons
L reais |

| Floor3 || calltofloor3 |

| Floor2 || calltofloor 2
call to floor 1

Car Movement Door Status Signal Triggers

P
Opening Door Obstacle

Overload

Figure 64. Error shown in HMI Screen where both “up” and “down”
direction signals are active

57

W07 W24 W3
"motor_up” "F2_sensor “up_rnermory”

W25

W26
"F4_sensor”

W72 W24 M3 2
"mator_down” "F2_sensor *down_mermory”

‘W25

W2 6
"F4_sensor

Figure 65. Error when both “up_memory” and “down_memory”’ are
setin LAD

To fix the problem, another is input is added in each rung to reset
“up_memory” and “down_memory”’, they are “motor_up”’ and
“motor_down”’. This means that whenever that car goes up or down, it will
dismiss the assignment of the opposite direction. Initially, “up_memory”
and “down_memory”’ were used to reset each other but it resulted in the
same outcome. The reason is that if “down_memory’”is set in the first
place then “up_memory”’ can never be set so it cannot reset
“down_memory” either.

5.4 Stop motor and open the door when finishing a call

In the example simulation shown below, when the car reaches the fourth
floor, it is stopped by resetting “motor_up’’ and “motor_down’’ and the
door is also opened. The open-end signal, “door_openedF4” indicates that
the door is fully opened and initiates the door closing operation.

58

& AT Simulator - g

Sbicii Root screen

Car Location Floor Buttons Car Buttons
—
I Call to floor 4
T T

T T

Car Movement Door Status Signal Triggers

—_—
“ Op Door Obstacle

Figure 66. Elevator stops at floor 4 and opens the door in the HMI
Screen

W26 .o W7
"F4_sensor® "Fd_visit" “motor_up®

1 | 11 iR\
LI | LI | l“l’

%Q7.2

“motor_down”
IR\
Ry

%201 %70
"door_closing” "door_motor”

i/ {3}

M3
“door_openedF4”

{ i
I.Sl'

%DBB
“delay_resetd”

a3
“carcall_F4"

[F ==

@200
*door_closed”
E

W50
floorcall_fromF4

-—--ER -

r-

Figure 67. Elevator stops at floor 4 and opens the door in LAD

5.5 Closing door

In the below network, when the open-end signal is true, a three second
timer is started, followed by the door closing signal (resetting
“door_motor”’). Memory input “door_closing” is also assigned to keep

W37
*dear_openedF1”®
[]

I | B seaaol

W33
“door_spanedF2*
]

W14
*deor_cpenedf3”
'

" ERS
“door_cpenedfa’

L TR
“deer_openedF5”
[|

} i pm———

GO W

1 |
A P

59

“door_motor” from being set in the previous network so that the door is
not opened again. If the open button is pressed and either the overload or
the obstacle sensor is active, then this operation is halted.

After another three second timer, input memory “door_closed” is
assigned, indicating that the door is fully closed. The program then waits
for two more seconds, as shown in figure 62 to see if the open button is
pressed before resetting all request to the fourth floor.

TE35
W82
*doar_opentime”
S5 a1 g | TON | 70
“gpen_button® “obztacle® “averoad” Time “doar_matar”
1 1 {1 Qf T fm)
b (3] gl
A0 1
"door_clozing”

TEIC
RS
“dogr_
clotetime1®
TOM
Tirne
1IN Q
- "‘"‘\:ﬂ_ F:

Figure 68. Door closing operation in LAD

4200
“door_cloced”

60

W26 1.0 W07
*Fd_sensor” "Fd_visit” “motor_up”
)) {®)
AT 2
“motor_down”
(®)
W20 70
*door_closing” "door_motor”
e T o {5 bama
W35
*door_ocpenedF4”
{< }
s }
TE4T0MS
%DBB
"delay_resetd”
%M20.0 7 on w43
*door_closed” 1 Time | “carcall_F4®
1 1 2
{ | N ql- ; s
t82s — F RN 3 |
i %s.0
i *floorcall_fromF4”
Le— R }=m—m

Figure 69. Resetting all calls when the door is fully closed

5.6 Operation with signals from open button and overload, obstacle sensors

Figures below shows the logic operation when the open button is pressed,

and the obstacle sensor is triggered.

If the door has been opened when the elevator finished a call, then the
door closing operation in figure 68 is halted until the sensor is deactivated
and the open button is reset after a three second duration.

61

EE RT simulatar = . x

SIEMENS Root
SIMATIC HMI L Q0L SCIEel]

Car Location Floor Buttons Car Buttons

Call to floor 5
Call to floor 4
Call to floor 3

Call to floor 2

- Call to floor 1
Car Movement Door Status Signal Triggers
m Deact Obstacle

Overload

< | >

Figure 70. Open button is pressed and obstacle sensor is activated in
the HM screen

Q7 w72 Ws.5 %070
“motor_up” "motor_down” "open_button® “door_motor”
/1 /1 il {s)
Y20 3 e —
*door_reopened” YDRE
] |

1 T I'ESEI_OP‘EFIIII’TIE

W22 W21 Ws5
“overload” “ohstacle® "open_button”
A 7 — T e
;
1 Q7.0
W q 20 3 H *door_motor”
- 2 1
"gbstacle” *doar_reopened” bR =
! | 15} 1
11 o | !
i 203
W | “door_reopened”
“overload” '_-_--[n frmm——
SRR
W57 W55
*close_button® "open_button®
b ——— [F ==

Figure 71. Open button and sensors’ operation in LAD

62

6 CONCLUSION

In summary, the goals of the project were successfully achieved. All
planned logic operations were thoroughly programmed and tested. This
report contains detailed explanations and guides so that viewers can use it
as a tutorial for programming in the ladder logic or the function block
diagram.

Throughout the thesis process, the author has gained valuable experiences
in PLC programming. The most evident one is that, to build large logic
networks as time-efficient and error-free as possible, one needs to deeply
understand the fundamental functions and beware of all the outcomes
even before the testing step. Otherwise, it would be a time-consuming
process even if the functions seem to be simple. In addition, the author
finds that programming in the ladder logic is more efficient compared to
the function block diagram, since large networks in ladder logic are more
compact and easier to monitor.

Finally, considering the program’s applicability, it contains all the necessary
features for a single elevator system. Therefore, in the author’s opinion,
with adaptation to different variations of PLCs, the program can potentially
be used for testing operations or it can be even adapted for controlling
elevators in small apartment buildings.

63

REFERENCES

Archtoolbox. (n.d). Elevator Types. Retrieved 22 April 2020 from
https://www.archtoolbox.com/materials-systems/vertical-
circulation/elevatortypes.html

C.Gonzalez. (2015). Engineering Essentials: What Is a Programmable Logic
Controller?. Retrieved 25 February 2020 from
https://www.machinedesign.com/learning-resources/engineering-
essentials/article/21834250/engineering-essentials-what-is-a-
programmable-logic-controller

KEB Technology. (n.d). Elevator Regenerative Drives — How They Work.
Retrieved 22 April 2020 from
https://www.kebamerica.com/blog/elevator-regenerative-drives-how-

they-work/

Ladder Logic World. (n.d). Parts of ladder logic. Retrieved 14 February 2020
from
https://ladderlogicworld.com/

Mitsubishi Electric. (n.d). Elevators & Escalators. Retrieved 11 February
2020 from
https://www.mitsubishielectric.com/elevator/overview/elevators/b_oper
ations04.html

Newark. (n.d). Sensing in Elevator. Retrieved 11 February 2020 from
https://www.newark.com/elevator-sensor-applications

Peter. (2017). Ladder Logic Tutorial for Beginners. Retrieved 23 February
2020 from
https://www.plcacademy.com/ladder-logic-tutorial/

Using Clock Memory and Timers. Retrieved 20 February from
http://www.plccenter.cn/Siemens Step7/Verwenden von Taktmerkern
und Zeiten.htm

