

Implementation of a mobile business application built in

Microsoft Power Platform

Heejin Moon

 Bachelor’s Thesis

Degree Programme in Busi-

ness Information Technology

 2020

Abstract

 8.5.2020

Author(s)

Heejin Moon

Degree programme

Business Information Technology

Report/thesis title

Implementation of a mobile business application built in Microsoft
Power Platform

Number of pages
and appendix pages

26 + 5

The thesis explores a relatively new field of business application creation. There are not
many resources available on LCDP (Low-Code Development Platform) which is why it has
been chosen as the topic for this paper. The thesis mostly discusses the resources availa-
ble to practice LCDP, how they are applied in the real world, what are the benefits and limi-
tations at their current stage, as well as what future advancements might get introduced
later on. As demonstration, a real-life project is introduced mainly to serve as a working ex-
ample.

Attention is given to the platforms and software utilised in the creation of the example pro-
ject, namely Microsoft's Power Apps, Power Automate and Azure SQL Database, together
with some alternative options. As the above mentioned three products are the most com-
monly used software in LCDP, the thesis will prove useful for those who are looking to
learn more about the topic or are in search of more cost-efficient alternatives to traditional
methods.

Furthermore, the thesis details the structure (front-end and back-end both) of a typical mo-
bile business application project. There will be a description of technical know-hows and
the real-life agile methodology of a project from a customer-developer relationship's point
of view.

Finally, the thesis showcases functions and their deeper workings from the example appli-
cation itself to show a hands-on parallel with the theory discussed in earlier chapters.

Keywords

Power Platform, Azure, Power Apps, Power Automate, SQL, LCDP, Mobile application

Table of contents

1. Introduction ... 1

1.1 Key concepts and terms explained .. 2

2 Structure and Tools ... 3

2.1 Overall structure of the application .. 3

2.2 Frontend development solutions ... 4

2.2.1 LCDP ... 4

2.2.2 Microsoft Power Apps .. 4

2.2.3 Types of Power Apps ... 5

2.2.4 Alternative products ... 7

2.3 Backend development solutions .. 8

2.3.1 Azure SQL ... 8

2.3.2 Microsoft Power Automate (previously named: Flow) 8

2.3.3 Alternative products for Power Automate ... 8

3 Development of the application ... 10

3.1 Case introduction .. 10

3.2 Development plan ... 11

3.2.1 Initiation ... 11

3.2.2 Design .. 12

3.2.3 Development .. 13

3.2.4 Testing ... 14

3.2.5 Implementation .. 14

4 The three main parts of the application ... 15

4.1 The database of the product: Azure SQL .. 15

4.1.1 Data structure .. 16

4.2 Frontend of the product: Power Apps .. 16

4.3 Process automation: Power Automate .. 20

5 Result and Discussion ... 24

5.1 Power Apps and low-code development ... 24

5.2 Microsoft and other providers .. 24

5.3 Limitations and future improvements ... 25

5.4 About low-code development .. 25

5.5 Evaluation of the thesis project and own learning .. 26

References .. 27

Appendices .. 29

Appendix 1. Power Automate Structure ... 29

Appendix 2. JSON formatting for image transformation ... 30

Appendix 3. Generated PDF form example ... 31

1

1. Introduction

The objective of this thesis is to introduce Power Apps and other related software as use-

ful new work platforms for app developers, as well as to demonstrate the possibility of

building a fully functioning mobile business application with minimal programming skills.

For this end, the thesis will include a sample project taken from real life and refer to its

lifecycle, design and other elements throughout the chapters to better enable the reader to

understand how theory works out technically.

The following chapters discuss in detail a selection of tools and methodologies, including

alternatives to the ones used in building the end product. After the thesis, the reader

should have a good grasp on where to start with a new idea and how to implement his or

her own business application. The thesis, however, will not provide a step-by-step guide

on how the sample app was made.

The beneficiary of the thesis is anyone who is interested in modern app development, but

mainly people with no coding skills but with great ideas an app, or companies, regardless

of size, with restrictions on resources, such as a short time frame, low funds, no skilled

and/or specialized personnel, etc. Whether these parties are looking for cheaper options

for app development or are simply interested in the topic but do not know where to start,

the thesis will provide useful to them.

It is important to note, that most of the tools mentioned in the thesis do not come for free.

Certain paid subscriptions are necessary to access them and other services. However, all

paid services here have been selected for maximum compatibility and with a tight budget

in mind, so they should provide a reliable and cheap option for developers.

The foremost benefit of following the methods discussed in the thesis is overcoming the

lack of highly trained professionals and expensive third-party vendors for the creation or

acquirement of simple applications. As the user gets more familiar with the building tools,

more and more functions become possible for future projects. Also, with the subscriptions

in the example project, users have the option to select how many resources their product

requires and usually the vendors will bill them accordingly. Other benefits include insight

and a deeper understanding of other Microsoft products (e.g. SQL Server, Dynamics, etc.)

how Power Apps links work, as well as cooperation with third-party (non-Microsoft) soft-

ware (e.g. SAP, Salesforce, Pipedrive, Jira, etc.) with a comprehensive description to all

of these and others.

2

1.1 Key concepts and terms explained

Power Platform: Refers to three of Microsoft’s products: Power Apps, Power Automate

and Power BI, of which Power Apps and Power Automate have leading roles in this the-

sis.

ERP: Enterprise Resource Planning is the integrated management of main business pro-

cesses, often in real time, mediated by software and technology, in other words, using

computer software to more efficiently carry out day-to-day business processes.

CRM: Customer Relationship Management helps companies build and maintain their rela-

tionships with existing or potential customers mainly through software-based means.

Dynamics 365: Microsoft’s ERP system and part of the Microsoft Dynamics product line.

Dynamics 365 collectively includes a variety of ERP and CRM applications.

On-demand: Service provided on-demand comes down to an agreement between two

parties, where one buys the right to use the service or product which the other party offers

for previously agreed periods of time. The agreement also includes the complexity of the

service, often tailored to be exactly what the tenant party needs.

Azure Functions App / Azure Functions: A compute-on-demand service expanding the

already existing Azure platform with additional capabilities. It allows the developer to con-

nect multiple data sources and run event-triggered code on an existing infrastructure.

JSON: JavaScript Object Notation is the open standard file format that conducts commu-

nication between a browser and a server by transforming the data into human-readable

text and vice versa. Essentially, it is a text format translation of any JavaScript object.

Binary data: The most basic data type in computing. Binary data is most often repre-

sented by 0s and 1s, following the binary numeral system and Boolean algebra. Binary

files, unlike text files, are not human-readable.

Primary Key: The unique identifier in a database relationship model. If we consider a ta-

ble with rows of data in it, the primary key will be represented by a column where every

row contains a unique id with which all other rows on the same level can be quickly and

easily identified by.

Foreign Key: The link between two tables in a database relationship model. Foreign keys

are non-unique identifiers referring to another table’s primary key, thus forming a logical

connection between the two tables which the database software can recognize.

3

2 Structure and Tools

Below are described the key tools of the thesis regarding software and applications.

These are provided to give a better overall understanding of how the application was built.

Furthermore, this chapter will also discuss additional information regarding, for example,

the backend development of the application, further insight into the creative choices, as

well as alternative product options for the implementation of similar projects.

2.1 Overall structure of the application

Figure 1 below illustrates the three main components used to create the application. In no

particular order these are:

- Power Apps, representing the frontend development part, where the user inputs, re-

views and edits data through a comprehensible visual interface.

- Power Automation stands for backend as it automatically deals with the user inputs

and executes the desired functions without the need of coding from the user’s part.

- Azure SQL is the database where core data as well as new data get stored.

Figure 1. Structure of development

4

2.2 Frontend development solutions

2.2.1 LCDP

LCDP is the acronym for Low-Code Development Platform(s). In other words, software

which provide an application creation environment with minimal coding requirements.

(Marvin 2014) LCDPs are based on model-driven design principles so they work with a

pre-set logic structure to create elements and populate them with functions. They utilize

automated code generation based on said templates to make the visual programming

possible. App developers only see a list of items from which they can chose from and the

software will automatically write the code when the element is used, e.g. by drag-and-

dropping it from its list field into the canvas field. The platforms are capable of delivering

fully functional applications like this and they do not require additional computer program-

ming skills, except in case of adding unique features which the base product does not pro-

vide. Most LCDP-based services include such self-development capabilities not only as

an added feature, but simply due to their nature and logic relying on open-source coding

principles.

Not as wide-ranged as traditional programming platforms, hence their limitations, LCDPs

usually specialize in one particular kind of application (e.g. databases, web application

user interfaces, etc.), meaning that choosing the right LCDP platform for a project is cru-

cial. With the elimination of hand coding from the creation process, LCDPs significantly re-

duce the risk of human-error bugs (e.g. typos, logic errors, etc.), reduce setup, personnel

training, and deployment costs significantly, but most importantly they allow more people

to contribute to application development and. (Richardson and Rymer, 2016)

2.2.2 Microsoft Power Apps

Microsoft Power Apps is a platform for building business applications. The apps created

on it run through web browsers. This feature boosts the apps compatibility by bypassing

mainstream hardware requirements. By not downloading the full software and therefore

storing and updating its data on-device, the app becomes accessible online for any hard-

ware with the proper internet and display capacity (however, smartphones and tablets

stand as preferred). This also allows for constant in-house updating for Power Apps. On

average, there is at least one update released every month, but sometimes there are mul-

tiple updates within the same month. The updates vary between small tweaks to signifi-

cant changes therefore an on-device setup would make this configuration extremely

heavy on the user hardware and difficult to professionally maintain.

5

Microsoft Power Apps follows LCDP principles in a way that it requires very little coding

knowledge and instead allows the developer to build applications through visual methods.

Microsoft Power Apps uses cloud-based data storing, allowing it to access data from

OneDrive, Dropbox, Dynamics 365 and other compatible databases from Microsoft as well

as other publishers. (Microsoft 2020b)

Using Power Apps requires a valid subscription to the service. There are two kinds of sub-

scriptions, both options basically including the same features, but the pricing varies de-

pending on the client’s plans on the scale and complexity of the application they want to

create.

- Plan A (Per App) subscription costs 10$/month/user and is valid for a single app. It is

most suitable for companies with only a few running app services with lots of users.

- Plan B (Per User) option costs 40$/month/user and includes an unlimited number of

creatable apps, making it a better choice for companies with a lot of applications.

Subscription to a MS Office 365 Outlook account on top of the Power Apps account can

be helpful to use Power Apps in terms of login as well as added features (e.g. email auto-

mation). In this project, using an Outlook account was necessary to include certain fea-

tures into the app. A Power Apps account in itself was intended for internal use only, in

other words, only people who are part of the user organization can access its features and

services, which is sometimes considered a drawback.

Subscriptions can be switched mid-development. This is true to most other Microsoft plat-

forms. In case of smaller projects, these changes can be quickly overcome by simply

moving the app or app-in-progress into the new system. Using new features on the other

hand can and usually will cause problems. Power Apps has an in-built feature for version

control and reversion which is a useful addition, but it is not failproof.

2.2.3 Types of Power Apps

Power Apps have 3 types (Canvas, Model-driven, Portals) each designed to support a dif-

ferent approach to the development process, mainly regarding the needs, type and scale

of the project at hand. The main difference between the three is how they approach the

overall design of the app.

Canvas apps

 As its name suggests, it is likely the most visually straightforward type of Power Apps de-

velopment type. It starts by building a detailed and personalized interface from a blank

canvas with most of the focus spent on usability.

6

The items are selected from the provided menus. Developers can drag-and-drop them

into place, very similarly to how building a PowerPoint slide or the standard model of most

Prototyping tools work. When the interface is done, it can connect to a huge number of

data sources. For added functionality, Canvas allows for Excel-like expressions to build

specific logic pipelines for data.

Products made with Canvas are suitable for mobile devices or PC as they run through

browsers. They can be embedded into other apps, so that users can run them from Power

BI, Teams, etc. Canvas is most suitable for apps with very specific user interface choices

or those with a variety of independent data sources. (Microsoft 2020d)

This project was made using Canvas, however, there will be a short explanation for the

other two types as well for better contrast.

Model-driven apps

While Canvas starts from the user interface, Model-driven, very descriptively, starts from

the application’s core data model. Instead of the developer tailoring the interface, the app

itself takes care of that part and only requires the developer to work with business data

connections and define core business processes. This Power Apps type is most suitable

for database specific projects, where the quality of the data is very important, its complex-

ity is high, however, the user interface (also known as the front-end deliverables for the

user) are not as important or complex. (Microsoft 2020d)

Power Apps Portals

The third type allows for a new kind of experience for its users and is the newest addition

to Power Apps, launched in 2019. By creating external-facing websites with Portals, the

future visitors to that website do not need to be a part of the user company. Instead, they

are allowed access with a variety of predefined identifiers (e.g. login credentials). Even

though these visitors will not have company credentials, they will be able to browse and

even modify certain data which they have access to. This might not seem like a novelty

but considering that still almost no coding skills are required, it is a significant step forward

in application development to allow for such complicated infrastructures to be made. (Mi-

crosoft 2020d)

7

Common Data Service

CDS (Common Data Service) is not a type of Power Apps builder, but rather a backend

component that makes its overall versatility possible. CDS comes with Power Apps by de-

fault. It handles storage and modelling of business data and forms the core for Dynamics

365. All Dynamics users already have their data in CDS meaning, that if they decide to

use Power Apps in the future, they will not need to bother with risky data transactions,

since everything will be already on hand. CDS stores data mainly in common scenario en-

tities (it already has populatable table-like subcategories which are most commonly found

in business databases), but, according to need, users can create their own entities. (Mi-

crosoft 2020d)

2.2.4 Alternative products

OutSystems

An LCDP platform for the development of enterprise web and mobile applications. These

applications can be run in the cloud, on-premises, or in hybrid environments.

(OutSystems, 2020)

Salesforce Lightning

Another LCDP software which allows visual-based application creation for multiple de-

vices. An added plus to Lightning is that if a user creates a custom component and de-

cides to share it, others can access and use the same component or even modify it to

their own liking. This means that with Lightning, one can build an app using both off-the-

shelf and custom-made parts. (Salesforce Lightning, 2020)

Mendix

Mendix, yet another LCDP-minded developer, offers a solution that focuses on the aver-

age user. Outside the standard LCDP model, Mendix puts extra effort into cloud-based

team functionality betterment and testing capabilities. Mendix is most suitable for small

teams with short projects. (Mendix, 2020)

8

2.3 Backend development solutions

2.3.1 Azure SQL

Azure SQL offers database as a service within the Microsoft Azure environment. Applica-

tions built with Azure SQL are easily transferred to other databases (and vice-versa) if the

developer changes platforms at any time during development or after. Azure SQL pro-

vides the necessary background components of an application database (data security,

performance, storage space etc.), while requiring very little micromanagement from the

user’s part. (Mazumdar, Agarwal & Banerjee, 2016)

Other than its versatility with data exchange, Azure SQL was chosen for this project by the

specific request of the customer who the application was built for due to its price options.

2.3.2 Microsoft Power Automate (previously named: Flow)

Microsoft Power Automate is a cloud-based workflow automation service. The idea behind

Power Automate is to help users improve productivity and lessen the workload by creating

flows based on certain actions or triggers. In the simplest of terms, when a user clicks a

button, the software recognizes it as a predetermined trigger. It then proceeds to carry out

a series of successive actions in a chain reaction-like fashion, until it reaches the endpoint

where a controlled termination takes place and no further actions are carried out.

Power Automate can connect multiple platforms and applications together, allowing them

to communicate and carry out complicated functions without the need of human input.

Like in the rest of the project, setting up flows requires no coding skills whatsoever. The

platform is accessible through an internet browser, namely Edge, Chrome, or Safari. (Mi-

crosoft 2020c)

2.3.3 Alternative products for Power Automate

IFTTT

IFTTT, also known as If This Then That is a free web-based service to create chains of

simple conditional statements. These statements function similarly to Microsoft Flow’s

flows in that they are set up to be triggered by an action (e.g. a keyword) and execute a

reaction (e.g. sending email) in specified ways. IFTTT is a web-based mobile application

that allows its users to come up with recipes for automation (mostly focusing on social me-

dia platforms) and share these recipes with other users. Like Flow, it does not require cod-

ing skills to set up and use. (IFTTT, 2020)

9

Zapier

An online automation tool that again requires no coding, Zapier can connect a wide range

of apps and run automated tasks between them very similarly to previously mentioned

tools. (Zapier, 2020)

Build on Standard Library

A more professional approach to the standard workflow automation. It works similarly to

the above-mentioned platforms, however, it allows for more complex workflow designs

(depending on the developer’s skill) as every custom created schema is also available as

raw code which can be modified and reinserted for the desired effect. Build on Standard

Library also provides tools for version control, rollbacks, etc. (Build on Standard Library,

2020)

10

3 Development of the application

This section is going to discuss the development of the sample product and its deeper

workings in detail. The goal is to highlight the standard procedure of modern app develop-

ment with a valid example at hand. Since the application of the thesis was made by the

request of a client company, many of the choices were pre-decided by them and not the

developer. However, there have been plenty of opportunities for creative development

from both functionality and usability sides. The chapters below are going to follow an

abridged explanation about how the application was designed and made mainly from a

customer-developer relationship point of view.

3.1 Case introduction

The customer was a small company in the waste management sector who needed a busi-

ness application for their on-site workers. The problem was that the original method of

documentation was paper-based and full of potential risks (e.g. running out of forms on-

site, the paper could get easily damaged or go missing, processing was slow, manual and

troublesome, etc.). According to the customer’s summary, the workers (end users) were

mostly middle-aged men, inexperienced with software and applications.

Before the application, the workers would carry out their task on-site, after which they

would mark on the paper form what type of work they carried out, get it signed by the cus-

tomer and later submit it for processing. The customer company prioritized three things:

mobility, usability, simplicity. Their idea was some sort of mobile application so the work-

ers can always have the form ready on their mobile devices. The app would eliminate

physical damage and make processing easier and possibly automated. Finally, the app

had to resemble the original paper form, at least in its standard functions. Also, it would

have to be easy to use. Additional requests included a digital signature function and an

automated email function.

The customer company was working with a tight budget and short timeframe, so the solu-

tion had to be a simple one. The end-product was an easy to use mobile app, with all the

functionalities listed above. During development, the functionality testers were the real

end users to make sure that the app was well tailored to their needs.

11

3.2 Development plan

The product development consists of five main phases: initiation, design, development,

testing, implementation. Each of these phases are distinct in their function within the pro-

ject’s creation and have been implemented accordingly. They each mark a milestone

which is to be reached before moving on to the next part. Time is an important factor

throughout the whole development process, so proper scheduling and time management

are crucial to handle.

The development process chosen for the project was agile. In the agile methodology,

small iterations were agreed upon by both developer and customer. Each iteration con-

sisted of four of the abovementioned five phases, excluding implementation, where the fo-

cus was on a set deliverable or closely related deliverables which were to be done and

added to the rest of the project by the end of the iteration cycle, or run. Each run was dis-

cussed with the supervisor of the project who kept contact with the customer. In agile in

general, an iteration should not take longer than a weak, allowing for quick changes and

more direct customer-company communication.

When an iteration was carried out it was first evaluated by the supervisor before finally

submitted for approval to the customer. Once the approval was received, the next iteration

commenced. Note, however, that the individual runtimes often vary due to certain condi-

tions. One main factor in this is the problem to be tackled in the given run. If the problem

is difficult, or the app development has reached a certain complexity, or in this case, when

the developer asks for things to be added, deleted or changed, it makes the developer’s

work harder and therefore prolongs the iteration itself. Another reason for prolongment or

delay is simple communication with the customer. Customers in general tend to take their

time with the testing for reasons of their own and the developer effectively cannot move

on until the customer has evaluated their previous work.

3.2.1 Initiation

Initiation means the beginning of the project. The client company contacted the developer

and after negotiations, the request for a product was made. At this point, the product plan

was just an outline of requirements rather than an actual idea. Clarifying requirements is

important to do early on in the development process. It determines whether the project is

doable with the developer’s skills and/or resources, as well as giving an idea about the

needs, functions and scope of the final deliverable. Discussions, both legal and technical,

while part of such endeavours, will not be included in the thesis as they are not within

scope.

12

Every iteration also begins with an initiation phase. As such, it marks the beginning of the

creation of a new function or piece added to the final product, or the changing of an exist-

ing part. Initiation is always carried out by the customer after careful evaluation of the pre-

vious run’s results, and then approved by the developer. Sometimes the initiation poses

problems, such as disagreements or unclear requests in which case careful communica-

tion is needed until the idea is clearly outlined and both parties are in agreement with one

another.

In this project, the customer company provided information on what functionalities they

were primarily looking for, what systems they have been using in the past and what sys-

tems they plan on using this time. The customer also provided requests on interface lay-

outs. To help the developers better understand their needs, the customer described in de-

tail the average qualification and experience of the end users, giving the developer a solid

basis for user case build scenarios. Some of the major points the customer company had

requested included a user friendly interface, a product focused on data input, review and

editing capabilities, simplicity for non-IT personnel and resemblance to the existing, but

not software-based solution which the app was designed to replace.

3.2.2 Design

The design phase is where the developer decides how to include the new deliverables or

how to modify what needs to be modified in the project. The sample application of the the-

sis is considered to be a small endeavour, but no matter the size, the design phase is ex-

tremely important for a smooth iteration and good end results.

After the initiation meetings, the developer always builds up a solid and logical approach

on how to tackle the task at hand. This plan is then to be followed thoroughly until the end

of the run or, in case of the first run, the design is meant for the overall project. Without a

proper design plan, developers are more prone to error, and a project is more likely to fail.

As the customer in this project’s case had very specific requests, the developer had to fo-

cus on delivering those first. The design phase is meant to streamline the development

process, serve as a trusty guideline and it’s a good way for backing up the creation pro-

cess by keeping track of what has been done, when and how and what comes next. Con-

stant communication with the customer is still very important, as they can add or change

certain things according to their needs or serve with extra information should the need

arise.

13

One distinguishing feature of LCDP type development and visual development in general

is its strong compatibility with creativity. As the developer does not necessary have to un-

derstand every function that goes on in the background of the platform while at the same

time using it to its full extent and building up the app, more focus can be given on what the

end user will see and experience. Working out how to best implement the required quali-

ties into a product often comes in the middle of the development process and since the

LCDP allows for spontaneous ideas, it is well suited for the task. If something new, un-

planned seems to work fine, the developer simply shares it with the customer who can

then decide if they go forward with the solution or not. LCDP also eliminates the need for

strict hierarchies within the app’s functions. In this case, the developer focused on creat-

ing the most important aspects of the app first so the customer could evaluate and change

it if necessary. It was the most crucial part of the project, tackling it first meant that later

during development the frequency of sudden change requests would be lower, allowing

for an overall better development experience. These features adda more flexibility to the

already very flexible agile methodology. However, the benefits and reasonings provided

here are mainly true in case of smaller projects only.

3.2.3 Development

The development phase is where the designs are executed. In this project, it started with

the building of the database in Azure SQL. Based on the customer’s needs, data tables

were created with label names picked out prior to the initiation of this phase. This has

been a very important step in the development which will be further discussed in chapter

4.

After the data structure was done, it was time to create the interface and all the other

seen-by-the-user parts of the application. An initial design plan was followed and im-

proved after every iteration, with the overall product broken into smaller partitions based

on individual deliverables. Power Apps’ Canvas type creator was used for the interface

design with added focus on usability details. Connecting the two parts for the functional or

semi-functional model could have been done either during the Power Apps interface de-

velopment phase or after. Since the product was made in small, co-reliant iterations, the

automation part was done after the interfacing was ready.

There have been constant changes during development. Sometimes these changes inter-

fere with other parts of the app, rendering them faulty or useless, therefore the developers

must keep a well-documented change log. Power Apps, as it was mentioned before in

chapter 2, has its own in-built changelog where developers can reverse actions or roll

back the app completely to a previous version, given that a save exists of it.

14

3.2.4 Testing

Testing is necessary to see if a product or service works as intended. Does it execute the

tasks it was meant to execute? If yes, is it doing it in the proper way? Some testing has

been done partially during the development phase. This was necessary in the final runs,

where the automation was set up. These small-scale functionality tests were carried out to

see if the individual components were connecting and working as intended. This part was

done by the developer as it qualifies as part of the backend development. However, the

overall testing at the end of each run was meant for the testing of the results of the itera-

tions and as such, they were carried out by the customer. After each of these phases, the

customer was to approve or submit change requests, including design or functionality dis-

crepancies. The testing phase was crucial in the development of the final application, after

which the product was ready to be launched.

3.2.5 Implementation

After many rounds of testing and refining, the product stood ready to be launched. In this

phase, the customer gets the product and the users begin using it as intended. It is up to

the customer and the developer to agree on a short period of time during the early life of

the product when customer training and/or support is available. In case of this application,

such support was given until the users learnt how to use the app, which took only a few

days. This phase, however, does not allow further changes to the application, only cus-

tomer support.

15

4 The three main parts of the application

As mentioned in the previous chapter on the design phase of the development, the appli-

cation consists of three main parts: Database, Interface, Automation. This chapter will

take a closer look on how these parts appear in a functioning app, using the sample prod-

uct. The introductions of these parts will be carried out in the same order as it was done in

the real-life implementation. This order is by no means particular and was setup during the

initial designing of the project as a whole. As discussed earlier, most LCDP platforms al-

low for a flexible approach towards tackling a project. It is usually up to the developer to

decide in which order they will set up the components for the final product. That is unless

the customer has specific requests for a given order.

4.1 The database of the product: Azure SQL

The application could have been connected to various data storages, such as the stand-

ard SQL database, Sharepoint List, Excel files, ERP systems, etc. Among these, SQL da-

tabase, Sharepoint List and Dynamics 365 are the most commonly used ones in real user

cases. Deciding on the database provider is an important part in a project’s development

which largely comes down to the customer’s preferences and/or previous implementa-

tions. For example, if the company uses Dynamics 365 for database as default within their

organization, Power Apps can be connected to it in later projects as well. Not to mention

pricing problems, where using or even extending an existing subscription is often cheaper

comparing to registering to a new provider. As the customer company in this case had no

such prior implementations, the choice of using Azure SQL was made for functionality and

budgeting reasons mainly, however, there were other factors taken into consideration too.

Sharepoint list is limited to 5000 rows (items), making it insufficient for storing large quan-

tities of data, which was expected to be the case with this product. Dynamics has no such

drawbacks, however, the users could face complications if they, later in the application’s

life cycle, decide to change the original data structure. It cannot be stressed enough that a

clear data structure plan is one of the most important parts of app development as

changes within data structure may cause bugs or even a complete crash. Meanwhile, Az-

ure SQL allows for such changes, while also offering a very cost-efficient service with no

limit to the number of users.

16

4.1.1 Data structure

The database is built in a simple and comprehensive way: figure 2 illustrates it below. The

database consists of only two tables. The first table, labeled “form” contains information

from the customer, the service provider, together with the time frame of the service carried

out. The other table, labeled “Service_items” has information about the service provided to

the customer, including offers and descriptions. The two tables are connected by a “for-

mID” column as primary key in the first table, and “ID” column as foreign key in the second

table.

Figure 2. Data structure

4.2 Frontend of the product: Power Apps

Power Apps was used to create the interface of the application. This part is what the users

see and interact with, and it was a very specific request of the customer to make this part

as comprehensible and familiar to the users as possible. Things to keep in mind during

the building of an app include what mainstream programmers often do not think about, for

example colour theory, layout, etc. The visual-based coding interface helps a lot in this

sense. As these requirements differ from project to project so they will not be discussed in

further detail.

17

Figure 3. Example image from Power Apps

Power Apps’ interface consists of nine screens. Figure 3 depicts the Power Apps Editor. It

uses a drag-and-drop method for interface building. Each element can be selected from a

menu and then assigned to the right fields or data sources. Careful planning can save the

developer lots of trouble by predetermining the right names for the fields, because, for ex-

ample, if a column is renamed in the database, it does not automatically change in Power

Apps.

- From the tree view on the left side, the user can navigate to the other screens cre-

ated for their application-to-be.

- The ribbon on the top contains actions that the user can choose from (e.g. text

fonts, colouring, etc.)

- On the right side of the screen, the user can modify each individual element on the

currently open interface tab.

Figure 3 shows the application’s “Home” tab. This is what the users of the final product will

see if they open up the application. Users can see all their saved forms, add new ones,

delete or modify existing ones, or simply select one for reviewing by pressing buttons.

18

Figure 4. “Detail” and “Services” pages of the application

Figure 4 shows the detail tab and services tab. On the “Detail” page, users can open

saved forms, or see saved services and their descriptions by simply tapping the “Check

services” button on the left picture of figure 4. Services and descriptions can be added,

edited, or deleted. The functions of Detail and Services are based on different data tables.

In this case, the separation speeds up the application and prevents too much information

to be crammed into a single tab, thus improving usability. It also resembles the old stand-

ard paper for of which the users were most accustomed to.

Figure 5. “New record” and “Selected services” tabs

19

New records can be added in the “New records” tab. Tapping the “Select” button navi-

gates the user to the “Select services” tab where they can add a new service along with a

short description attached to it. Clicking the “X” button will close the tab. The “Select ser-

vice” and the previously described “Services” tabs illustrate a common problem which de-

velopers often face. The two tabs are very similar. In fact, they were made by copy-past-

ing and then modifying one’s functions. The “Select function” tab allows for the creation of

new entries, while the “Services” tab only allows to view, modify, or delete descriptions.

There is a fundamental workflow behind both tabs which distinguishes them from each

other.

- On Power Apps, every form is assigned a data source and an item. Data source

equals data table from the database which the form is connected to, while item is

the data row within that table which the user can select and modify through using

the app’s interface.

- A new form is assigned to the default item from its data source (e.g. De-

faults(‘form’)). The new form is unique in what it contains, but not in properties and

therefore it allows a fast trackability within the database.

- For updating/deleting an existing record, the item assigned is more specific (e.g.

Gallery1.Selected.item, Gallery1.selected.id=’2’). This is to prevent multiple, unre-

lated records to be modified at once by accident.

Figure 6. Power Apps buttons and functions

20

Every button press executes an automated response within the application. The button re-

sponses communicate with each other and with the SQL database through Power Auto-

mate (more on this in the next chapter). A few key example functions and how they work

are listed below:

- When the user saves a form record by tapping the “Save” button: it triggers Power

Automate which then updates the appropriate data source within the database.

- Submit Form: This function records into the “Form” section of the app and the da-

tabase.

- For All: This function saves all the selected services, along with descriptions, to a

table within the database called “service_items”.

- Run: Triggers Power Automate and sends the form ID to Power Automate. Based

on this form ID, Power Automate gets the correct row from SQL database and up-

dates the changes to the database.

- Reset Form: As its name implies, it clears all previous user input from the fields in

the Power Apps form so that fresh records can be created. It is designed so that

users will not have to close every form and open new ones in case they want to

create multiple submissions. Instead, they can complete one form, save it, and hit

Reset Form to automatically get a clean slate for the next input.

- Clear: When a user selects a service, this selection is firstly stored into a collection

(array) named “SelectedItems” within the database. The “Clear” function empties

this array, so that old records would not remain in the system unnecessarily.

- Navigate: Like a simple search menu, this function redirects users to their desired

tabs. (Microsoft 2020a)

4.3 Process automation: Power Automate

The chapter covers the basic process with which Power Automate operates. Power Auto-

mate gets inputs or triggers from Power Apps and follows a series of steps to carry out the

appropriate function. An example is shown below in the form of a process map. To help

understand its workings, every step down the line will be explained in more detail.

21

Figure 7. process map for Power Automate process execution

Power Automate is part of the backend development. It automates a process to minimise

input demand from the users’ side and to prevent users from having to repeat procedures

every time they use the app. It also makes functionality coding more reliable by eliminat-

ing most human interactions.

Trigger

Power Automate is activated by a trigger. A trigger is a piece of code that, when detected,

makes Power Automate run a series of steps which relate to each other in a set chain.

There are three categories of triggers:

- Automated: triggered by a designated event (e.g. arrival of a new email). It adds

significantly to the automation of different work processes by cutting out user input

requirements.

- Instant: triggered manually as needed (e.g. pressing a button). The most common

trigger and possibly the only one a user is aware of while using the app.

- Scheduled: triggered according to a fixed time schedule (e.g. every day, every five

minutes, etc.). Depending on the requirements, developers can set any time frame

to carry out necessary events, such as clearing unnecessary data at the end of the

day or updating a menu with new information every few minutes.

Triggers are to be selected according to the function that needs to be carried out. In

Power Automate it is also possible to use API calls instead of triggers, but it needs more

advanced IT skills and thus would defeat the purpose of the thesis’s main subject. The

sample application largely uses button presses (instant triggers).

Form and service submission

Power Automate triggered when the user pressed a specific button on the interface in

Power Apps. It prompted the execution of a number of functions designated to that button.

The first step (after triggering) is the submission of the form which the user filled out. To

22

do this, the app inserts the new records into the database. With every new record, in this

example with a new form, a form ID is generated and stored together with the record. In

case of a new service, a row ID would be created since these two functions use different

data sources. The two ID types, however, serve the same purpose, namely, to accurately

identify their own objects within the database.

Get row (by form ID)

After adding it to the database, Power Automate immediately recalls the new record by its

form ID. This step is necessary for carrying out further functions associated with the origi-

nal trigger. The original save of the form into the database itself only serves to safekeep

the user’s inputs. Every modification is later going to be carried out in the same form, in-

stead of creating new ones, by simply updating the appropriate rows, hence the recalling

in this step.

Json query-signature into binary

Power Automate executes an SQL query (compatible with Azure SQL database) to con-

vert the user’s electronic signature from an image file into binary data. It is highly recom-

mended to store image files in binary format in SQL as storing images may severely slow

down the system. The binary data can be recalled and converted back into an image file

later on if needed.

Get rows (form and service)

The app draws records from both the form and the service tables. In the case of a form in-

sertion, Power Automate uses the previously recalled form ID to find the linked records

from the service table based on their row ID. Form ID and row ID connect on a one-to-

many principal, meaning that while one form ID is generated per form, that form may con-

tain more than one service, so it could be linked to more than one row ID. This depends

on the submitted form itself.

Create file (HTML to PDF)

This section is an added function for the application and it requires slightly more advanced

knowledge about Microsoft Function App and the C# language. Therefore, the exact de-

tails of how this automation process is carried out will not be discussed, instead a short

and comprehensive summary is explored.

23

The application is accessed through an internet browser and thus the user has the option

to recreate the file using HTML tags to modify the form later. An additional function app

was created and linked with the example process through API that is then called upon via

an HTTP connector. Using previously extracted data, the app converts the now HTML

form into PDF format.

If the user does not mind manually converting to PDF, this step can be completely aban-

doned. Originally it was invented to further eliminate user input, as the end users were de-

scribed as generally being unskilled in IT.

Saving on OneDrive or Sharepoint

The generated PDF file (created either manually or automatically via the previous step) is

then stored to a web-drive service (usually either to OneDrive or SharePoint as both are

Microsoft services).

Send an email

Finally, an email is sent to the designated receiver named in the form itself, with the PDF

file attached. This stage allows developers to use SMTP (Simple Mail Transfer Protocol),

which would eliminate the need of every user having their own email address and would

instead use a globally setup one. It is not necessary as long as the end users do not mind

sending the email from their own Outlook email addresses.

24

5 Result and Discussion

5.1 Power Apps and low-code development

Power Apps can be very efficient in cases when the app is meant to be simple, with only a

couple of functionalities and a clear, easy-to-use interface. Depending on the require-

ments of the customer, a fully functioning app can be done in a matter of weeks. In fact,

Microsoft has readymade templates for Power Apps, which only requires to be populated

and properly set up with data sources, and it is ready to go as a fully functioning mobile

application. Using these templates, it is not uncommon to deliver products within 1-2 busi-

ness days. The whole point of the thesis was to introduce this relatively new (and con-

stantly under development) method of mobile app development. It is a perfectly valid solu-

tion for less tech savvy people, new/unskilled developers, or start-up companies with low

budgets, short time frames, low level of requirements, etc.

If the developers have some knowledge of power apps, they can change things relatively

easily by themselves, especially from a design point of view. Power Apps, like all LCDP-s

are currently very strict with their design options, allowing only for simplistic layouts due to

the code templates and other automated code generation functions. Small tweaks in e.g.

colour, size of the font, etc. can be easily done. While these can be changed from the

source code, the logic itself should not be modified as it will most likely lead to crashes.

5.2 Microsoft and other providers

Power Apps is not the only low-code development tool on the market and this thesis was

not meant to advertise it in any way. However, for the purposes of this and similar pro-

jects, Power Apps delivers well and within a reasonable price range. Alternative platforms

usually offer tiers to their users. The more functionality a tier has, the higher the price. Out

of flexibility reasons, the price is often not even included in the general information on their

websites. Microsoft kept its prices adaptive and easy to understand, as it was discussed in

chapter 2. On the other hand, while most competitors offer a low functionality but free ver-

sion of their software, Microsoft only offers a 30-day trial for Power Apps.

Undeniably, Microsoft has huge influence in technology, and they are clearly taking ad-

vantage of this fact. Would it be worth for companies with existing MS subscriptions to use

Power Apps, Power Automate and other MS products? Apparently yes, as Microsoft offers

subscriptions (MS Office 365 E3/F3) which include both Power Apps and Power Auto-

mate, meaning that all standard functions are included in one package. They are also

leaders within the market by a large margin and pioneers in further development, so in the

25

end, it is almost inevitable to use one of their products, and they are building on this idea

very consciously.

5.3 Limitations and future improvements

There is still lots of room for improvement:

- The error detection system works very well in Power Apps (it underlines with red

the logic errors, typos, etc.) and it has a reliable version control system for safe-

guarding against human or computer errors. However, while adding new thing to

the existing solution is extremely simple, changing something that has been al-

ready made is not recommended, because it can disrupt the entire app’s function-

ality, often leading to the need to completely reverse to a previous version.

- Power Apps is still very limited, especially design wise. Text font, container shapes

and many more features are within strict limits and can only be changed by manu-

ally tempering with the code. On the one hand, this limits the developer’s creative

impulse, a thing on which low-code development heavily builds. On the other,

Power Apps and others like it are a new concept and their creators are constantly

updating, releasing new patches, etc. Microsoft has an update at least every

month.

- Power Apps is for internal users only. Although Microsoft released Power Apps

Portal in 2019, which enables external users to access the apps, it is still almost

just a prototype rather than a fully functioning platform. It lacks basic functionalities

and it is not compatible with Canvas which was the basis of the thesis’s sample

project.

5.4 About low-code development

It is essential to understand by anyone who is interested in the topic, that low-code devel-

opment is not a new idea, only by relative terms. However, the solutions which are cur-

rently available for developers are quite simplistic, but powerful. Another important note is

that not many resources are available on the topic yet, mainly due to its novelty. As it is

the product of the 21st century, there are quite few academic records discussing low-code

development in detail. Also, due to the constant updates, all LCDP type products are

prone to change in both looks and logic. If the developer faces a problem, the best they

can hope for is that someone else has faced the same problem recently, has specified

that problem on internet forums and somebody gave a valid answer. Otherwise it is pure

trial-error and logical thinking.

26

5.5 Evaluation of the thesis project and own learning

The experience from both the project and the writing of the thesis has been positive. The

project itself was a milestone as it was a level above everything I have achieved so far at

that point of my career. It was educational to try out more things on Power Apps develop-

ment (e.g. converting image to binary data, using Function App to convert binary data to

pdf, etc.). The experience from this project is helping me in the more complicated next

steps in app development.

Writing the thesis, explaining how things work, is much different than doing them. The

same logic applies to the development process itself. During the making of the application,

I was not required to know so much about Microsoft’s different platforms, how they work

internally, what kind of changes have been done to them since their release, etc. The the-

sis made me research these things and as a result, many functions and other things which

I did not fully understand at the time (even if I used them effectively) became clear. While

it is not a prerequisite to know the software in such detail for a developer, it is certainly

useful to look into things deeper than base functionality.

27

References

Build on Standard Library O Official Documentation

URL:https://docs.stdlib.com/overview/introduction/ Accessed: 12 February 2020

Chowhan, K. 2018. Hands-On Serverless Computing: Build, Run and Orchestrate Server-

less Applications Using AWS Lambda, Microsoft Azure Functions, and Google Cloud

Functions. Packt Publishing, Limited. (ISBN: 9781788836654)

Clay Richardson and John R. Rymer 2016. "Vendor Landscape: The Fractured, Fertile

Terrain Of Low-code Application Platforms" (PDF). Forrester Research. Archived from the

original (PDF) on 2017-08-09. (Retrieved 2017-01-25)

URL: https://web.archive.org/web/20170809060147/http://informationsecurity.report/Re-

sources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Ven-

dor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf

 Accessed: 10 February 2020

IFTTT Official Documentation

URL: https://platform.ifttt.com/docs Accessed: 11 February 2020

Mazumdar, P., Agarwal, S. & Banerjee, A. 2016. Pro SQL Server on Microsoft Azure.

Apress.(ISBN: 9781484220825)

Mendix Official Documentation

URL: https://www.mendix.com/low-code-guide/ Accessed: 11 February 2020

Microsoft 2020a: Power Apps Official Documentation – Formula Reference

URL: https://docs.microsoft.com/en-us/Power Apps/maker/canvas-apps/formula-reference

Accessed:01 March 2020

Microsoft 2020b: Power Apps Official Documentation – What are Power Apps?

URL: https://docs.microsoft.com/en-us/Power Apps/Power Apps-overview Accessed:01

March 2020

https://docs.stdlib.com/overview/introduction/
https://web.archive.org/web/20170809060147/http:/informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
https://web.archive.org/web/20170809060147/http:/informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
https://web.archive.org/web/20170809060147/http:/informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
https://platform.ifttt.com/docs
https://www.mendix.com/low-code-guide/
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/formula-reference
https://docs.microsoft.com/en-us/powerapps/powerapps-overview

28

Microsoft 2020c: Power Automate Official Documentation. URL: https://docs.mi-

crosoft.com/en-us/power-automate/ Accessed:02 March 2020

Microsoft 2020d: Power Apps Official Documentation -Types of Power Apps

URL: https://docs.microsoft.com/en-us/Power Apps/maker/ Accessed: 02 May 2020

Outsystems Official Documentation

URL: https://www.outsystems.com/platform/ Accessed: 10 February 2020

Rob Marvin (12 August 2014) "How low-code development seeks to accelerate software

delivery - SD Times". SD Times. San Diego Times. (Retrieved 18 November 2016)

https://sdtimes.com/application-development/low-code-development-seeks-accelerate-

software-delivery/ Accessed: 10 February 2020

Salesforce Lightning Official Documentation

URL: https://www.salesforce.com/campaign/lightning/ Accessed: 11 February 2020

Tim Leung. 2017. Beginning Power Apps: The non-developers guide to building business

mobile applications.(ISBN: 9781484230039)

Vijai Anand Ramalingam.2018. Introducing Microsoft Flow: Automating workflows be-

tween apps and services.(ISBN: 9781484236307)

Zapier Official Documentation

URL: https://zapier.com/learn/getting-started-guide/what-is-zapier/

Accessed: 12 February 2020

https://docs.microsoft.com/en-us/power-automate/
https://docs.microsoft.com/en-us/power-automate/
https://docs.microsoft.com/en-us/powerapps/maker/
https://www.outsystems.com/platform/
https://sdtimes.com/application-development/low-code-development-seeks-accelerate-software-delivery/
https://sdtimes.com/application-development/low-code-development-seeks-accelerate-software-delivery/
https://www.salesforce.com/campaign/lightning/
https://zapier.com/learn/getting-started-guide/what-is-zapier/

29

Appendices

Appendix 1. Power Automate Structure

30

Appendix 2. JSON formatting for image transformation

31

Appendix 3. Generated PDF form example

