

Minh Nguyen

IEC 61850 Intelligent Electronic Device

Configuration Tool

Technology and Communication

2020

2

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Minh Nguyen

Title IEC 61850 Intelligent Electronic Device Configuration Tool

Year 2020

Language English

Pages 40

Name of Supervisor Jukka Matila

The aim of this work was to create a Configured Intelligent Electronic Device De-

scription (CID) editor supporting both IEC 61850 edition 1 and edition 2, based

on a working version of an edition 1 CID editor. The main technologies used to

deliver the work were C++ programming language and Qt framework. This work

was done for Arcteq Ltd.

IEC 61850 is an internationally used standard in substation automation. It speci-

fies a representation format, System Configuration description Language (SCL),

for the configuration of Intelligent Electronic Devices (IEDs). A CID file is a type

of SCL file, containing necessary information for an IED to configure itself.

The final implementation completely fulfilled the requirements for an edition 2

compliant IED configuration tool. Nonetheless, there were additional features that

can be implemented to facilitate the use of the tool.

Keywords IEC 61850, IED configuration tool, substation automation

3

CONTENTS

ABSTRACT ... 2

1 INTRODUCTION .. 7

2 IEC 61850 STANDARD .. 8

2.1 Overview ... 8

2.2 Generic Object-Oriented Substation Events Messaging 9

2.3 System Configuration Description Language ... 9

3 CONFIGURED IED DESCRIPTION FILE .. 12

3.1 Extensible Markup Language (XML) ... 12

3.2 CID File Structure and Functionalities ... 13

4 REQUIREMENT SPECIFICATION ... 17

4.1 Add Description to Dataset Editor .. 17

4.2 Add and Remove Logical Nodes Manually .. 17

4.3 Change Prefix Attributes of Logical Nodes .. 17

4.4 Edit GOOSE Subscription Information .. 17

4.5 Export Logical Nodes Information ... 17

4.6 Extract Data from ICD Files ... 18

4.7 Set Maximum Client for Report Control Nodes 18

4.8 Store GOOSE Subscription Information .. 18

5 CODE BASE ASSESSMENT ... 22

6 IMPLEMENTATION .. 24

6.1 Refactor ... 24

6.2 Implement New Features .. 27

6.2.1 Row-focused Table View .. 27

6.2.2 Extract Data from ICD Files ... 28

6.2.3 Add Description to Dataset Editor .. 29

6.2.4 Edit Logical Nodes .. 30

6.2.5 Set Maximum Client for Report Control Nodes 31

6.2.6 Export Logical Nodes Information ... 32

6.2.7 Edit GOOSE Subscription Information 32

7 RESULT ... 34

4

7.1 Main Dialog .. 34

7.2 Edit Logical Node Dialog ... 35

7.3 Edit GOOSE subscription dialog .. 36

8 TESTING ... 37

8.1 Unit tests and integration tests .. 37

8.2 System tests ... 37

8.3 Acceptance tests .. 37

9 DISCUSSION AND CONCLUSION .. 38

9.1 Project Assessment ... 38

9.2 Continuation .. 38

9.3 Conclusion .. 39

10 REFERENCES ... 40

5

LIST OF FIGURES AND TABLES

Table 1. SCL child nodes description... 14

Table 2. Attributes of a logical node .. 14

Table 3. Attributes of a functionally constraint data attribute 16

Table 4. Attributes of a GOOSE subscription logical node 19

Table 5. Attributes of a GOOSE subscription private node 20

Table 6. Attributes of an external reference node .. 21

Figure 1. Data modelling in IEC 61850 ... 8

Figure 2. SCL file types' usages ... 10

Figure 3. Example CID file .. 15

Figure 4. Old tool class diagram .. 23

Figure 5. Classes representing frequently used XML node 24

Figure 6. Classes interacting with CID file .. 25

Figure 7. Item delegate classes ... 27

Figure 8. Functions extracting FCDAs' attribute ... 29

Figure 9. Editing datasets classes ... 31

Figure 10. Editing GOOSE configuration classes .. 33

Figure 11. Old tool main dialog ... 34

Figure 12. New tool main dialog .. 34

Figure 13. Edit logical nodes dialog... 35

Figure 14. GOOSE subscription information dialog .. 36

Figure 15. GOOSE publishing information dialog .. 36

Figure 16. Resulting CID file after subscription .. 36

6

TERMS AND DEFINITIONS

Device

Mechanism or piece of equipment designed to serve a purpose or perform a func-

tion, for example, breaker, relay, or substation computer

IDE

Integrated Development Environment

Intelligent Electronic Device

IED

Any device incorporating one or more processors with the capability of receiving

or sending data/control from or to an external source (for example, electronic mul-

tifunction meters, digital relays, controllers)

IEC

International Electrotechnical Commission

Relay

Digital protective relay - a computer-based system with software-based protection

algorithms for the detection of electrical faults

Substation

Electrical substations - the interface between the distribution grid and transmis-

sion systems

STL

Standard library (C++)

7

1 INTRODUCTION

The work in this thesis was done for Arcteq Ltd. The company designs, manufac-

tures, sells, and supports protection relays and arc flash protection systems for elec-

trical utility, power generation, industrial, offshore, marine, institutional, and com-

mercial users /1/. Many of Arcteq’s products support a wide range of communica-

tion protocols including, but not limited to, Modbus, IEC 60870-5-103/101/104,

IEC 61850 and DNP3.

Arcteq’s protection relays were compliant with IEC 61850 edition 1 and the com-

pany has already got an IED configuration tool for edition 1. Since edition 2 of the

standard was evaluated to be mature and can be deployed, an IED configuration

tool capable of handling both edition 1 and edition 2 was needed. The objective of

this work is to fulfil that need.

8

2 IEC 61850 STANDARD

2.1 Overview

IEC 61850 is an important international standard for substation automation that has

a very significant impact on how electric power systems are designed and built. IEC

61850 is a part of the IEC’s Technical Committee 57 architecture for electric power

systems /2/. Being the first standardized communication protocol in substation au-

tomation systems, one of the its main objectives is supporting interoperations

among substation automation devices of different vendors. The standard is based

on Ethernet communication, ensuring high communication bandwidth and speed

while reliability is ensured by utilizing redundancy network protocols such as Par-

allel Redundancy Protocol (PRP).

The standard defines a unified information model with a naming hierarchy and spe-

cific data structures to be used in any compliant device in order to reduce the cost

in engineering time and to improve maintenance tasks. Vendors are requested to

identify the same concepts with the same names, and they must use a common for-

mat to build their information. The hierarchical information model contains the fol-

lowing levels: IED, logical device, logical node, data object, data attribute, basic

type. The relationships of the levels are described in Figure 1 /3/.

Figure 1. Data modelling in IEC 61850

9

The logical devices are logical containers used to organize the information of an

IED, splitting it into different categories. The logical nodes are the functions or the

components that automate the system. There are functions related to control, pro-

tection, measurement, supervision and more. They are identified by four letters; the

first one indicates their category. The table of all categories are defined in IEC

61850-7-4. Each logical node includes a set of mandatory and optional data objects

to fulfil their tasks. The data objects can represent status information, measure-

ments, set points, controllable points, or descriptive information. Each logical node

includes a table in the standard with its related data indicating their name and type.

The vendors must select the ones that they can provide and publish in their IEC

61850 model. /4/

2.2 Generic Object-Oriented Substation Events Messaging

A part of IEC 61850’s services is Generic Object-Oriented Substation Events

(GOOSE) messaging. It is a mechanism for fast transmission of substation events,

such as commands and alarms. A single GOOSE message sent by an IED can be

received and used by several receivers for fast messaging /5/. The service works on

publisher-subscriber mechanism and has a higher priority than normal messages.

GOOSE messages are retransmitted at increasing intervals, thus making sure the

messages are received properly.

2.3 System Configuration Description Language

System Configuration description Language (SCL) is a representation format spec-

ified by IEC 61850 to exchange configuration data between different devices. There

are six types of SCL files for different purposes of SCL data exchange, four of

which are defined in edition 1. The SCL files types are:

• IED Capacity Description (ICD).

• System Specification Description (SSD).

• Substation Configuration Description (SCD).

• Configured IED Description (CID).

• Instantiated IED Description (IID), which is defined in edition 2.

10

• System Exchange Description (SED), which is defined in edition 2.

The usage of each file types is shown in Figure 2.

Figure 2. SCL file types' usages

The configuration process is done through multiple steps. First, ICD files shall be

provided by the substation’s vendor. It is a template containing the description of

an IED type capabilities and not containing the communication configuration. After

that, using the ICD files, an SCD file is created using the system configuration tool.

The SCD file, containing all substations’ description and communication configu-

ration, can then be import to the IED configuration tool to extract the information

specific to one substation and store those in a CID file. Finally, the CID file may be

sent from the IED configuration tool to an IED to configure it.

Instead of creating an SCD file, it is also possible to use an ICD file to produce a

CID file, which is what Arcteq’s IED configuration tool has been doing in practice.

11

The IID file becomes handy when there is a change to be made in one configured

substation in the SCD file. While it can be done using the ICD file, the user will

have to re-configure all the communication section. An IID file, on the other hand,

is a CID file with needed modifications, which can then be imported to the system

configuration tool to modify the SCD file.

The SSD and SED files are not relevant to an IED configuration tool. An SSD file

describes the single line diagram of the substation and the required logical nodes.

An SED file describes the interfaces of one project to be used by the other project,

and at reimport the additionally engineered interface connections between the pro-

jects. /7/

12

3 CONFIGURED IED DESCRIPTION FILE

3.1 Extensible Markup Language (XML)

A CID file is a type of SCL file, whose format is based on XML version 1. There-

fore, it is necessary to understand an XML file structure.

An XML file consists of nodes. For the purpose of this document, three types of

nodes are of concern: element nodes, attribute nodes, and text nodes. An element

node may have attributes (attribute nodes) and a context (text node). For example,

the following line can be an XML node.

<Duck canFly=”true”>Quack</Duck>

It is an element node named “Duck” with an attribute named “canFly” having value

“true”. Its context is a text node with value “Quack”. An XML node may also have

a parent node (a node that contains this node) and child nodes (nodes that this node

contains). The nodes that share one same parent are called siblings. One special

case is the top-level element node called root node. It must have no parent and no

sibling.

An XML document with correct syntax is called well-formed. A validated XML

document is both well-formed and valid. An XML document can be validated using

a Document Type Definition (DTD) or an XML schema, both defining the structure

and legal elements and attributes of an XML document /6/. Since the IEC 61850

standard uses XML schemas, an example and explanation of an XML schema is

described below.

13

<xs:element name=”colour” type=”xs:string”/>

<xs:element name=”material” type=”xs:string”/>

<xs:attribute name=”theme” type=”xs:string” use=”required”/>

<xs:element name=”chair”>

 <xs:complexType>

 <xs:sequence>

 <xs:element ref=”colour”/>

 <xs:element ref=”material”/>

 <xs:sequence>

 </xs:complexType>

 <xs:attribute ref=”theme” use=”required”/>

</xs:element>

The schema above is interpreted line-by-line as followed:

• Define element “colour” of type string

• Define element “material” of type string

• Define attribute “theme” of type string

• Defining element “chair”

• Element “chair” contains a complex type

• The complex type is a sequence of two elements “colour” and “material” as

described above

• Element “chair” contains attribute “theme” as described above

Based on the structure defined by the schema, the following XML content is well-

formed and valid:

<chair theme=”Royal”>

 <colour>Yellow</colour>

 <material>Gold</material>

</chair>

3.2 CID File Structure and Functionalities

A CID file shall contain a root node named “SCL”, which may consist of the fol-

lowing child nodes: header, substation, communication, IED and data type tem-

plates. The descriptions of the elements are listed in Table 1.

14

Table 1. SCL child nodes description

Element Description

Header Contains the identification of a CID file and its version

Substation Describes a substation’s functional structure related to

the configured IED

Communication Describes which access points of an IED are connected

to a subnetwork

IED Describes an IED’s configuration

Data type templates Contains templates of the data of elements

Functions in a substation equipment are represented by logical node elements in the

IED node. A logical node may have the attributes stated in Table 2.

Table 2. Attributes of a logical node

Attribute Description

prefix The logical node’s prefix

lnClass The logical node class defined by the standard

lnType The logical node’s type

inst The instance number of this node

desc Description text

The combination of prefix, lnClass, and inst attributes must be unique for every

logical node. There shall be a LNodeType element in the data type templates that

defines the content of each logical node. The logical node type template is built

from data object elements, each of which has a DOType element defining its con-

tent. A data object type template is built from data attribute elements, which can

either have a basic type, be an enumeration, or a structure of a DAType. The

DAType is built from BDA elements, defining the structure elements, which again

can be BDA elements or have a base type such as a DA /7/. An example of the

structure is shown in Figure 3.

15

Figure 3. Example CID file

16

Some of the nodes in Figure 3 are collapsed to shorten the content. The logical node

and the logical node template are connected by the same values in the logical node’s

lnType attribute and the template’s id attribute. Each instantiated data object (DOI)

is based on the data object in the template. The similar logic is used for data objects

and instantiated data attributes (DAIs).

Apart from DOIs, any logical node may also contain dataset nodes and report con-

trol nodes. Dataset nodes are made up of one or more functionally constraint data

attributes (FCDA). They are used to access many attributes with only one request.

An FCDA may have the attributes stated in Table 3.

Table 3. Attributes of a functionally constraint data attribute

Attribute Description

ldInst Name of the logical device

prefix Prefix of the logical node

lnClass Class of the logical node

lnInst Instance number of the logical node

doName Name of the data object

daName Name of the data attribute

fc Functional constraint

Report control nodes are used to configured reporting of events from the server

without the client having to explicitly request for it. A report control node is always

associated with a dataset node in the same logical node.

There is always a special logical node in the IED node, called logical node zero

(LN0). It is used for functions related to the logical device. It may contain GSE

control nodes to store the configuration of GOOSE messaging.

17

4 REQUIREMENT SPECIFICATION

This chapter states the changes required from the edition 1 IED configuration tool.

From this point forward, the edition 1 IED configuration tool provided by Arcteq

will be regarded as the old tool, as opposed to the new tool – the result of this work.

4.1 Add Description to Dataset Editor

In the old tool, the interface for the users to edit the dataset shows only the prefixes

and types of the logical nodes, making it difficult for the users to use. The new tool

shall also show the description of the logical node.

4.2 Add and Remove Logical Nodes Manually

In the old tool, logical nodes are added and removed automatically. It is done based

on whether the logical node has any data that is in a dataset. The new tool shall

support adding and removing logical nodes manually.

4.3 Change Prefix Attributes of Logical Nodes

The users shall be able to change the value of the prefix attribute of a logical node.

The prefix values of the logical nodes shall be unique. The prefix value “GS” is

reserved. The users shall not be allowed to change the prefix from and to that value.

The old tool had no support for this feature.

4.4 Edit GOOSE Subscription Information

In the old tool, the users can import GOOSE dataset information, but are not able

to edit the information. The new tool shall support both importing and editing of

the information.

4.5 Export Logical Nodes Information

The users shall be able to generate documentation of the logical nodes and their

data. The old tool had no support for this feature. The documentation should be a

tab delimited text file. Each line of the file corresponds to a data object of a logical

node. Each line shall contain (in the listing order):

18

• The logical node’s prefix, description, class, and instance number

• The data object’s name

• The functional constraint of the data attributes

• Data attributes, in the following format: “xyz.t”, where

o “x” is the logical node’s prefix, class, and instance number

o “y” is the functional constraint of the data attributes

o “z” is the data object’s name

o “t” is the data attribute’s name

4.6 Extract Data from ICD Files

In the old tool, the logical nodes and FCDAs that a CID file can have are stored in

an XML file and a text file. Those data are now covered by ICD files. The new tool

shall be able to extract the same information from the provided ICD files.

4.7 Set Maximum Client for Report Control Nodes

In edition 1, each report control node serves one client only. When the maximum

number of clients is set in the old tool, that number of report control nodes are

written to the CID file. In edition 2, the report control node has a child node with a

“max” attribute to store the maximum number of clients. Therefore, only one report

control node is added. The child node is described below.

<ReportControl …>

 …

 <RptEnabled max="1"/>

</ReportControl>

The new tool shall detect the current edition and generate the content accordingly.

4.8 Store GOOSE Subscription Information

In edition 1, when subscribing to a GOOSE dataset, the subscription information is

not stored in the CID file but is handled elsewhere. In edition 2, the information

shall be stored in the CID file. The new tool shall detect the current edition and act

accordingly.

19

The information is stored as followed. When a user imports GOOSE information

by passing in the publisher’s CID file, logical nodes shall be added in the sub-

scriber’s CID file, having the following structure:

<LN …>

 <DOI desc="Single point status" name="Ind1">

 <DAI name="stVal">

 <Private type="SystemCorp_Generic">

 <SystemCorp_Generic:GenericPrivateObject …/>

 </Private>

 </DAI>

 </DOI>

</LN>

The attributes of the logical node are described in Table 4.

Table 4. Attributes of a GOOSE subscription logical node

Attribute Value

prefix “GS”

lnClass “GGIO”

lnType “GGIO_0”

inst Range from 1 to 64, no duplicate

desc “Generic process I/O”

20

The attributes of the general private object node are described in Table 5.

Table 5. Attributes of a GOOSE subscription private node

Attribute Description

xmlns Defines the namespace for the prefix. The value is always

“http://www.systemcorp.com.au/61850/SCL/Generic”

Field1 A unique application identification stored in the Communication

element of the publisher’s CID file.

Field2 The configuration revision stored in the GSE control element

Field3 The index of the data in the dataset, starting from 0

Field4 “1” if the next subscribed data is the quality indicator of this

data, “0” otherwise.

Field5 Indicates the data type. “0” for Boolean values, “1” for integers,

“2” for unsigned integers, “3” for floating point values.

One logical node shall be added for each data imported. However, if the next sub-

scribed data is the quality indicator of the previous one, only one logical node is

added. In that case, the data object node will have another data attribute:

<DAI name="q">

 <Private type="SystemCorp_Generic">

 <SystemCorp_Generic:GenericPrivateObject …/>

 </Private>

</DAI>

The general private object node of this data attribute shares the same attributes de-

scribed in Table 5.

21

Additionally, an external reference node is to be added for each imported data.

Those nodes shall be children of the input node in the logical node zero like de-

scribed below:

<LN0 …>

 <Inputs>

 <ExtRef …/>

 …

 </Inputs>

 …

</LN0>

The attributes of the external reference nodes are described in Table 6.

Table 6. Attributes of an external reference node

Attribute Description

iedName Name of the publisher’s IED

ldInst Name of the publisher’s logical device

prefix Prefix of the publisher’s logical node

lnClass Class of the publisher’s logical node

lnInst Instance number of the publisher’s logical node

doName Name of the publisher’s data object

daName Name of the publisher’s data attribute

intAddr Reference to the data attribute of the added logical node

in the subscriber’s CID file

The internal address attribute shall be in the form “a/b/c/d/e”, where:

• “a” is the subscriber’s logical device instance

• “b” is the prefix, class, and instance number of the added logical node

• “c” is the functional constraint of the added data attribute

• “d” is the added data object name

• “e” is the added data attribute name

22

5 CODE BASE ASSESSMENT

Despite being a tool in released state, the old tool still suffered from minor undis-

covered faults. After one week of faults fixing and refactoring, the code base was

evaluated to be inconsistent, error-prone, and able to benefit from a complete re-

vamp.

The class diagram of the old tool is shown in Figure 4. The class IEC61850Dialog

is the main dialog. The class kept lists of XML nodes, tree items, attributes, attribute

values, nodes’ tag names, nodes’ (context) values. Those lists were always “syn-

chronized” so that the nth element in one list is related to the nth elements in other

lists. This design created considerable amount of maintenance work to keep the lists

in the right order. It was also time-inefficient when finding and removing nodes.

Another aspect worth considering is handling the CID file. In the old tool, the CID

file was read from and written to inside the main class, lengthening the source file

significantly. In addition to the design problems, there was an inconvenience related

to the Qt framework. The class QDomNodeList is designed without iterators, mak-

ing it impossible to utilize any standard library (STL) algorithm. The mentioned

problems shall be fixed before adding any new feature to the tool.

23

Figure 4. Old tool class diagram

24

6 IMPLEMENTATION

This chapter covers the design of the program and the methods used to fulfil the

requirements above. The old tool was developed using C++ and Qt framework ver-

sion 5.9.0. Hence, the new tool was developed using the same tools.

6.1 Refactor

In order to give more contexts to datum, especially the frequently used XML nodes,

more classes were made as shown in Figure 5. Most of the classes were for storing

data and providing comparison, conversion, and sorting functionalities.

Figure 5. Classes representing frequently used XML node

25

To overcome the lack of iterators in QDomNodeList, a new class inheriting from

QVector<QDomNode>, DomNodeList, was introduced. Since the class inherits

from QVector, iterator functionalities are also inherited. A constructor taking

QDomNodeList as a parameter was also provided to facilitate the conversion be-

tween the classes. It was implemented simply by copying the QDomNode objects

one-by-one to the new class. This operation will be slow if the object count is great

enough. This drawback should be considered when the class is used.

Next, three more classes were created – CidFile, CidReader and CidWriter,

separating the code interacting with the CID file from the main dialog. The classes

relationship is shown in Figure 6.

Figure 6. Classes interacting with CID file

26

CidFile extends from QDomDocument, providing convenient functions to acquire

attributes or nodes related to the CID file. The class was designed to only return

“basic” types – QDomNode, DomNodeList and LogicalNode. The functions ex-

tracting information from QDomNode objects into data classes were provided in the

class CidReader. Those functions implicitly guarantee not to alter the CID file in

anyway. On the other hand, almost every function in the CidWriter class alters

the CID file. The class CidWriter also provides signals to notify about nodes be-

ing added, removed, or changed in attributes or context value to facilitate updating

item views.

The three CID file handling classes should remove the need of keeping lists of at-

tributes, tags, and context values in the main class. However, the XML nodes list

and tree items list were still necessary to update the underlying nodes when the tree

items’ values change and vice versa. Hence, to make the searching operation more

time efficient, QHash was used. It is a template class providing a hash-table-based

dictionary. It is implemented so that if the key lookup operation is used multiple

times, the average complexity is O(1) /8/. One requirement of using QHash is to

provide a global function called qHash() for the key type, which must return dif-

ferent values for different keys. The Qt framework already provided this function

for many of its classes but QDomNode, which is reasonable since there can be two

identical nodes in an XML file. However, given the structure of a CID file, it is not

possible for two nodes to share the same parent and have identical attributes. In that

case, it is straight-forward to create a unique string for each node by combining the

node’s absolute path from the root node with its attributes and attributes’ values.

Notice that the hash cannot be changed after the key is added to the container.

Therefore, it should be updated whenever the node object has its attributes’ values

changed, or the attributes that can be changed should not be added to the hash string

at all. In this work, the latter option was chosen since there were not many changing

attributes and removing those would not affect the unicity of the nodes.

27

6.2 Implement New Features

6.2.1 Row-focused Table View

In the tool, the data was shown as rows in table objects. In order to maintain the

uniformity of the look and behavior of the tables, a class structure was introduced,

as shown in Figure 7.

Figure 7. Item delegate classes

The item delegate’s functionalities were separated into elementary classes: Spin-

BoxItemDelegate, DeleteButtonDelegate, HoverRowDelegate and Hor-

izontalGridDelegate, all of which inherits from QStyledItemDelegate.

28

The idea was that if any delegate class need a combination of functionalities, it can

just have the necessary elementary classes as its members.

The class RowFocusTableView provides an implementation of a table view that

only has horizontal grid and has row-highlighting behavior on mouse hover. To

achieve those, it must be paired with a specific delegate, RowFocusItemDele-

gate, through the function:

• setItemDelegate(RowFocusItemDelegate *)

connecting the mouse tracking signals from the table view to the handling function

in the delegate. As a result, the following functions inheriting from QTableView

were rendered obsolete and were marked deleted:

• setItemDelegate(QAbstractItemDelegate *)

• setItemDelegateForColumn(int, QAbstractItemDelegate *)

• setItemDelegateForRow(int, QAbstractItemDelegate *)

6.2.2 Extract Data from ICD Files

Since the class CidFile already provided a convenient function ele-

mentsByTagName(), the logical nodes can effortlessly be acquired with the tags

LN and LN0 (for the logical node zero node). The FCDAs’ data (described in Table

3), on the other hand, are stored in different nodes. The ldInst attribute is stored in

the inst attribute of the LDevice node (parent of all logical nodes). The attributes

prefix, lnClass and lnInst are stored in the logical node containing the data attribute.

The doName attribute can be found from a LNodeType node, whose id attribute

matches the lnType attribute of the logical node. Similarly, the attributes daName

and fc can be found from a DOType node.

To facilitate finding the type nodes, the LNodeType, DOType and DAType nodes

were stored as vectors in the class CidFile right after the document was loaded.

The vectors were sorted so that a node can be found faster using

std::lower_bound(). The functions to extract the FCDAs’ data were imple-

mented in the CidReader class as shown in Figure 8.

29

Figure 8. Functions extracting FCDAs' attribute

The function getAllFcdaList() is just a convenient function to get all logical

nodes and call getFcdaList() on each of the nodes. The function getFcdaL-

ist() shall be used to return all FCDAs inside a specific logical node. It is done

by creating a template FCDA for each data attribute found in the logical node and

filling in the attributes it can acquire from the logical node and the LDevice node.

Then, the template FCDA is passed to getDataObjects() together with the

LNodeType node to get the attribute doName. The getDataObjects() function

operates in the same way and subsequently calls getDataAttributes() to fill

the attributes daName and fc.

6.2.3 Add Description to Dataset Editor

When extracting FCDAs from the opening CID file, the descriptions of the logical

nodes are also collected and stored in the FCDA object as shown in Figure 5 (alt-

hough not needed in the actual FCDA nodes). This will allow the descriptions of

the logical nodes to be shown in the editor as required.

30

6.2.4 Edit Logical Nodes

There were two requirements concerning logical nodes: adding/removing and

changeable prefix attribute. To support adding and removing logical nodes manu-

ally, a dialog represented by the class EditLogicalNodeDialog was made. It

simply contains two vectors of LogicalNode objects, a QStandardItemModel

object as an item model connecting to a RowFocusTableView as the item view

and interfaces to interact with the two vectors. The data for the vector of all logical

nodes are taken from one of the two ICD files provided by Arcteq, depending on

the edition of the editing CID file. The vector is sorted in order to quickly find the

selected node.

To determine which nodes are chosen, each logical node in the ICD file must match

exactly one logical node in the opening CID file. Since the prefix attributes of log-

ical nodes are editable (see requirement 4.3), the unicity of the combination of pre-

fix, lnClass, and inst attributes defined by the standard cannot be used. Instead, the

new tool uses the combination of lnClass, lnType, inst, and desc attributes, which

is unique in Arcteq’s ICD file. Any future changes that affect the unicity of the used

combination will require changes in the implementation of this feature.

After the dialog is accepted, there are two vectors of logical nodes: one contains the

newly selected nodes obtained through the dialog, another one contains the previ-

ously selected nodes in the CID file. The two vectors are then compared using

std::set_difference() to obtain the nodes to be added and the nodes to be

deleted. Note that the function only works with sorted ranges.

Implementing the editable prefix attribute feature was quite straight-forward. Since

the specification was already detailed to logical nodes, the program was hard coded

to set the value items of those attributes to be editable. The validation of the inputted

prefix is done after the data is changed in the item model. If the inputted prefix

already exists or is the same with the reserved prefix, it is reset to the value before

changing. The old value is stored beforehand by implementing an item model class

inheriting from QStandardItemModel. The function setData() was overridden

to emit a dataAboutToChange() signal before setting the data.

31

Since the FCDAs for the datasets are stored inside logical nodes, when the logical

nodes are changed, the following lists may have to be updated:

• List of available FCDAs to be added to datasets

• Lists of already added FCDAs in datasets

The functions updatePrefix(), addFcda() and removeFcda()from the Da-

tasetListDialog class were made available to the main dialog as shown in Fig-

ure 9. Those functions can be used to update the FCDAs in the dataset list stored in

the DatasetListDialog object and the available FCDA list stored in the Add-

FcdaDialog object.

Figure 9. Editing datasets classes

6.2.5 Set Maximum Client for Report Control Nodes

The private function createReportControlNodes() in the class CidWriter

returns a DomNodeList object, with different contents depending on the edition of

the opening CID file. The edition information is acquired from the CidReader

object by the main dialog and then given to the CidWriter object.

32

6.2.6 Export Logical Nodes Information

Since all the information required to be exported can be found in the class FCDA,

the vector of all FCDA objects – the “master” vector – were used as a starting point.

The vector was sorted by the combination of prefix, lnClass, lnInst, and doName

attributes in the listing order to group all data attributes under the same data object

together. The function std::unique_copy() was then used on the sorted vector

to get a new vector containing one FCDA from each data object – the “unique”

vector.

From there, the work was straight-forward. For each element in the “unique” vector,

find all elements in the “master” vector that are in the same data object and create

one entry in the output file. To accelerate the search, std::lower_bound() and

std::upper_bound() were used and the matched elements were erased right af-

ter the information extraction was done.

6.2.7 Edit GOOSE Subscription Information

To support editing GOOSE subscription information, two more classes were intro-

duced: GooseDialog and GoosePublisherDialog. The class GooseDialog

was designed to show the GOOSE configuration in the opening CID file. It holds a

map connecting GOOSE input numbers (integers range from 1 to 64) to objects of

type GooseSetting. The GOOSE configuration to be imported from another CID

file (the publisher) should be shown in an object of type GoosePublisher-

Dialog. Both classes contain a RowFocusTableView object as the item view,

paired with an item delegate of type GooseItemDelegate (described in Figure

7), allowing the user to delete any row using the button placed at the end of each

row and change the GOOSE input number using a spin box widget. The interfaces

and relationship of the classes are shown in Figure 10.

33

Figure 10. Editing GOOSE configuration classes

When a CID file is opened, the subscription information is processed and displayed

in the GooseDialog object. The user will be given a warning when changing the

GOOSE input number to an existing one, and the input number will be changed

back to the previous value. A file dialog will be shown when the import button is

pressed. After the publisher’s CID file is chosen, the publishing datum are displayed

in the GoosePublisherDialog object for editing before being added. The pro-

gram assigns an input number to each entry automatically by finding the smallest

input number that has not been taken. If all input number have been taken, the input

number will be -1, and will not be added to the opening CID file when the

GoosePublisherDialog is accepted.

34

7 RESULT

7.1 Main Dialog

Figure 11 and 9 show the main dialog of the old tool and the new tool.

Figure 11. Old tool main dialog

Figure 12. New tool main dialog

35

The main visible differences are three more buttons in the tool bar, the attribute

view, and the logical nodes’ texts. The attribute view in the new tool displays the

attributes vertically instead of horizontally. The logical nodes’ texts are more de-

scriptive, and coloured green since they contain editable attributes. The added but-

tons are for exporting logical nodes information, editing logical nodes, and indicat-

ing edition. The edition indicating button currently does not respond to presses from

the user since the edition switching feature has not been supported.

7.2 Edit Logical Node Dialog

Figure 13 shows the dialog for adding/removing logical nodes.

Figure 13. Edit logical nodes dialog

The class RowFocusTableView was used with the default item delegate (RowFo-

cusItemDelegate) to present the data. The implementation worked as intended

with no vertical grid and row highlighting on mouse hover.

36

7.3 Edit GOOSE subscription dialog

The dialogs displaying GOOSE subscription and publishing information are shown

in Figure 14 and Figure 15.

Figure 14. GOOSE subscription information dialog

Figure 15. GOOSE publishing information dialog

Since an item delegate of type GooseItemDelegate was used, the user can de-

lete entries and edit GOOSE input numbers. The entries in the publishing dialog

are assigned input numbers that have not been taken as expected. The resulting

CID file structure after an entry is added to the subscription dialog is shown in

Figure 16.

Figure 16. Resulting CID file after subscription

37

8 TESTING

8.1 Unit tests and integration tests

All unit tests and integration tests were done after a function or group of functions

were implemented by observing outputs for different inputs. No testing framework

was used.

8.2 System tests

After the work had been implemented, system testing was done by comparing the

output file (CID file or text file) from the new tool with the desired outcome. The

comparison was made for each of the following actions:

• Add, remove, and edit datasets

• Add, remove logical nodes

• Edit report control node attributes

• Edit logical nodes’ prefixes

• Import, edit GOOSE configuration

• Export logical nodes’ data

To facilitate the comparing process, a program called Oxygen XML Developer 22.0

developed by Syncro Soft SRL was used. The input and desired output files were

provided by the customer. Additionally, the features inherited from the old tool

were also tested to ensure their serviceability.

8.3 Acceptance tests

After all system tests have passed, the output CID files from the new tool were used

to configure actual protection relays. This work was done by the customer.

38

9 DISCUSSION AND CONCLUSION

This chapter covers the assessment of the phases of the project, possible future de-

velopments of the work, and the conclusion made.

9.1 Project Assessment

The project was done over the time span of about 260 hours, of which:

• 80 hours spent on assessment and refactoring

• 140 hours spent on implementing new features

• 40 hours spent on testing and debugging

The time allocation was reasonable for a small-sized project. The final implemen-

tation of the configuration tool was fully functional and met the requirements stated

by the customer. The tools used in the project were mainly an IDE for Qt project

development and a private Git server provided by the customer. All the tests were

done without utilizing any testing tool or framework, which was something to be

improved.

9.2 Continuation

Future developments can be focusing to three aspects: improving the opening time,

supporting edition switch, and utilizing logical nodes’ contents to identity logical

nodes.

The opening time for the largest CID file provided (the ICD file) was measured to

be approximately 3 seconds. The time was used mostly in the process of getting all

FCDA information and creating the tree items to display those data .While it is not

too big a problem, lessening that time will increase the efficiency of the configura-

tion tool.

Supporting edition switch would greatly facilitate the use of the configuration tool.

The edition switch interface was already made, but since the feature was out of

scope, it was never implemented.

39

The ability to identify a logical node by a private node inside of it was known very

late in the testing phase, and the implementation was evaluated to be difficult.

Therefore, it was not utilized in the final version of the tool. If it were in used, the

identification of logical nodes would be based on a well-defined rule instead of an

observed implicit rule of the CID file (see 6.2.4). In addition, more attributes of the

logical nodes will be able to be changed.

9.3 Conclusion

The project presented all the needed works to upgrade an IED configuration tool

from supporting only edition 1 to supporting both edition 1 and edition 2 of the IEC

61850 standard, covering code base refactoring, implementing new features and

possible future developments. As long as the IEC 61850 standard is still in used,

this project can serve as a reference for all vendors to work on similar problems.

40

10 REFERENCES

/1/ Arcteq. About company. Accessed 06.05.2020. https://arcteq.fi/company/

/2/ Mackiewicz, R. 2006. Overview of IEC 61850 and benefits. IEEE PES

Power Systems Conference and Exposition October 29 – November 1, 2006. Mon-

treal, Quebec.

/3/ IEC TR 61850-1:2013. IEC 61850 technical report. Edition 2.0. 2013. 73

pages.

/4/ International Society of Automation. IEC 61850 Power Communications

Standard. Accessed 29.04.2020. https://www.automation.com/en-us/articles/2003-

1/iec-61850-power-communications-standard-commercial

/5/ Energy software and testing. Introduction to IEC 61850 protocol. Accessed

06.05.2020. https://www.ensotest.com/iec-61850/introduction-to-iec-61850-proto-

col/

/6/ W3Schools. XML Schema. Accessed 28.04.2020. https://www.w3schools-

.com/xml/xml_schema.asp

/7/ IEC 61850-6:2009. IEC 61850. Edition 2.0. 2009. 436 pages.

/8/ Qt Documentation. Algorithmic complexity of containers. Accessed

27.4.2020. https://doc.qt.io/qt-5/containers.html#algorithmic-complexity

https://arcteq.fi/company/
https://www.automation.com/en-us/articles/2003-1/iec-61850-power-communications-standard-commercial
https://www.automation.com/en-us/articles/2003-1/iec-61850-power-communications-standard-commercial
https://www.ensotest.com/iec-61850/introduction-to-iec-61850-protocol/
https://www.ensotest.com/iec-61850/introduction-to-iec-61850-protocol/
https://www.w3schools-.com/xml/xml_schema.asp
https://www.w3schools-.com/xml/xml_schema.asp
https://doc.qt.io/qt-5/containers.html#algorithmic-complexity

