

Toan Thanh

Modern Production-Grade Cloud
Native Pipeline with Kubernetes

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

5 May 2020

 Abstract

Author
Title

Number of Pages
Date

Toan Thanh
Modern Production-Grade Cloud Native Pipeline with Kubernetes

50 pages
5 May 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Mobile Solutions

Instructors

Vesa Ollikainen, Senior Lecturer

During the advancement of technology in this digital era, software engineering is
revolutionizing at a monumental growth, resulting in an enormous number of projects built
and released every day. Deploying an application to a cloud platform is extremely tough
without the help of a container technology solution. Docker and Kubernetes are changing
how applications are built and deployed in the cloud.

The ultimate technical objective of this project was to build a production-grade pipeline using
Docker, Kubernetes, Travis CI to deploy a fully functional application written in Javascript to
Kubernetes cluster on Google Cloud Platform. Moreover, implementation highlights the
need of Kubernetes in microservices’ architecture and pipeline’s importance in software
engineering projects. Finally, the business objective of the project was to build a minimum
viable product version regarding a point of sale system for a restaurant.

By investigating and building a Kubernetes pipeline piece of software using microservice
architecture, the goal was successfully achieved. Moreover, the advantages and usages of
Docker, Kubernetes, Travis CI and Google Cloud Platform services in modern software
implementation were investigated and discussed during the scope of the project.

Keywords Kubernetes, Container, Docker, Microservice, Continuous
Integration, Continuous Delivery, Continuous Deployment, CI
/ CD Pipeline, Google Cloud Platform

Contents

List of Abbreviations

1 Introduction 1

1.1 Project technical objectives 1

1.2 Case study summary & business objective 1

1.3 Structure of the thesis 2

2 Theoretical background 3

2.1 Monolithic architecture 3

2.2 Microservice architecture 4

2.3 Containers 6

2.4 Kubernetes 7

2.5 Kubernetes Architecture 8

2.5.1 Concept 8

2.5.2 Components 11

2.6 Kubernetes Objects 14

2.6.1 Understanding Kubernetes Objects 14

2.6.2 Working with Kubernetes Objects 15

2.7 Deploying Kubernetes with Continuous Delivery pipeline 17

2.7.1 Continuous Delivery 17

2.7.2 Continuous Delivery Pipeline 19

2.7.3 Continuous Delivery with Kubernetes 21

2.8 Monitoring Kubernetes 23

3 Case study 25

3.1 Case summary 25

3.2 Case challenges 26

3.3 Technology solutions 27

3.4 Implementation 28

3.4.1 Software architecture 28

3.4.2 Services and tools 29

3.4.3 Implementation 31

3.5 Evaluation 41

3.6 Future development 46

4 Conclusion 47

References 48

List of Abbreviations

VM Virtual Machine, an emulation of a computer system. It is based on

computer architectures and provide functionality of a physical computer.

DevOps Development Operations, a set of practices combining software

development and information technology, used to shorten development life

cycle.

CD Continuous Delivery, software engineering approach used to produce

application in short cycles.

OS Operating System, low-level system software that supports a computer’s

basic functions.

API Application Programming Interface, a set of functions and procedures

allowing the creation of applications which access the features or data of

an operating system, application or other service.

GCP Google Cloud Platform, collection of cloud computing services provided by

Google, running on the same infrastructure of Google’s products.

1

1 Introduction

In the past, the most common architecture for most software applications were commonly

monoliths, combining all different components that are all tightly coupled together into a

single program from a single platform. Monolith applications experience delaying release

cycle as well as infrequent update. (Newman, 2018.) Weeks or months are usually

measured in cycle time in many companies, resulting in millions of dollars in costs for

large companies as no revenue is delivered until the software reaches its end users

(Humble and Farley, 2010). The lack of teamwork between developers and operators

results in delaying release cycle. Fortunately, the evolution of containers enables us to

fill the gap between those teams. Software is containerized by Docker and deployed to

Kubernetes cluster on Google Cloud Platform. Kubernetes provides a production-grade

container orchestration for automating deployment, scaling and management of

containerized applications. Also, the role of Kubernetes in microservice architecture is

crucial. (Kubernetes authors, 2019.)

1.1 Project technical objectives

The ultimate technical objective of this project is to build a production-grade pipeline for

an application and deploy it to Kubernetes cluster in Google Cloud Platform hosting

service. Throughout the technical implementation, the importance of Kubernetes in

microservice architecture and pipeline importance in software engineering projects is

highlighted. By applying the best practice of microservices with container technology,

continuous delivery pipeline, along with Kubernetes as an orchestrator, the goal is to

build an extremely available and highly scalable software.

1.2 Case study summary & business objective

The business objective of this thesis is to open the path for the digitalization of a

traditional restaurant’s operations and services with the help of technology. The

restaurant’s ambition was to expand their business towards digital dimension, including

internal operation to customer acquisition and loyalty program. The main focus at the

2

first stage in digitalization transformation plan is to build a Minimum Viable Product point

of sale software, aiming to solve part of challenges in the day-to-day operation to

eliminate human error between the order taking and food delivery time. There are quite

a few existing solutions on the market such as Touch Bistro, Toast, etc. However, the

new application is needed as the restaurant craves for the full control on new features

and this point of sale system will be integrated into a bigger customized system, ranging

from inventory management to customer loyalty later on.

1.3 Structure of the thesis

The following table describes the structure of the thesis and the main goals or contents

in each chapter.

Chapter Name Main goals / contents

Chapter 1 Introduction • Introducing the background of the thesis subject

• Describing the thesis’s technical and business
objectives, along with the case study summary
and the structure of the thesis

Chapter 2 Theoretical

background

• Providing the theoretical background for the
project

• Highlights the needs of Docker, Kubernetes and
Continuous Delivery pipeline in software
engineering applications with microservice
architecture

Chapter 3 Case study • Presenting case study used in this project,
including challenges, objectives, solution,
implementation and results

Chapter 4 Conclusion • Summarizing thesis’s objectives and main results

• Evaluating the project and personal learnings

 References • Listing all the sources used in this thesis

 Appendices • Including information, secondary code snippets
supporting the main content.

3

2 Theoretical background

2.1 Monolithic architecture

During the revolution of technology in this digital era, software engineering is

revolutionizing at a monumental growth, resulting in an enormous number of projects

built and released every day, along with their extensive complexities. User-facing

interface, along with access and authorization management, asynchronous task

processor, databases, analytics, task queue and logging system are some typical

components which modern web-based system should include nowadays. (Stubbs,

Moreira and Dooley, 2015, p.35.) At the same time, we have been finding better ways to

build anti-fragile systems by learning from the existing technology as well as adopting

and observing new waves of revolution (Newman, 2018).

Until recently, the common architecture of software was a big monolith, combining all

different components that are all tightly coupled together into a single program from a

single platform (Luksa, 2018). Monolithic architecture brings enormous benefits to

development team in case the application is relatively small as it enables straightforward

development, testing, deployment and troubleshooting process. Furthermore, scaling

applications is trivial due to the flexibility in duplicating application instances running

behind a load balancer. (Newman, 2018.) The figure 1 below represents an overview of

a monolithic architecture. As can be seen in the figure, all functionalities broke into

multiple modules are packaged together in the single process system. On the one hand,

single-process monolith not only results in a much simpler development workflow,

ranging from developing, monitoring, troubleshooting to end-to-end testing, but also

simplifies reusable code within the monolith itself. On the other hand, monolithic

architecture tends to slow down development cycle period as more and more people

works in the same piece of code. As all functionalities are packaged together, confusion

between different teams on code ownership arises as concrete boundaries in the system

are not drawn. Furthermore, with monolithic architecture, development teams are not

able to flexibly adopt new technology such as new programming languages, database

types or frameworks. (Newman, 2019.)

4

Figure 1. Monolithic architecture (Newman, 2019)

2.2 Microservice architecture

As the complexity grows in requirements due to scaling, embracing microservice

architectures enables many organizations to deliver the software faster as well as give

them freedom to adopt new technology, react and make different decisions.

Microservices alters monoliths with a distributed system of small, loosely coupled and

focused services. In microservice architecture world, each service is one independent

entity. The more focused the service is, the more benefits the system achieves. As the

services get smaller, the interdependence between services are reduced, resulting in the

prevention of tightly packaged software risk. Each service exposes its application

programming interface (API) for other services to communicate via network calls. The

figure below illustrated an example of microservice architecture. (Newman, 2019.) As

illustrated in the figure, the system consists of several independent services. Each

backend service (account service, inventory service and shipping service) has their own

dedicated database. Mobile application sends REST API call to API gateway which

forwards the API call to the correct service while web browser makes API call via store

front web app service. Each service in the architecture is independent and autonomous.

5

Figure 2. An example of microservice architecture (https://microservices.io)

Microservice architecture is becoming the standard in building large-scale software

system for its enormous benefits. Firstly, it enables technology heterogeneity. With a

system composed of independent services, development teams can freely adopt new

technologies as well as choose different tech stack for each one. This allows them to

pick the suitable tool for each use case instead of selecting a one-size-fits-all approach

which might end up with performance issues. Resiliency is the second advantage of

microservice architecture. The development team is able to isolate the problem on one

service without affecting the rest of the system. By doing that, microservices enable

engineers to handle failure of complete system. Thirdly, agility in scaling is another profit

brought by microservices. Instead of scaling all of modules in monolithic service,

development teams can just scale services independently from other services, bringing

an enormous benefit in cost management. With microservices, service deployment is

independent of the whole system, allowing engineers to deploy much faster. (Newman,

2019.) As a result, the delivery time to market is optimized, saving millions of dollars in

opportunity cost for large companies (Humble and Farley, 2010). Microservices allow

organizations to effectively divide people into teams. Smaller teams tend to perform

6

productively on smaller codebases. The microservices approach helps companies to

achieve the optimal ratio between team size and productivity. Last but not least, services

can be rewritten, replaced or removed with minimal effect to the complete system as

services are independent. (Newman, 2019.)

2.3 Containers

Nowadays, the operations engineers’ life has become much harder with the increasing

need and complexity of packaging and deploying numbers of applications (Schenker,

2018). The deployment process of an application does not only require the software

itself, but also its dependencies, including libraries, sub-packages, compilers,

extensions, and its configuration with settings, site-specific details, keys, database

passwords, etc (Domingus and Arundel, 2019). In large enterprises, two applications

running on the same production server usually experienced compatibility issue due to

different version from the same framework, resulting in slow release cycles (Schenker,

2018). Several earlier attempts had been tried to tackle this problem. Configuration

management systems, like Puppet or Ansible, consisting of code to install, run, configure

and update the shipping software have been widely utilized. Alternatively, packaging

mechanism provided by several specific languages or omnibus package had been

applied; however, they did not completely resolve the dependency problem. (Domingus

and Arundel, 2019.)

Hypervisor and container are widely accepted answers to this issue. In short, containers

virtualize at the operating system (OS) level, while hypervisor-based solutions virtualize

at the hardware level, reserving a portion hardware for their products - Virtual Machines

(VM) to use. (Wong, 2016.) There are two types of hypervisor-based solutions, including

type 1 virtualization and type 2 virtualization. Type 1 virtualization is called as ‘bare metal

hypervisors’, which is a lightweight operating system is installed on a bare metal server

or physical computer. In addition, type 2 virtualization is called ‘hosted hypervisor’.

Instead of being installed on top of hardware, a lightweight operating system is

configured on top of a standard operating system. (Zomaya, 2019.) Figure 3 illustrates

core differences in structure of hypervisor-based solutions (type 2 hypervisor) and

containers.

7

Figure 3. Hypervisor-based Solutions (Virtual Machines) vs Containers (Wong, 2016)

Figure 3 shows that VM and container provide abstraction in different layers. While

container provides an abstract OS, a VM is an abstraction at hardware layer. On the VM

side, hypervisor technology enables running multiple applications separately on different

operating systems, whereas various applications share the same kernel space as the

host machine. (Wong, 2016.) A typical VM image size is around 1 Gigabyte, resulting

from lots of unrelated programs, libraries, and other unnecessary binaries. In contrast, a

well-designed container image’s size might be incredibly smaller, as containers only hold

the files needed to run an application. Furthermore, an optimized approach of

addressable file system layers, allowing sharing and reusing resources across different

containers, is used to further minimize the size of container image. (Domingus and

Arundel, 2019.) Last but not least, it would only take seconds for containers to start,

compared to minutes for a VM (Chamberlain, 2018). All in all, containers provide an

incredibly lightweight, portable and efficient solution.

2.4 Kubernetes

Container technology offers an advantageous solution to resolve software packaging

issue; however, several arising issues with containers are still remaining. Firstly,

containers provide a weaker level of isolation as they share OS kernel with deep root

8

level of authorization, which carries an enormous potential for attacks to reach underlying

OS and eventually into other containers. Secondly, there was lack of container

monitoring and managing tool in the industry, resulting in more complex in management

compared with Virtual Machines. (Bigelow, 2015). Most importantly, problems with

cluster management for containerized applications in cloud services are not tackled yet

(Bernstein, 2014). As maintaining communication between containers in microservices

is tough, Kubernetes is a solution to tackle these problems (Vohra, 2016, p.41-42).

In 2014, Google founded Kubernetes as an open source orchestration for containerized

applications. Its vision was to become the container orchestrator that every company

could use. (Domingus and Arundel, 2019.) Building and deploying reliable, scalable

distributed systems are effortlessly achieved by adopting Kubernetes, whether

companies are creating applications on top of public cloud infrastructure, in private data

center or in any hybrid environment (Hightower, Beda and Burns, 2019). Not only the

development team but also the operation team will benefit from Kubernetes to produce

an exceptionally good product effectively at the minimum cost (Bernstein, 2014).

Kubernetes provides a broad range of features supporting service management and

cluster management, and its core benefits can be traced back to one of these benefits,

including velocity, scaling (both software and teams), abstracting infrastructure and

efficiency. Kubernetes automatically operates computing resources while ensuring the

application’s availability. Secondly, Kubernetes enables product horizontal scaling based

on resource management. Additionally, Kubernetes built-in self-healing feature, which

replaces and reschedules nodes, enables failed containers to be restarted. Last but not

least, having a huge support community enables Kubernetes to keep introducing new

features and improvements, making cluster management and container configuration

effortless. (Kubernetes authors, 2019).

2.5 Kubernetes Architecture

2.5.1 Concept

Kubernetes itself is a complicated distributed system; however, its system is actually

designed based on a few repeated concepts only. The first concept is declarative

9

configuration. (Tracey and Brendan, 2018.) Declarative is a programming paradigm

focusing on the logic and output of a computation without specifying its steps to achieve

the desired state (Lloyd, 1994). Kubernetes takes declarative statement from a

structured JSON or YAML document and claims the ultimate responsibility for ensuring

the result. The real advantage of declarative approach lies in the expression of desired

state. As Kubernetes understands the desired output, it can implement autonomous

action independently from user interaction, resulting self-correcting as well as self-

healing behaviors. As a real world example, Kubernetes takes in a declarative YAML file

stating that three copies of certain container image are required to run on different

machines, with 3 cores along with a memory of 10 gigabytes per machine. Then, the

Kubernetes conducts a review on all of its machines to find an optimal place to run thee

container image and eventually schedules the creation of the container on the that

machine. The Kubernetes’s duty is not only scheduling containers, but also continuously

monitoring these containers. If one out of those three containers stated in the YAML file

fails to work due to the crash of its internal process, Kubernetes immediately restarts that

container to maintain the desired state declared in the given statement. From a

developer’s point of view, this is ultimately important as the system ensure the availability

without any human interception. (Tracey and Brendan, 2018).

The second Kubernetes concept is the structure built from a multitude of independent

reconciliation or control loops in order to achieve above-mentioned self-healing or self-

correcting behaviors. Kubernetes implements decentralized design pattern, composing

a majority of controllers operating their own separate reconciliation loop.

10

Figure 4. An overview of reconciliation loop (Tracey and Brendan, 2018)

Figure 4 illustrates the operation behind reconciliation loop. Kubernetes controllers’

function is literally the same. Firstly, they observed the desired output of the application

by the declarative statements sent to Kubernetes API server, followed by the observation

of current state. Corresponding actions will be implemented if there is any difference to

ensure the matching between current state and desired state. Each loop carries its own

responsibility for certain piece of system, while each controller is completely unaware of

the rest of other executions, resulting in a considerably stable system. However, the

disadvantage of decentralized approach is the complex overall system behavior which

requires the understanding of inner execution of independent processes when

debugging. (Tracey and Brendan, 2018).

The last Kubernetes concept is implicit (or dynamic) grouping. Grouping allows users to

identify a set of objects, which are persistent entities in the Kubernetes system

(Kubernetes authors, 2020). When it comes to grouping Kubernetes objects together into

a set, there are two approaches, which are explicit/static or implicit/dynamic grouping.

While each group is defined by a static list with static grouping, the group is defined by

a statement with dynamic grouping. Kubernetes implement dynamic grouping for

flexibility as well as stability sake as it can handle an actively changing environment

without providing consistent modifications to static lists. This dynamic grouping is

accomplished via label selectors, which are key/value pairs associated with each API

11

objects in Kubernetes. Hence, those labels can be used to classify a set objects with

matching query. (Tracey and Brendan, 2018). Figure 5 below shows an illustration of

labels and selection of label.

Figure 5. Illustration of labels and selection of label (Tracey and Brendan, 2018)

As can be seen from figure 5, there are four different blue boxes illustrating four running

containers. Each container is associated with two different labels including app and

stage, describing container’s application name as well as the stage of that application

respectively. Label query or label selector in this is utilized to specify containers with the

matching query. For instance, if user requires to apply certain changes to production

containers only, ‘production’ stage label is queried to grab a set of matching containers

without touching other running containers. Using labels enables mapping organizational

structures onto loosely coupled system objects (Kubernetes authors, 2020).

2.5.2 Components

Kubernetes cluster can be divided into two different groups, including head nodes and

worker nodes (Kubernetes authors, 2019). Figure 6 below shows the diagram if

Kubernetes cluster consisting of all components linked together. The architecture

illustrated in the figure includes one Kubernetes control plane (head node) and three

worker nodes.

12

Figure 6. Kubernetes cluster

The implementation of Kubernetes always divides its fleet of machines into two groups,

including head nodes and worker nodes. Head nodes (control plane nodes) contain most

of the Kubernetes infrastructure’s fundamental components like the API server as well

as etcd while a limited selection of Kubernetes components implementing the cluster’s

actual work are running on the worker nodes. The following discussion breaks the

Kubernetes components in more detail.

Head Node / Kubernetes Control Plane Components

As shown in figure 6, control plane nodes (or head nodes) includes most of the

components that implement Kubernetes such as etcd and Kubernetes API server. The

control plane is considered as the cluster’s brain as it runs all of the tasks needed for

Kubernetes to accomplish its responsibility, ranging from scheduling containers,

managing services to serving API requests, and more.

The etcd functions as a persistent and highly available key-value database where it

stores all Kubernetes data regarding cluster state, such as the existence of nodes or

resources on cluster and so on (Domingus and Arundel, 2019). Raft, a consensus

algorithm is implemented by etcd servers, ensuring the data maintenance and recovery

in case server storage fails (Tracey and Brendan, 2018.)

13

While etcd is the heart, the API server is the hub of Kubernetes cluster. It handles all

communications between API objects persisted in etcd and clients, resulting in the

central touch point for different components inside the cluster. (Tracey and Brendan,

2018.)

Last but not least, controller managers are needed to execute reconciliation control loops

that implement several pieces of Kubernetes system (kube-controller-manager) or

interact with the underlying cloud providers (cloud-controller-manager). (Tracey and

Brendan, 2018). The controller manager is the most diverse components, including Node

Controller, Replication Controller, Endpoints Controller, Route Controller, Service

Controller, Volume Controller as well as Service Account and Token Controllers

(Kubernetes authors, 2019).

Node Components

In addition to head node, each cluster consists of at least one worker node, which actually

run user workloads. A few components presenting on these nodes are essential needed

to perform worker node’s functionality.

The first component that runs on all worker nodes in Kubernetes is Kubelet, which

ensures containers created by Kubernetes are running in a pod (Kubernetes authors,

2019). Additionally, Kubelet monitors, transfers the health state of these containers back

to the API server as well as restarts the container if it fails health check. In addition to

Kubelet, kube-proxy is the second component running on all machines in cluster.

(Managing K8s.) kube-proxy is a network proxy, responsible for network communication

between pods inside cluster and between Pods and the internet (Domingus and Arundel,

2019).

Scheduled components

There are several components scheduled to Kubernetes cluster after its initialization,

including the cluster DNS services, such as the Kubernetes Service load balancer

infrastructure, dashboard, automatic certificate agents, and container monitoring.

(Tracey and Brendan, 2018.)

14

2.6 Kubernetes Objects

2.6.1 Understanding Kubernetes Objects

Kubernetes provides a broad range of objects including Pod, Service, Deployment and

so on. Kubernetes Objects are persistent entities representing the state of cluster by

describing running containerized applications with available resources and behavioral

policies attached to those applications. While the Pod object is the elemental Kubernetes

work unit, defining a single or group of containers scheduled together, the Deployment

is the Kubernetes resource used to declaratively specify Pods as well as schedule,

deploy, update and restart those Pods whenever needed. Furthermore, a Service

functions as a load balancer or a proxy, routing traffic to its corresponding Pods via an

assigned IP address or DNS name. (Domingus and Arundel, 2019.) Once objects are

initialized, Kubernetes ensures their existences by frequently managing, reporting and

scheduling. (Kubernetes authors, 2019.)

There are also other important concepts in Kubernetes Objects’ world. Names and UIDs

are usually used to recognize Kubernetes Objects. While a name is defined in

initialization process that refer that object, an UID is generated by Kubernetes system to

distinguish that object from other similar entities. Moreover, namespaces are virtual

clusters in the same physical cluster, which are utilized to separate between objects as

well as prevent name duplication. (Kubernetes authors, 2019.)

As discussed in section 2.5.1, with implicit/ dynamic grouping, labels attach identifying

metadata for Kubernetes objects, providing the groundwork for objects grouping via label

selector. Kubernetes takes advantage of label selector to filter objects based on a set of

labels. Apart from names and UIDs, labels are introduced to be used by multiple objects.

Lastly, annotations provide a solution to store additional metadata such as timestamps,

release numbers or administrator contact information for Kubernetes objects.

Annotations provide key/value metadata storage in a similar manner to labels; however,

these metadata are not used to identify or select objects, but only used by external tools

such as third-party schedulers or monitoring tools. As labels and annotations are both

important, utilizing them properly releases the ultimate power of Kubernetes’s flexibility

15

as well as sets the great foundation for constructing deployment workflows or automation

tools. (Hightower, Beda and Burns, 2019.)

2.6.2 Working with Kubernetes Objects

Generally, the state of cluster is described by Kubernetes Objects with two equally vital

elements which are spec and status. While properly parameter-supplied spec specifies

the desired states of that object, status unit holds the information of the object’s existing

states, provided by Kubernetes system. The current status is continuously monitored

and automatically updated by Kubernetes system to ensure its matching with desired

state. The communication between objects and clusters is executed smoothly by

Kubernetes API. Object initialization process requires object’s desired state defined in

spec field, along with several necessary parameters which are apiVersion, kind and

metadata. The apiVersion field refers to the Kubernetes API version used during the

creation process, whilst kind parameter specifies the category of object. As discussed in

2.6.1 section, metadata field holds information supporting unique object identification

such as a name string, UID and possibly a namespace. (Kubernetes authors, 2019.) The

script below is an example of declaring a deployment object.

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: frontend

 labels:

 app: frontend

spec:

 replicas: 1

 selector:

 matchLabels:

 app: frontend

 template:

 metadata:

 labels:

 app: frontend

 spec:

 containers:

 - name: frontend

 image: toanthanh/frontend:latest

 ports:

 - containerPort: 8888

Script 1. Example declaring Deployment object

16

This YAML file will be then created an object of kind Deployment to Kubernetes cluster

with frontend name specified in metadata field. The creation of Deployment object is

supported with extensions/v1beta1 API version provided in Kubernetes. Spec field

specifies the desired states, aiming to create one (number provided in replicas field) pod

running container built from frontend image with latest tag pull from Docker Hub

repository of toanthanh account.

In order to create objects and interact with API, Kubernetes introduced a powerful

command-line tool called kubectl (Hightower, Beda and Burns, 2019). In practice,

necessary object fields are specified in YAML Ain’t Markup Language (YAML in short)

format files called manifests and then provided to kubectl in order to initiate deployment

process in clusters. Then, specifications in YAML file are converted into JavaScript

Object Notation (JSON) format, followed by injection into request body when making API

request. (Kubernetes authors, 2019.) Every object contained in Kubernetes is served by

a RESTful resource and exists at an exclusive HTTP path. The kubectl command

initiates HTTP requests to these URLs in order to interact with Kubernetes Objects and

make changes accordingly. Generally, kubectl is considered as Swiss Army knife of

Kubernetes with several basic commands including get, describe, apply, delete.

Therefore, kubectl allows users to apply manifests, query resources information, update

objects with changes, delete resources and some multiple other tasks. (Domingus and

Arundel, 2019.)

For almost all programming languages and operating systems, software installation and

maintenance are made easy with the help of its own package manager, such as Debian’s

apt, Python’s pip or JavaScript’s npm (Boucheron, 2018). In Kubernetes world, the most

popular package manager is called Helm. Helm packing format is known as charts,

consisting of several YAML configuration files and templates that are converted into

Kubernetes manifest. Helm enables developers and operators to effortlessly package,

install, configure as well as deploy applications and services into clusters. (Helm authors,

2019.) By using Helm, the process of configuring and deploying applications in

Kubernetes is simplified by letting users maintain only a single set of values and a single

set of templates needed for Kubernetes YAML file generation, rather than having to

maintain all the raw YAML files. Helm is becoming the standard of Kubernetes with its

17

stability and widespread adoption as it is currently maintained by Cloud Native

Computing Foundation projects (Domingus and Arundel, 2019).

2.7 Deploying Kubernetes with Continuous Delivery pipeline

Continuous Delivery is one of DevOps principle keys to build a production-grade

application (Domingus and Arundel, 2019). Kubernetes is a tool to orchestrate running

containers in the cloud and all of the changes made to running containers as well as

Kubernetes configuration files are executed with the help of a continuous delivery

pipeline.

2.7.1 Continuous Delivery

Traditionally, the most critical problem of software engineers has been the risky and

daunting process of releasing applications as it directly affects application end users.

Furthermore, the application delivered no business value until consumed by users.

(Humble and Farley, 2010.) The software market has become increasingly competitive

compared to the last two decades. To maintain the advantage in this fierce fight, the

rapid process of developing and delivering world-class applications has been placed at

the first concern. (Shahin, Babar & Zhu, 2017.) With the help of Continuous Delivery

(CD), development teams are able to deliver reliable applications safely in short cycles,

resulting in continuously bringing application latest updates in an efficient way. Not only

bringing the value to development team, adopting CD can also be beneficial for multiple

aspects across the company. There are several key benefits of utilizing CD in product

development process. (Chen, 2015.)

The first benefit of adopting CD is accelerated time to market. Without the help of CD

practice, weeks or months are usually measured in cycle time in many companies

(Humble and Farley, 2010).

CD enables companies to stay ahead of competitive market by frequently introduce new

enhancements that reinforce the relationship between companies and their end users.

The software is able to be released many times a day without any challenges and the

18

development cycle is now drastically reduced to less than a week compared to previous

months or weeks. (Chen, 2015.)

The CD’s second benefit is building the right product. Continuous releases let

development teams receive user feedback rapidly, enabling them to realize and focus

only on high business value features. In the past, teams used to spend extensive amount

of time and effort on disadvantageous features without discovering these until after next

cycle. Obviously by adopting CD, the user-centric and innovation are placed in the core

value of companies for digital transformation. (Chen, 2015.)

Productivity and efficiency have been increased considerably by implementing CD

(Chen, 2015). Traditionally, the process of releasing and managing products requires the

close cooperation between developers and operators. CD blurs the lines between those

team and ingrates them all into overall application performance responsibility. (Humble

and Farley, 2010.) All processes and releases involved happens only at the push of a

button, empowering the whole team to be highly product as well as efficient by removing

manual and repetitive tasks (Itkonen, Udd, Lassenius, Lehtonen, 2016).

Reliable releases lie amongst the core of CD benefits as the risks involved with release

process have drastically reduced. Previously, human errors are the most popular factor

leading to mistakes during deployment. (Itkonen, Udd, Lassenius, Lehtonen, 2016.) By

adopting CD, these mistakes have been automatically detected before exposing to

production environment. The difference is minor enough for immediate bug identification

and fixes. (Chen, 2015.) Therefore, the simplicity and fast release process has relieved

the previous stresses put on development team (Humble and Farley, 2010).

Furthermore, release failures are backed by automatic rollback offered by CD, resulting

in improving reliable releases (Chen, 2015).

Product quality is dramatically improved as the number of errors has reduced by over 90

percent with the assistance of CD. Previously, bug tracking and fixing requires 30 percent

of the team. In contrast, currently the code experiences a series of tests, and bugs will

be fixed rapidly before moving to other tasks. Rare production bugs are immediately

added to team current sprint plan and fixed within days, compared to waiting months

formerly. (Chen, 2015.)

19

Last but not least, by adopting CD, the relationship between companies and their

customers has been enormously strengthened. The enhance in cooperation of

developers and operators generates a smooth workflow, resulting in the best products

served to companies’ end users. Earning the trust from customers might be one of the

most rewarding benefits offered by CD. (Chen, 2015.)

2.7.2 Continuous Delivery Pipeline

As discussed in the previous section, Continuous Delivery (CD) practice aims to develop

a process which is responsible for delivering new software enhancements to end users

constantly and reliably. By the stable and effortless deployment process, CD not only

plays in important role in ensuring the high quality for the application, but also

strengthens and improves the cooperation between developers and operators, leading

to better development cycle. All of those above-mentioned benefits are achieved by

building a Continuous Delivery Pipeline. (Phillips, 2014.) A CD pipeline is an automated

manifestation of the process of getting application from code to end users (Humble and

Farley, 2010). There is no silver bullet or general blueprint for CD pipeline as it differs

with various applications. Nevertheless, every pipeline commonly involves integration

stage, followed by building, testing and deployment stages. (Phillips, 2014.)

The Figure 7 below illustrates an example of CD pipeline. As the figure shows, this

example consists of six different stages and the promotion from one step to another is

enabled automatically or manually.

Figure 7. An example of Continuous Delivery pipeline (Chen, 2015)

20

The first stage of CD pipeline is code commit. Whenever developers push their codes to

the code repository, the CD pipeline is triggered by a pre-defined hook to compile the

code as run as conduct unit tests. The CD pipeline stops in case there is any errors, then

the develop will be informed. The next run will be executed as soon as fixes are pushed

to the remote repository. If the stage completes without any error, the advancement to

next build stage will be conducted automatically. (Chen, 2015.)

Build is the CD pipeline second stage. Unit tests are run again in order to generate code

coverage report, followed by the execution of integration tests and multiple code

analysis. At the end of the successful run, the artifacts are built and uploaded to the

repository in charge of deployment or distribution process. CD pipeline eliminates the

software error occurred while deploying to multiple different environments. The pipeline

automatically switches to next stage if the execution completes successfully. (Chen,

2015.)

The CD pipeline automatically continues with a series of test stages, including

acceptance test and performance test. The acceptance test stage guarantees the

matching between software and user requirements. Several tasks including provisioning

and configuring the servers, along with deploying the actual application to them are

manually required to create the acceptance test environment. Undoubtedly, this time-

consuming setup required human resource with time resource to be accomplished. With

the help of CD pipeline, these needs are eliminated, as the pipeline automatically sets

up the test environments in the matter of minutes. Secondly, the performance test stage

determines the level of software’s performance affected by code change. The CD

pipeline assists to conduct performance test in each code commit passed the previous

stages, whereas this kind of test was performed only before big releases previously.

Lastly, the manual testing environment is automatically created for testers in the manual

test stage, whereas human activity was required in setting up phase previously.

Furthermore, the testers are notified with message containing the required information

to access the pre-setup environment. Like any other stages, the pipeline will exit if there

is any error in any stage. After completing all test stages, the application has passed all

of the compulsory checks and is ready to be delivered to end users. (Chen, 2015.)

21

The final stage of the CD pipeline is production. In the past, there were usually failures

in this step due to errors in the deployment process or scripts. With the help of CD, as

the deployment process as well as scripts have been gone through a series of tests in

previous stages, the application is deployed into production only with the click of a button.

(Chen, 2015.)

2.7.3 Continuous Delivery with Kubernetes

Continuous Delivery pipeline plays a vital role in deploying a well-functioning Kubernetes

cluster as manual Kubernetes application management leads to fragile deployment

updates, resulting in the decrease in agility of application delivery. Continuous Delivery

starts with a version control, which is a tool to maintain application and configuration

code changes history. Then, a series of tests in the pipeline is executed to quickly provide

immediate loops of feedback for code changes that break the build, limiting the delivery

of bad code into production environment. The pipeline proceeds with container building

phase if all test suites have been passed to create an artifact to deploy to an environment.

There are multiple approaches to minimize the size of the container image such as

multistage build for removing the unnecessary dependencies for the application to run,

distroless base images for removing redundant binaries and shells, as well as optimize

base images. The successfully built container needs to have proper tags for development

team to effortlessly identify the version of the image deployed to a certain environment.

Usually, Git Hash tagging strategy is utilized in this execution. (Vallalba, Strebel,

Evenson & Burns, 2019.)

Till this point, containers built from the pipeline are ready to be deployed to environments.

Containers exist as immutable objects which can be promoted from dev, staging and

production environments. Previously, development teams always encountered

configuration drift issue with libraries and versioning of components diverging in each

environment. Kubernetes tackles this problem by having a declarative way to describe

Deployment objects which are versioned as well as deployed consistently.

There are several deployment strategies in Kubernetes world, including rolling updates,

blue/green deployments and canary deployments. Rolling updates are built-in

functionality in Kubernetes, enabling users to trigger an update to running application

22

without down time. Figure 8 below illustrates an example of Kubernetes rolling update.

In the example, rolling updates start by creating a second version of Deployment object

which then creates pods running the second version of application (frontend:v2). Then,

service object immediately terminates connection to Deployment 1 object and directs all

traffic to newest updated second version. There are two points that require attention

while implementing this strategy. Firstly, rolling updates strategy can cause connection

dropping. Readiness probes and presto life cycle hooks provided by Kubernetes are

utilized to ensure the traffic connection to the new pod objects. Secondly, as there are

two versions of the application at the same time during the updates, the application’s

database schema should support both versions of the application. (Vallalba, Strebel,

Evenson & Burns, 2019.)

Figure 8. A Kubernetes rolling update (Vallalba, Strebel, Evenson & Burns, 2019)

The second deployment strategy is blue/green rollout. Blue/green deployments enables

the application release in a predictable manner, as it grants development teams control

when to shift the traffic over to the new environment. This approach requires the internal

infrastructure to have enough capacity to deploy both existing and new versions of the

application at the same time. Blue/green deployment brings a massive advantage in

23

quickly switching back to the previous version of the application. However, database

migrations require development team to consider in-flight transactions as well as schema

update compatibility. (Vallalba, Strebel, Evenson & Burns, 2019.) Figure 9 below depicts

a blue/green deployment.

Figure 9. A blue/green deployment (Vallalba, Strebel, Evenson & Burns, 2019)

The last deployment strategy is canary deployment method. This approach is relatively

similar to Blue/green strategy; however, it enables a much flexibility in directing traffic to

a new release. In practice, this method allows development team to test new features

with a subset of users, reducing the risk of delivering broken features to all user base.

For example, 10% of traffic can be directed to the new version of the application before

shifting a bigger percentage of users there. Canary deployments also work well with

advanced techniques to release to certain specific region of users or target users with

certain specific profile. (Vallalba, Strebel, Evenson & Burns, 2019.)

2.8 Monitoring Kubernetes

One of the core engineering practices in software system is monitoring. Furthermore,

the rise in microservice systems provokes the importance of monitoring. The

production Kubernetes cluster experiences the devastating risk without being

monitored with a good strategy. (Tracey and Brendan, 2018.) The first and foremost

24

objective of monitoring is reliability. Reliability in this case refers to both Kubernetes

cluster and applications running in the cluster. The second feature of monitoring

system is providing observability into Kubernetes cluster as it plays a critical role in

determining and tracing problems within the system before they end up being incidents.

Black-box and white-box are among two common monitoring techniques. Black-box

method focuses on monitoring an application from the outside and is often used for

components like storage, CPU and memory, whereas white-box method put

concentration on monitoring the application state such as total HTTP requests, total of

500 errors, latency of requests, etc. (Burns & Tracey, 2019.) Prometheus tool

(https://prometheus.io/) is commonly used to monitor Kubernetes cluster in the inside,

while Uptime Robot tool (https://uptimerobot.com/) is utilized to mimic user behavior to

check if the application is available to end users (Domingus and Arundel, 2019).

There are several metrics needed to be monitored and those metrics can be grouped

into four different layered approaches, including physical or virtual nodes, cluster

components, cluster add-ons and end-user-applications. Regarding nodes, metrics that

development team might want to monitor are CPU utilization, memory utilization, network

utilization and disk utilization. Etcd latency should be put into consideration when

monitoring cluster components. Cluster auto scaler and Ingress controller are cluster

add-ons related critical metrics to monitor. Last but not least, container memory utilization

and saturation, along with container CPU utilization, container network utilization and

error rate, combining with application framework-specific metrics are targeted as

application layer is being monitored. In general, using this monitoring layered approach

enables a more targeted approach to trace problems. (Burns & Tracey, 2019.)

https://prometheus.io/
https://uptimerobot.com/

25

3 Case study

3.1 Case summary

This case study was implemented in order to digitalize a traditional restaurant’s

operations and services. The case restaurant has more than 10 employees in total and

on average 5000 active customers a month. Previously, the process of taking order from

customer was a time-consuming process as human manual activity was required.

Furthermore, after taking order from customer with pen and paper, the waitress needed

to go upstairs to deliver the order paper to kitchen area. This complicated process

required lots of human interaction without any help of technology, resulting in lots of

errors and mistakes. Several mistakes including the missing of order notes transferred

by the waitress or the missing of order notes in the middle of the food preparation by

chef and kitchen assistances. The restaurant started a digital project aiming to transform

internal processes by applying technology into daily operations.

The objective of this implementation is to solve part of challenges in the day-to-day

operation to eliminate human error with the help of a technology solution. The main focus

at the first stage in digitalization transformation plan is to build a point of system software.

After the scoping meeting, this system’s proof of concept should include several core

features, such as item with variants listing, the ability to take order and sell from a

smartphone or tablet, kitchen display system for meal preparation as well as order

management. Several future features have also been put into consideration.

By having a clear vision agreed from the scoping meeting, a proof of concept of the

application was implemented successfully. The frontend of the application is written

using ReactJS, while the backend of the software is powered by NodeJS. The

development and deployment process are run by a CD pipeline hosted on Travis CI

(https://docs.travis-ci.com/). Furthermore, as the system needs to be highly available

and scalable, the existence of several technology, consisting of Docker container,

Docker container registry and Kubernetes hosted on Google Kubernetes Cluster (GKE)

fulfill this requirement. In general, the implementation of the software, including

backend, frontend, CD pipeline and Kubernetes cluster was successful, resulting in the

https://docs.travis-ci.com/

26

first step towards the complete digitalization in the restaurant’s internal processes as

well as service in the future.

3.2 Case challenges

The software was decided to be deployed in in of the most reliable cloud computing

platform. Along with the complexity of architecting and setting up the project from scratch,

integration as well as deployment process needs to be put into consideration. There were

several challenges needed to be solved at the beginning of the project.

The first challenge was deciding the architecture of the application. Previously,

applications were usually designed based on monolithic architecture as they are

effortless to build, test and deploy. A monolithic application is a self-contained, single-

tiered software application. With this application, as we expected things to growth at a

rapid pace in the near future due to a number of features it requires, monolithic

architecture seemed not to be an appropriate solution this time.

Technology stack was the second challenge in this project. In the first phase, this

application frontend is utilized only by restaurant’s staff; however, the idea is to publish

the application so customers visiting the restaurant can order their food at their fingertip

without waiting for waitress. Therefore, the application should support multiplatform

including tablet, mobile or desktop, regardless of device’s operating system.

Furthermore, the client side should maintain user state as well as persistent connection

to the backend and database of the application. Database type selection also lay

amongst the problems within technology stack scope.

Last but not least, all problems in operating and deployment stage should be foreseen

and put into foremost consideration. As the application plays a crucial role in the daily

operation, it was expected to be fault-tolerant and highly available. Any outage would

result in hundreds of other challenges, risking customer satisfaction and putting monthly

financial accounting at risk. As the number of developers will rise over time, setting up a

deployment pipeline was put on top of priority list. This approach was used to not only

ensure seamless development experience but also eliminate time-consuming process of

peer-reviewing, testing and environment management and debugging. In addition, a

27

deployment pipeline enabled the development team to release new versions as quickly

as possible, allowing developers to focus on customer-oriented issues and features,

rather than spending hundreds of hours debugging an error at deployment process.

3.3 Technology solutions

As discussed in the previous section, there were several challenges described in the

project. The first solution aiming to solve the architecture was microservice architecture.

The development team decided to design the application following microservice

architecture as the system will consist of multiple integrations between services in the

near future. Compared to big monolithic application where all services are bundled into

a gigantic system, with the help of microservice architecture, each service has its own

function and are loosely couple with other services. Across the whole application, each

service is packaged as a Docker image as single unit of deployment.

Regarding the tech stack, JavaScript was chosen as the primary programming language

in this project. As the application should be available on different platforms and the

budget was restrict, the web application approach was adopted. React, which is a library

for building user interfaces, was used in the frontend of the application due to its

popularity and modular approach on writing components. On the backend side,

Express.js framework powered by Node.js, which is prominently used to build APIs, was

the final selection in this project to match JavaScript stack. In order to maintain persistent

connection between frontend and backend, Socket.io library was the good match as it

enabled real-time, bi-directional communication between clients and servers. Regarding

the database type, as there will be a large number of read-write operations and the

application will deal with a large amount of data with flexibility in data modelling, NoSQL

databases were the most suitable type in this scenario. Therefore, the team decided to

go with MongoDB, which is a the most popular document-oriented NoSQL database.

Lastly, as highly availability and fault tolerance were put into top priority when developing

this software, Kubernetes, which is a container orchestration in large scale microservice

application, was adopted due to its core functionalities. Kubernetes aimed to tackle

several problems, including service discovery and load balancing, horizontal scaling and

self-healing. As a result, these problems mentioned previously would be completely

28

resolved. Furthermore, the help of continuous delivery pipeline was needed in

collaboration with Kubernetes. The continuous delivery pipeline not only facilitated us to

prevent failures in release stage to production but also made the final deployment to end

users effortless with a single click of a button.

3.4 Implementation

All of the problems have been tackled by those solutions discussed in the previous

section. The implementation of the whole application will be described in the following

parts. First of all, an overview of software architecture is explained for a basic

understanding of the software. Then, tools along with services needed to build the

Kubernetes cluster and the pipeline of software are mentioned. Last but not least, the

process of creating Kubernetes cluster with the continuous delivery is discussed in detail.

3.4.1 Software architecture

Designing the overview of software architecture plays an evitable role in developing any

product. The software is a point of sale (POS) system for both internal and customer use

in a restaurant. Figure 10 below illustrates the architecture of the Minimum Viable

Product (MVP) version of the software.

29

Figure 10. Application architecture

As can be seen from the figure 10, the application contains three services, including a

client with persistent connection to its server responsible for order management

connected with kitchen display system, a backend API and database, and a user service.

The traffic is redirected by Ingress service to the correct service’s Cluster IP service

inside the Kubernetes cluster. This architecture was designed to provide the flexibility on

adding or removing services in the Kubernetes cluster in the future. Each service

deployment unit contains three co-scheduled pods representing three different running

containers of the corresponding Docker image. The three pods keep the application

highly available as traffic redirected from Ingress is load-balanced by Kubernetes and

routed to the available pod. The pod itself does not inherit self-healing ability, therefore

pods are created, controlled and monitored by Deployment Kubernetes object.

Deployment object ensures the availability of service by immediately restarting the

container in case it is shut down for any reason. During the scope of this thesis, the

author will main discuss about pos-client service, pos-server service and how they

work with each other under the orchestration of Kubernetes.

3.4.2 Services and tools

Last decade experienced a revolution of cloud computing technology, with the

introduction of a variety of different products on the market to build containerized,

distributed systems on the cloud. The project utilized the help of multiple available tools,

some of those are industry-standard solutions. Those tools and services are introduced

explicitly in the next sections.

Google Cloud Platform

Google Cloud Platform (GCP) is a provider of a series of cloud computing services by

Google. GCP enables customers to remove the hassle of managing physical

infrastructure, along with provisioning servers as well as configuring networks. With

GCP, Google offers a wide range of essential benefits, including automated processes,

compelling data analytics, hybrid and multi-cloud flexibility and scalable security at an

affordable pricing with creative control strategy. Lately, Google has been intensively

30

working on developing container services towards microservice trends in software

engineering. Some of these services includes Kubernetes Engine, Istio, Anthos,

Container Registry. (Google Cloud Platform authors, 2020.)

Google Kubernetes Engine

Google Kubernetes Engine (GKE) is a controlled platform for containerized applications.

These applications can include stateful, stateless, Artificial Intelligence, Machine

Learning, complex and simple web applications or any kind of API or backend services.

GKE enables rapid development by offering ability to remove operational bottlenecks

with auto-repair, auto-upgrade and release channels. Furthermore, GKE provides auto-

scaling feature, enabling systems to handle abrupt increase in demand on services. GKE

is considered as a modern and smart way to deploy Docker containers, with the help of

Kubernetes for effortless management and scaling experience. (Google Kubernetes

Engine authors, 2020.)

Docker Hub Container Registry

Docker Hub is world’s largest service for container images that is compatible with popular

continuous delivery systems, including Jenkins, Circle CI or Travis CI. Docker Hub offers

several convenient features, including auto build and auto test. Auto build enables

Docker Hub to pull code from version control management tools like Github or Bitbucket,

followed by locating Dockerfile and finally build, tag and push the image into the

container. In addition, auto test initiates tests after building the image, stopping the

process of pushing new image if anything fails. Furthermore, the security and

authentication are also put into top priority with the help of access tokens management

and two-factor authentication feature. Private images are accessible only by project

members. (Docker authors, 2020.)

Travis CI

Travis CI is a hosted solution offering continuous integration service to build and test

software projects hosted on Github. CI is included in the name instead of CD as at first

it was developed to solely solve the continuous integration (CI) problem, with an intensive

31

focus on building and testing. However, the change occurred as later they expanded

their platform into a continuous delivery and continuous deployment platform. Travis CI

tool provides assistance in the pipeline automation from code commit stage till final

deployment stage. Also, Travis CI with notification system alerts the developers about

build status as well as errors so they can act rapidly. (Travis CI authors, 2020.)

Minikube

Minikube is a tool which creates a local Kubernetes cluster on operating systems

including macOS, Linux and Windows provided by Google. Minikube aims to be the best

tool for local Kubernetes application experience by supporting several integral

Kubernetes features, including Load Balancer, Multi-cluster, NodePorts, Persistent

Volumes, RBAC,... (Minikube authors, 2019.)

Skaffold

Skaffold is a developer-focused command line tool developed by Google to provide a

swift local development workflow. In local environment, containers are automatically

rebuilt and deployed changes into local or remote cluster if any code change is detected.

By using Skaffold, enormous amount of time is saved as changes are immediately

rendered on local environment without flowing through continuous pipeline and container

registry. (Domingus and Arundel, 2019.)

3.4.3 Implementation

Service image configuration

Docker can automatically build images by reading the information in Dockerfile, which is

a text document containing all the commands used to assemble an image. The scripts

below show the configuration of Dockerfile for client and server services.

32

client service Dockerfile

FROM node:12.10.0-alpine

WORKDIR /usr/client

COPY package.json ./

RUN npm install

COPY . .

RUN npm run build

CMD ["npm", "run", "start"]

server service Dockerfile

FROM node:12.10.0-alpine

WORKDIR /usr/server

COPY package.json ./

RUN npm i

COPY . .

CMD ["npm", "start"]

Script 2. Client & Server images configuration

Service’s deployment and cluster IP configuration

As described in figure 10 regarding the application architecture, the pods are initiated as

well as managed by Deployment object. Furthermore, the cluster IP service for each

service needs to be setup so that the load balancer can communicate with the correct

service. The configuration of deployment objects, along with cluster IP service for client

and server services are shown in the scripts below.

client-cluster-ip-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: client-cluster-ip-service

spec:

 type: ClusterIP

 selector:

 component: web

 ports:

 - port: 3000

 targetPort: 3000

Script 3. Client service configuration

33

client-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: client-deployment

 labels:

 app: client

spec:

 replicas: 3

 selector:

 matchLabels:

 app: client

 template:

 metadata:

 labels:

 app: client

 spec:

 containers:

 - name: client

 image: toanthanh/pos-client:latest

 ports:

 - containerPort: 3000

Script 4. Client deployment object configuration

server-cluster-ip-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: server-cluster-ip-service

spec:

 type: ClusterIP

 selector:

 component: server

 ports:

 - port: 5000

 targetPort: 5000

Script 5. Server service configuration

server-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: server-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 component: server

34

 template:

 metadata:

 labels:

 component: server

 spec:

 containers:

 - name: server

 image: toanthanh/pos-backend

 ports:

 - containerPort: 5000

 env:

 - name: DB_URL

 valueFrom:

 secretKeyRef:

 name: db_url

 key: DB_URL

Script 6. Server deployment object configuration

Ingress service configuration

Ingress service main job is to expose HTTP as well as HTTPS routes from outside the

cluster to correct services inside the cluster. In this case, it redirects the traffic to

https://<cluster-ip>/ to the client service while the traffic to https://<cluster-ip/api/*/ will be

routed to server service. The script below illustrates the detailed configuration of Ingress

service.

ingress-service.yaml

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: ingress-service

 annotations:

 kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/rewrite-target: /$1

spec:

 rules:

 - http:

 paths:

 - path: /?(.*)

 backend:

 serviceName: client-cluster-ip-service

 servicePort: 3000

 - path: /api/?(.*)

 backend:

 serviceName: server-cluster-ip-service

 servicePort: 5000

35

Script 7. Ingress service configuration

Local Development with Minikube and Skaffold

As introduced in the previous section, Minikube is utilized to stimulate a production

Kubernetes cluster on local environment. The figure 11 below illustrates the command

of initiating local cluster with Minikube and the process of creating it.

Figure 11. Minikube command and Kubernetes cluster creation process.

Skaffold is the tool used to enhance the local development experience by listening all

changes in the project root directory, followed by building and deploying the application

to local Kubernetes cluster. Skaffold enables the rapid container update in local

Kubernetes cluster without the need of running separate build command, pushing the

latest built version to container registry and pulling it back on local cluster. With the

assistance of Skaffold, not only an enormous amount of time for the developer are saved,

but also the efficiency is boosted. The script below illustrates the configuration file to

update the containers inside the Kubernetes cluster with the latest image built from the

changes. The script is executed by running command “skaffold dev” in the terminal.

skaffold.yaml

apiVersion: skaffold/v1beta2

kind: Config

build:

 local:

 push: false

 artifacts:

 - image: toanthanh/pos-client

 context: client

 docker:

36

 dockerfile: Dockerfile

 sync:

 "**/*.js": .

 "**/*.css": .

 "**/*.html": .

 - image: toanthanh/pos-server

 context: backend

 docker:

 dockerfile: Dockerfile

 sync:

 "**/*.js": .

deploy:

 kubectl:

 manifests:

 - k8s/client-deployment.yaml

 - k8s/server-deployment.yaml

 - k8s/server-cluster-ip-service.yaml

 - k8s/client-cluster-ip-service.yaml

Script 8. Skaffold configuration

Infrastructure Setup

This phase contains multiple steps, starting with cloud project creation and configuration

management to cluster management. The development team decided to go with Google

Cloud Platform as the hosting infrastructure in this project. The service management with

Google Cloud Platform was implemented extremely effortless with the help of the default

command-line interface gcloud.

First of all, a Google Cloud project was created as the starting point of using Google

Cloud Platform services. The creation of project was seamlessly accomplished by

executing the simple command from the command-line interface: gcloud projects

create pos-k8s. As a result of the command, a project with the ID of pos-k8s was

created and all cloud services are utilized under this project in Google Cloud Platform.

After the project initiation was completed, a web user interface provided by Google Cloud

Platform was available to interact with the project as well as the services applied in the

project. Figure 12 below shows the dashboard of the project provided by the Google

Cloud Platform for the user to access after the creation in Google Cloud Platform.

37

Figure 12. Cloud project dashboard

Then, the existence of a Kubernetes cluster was needed in order to deploy the

application. Again, the cluster creation process was made seamlessly effortless by

utilizing gcloud command-line interface. The script below illustrates the command

executed to initiate a cluster with gcloud.

gcloud container clusters create pos-cluster \

 --project "pos-k8s" \

 --zone "europe-north1-a" \

 --no-enable-basic-auth \

 --cluster-version "1.13.12-gke.25" \

 --machine-type "n1-standard-1" \

 --image-type "COS" \

 --disk-size "20" \

 --scopes "gke-default" \

 --num-nodes "3" \

 --enable-autoscaling \

 --min-nodes "3" \

 --max-nodes "5" \

 --network "default" \

 --subnetwork "default" \

 --enable-legacy-authorization \

 --addons HorizontalPodAutoscal-

ing,HttpLoadBalancing,KubernetesDashboard \

 --enable-autoupgrade \

 --enable-autorepair

Script 9. Google Cloud Kubernetes cluster creation configuration

38

The cluster creation took several minutes for the Google Kubernetes Engine to process

the infrastructure acquired from the script, enable Kubernetes API inside the project and

install the software. After the success of cluster creation, the cluster as well as its status

were displayed in the Google Kubernetes Engine dashboard.

Figure 13. Google Kubernetes dashboard

As illustrated from the Figure 13, the newly created pos-cluster cluster was ready for

deployments. In order to assign the deployment process in the pipeline the possibility to

handle the cluster as well as deploy applications inside it, a separate account containing

the correct rights were needed. In Google Cloud Platform terms, these accounts are

called service accounts. In the scope of this project, only 1 service account was needed

to deploy applications to the Kubernetes cluster. The execution script of this service

account creation is illustrated in Listing in Appendix 1. As a result, a downloadable JSON

file containing the service account’s private key was available to be downloaded. This

JSON file then was encrypted to be used in Continuous Delivery pipeline without

exposing confidential information when being committed to Github. All in all, the

infrastructure setup step was completed by achieving a running cluster and a service

account with the correct roles to deploy applications to the cluster.

Continuous Delivery platform configuration

The scripts specified in the previous section were ready to be run in the actual pipeline.

The last step of the implementation phase was to config the Continuous Delivery pipeline

flow with the assistance of Travis CI platform. Travis CI provides an effortless way to

define and trigger Continuous Delivery pipeline by simply putting a configuration file

(.travis.yml) in the project root directory. The detail of the configuration file in YAML

format is displayed in the script below.

39

sudo: required

services:

 - docker

env:

 global:

 - SHA=$(git rev-parse HEAD)

 - CLOUDSDK_CORE_DISABLE_PROMPTS=1

before_install:

 - openssl aes-256-cbc -K $encrypted_0c35eebf403c_key -iv

$encrypted_0c35eebf403c_iv -in service-account.json.enc -out service-

account.json -d

 - curl https://sdk.cloud.google.com | bash > /dev/null;

 - source $HOME/google-cloud-sdk/path.bash.inc

 - gcloud components update kubectl

 - gcloud auth activate-service-account --key-file service-

account.json

 - gcloud config set project pos-k8s

 - gcloud config set compute/zone europe-north1-a

 - gcloud container clusters get-credentials pos-cluster

 - echo "$DOCKER_PASSWORD" | docker login -u "$DOCK-ER_USERNAME" --

password-stdin

 - docker build -t toanthanh/react-test -f ./client/Dockerfile.dev

./client

script:

 - docker run toanthanh/react-test npm test -- --coverage

deploy:

 provider: script

 script: bash ./deploy.sh

 on:

 branch: master

Script 10. Travis CI configuration

In the env section, the SHA variable was the unique identifier of the commit used in

Github. By using SHA, the Docker image was added with a unique tag along with the

default latest tag whenever the commit was created, allowing the Kubernetes cluster

always stayed updated with the latest version of the application. The before_install job

lifecycle was used to setup gcloud command-line tool with the correct information of

project and cluster inside the container running the deployment process. The desired

result of this step was to be able to access the correct cluster with the encrypted service

account rights and to be ready for actual application deployments. Then, the script job

lifecycle was used to run tests. If there was any error in this stage, the pipeline exited

and returned an exit code of 1. Otherwise, the deployment process continued with the

deploy job lifecycle. As multiple commands needed to be executed in this phase ranging

40

from image building and tagging to Kubernetes cluster deploying, an executable wrapper

script was created. The details of executable file was shown in below.

deploy bash script

docker build -t toanthanh/pos-client:latest -t toan-thanh/pos-

client:$SHA -f ./client/Dockerfile ./client

docker build -t toanthanh/pos-server:latest -t toan-thanh/pos-

server:$SHA -f ./backend/Dockerfile ./backend

push images with latest

docker push toanthanh/pos-client:latest

docker push toanthanh/pos-server:latest

push images with SHA tag

docker push toanthanh/pos-client:$SHA

docker push toanthanh/pos-server:$SHA

deploy applications to Kubernetes

kubectl apply -f k8s

kubectl set image deployments/server-deployment server=toanthanh/pos-

server:$SHA

kubectl set image deployments/client-deployment client=toanthanh/pos-

client:$SHA

Script 10. Executable script in deploy hook in Travis CI configuration

The previous script was used to build and tag images, push them to Docker Hub, followed

by enabling Kubernetes cluster set in before_install lifecycle to pull the image from

Docker Hub and put them into container orchestrated by Kubernetes. In order for the

whole process to work, environment variables needed to be declared in Travis CI. These

environment variables were effortlessly setup by navigating to the setting page in Travis

CI dashboard. Figure 14 below illustrates the configuration of environment variables in

Travis CI.

41

Figure 14. Environment variables configuration in Travis CI

3.5 Evaluation

The implementation of the point of sale minimum viable product was a success with

running application on Kubernetes cluster hosted on Google Cloud Platform. The

development team successfully developed its core features as well as efficient and

reliable release process. The outcome of the project met the expectation of both

business objectives as well as technical objectives.

Business-wise, the application brought a solution to one the most challenging day-to-day

operation, enabling smooth order transition from counter to kitchen area. The application

with basic features including item listing, order placing, kitchen display system was

created to immediately solve existing problems, reducing manual work for customer

service employees, helping them to provide better user experience. Kitchen area now

had the system to track orders sent from the counter personnel. Additionally, chefs could

notify customer service people as soon as the food is ready to be served by simply

marking the order as done. The success of this proof-of-concept project not only

transformed daily operation by technology, but also opened door for future opportunities

with the aim of providing the best possible point of system service by adding features

42

like warehouse management, loyalty program application for end users. The layout of

the applications is illustrated in the following pictures.

Figure 17 illustrates the counter area user interface. Items were listed based on category

(appetizer, main, drink or dessert) and the prices were adjusted based on time, whether

the current time was lunch, dinner or weekend. On the right panel, they could effortlessly

monitor all current orders and prices to charge later on without asking the customers

what they had previously.

Figure 15. Application’s counter user interface

The figure 18 describes the kitchen area user interface. Orders were displayed and

sorted by time from left to right, with latest orders appeared in the end. The order card’s

header showed the time since customer placed an order and the header background

color was adjusted accordingly. As the restaurant aimed to serve the customer as soon

as possible, and time-from-order-till-serve was one of the important metrics to customer

satisfaction, showing the time enabled chefs to focus and deliver the good quality food

within the satisfaction time.

43

Figure 16. Application’s kitchen area visual

Looking from technical perspective, the implementation also met the initial objectives set

from the beginning. Firstly, the application was successfully designed with microservice

architecture. Two current running services were client and server. Each service was

loosely coupled and packaged into a Docker container as a single unit of deployment.

Future services can be easily integrated into the system. The development team

successfully deployed working containers into Kubernetes cluster. Figure 19 below

illustrates Kubernetes’s workload.

Figure 17. Kubernetes cluster’s workload

As shown in the figure, two services were running on six different pods managed directly

by client-deployment and server-deployment objects. In case one pod was down for any

reason, the client-deployment or server-deployment objects will restart the pod

immediately, providing the zero-downtime feature for the whole application. The figure

20 shows Kubernetes cluster’s services and ingress.

44

Figure 18. Kubernetes cluster’s services & ingress

Referring back to application architecture (figure 9), the Ingress service received outside

traffic and forwarded the traffic to the correct services. As mentioned previously, each

service ran inside three different pods and each pod had its own IP address. As IP

address of each pod was dynamic, client-cluster-ip-address and server-cluster-ip-

address maintained the unique endpoints to these sets of pods, therefore traffic received

from Ingress service could be load-balanced to the correct place.

In general, a fully-functioning, highly available, fault-tolerant and effortlessly scalable

application was successfully deployed to Kubernetes cluster in Google Kubernetes

Engine. Furthermore, deployment process - one of the objectives stated in the beginning,

was also be solved with the help of a delivery pipeline. The delivery pipeline helped the

team to avoid pushing bad codes into production environment, which prevented outages.

In addition, it enabled new versions to be released as quickly as possible, allowing

development team to focus on features, rather than spending hours experiencing

production downtime as well as debugging error at deployment process. The code after

merged into master branch will automatically deploy to Kubernetes cluster without any

manual configuration. As the development team will grow time after time, setting up a

delivery ensured the seamless development workflow in the future. Figure 21 shows the

user interface of a successful build in Travis CI tool.

45

Figure 19. A Travis CI successful build

Last but not least, even though Kubernetes cluster itself provided zero-downtime feature,

setting up an external monitoring tool is important to provide a second layer of external

monitoring. Therefore, Uptime Robot tool has been configured to track the availability of

the application. Constant checks were sent with the interval of 5 minutes and

development team will be alerted in case the cluster is down. The application has

performed 100% uptime since the tool was configured. Figure 22 illustrates application

uptime.

Figure 20. Application uptime monitored by Uptime Robot

46

3.6 Future development

Though the implementation of the project achieved the initial goals regarding both

business objectives as well as technical objectives, there are several rooms for

improvement in the future. Firstly, regarding feature point of view, as the application is

serving only one restaurant, the multi tenancy architecture can be utilized to transform

the application into a large-scale Software as a Service (SaaS) solution. Also, the

authentication, role-based access, analytics features should be put into development

backlog to give users an overview of sales numbers as well as fully support multiple

users with different access rights. More unit tests should be put into consideration for

effortless application debugging process in the long run. Lastly, from infrastructure

perspective, as the current pipeline depends on several services such as Travis CI and

Docker Hub, implementing a centralize and controllable system should be put into

consideration. This effort can be done by moving the pipeline into Cloud Build as well as

utilizing Google Container Registry, all provided by Google Cloud Platform. All in all, the

application and infrastructure setup are still at the first version, and there are

considerable improvements can be implemented in the future.

47

4 Conclusion

This thesis focuses on building a production-grade pipeline for an application deployed

to Kubernetes cluster hosted in Google Cloud Platform while discussing the advantages

of using Docker container technology with Kubernetes as container orchestration. In the

past few years, as technology is the drive of industrial revolution, a considerable amount

of software has adopted microservice architecture. Docker now has been recognized as

the new standard for container technology (Bernstein, 2014). Besides, Kubernetes are

transforming the creation and deployment of applications by fundamentally giving

developers more velocity, efficiency and agility (Hightower, Beda and Burns, 2019).

Kubernetes offers enormous help not only in delivering containerized application, but

also in clustering management (Kubernetes Authors, 2019). Furthermore, Kubernetes

also plays an important role in every microservice software project nowadays.

To sum up, the thesis successfully illustrated how to setup a modern production-grade

pipeline to deliver containerized application to Kubernetes clusters in Google Cloud

Platform. Moreover, the project outcome meets not only the technical but also the

business objectives set for this study. By using Docker container technology,

dependency resource management and isolation of environments problems are

completely resolved. Kubernetes with rich feature set and application support, combined

with outstanding community and industry support will be ultimately beneficial for all

applications. However, there are still several impediments while implementing

Kubernetes. First of all, Kubernetes can be an overkill solution for small applications with

simple architecture. Secondly, Kubernetes learning curve is steep enough so that it might

reduce productivity for developers in the transition phase. Last but not least, Kubernetes

can be a much more expansive approach than its alternatives, especially when it comes

to simple applications. All in all, applying Kubernetes in software projects seems to bring

organizations and companies flexibility, power and scalability regarding human

resources and costs.

48

References

Bernstein, D. (2014) ‘Containers and Cloud: From LXC to Docker to Kubernetes’ IEEE

Cloud Computing 1(3) pp.81–84 [Online] Available at:

https://ieeexplore.ieee.org/document/7036275 (Accessed: 09 December 2019)

Bigelow, S. (2015). Five cons of container technology. [Online]. Available at:

https://searchservervirtualization.techtarget.com/feature/Five-cons-of-container-

technology (Accessed: 16 March 2020)

Boucheron, B. (2018). An Introduction to Helm, the package manager for Kubernetes.

[Online]. Available at: https://www.digitalocean.com/community/tutorials/an-

introduction-to-helm-the-package-manager-for-kubernetes (Accessed: 16 January

2020)

Chamberlain, D. (2018). Containers vs. Virtual Machines (VMs): What’s the Difference?

[Online] Available at: https://blog.netapp.com/blogs/containers-vs-vms/ (Accessed: 09

December 2019)

Docker Authors. (2019). Docker Hub. [Online] Available at:

https://docs.docker.com/docker-hub/ (Accessed: 31 December 2019)

Domingus, J. & Arundel, J. (2019). Cloud Native DevOps with Kubernetes. [Online]

Available at: https://learning.oreilly.com/library/view/cloud-native-

devops/9781492040750/ch01.html (Accessed: 08 December 2019)

Google Inc. (2019). Google Kubernetes Engine. [Online]. Available at:

https://cloud.google.com/kubernetes-engine/ (Accessed: 10 March 2020)

Hightower, K., Beda, J. and Burns, B. (2019). Kubernetes: Up and Running, 2nd Edition.

[Online] Available at: https://learning.oreilly.com/library/view/kubernetes-up-

and/9781492046523/ (Accessed: 15 December 2019)

Humble, J. & Farley, D. (2010). Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation [Online] Available at:

https://learning.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/

(Accessed: 08 December 2019)

Itkonen, J., Udd, R., Lassenius, C., Lehtonen, T. (2016). Perceived Benefits of

Adopting Continuous Delivery Practices. [Online] Available at:

https://dl.acm.org/doi/10.1145/2961111.2962627 (Accessed: 15 January 2020)

https://ieeexplore.ieee.org/document/7036275
https://searchservervirtualization.techtarget.com/feature/Five-cons-of-container-technology
https://searchservervirtualization.techtarget.com/feature/Five-cons-of-container-technology
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://blog.netapp.com/blogs/containers-vs-vms/
https://docs.docker.com/docker-hub/
https://learning.oreilly.com/library/view/cloud-native-devops/9781492040750/ch01.html
https://learning.oreilly.com/library/view/cloud-native-devops/9781492040750/ch01.html
https://cloud.google.com/kubernetes-engine/
https://learning.oreilly.com/library/view/kubernetes-up-and/9781492046523/
https://learning.oreilly.com/library/view/kubernetes-up-and/9781492046523/
https://learning.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/
https://dl.acm.org/doi/10.1145/2961111.2962627

49

Kubernetes Authors. (2019). Kubernetes Object Management. [Online] Available at:

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/

(Accessed: 19 December 2019)

Kubernetes Authors. (2019). Kubernetes | Production-Grade Container Orchestration

[Online] Available at: https://kubernetes.io/ (Accessed: 08 December 2019)

Kubernetes Authors. (2019). Understanding Kubernetes Objects. [Online] Available at:

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

(Accessed: 19 December 2019)

Luksa, M. (2018). Kubernetes in Action. [Online] Available at:

https://learning.oreilly.com/library/view/kubernetes-in-action/9781617293726/

(Accessed: 02 December 2019)

Newman, S. (2015). Building Microservices. [Online] Available at:

https://learning.oreilly.com/library/view/building-microservices/9781491950340/

(Accessed: 03 December 2019)

Newman, S. (2019). Monolith to Microservices. [Online] Available at:

https://learning.oreilly.com/library/view/monolith-to-microservices/9781492047834/

(Accessed: 03 December 2019)

Phillips, A. (2014). The continuous delivery pipeline – What is it and Why it’s so

important in developing software. [Online]. Available at: https://devops.com/continuous-

delivery-pipeline/ (Accessed: 15 January 2020)

Richardson, C. (2018). Microservices patterns. [Online] Available at:

https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/

(Accessed: 04 December 2019)

Schenker, G. N. (2018). Learn Docker - Fundamentals of Docker 18.x. [Online]

Available at: https://learning.oreilly.com/library/view/learn-docker-

/9781788997027/5bbf53c5-e15c-4c56-90df-9d3efe2204bb.xhtml (Accessed: 08

December 2019)

Stubbs, J., Moreira, W. and Dooley, R. (2015) ‘Distributed Systems of Microservices

Using Docker and Serfnode’ 2015 7th International Workshop on Science Gateways

pp.34–39 [Online] Available at: https://ieeexplore.ieee.org/document/7217926

(Accessed: 04 December 2019)

Tracey, C. and Burns, B. (2018). Managing Kubernetes. [Online] Available at:

https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905/

(Accessed: 15 January 2020)

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://learning.oreilly.com/library/view/kubernetes-in-action/9781617293726/
https://learning.oreilly.com/library/view/building-microservices/9781491950340/
https://learning.oreilly.com/library/view/monolith-to-microservices/9781492047834/
https://devops.com/continuous-delivery-pipeline/
https://devops.com/continuous-delivery-pipeline/
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/
https://learning.oreilly.com/library/view/learn-docker-/9781788997027/5bbf53c5-e15c-4c56-90df-9d3efe2204bb.xhtml
https://learning.oreilly.com/library/view/learn-docker-/9781788997027/5bbf53c5-e15c-4c56-90df-9d3efe2204bb.xhtml
https://ieeexplore.ieee.org/document/7217926
https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905/

50

Travis CI Authors. (2020). Travis CI Documentation. [Online] Available at:

https://docs.travis-ci.com/ (Accessed: 10 March 2020)

Villalba, E., Strebel, D., Evenson, L. and Burns, B. (2019). Kubernetes Best Practices:

Blueprints for Building Successful Applications on Kubernetes. [Online]. Available at:

https://learning.oreilly.com/library/view/kubernetes-best-practices/9781492056461/

(Accessed: 18 March 2020)

Vohra, D. (2016) Kubernetes Microservices with Docker [Online] Available at:

https://learning.oreilly.com/library/view/kubernetes-microservices-with/9781484219072

(Accessed: 10 December 2019)

Wong, W (2016). What’s the difference between Containers and Virtual Machines

[Online] Available at: https://www.electronicdesign.com/technologies/dev-

tools/article/21801722/whats-the-difference-between-containers-and-virtual-machines

(Accessed: 08 December 2019)

Zomaya, D. (2019). Container vs. Hypervisor: What’s the Difference? [Online].

Available at: https://www.cbtnuggets.com/blog/certifications/cloud/container-v-

hypervisor-whats-the-difference (Accessed: 16 March 2020)

https://docs.travis-ci.com/
https://learning.oreilly.com/library/view/kubernetes-best-practices/9781492056461/
https://learning.oreilly.com/library/view/kubernetes-microservices-with/9781484219072
https://www.electronicdesign.com/technologies/dev-tools/article/21801722/whats-the-difference-between-containers-and-virtual-machines
https://www.electronicdesign.com/technologies/dev-tools/article/21801722/whats-the-difference-between-containers-and-virtual-machines
https://www.cbtnuggets.com/blog/certifications/cloud/container-v-hypervisor-whats-the-difference
https://www.cbtnuggets.com/blog/certifications/cloud/container-v-hypervisor-whats-the-difference

	1 Introduction
	1.1 Project technical objectives
	1.2 Case study summary & business objective
	1.3 Structure of the thesis

	2 Theoretical background
	2.1 Monolithic architecture
	2.2 Microservice architecture
	2.3 Containers
	2.4 Kubernetes
	2.5 Kubernetes Architecture
	2.5.1 Concept
	2.5.2 Components

	2.6 Kubernetes Objects
	2.6.1 Understanding Kubernetes Objects
	2.6.2 Working with Kubernetes Objects

	2.7 Deploying Kubernetes with Continuous Delivery pipeline
	2.7.1 Continuous Delivery
	2.7.2 Continuous Delivery Pipeline
	2.7.3 Continuous Delivery with Kubernetes

	2.8 Monitoring Kubernetes

	3 Case study
	3.1 Case summary
	3.2 Case challenges
	3.3 Technology solutions
	3.4 Implementation
	3.4.1 Software architecture
	3.4.2 Services and tools
	3.4.3 Implementation

	3.5 Evaluation
	3.6 Future development

	4 Conclusion
	References

