

Devndra Ghimire

Comparative study on Python web
frameworks: Flask and Django

Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Bachelor’s Thesis

5 May 2020

 Abstract

Author(s)
Title

Devndra Ghimire
Comparative study on Python web frameworks: Flask and
Django.

Number of Pages
Date

37 pages + 0 appendices
5 May 2010

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Software Engineering

Instructor(s) Kari Salo, Senior Lecturer

The purpose of the thesis was to the study the various features, advantages, and the limita-
tion of two web development frameworks for Python programming language. It aims to com-
pare the usage of Django and Flask frameworks from a novice point of view. The theoretical
part of the thesis presents the various types of programming languages and web technolo-
gies. In the practical part, however, the study is divided into two parts, each part observing
the respective web application framework.

In order to perform the comparison, a social network and eCommerce like application was
built for Flask and Django respectively. The comparison was started by developing the social
network application first with Flask and finished with the e-commerce application using
Django. Python programing language, SQLite database for the backend and HTML, JavaS-
cript, and Ajax were used for the frontend technology. At the end of the project, both appli-
cations were deployed to the cloud platform called Heroku.

After the comparison, it was found that the most significant advantages of Flask were that it
provides simplicity, flexibility, fine-grained control and quick and easy to learn. On the other
hand, Django was easy to work with because of its extensive features and support for librar-
ies. Another main advantage of Django is its scalability. It is best fit for a large-scale appli-
cation. Each framework has its limitations and radiates a fair share of disadvantages. For
example, Django is a bit cumbersome for smaller sized applications. However, Flask is too
simple to not have the necessary features within the framework

As a result of this study, it seems that both frameworks are capable of serving production-
grade web applications while having a fair share of advantages and disadvantages.

Keywords Django, Flask, Python, Backend, Frontend, Web Framework

Contents

1 Introduction 1

2 Web Application Development 2

2.1 Background 2

2.2 Backend Technologies 3

2.3 Front End Technologies 7

3 Python Web Frameworks 8

3.1 Flask 8

3.2 Django 9

3.3 Pyramid 10

3.4 Bottle 11

3.5 CherryPy 12

3.6 Tornado 12

4 Comparison and Observation 13

4.1 Flask 14

4.1.1 Design Pattern 14

4.1.2 Requests and Routing 15

4.1.3 Infrastructure and Configurations 17

4.1.4 Error handling 19

4.1.5 Caching 20

4.1.6 Flexibility 20

4.1.7 Developer Support 21

4.2 Django 22

4.2.1 Design Pattern 22

4.2.2 Requests and Routing 23

4.2.3 Infrastructure and Configurations 25

4.2.4 Error handling 27

4.2.5 Caching 28

4.2.6 Flexibility 29

4.2.7 Developer Support 31

5 Conclusion 32

6 References 33

1

1 Introduction

From the inception of modern programming languages in the early 50s of the 20th cen-

tury, numerous programming languages have been invented. A few have been discon-

tinued along the road, and a few have survived with appreciation from computer scien-

tists, programmers, and engineers. Of those survived, languages such as C, C++, Java,

Python, JavaScript, and Ruby have been the go-to programming languages to build

small to enterprises applications for desktop, mobile and other handheld devices.

While building a software application, one of the most important tasks of a programmer

is to make the code readable, understandable and reusable. Often termed as DRY meth-

odology, adopting this methodology not only reduces the boilerplate code in the code-

base but also organizes the same logic in one place and makes it reusable in other parts

of the codebase for the same purpose.

Another difficulty for the programmer is to understand the code which is written by other

fellow programmers. If the same logic is repeated and found in many places, following

the small piece of code could be a very demanding task as the source of truth for the

same can be found in many places in the codebase resulting in multiple interpretations

increasing the complexity. Using the software frameworks, boilerplate, duplicate and un-

standardized code can be reduced.

A software framework is a set of standardized libraries and tools for a programming lan-

guage. It helps to build a concise software application efficiently. Because of its code

reusability and efficiency, it allows a programmer to bootstrap an application in no time

and start implementing the business logic. Software frameworks come in different types

for different programming languages.

In this thesis, however, we will try to compare and uncover the various aspects of the

two most popular web application frameworks of Python programming language, i.e.

Flask and Django. According to the documentation, Flask is as a microframework. Be-

cause of it being lightweight and having the features of flexibility and extensibility, it can

be bootstrapped in no time. On the other hand, Django is known as a “battery included”

framework, which claims to have most of the required extensions and libraries to boot-

strap a generic application providing a developer more time on implementing the busi-

ness logic.

2

2 Web Application Development

2.1 Background

Web application development is a process of developing software applications that can

run on websites. Even though web application development follows the software devel-

opment process, the technology and the architecture used for it is quite different. The

software application that runs on a personal computer (PC) might not depend on the

internet in contrast to the web application that depends upon the remote servers.

The web applications and the client-server technology have come quite far in comparison

to the simple standalone phone book app made by Tim Berners-Lee in 1989 [1]. Nowa-

days, web application comes in different shapes and sizes such as static, dynamic, con-

tent management system, e-commerce, and gaming to live content sharing portals. Com-

monly shared technology of applications mentioned above types is the backend and

frontend technology.

Backend development deals with the logical side of the web application. It mainly con-

cerns the programming languages, core architecture and the logics. Those logics are

mainly written in programming languages that can run on computer servers. It also influ-

ences how the data is stored, accessed and served from the servers. In Figure 1 below

the green dotted line shows the backend part of the application, which consists of server-

side scripts, frameworks, database and APIs.

Figure 1 Back End Development [2]

3

On the other hand, frontend development is mostly concerned with the aesthetic and the

content displaying part, which is also known as client-side development. One of its diffi-

cult challenges is to be able to show the material in the different types of devices and

browser. Many devices have its own Software Development Kit (SDK) which should be

followed to serve the same content that is served in the browser. Website design, usa-

bility and user-friendliness are the essential factors that are addressed during the devel-

opment. The figure below is an example of how the frontend side of an application works.

Figure 2 Front End Development [3]

2.2 Backend Technologies

Python

Founded in December 1989 by Guido Van, Python is one of the most popular high-level

general programming language languages [4]. It is a dynamically typed language, often

called duck typing in software engineering. It is an interpreted language; hence, it does

not require any separate compiling time, but rather it is compiled to byte code and exe-

cuted instantaneously.

One of the reasons for Python’s popularity is its readability. Because the readable code

is a dream for a software engineer, it is important because one should be able to under-

stand the importance of the code regardless of the author. The code readability indeed

depends upon the author. But Python steps ahead on this game with its very linguistic

4

type programming language. It has also been touted as the easy way to learn the lan-

guage. It will help programmers reduce the time spent on learning another programming

language.

Because of its object-oriented architecture, it is not only the language for scripting any-

more. The language has gone beyond the scripting and moved forward to the web and

big data area. For web development purposes, frameworks such as Flask, Django, and

Tornado exist. Also, the frameworks mentioned above are the go-to frameworks when it

comes to the development of a proper web application in a short time. Apart from the

web application development, it has also made its strong presence among data scien-

tists. The abundance of the library and tools along with the broad community and clear

documentation are its advantages. Since it is written in C [5], the performance-hungry

application can take advantage of accessing the C’s core data structure and functionality.

From its invention to date, it has gone through many changes while 2.7 is the most widely

used Python version of all times. Python 3.7.0 [6] however, is the latest stable version at

the time of writing.

Java

Java is a platform-independent high-level programming language. It was invented by

James Gosling, Patrick Naughton, Chris Warth, Ed Frank and Mike Sheridan at Sun

Microsystems in the year 1991 [7]. It is a compiled language. It, however, uses a two-

step process of compilation. Firs it is compiled to bytecode by javac which is also known

as the primary java compiler. Compiled bytecode will then be interpreted in by the Java

Virtual Machine (JVM). Not all of the bytecode is compiled at once. The only required

sequences of bytecode are compiled by the JVM’s Just in Time Compiler (JIT) [8].

Java is renowned because of its portability in nature. The language itself is statically

typed [8]. Compared to Python, it can execute multiple threads at once. Java is also

widely used in enterprise applications. It is also one of the popular server-side program-

ming languages. If Applets were the client-side applications, Serverlets would be the

portable server-side applications that are server agnostic. Frameworks such as Spring

MVC, JSF (JavaServerFaces), Struts, Hibernate, and Vaadin are a few of many. Java

also has a strong presence in Big Data with technologies such as Hadoop, Apache

Spark, and MapReduce. Because of its performance and interoperability, most of the

time Java is selected to develop either a web, mobile or an enterprise application.

5

PHP

PHP, which stands for pre-processed hypertext, is a widely used programming language

and it is particularly well suited for dynamic web applications development. PHP is a

scripting language that only interprets program code in the execution phase of the pro-

gram. PHP can be used on many different platforms and operating systems. In addition,

the PHP source code is open source, which means that it may be researched, edited

and distributed to the extent permitted by the license. Language syntax is easy, and it is

mostly based on C, Java and Perl. [9]

C++

C++, often called as a first object-oriented language, was initially developed by Bjarne

Stroustrup as an extension for C programming language. It is also one of the old pro-

gramming languages. It is a compiled language. After its standardization in the year

1980, it has evolved into the modern programming language. It is a high-level language

designed to perform faster and less error prone. It is widely used in performance-inten-

sive applications such as games, web servers, operating systems, computer networks

and embedded systems. Because of its efficiency, it has been the first choice in high

energy physics, biology, animation, graphics, virtual reality and scientific computing [10].

GO

Go is an open-sourced programming language mostly developed by Google [11]. It is

often termed as a C-like programming language or “C for the 21st century. The Go pro-

gramming language was designed to overcome the common pitfalls of other program-

ming languages such as slow compilation time, cumbersome code, memory handling

and support for multiple cores. In 2009 Go became an open-source programming lan-

guage [12]. Because of it being a system programming language, it is largely used in the

distributed system and highly scalable network servers.

Go is also used in developing the web-based application. Frameworks like Gin, Beego,

Iric, Echo etc. are a few examples.

Kotlin

Kotlin is a statically typed cross-platform programming language developed by JetBrains

in 2010. It runs on the Java Virtual Machine (JVM). It became the primary language for

6

Android application development on May 7, 2019. Today, Kotlin has become the most

popular programming language for Android development. It is being used by more than

half of developers to build an android application. The biggest reason for Kotlin's popu-

larity after Java is that the developer needs to write less code [13]. It provides more

expressive syntax than Java with less boilerplate code. It has combined object-oriented

and functional programming features. Interoperability with Java, less verbose code, null

safety, no runtime overhead, and a wide range of collections are its main features [14].

JetBrains code editor IntelliJ Idea has native support for it. Apart from that, it is an open-

source programming language.

Ruby

Ruby programming language is an object-oriented programming language developed by

the Japanese computer scientist Yukihiro Matsumoto in 1990 [15]. One of the critical

features of the Ruby programming language is, it is interpreted and dynamically typed.

It allows procedural and functional styles of programming. It is easy to use with a steep

learning curve. Since it is an interpreted language, the software developer will instantly

know what part of the code is faulty. This makes the developer life more comfortable.

Another benefit of this programming language is that it comes with a separate program

called Interactive Ruby (irb) [16] which lets a programmer write a small script and exper-

iment in no time. Ruby is also actively used for web development. One of the leading

web frameworks for developing web applications for Ruby is called Ruby on Rails (ROR).

JavaScript

JavaScript is a dynamically typed language with asynchronous design. Brendan Eich

developed it in May 1994.It was originally named Mocha and Live Script later. However,

the original purpose of JavaScript was to add support for Java applets in the browser

and beyond make their development so easy for non-experienced Java developers could

do them, it was finally named JavaScript. [17]

Although JavaScript was easy to use, it was not warmly received by all developers, as it

seemed to be unfinished in many ways. Despite its difficult beginnings, JavaScript is now

practically the only programming language used in web browsers. It is capable of doing

complex calculations, interactions, metaprogramming and closures [18]. The asynchro-

7

nous styles of programming have resulted in its wider popularity in the backend commu-

nity. One of the widely used JavaScript technologies for backend web development in

Node.js.

2.3 Front End Technologies

HTML

HTML (Hypertext Mark-up Language) is the standard mark-up languages for the Web

pages. It was created by Berners – Lee in the year 1989. It is a standard which describes

the structure of web pages in which series of elements co-exists. Those elements then,

instructs the browser how to display the content. These elements are represented by

tags such as heading, paragraph, table, section etc. [19]. It is one of two core technolo-

gies required to build a dynamic or static web page. It is a skeleton or the layout of the

web page.

HTML has wide ranges of support for the contents from text to spreadsheets, video clips,

animations pictures [20]. The web page often called as a document in a technical term,

the document type defined at the beginning of the page determines what type of docu-

ment it is and how it should be taken by the web browser while rendering it. Being the

essential part of the world wide web, it has gone through the various phases of develop-

ment from 1991 till date, while HTML being the initial version and HTML5 being the latest

one respectively.

CSS

W3C (Worldwide Web Consortium), CSS (Cascading Style Sheets) defines CSS as the

language describing the presentation of Web pages, colours, fonts and the layouts.CSS

allows one to stylize the HTML document according to their need. It contains a set of

style rules with which the web pages could be rendered. Not only to that, but it also helps

render the page responsively on the devices of different shapes and sizes.

There are two style formatting rules for the CSS. One is called inline styling, and another

one is external styling. In the external styling, however, the styling rule sits in a different

file. This could then be linked by a unique tag in the HTML document. The cascading

part of the CSS refers to how the rules are applied to the HTML elements. The HTML

8

document is styled hierarchically. Therefore, it is the responsibility of CSS to find the

precedence of the style rules, accordingly, ultimately establishing a cascading effect [21].

JavaScript

As mentioned in 2.2.8, JavaScript was initially developed to replace the Java Applets

which were used in the web browser. In 1996, one of the dominant browsers creating

company, Netscape, submitted JavaScript to the Ecma International to influence its pres-

ence in all of the browser. Even though each browser has its implementation of the Ja-

vaScript, the underlying standard for it is the same. Chrome uses v8 JavaScript Engine;

Internet Explorer uses Jscript in contrast to the Mozilla, which uses the standard JavaS-

cript [22].

 Fast forward almost twenty years; JavaScript has become one of the most popular lan-

guages for frontend technology. A simple script can be added inline within the HTML

document or in a separate file with a link tag in the header file [23]. This way the HTML

document knows which script to lead from which location. The main impacting feature of

JavaScript is the ability to load or refresh the page content without reloading the whole

page. This can be achieved by targeting only the concerned tag. Based on the require-

ment, it also helps on adding the CSS style dynamically. There are many JavaScript

libraries available on the internet, which makes a developer’s life easier by leveraging

the inner work of JavaScript and help focus on the aesthetic part of it. Some examples

are React, Vue.js, jQuery Backbone.js, and Angular.

3 Python Web Frameworks

3.1 Flask

Flask is a micro-framework designed to create a web application in a short time. It only

implements the core functionality giving developers the flexibility to add the feature as

required during the implementation [24]. It is a lightweight, WSGI application framework.

This framework can either be used for pure backend as well as frontend if need be. The

former provides the functionality of the interactive debugger, full request object, routing

system for endpoints, HTTP utilities for handling entity tags, cache controls, dates, cook-

ies etc. [25]. It also provides a threaded WSGI server for local development including the

9

test client for simulating the HTTP requests. Werkzeug and Jinja are the two core librar-

ies

 The Jinja, however, is another dependency of the Flask. It is a full-featured template

engine. Sandboxed execution, powerful XSS prevention, template inheritance, easy to

do debug, configurable syntax is it's few of many features. In addition, the code written

in the HTML template is compiled as python code. Figure 3 below shows the Flask logo.

Figure 3 Flask logo [26]

Since Flask is often termed as a prototyping framework, it does not include the abstrac-

tion layer for the database or any sorts of validation and security whatsoever. Therefore,

Flask has given full flexibility to the implementor to add the requirements.

There are extensions available for the Flask frameworks. Libraries but not limited to are,

gunicorn for server, SQLAlchemy for database, Alembic for database migration manage-

ment, celery & Redis for an asynchronous task runner, Flask-WTF form for form valida-

tion and Flask-limiter for rate-limiting the web requests. Flask is available for Python 3

and the newer version; it is also available in PyPy and easily installable with Python’s

official package manager pip [27].

3.2 Django

Django was introduced in 2003 when Adrian Holovaty and Simon Willison began using

Python to build applications [28]. The motivation for developing Django was the need to

get applications done on a schedule of days or even hours. Two years after starting to

create a web application framework, in 2005, it was released as open source. Today,

10

Django has several tens of thousands of users and development figures. [The Django

Book 2009a.]

Figure 4 Django official Logo [29]

Because Django is a web application framework based on Python, you need Python to

use it. Supported versions of Python are 2.6.5 and 2.7, but Django also offers experi-

mental support from version 3.2.3 to version 3.3. Python comes with a lightweight testing

server, but for proper use, the upcoming Django-based site needs an Apache server and

a mod_wsg module. Django officially supports PostgreSQL, MySQL, Oracle and SQLite

databases. [30]

Django also loosely applies MVC architecture. It becomes evident in Django, parts of the

applications you created. In essence, models.py, views.py and urls.py, and the HTML

template.Models.py contains a description of the information and provides functions for

creating, retrieving, updating and deleting the data. View.py transmits the site content

HTML template. The role of the urls.py file, in turn, is to configure which view file is called.

With this structure and file functions, editing an application does not require editing many

files, which in turn saves time.

3.3 Pyramid

The pyramid is a web application framework developed as a part of the Pylons Project.

It is an open-sourced framework with BSD license. The pyramid is also built-in MVC

architecture in mind. It was inspired by other libraries like Zope, Pylons 1.0 AND Django

It takes a similar approach as Flask when it comes to the implementation details. Pyramid

does not come with any ORM or other prebaked libraries.

11

Therefore, Pyramid gives more power and flexibility when it comes to adding new fea-

tures. Pyramid is tested against Python versions 2.7, 3.4, 3.5, 3.6 and 3.7 [31]. A few of

its features are as follows:

1. Templating System
2. Static assets
3. Testable
4. Generate dynamic URLs
5. Debugger mode
6. Extendibility with add-ons (libraries)
7. Built-in support for HTTP session
8. URL routing

Pyramid is available in PyPy and installable with the Python package manager
pip. Below is a sample app with a very simplistic route.

Figure 5 Pyramid App

3.4 Bottle

The Bottle is a minimal microframework, also termed as a true Python framework. It is a

single file framework. Hence, it is lightweight and fast to implement. Bottle framework

has no dependency outside the Python standard library and does not have many fea-

tures, as other frameworks do [32]. The small applications and prototyping greatly benefit

this framework. It comes with the following features out of the box [33].

1. Template engine and support for mako, jina2 and cheetah
2. Utilities like form data handling, file upload, cookies, headers and HTTP related

metadata

12

3. Built-in development HTTP server
4. Support for other WSGI servers
5. URL routing

Figure 6 A simple bottle app with a view

3.5 CherryPy

In late June 2002, the first version of CherryPy was released by Remi Delon. It is the first

framework of Python programming language [34]. It is a microframework with flexibility

by design; hence, it is extensible. It has built-in tools such as sessions, authorization,

caching, routing, JSON handling and support for databases. It comes with the HTTP/1.1-

compliant WSGI thread pool server out of the box [35]. It can run multiple HTTP servers

with multiple ports at once. Configuration management is one its dominant feature. For

the extendibility, CherryPy’s plugin system can be used. Tools can be created and used

without any other dependencies. It is both available for Python 2 and 3 and also available

for CPython Jython and PyPy.

Figure 7 A simple CherryPy app with a view []

3.6 Tornado

Tornado is one of the Python web frameworks which focuses more on the network and

speed while including all the web frameworks features. It is primarily based on a Friend-

Feed Framework developed by Bret Taylor and designed to serve a tremendous amount

of traffic without any performance downtime [36]. Tornado can be used when the appli-

cation needs web sockets, long polling or long-lived connections. Because of its asyn-

chronous interactive connection feature, it benefits greatly from the network-intensive

13

applications. Not only does it come with the performance-boosting features, but it also

has features such as templating, routing, escaping, support for international localization,

request handler and application configuration to build a simple to scalable web applica-

tions [36]. See Figure 8 below:

Figure 8 Tornado framework simple app with a view

4 Comparison and Observation

In this section, we will try to dissect the experience and findings of the two similar but

different apps that were built for the experiment. One application implements the ability

to post and share content, i.e. a small social network application which is built on top of

Flask. Another one, however, is a small e-shopping portal where one can browse and

shop the products using the said implemented portal. This application is built using the

Django web framework along with the required technologies.

Both applications use SQL for the database and utilize the ORM from the frameworks of

its own or utilize the third-party library or extension. The comparison also includes the

observation on its core features, security, documentation and learning curves but not

limited to those mentioned. Both the project has been done in a prototype in mind and

does replicate the production level code. It includes both the backend and frontend using

technologies like HTML, AJAX and JavaScript on the frontend. Even though both the

frameworks are full-stack frameworks, the comparisons are more inclined towards the

backend side of it.

14

4.1 Flask

Flask, as discussed earlier, is the microframework which facilitates on developing a pro-

totype, small to large size web application. Since the project was mimicking a social

network application like Facebook where one can add, follow and unfollow friend and

post and comment on the posts etc., it required an easy to set up and quick result-ori-

ented framework, hence the framework was the number one choice for the study.

4.1.1 Design Pattern

Even though the Flask does not strictly state that the application structure and design

should be in one specific way, the social network app tries to mimic the suggested pat-

tern. The directory structure is in a tree-like structure where it finds all the necessary

views, templates models to execute the expected outcome. The app does use the appli-

cation factory, logging and API/view exceptions for the error handling. Not only that it

fully utilizes the view decorators. The application instance is created with the application

factory, which is highly recommended by the framework itself. The Figure below shows

the directory structure of the app.

Figure 9

15

4.1.2 Requests and Routing

Requests

Flask handles the request context automagically. Therefore, the need of passing request

object to the function is not necessary. The request object is bootstrapped when the

WSGI server observes a new request. Similar to the application context, Flask provides

the request context from where the request object can be accessed. It is a global object

which is available throughout the application lifetime.

Figure 10 Flask requests

Above snippet of the code is from the app where the logger is being configured. In this

snippet, the request is being imported directly from the Flask and accessed directly inside

the RequestFormatter class, hence no need to pass it explicitly to the function or the

class.

Routing

As routes are the primary interface for the app or the end-user, it is usually constructed

with the URL pattern. And these route’s request parameter and the body can then con-

sume by the views accordingly. In Flask, the view is decorated by the route decorator.

The path can be constructed directly in the decorator by giving the name with the stand-

ard URL pattern. It is effortless to add a route in a Flask application. See Figure 11.

16

Figure 11 Flask routing

 In the snippet above the logout is the view function and the route are `/logout`. When

`http://localhost:5000/logout` is accessed via a web browser the `logout` view function is

triggered, the user is logged out and redirected to the route for the `social.index.` which

is the root route, i.e. `http://localhost:5000/.`

Blueprints

A blueprint is an object similar to the Flask application; however, it needs to be attached

to the app itself. In Flask, one application can have multiple blueprints. This helps to

organize the views, or so to say group them by either the domain-specific purpose or

endpoint type. Once the blueprint is registered, and the endpoint is grouped, it is possible

that the grouped views can act differently than another blueprint. Flask provides the `be-

fore_request` and `after_request` functions which can then be modified to inject or

change the request-response cycle based on the needs.

Its standard that blueprint definition is done in the `__init__.py` file of the package, but

for the brevity, the `social` blueprint is defined in the view file of the app as shown in the

figure below.

Figure 12 View attached with the social blueprint

17

Figure 13 Blueprint registration

 The figure above shows the registration of the blueprint named `social`.

4.1.3 Infrastructure and Configurations

Database

Flask provides every possibility of freedom when it comes to selecting a database. With

that flexibility in mind, the social app was built using the relational database SQLite. Flask

does not provide automatic database migration. Flask does not come with the support

for the migration. The library called Alembic, which then can be used to generate the

migration file. One needs to know what to look for. In the sample project, however, no

migration has been used. All the database table has been generated during the applica-

tion bootstrapped with the help of models which was provided by the object relation map-

per (ORM) called Pewee.

Since the database is bootstrapped within the app. The database cannot be used outside

the application context. The database was initialized and connected as shown in Figure

14 below

Figure 14 Application bootstrapped

18

Security

Since the Flask is a microframework, it is the developers/implementer’s responsibility to

think about the safety of the application. Having said that there are plenty of extensions

to use which solves the issues. One, for example, ORM, already handles the problems

of SQL injections. For CSRF (Cross-Site Request Forgery) however, there is an exten-

sion called Flask-WTF for forms which already utilizes the CSRF protection. If the form

is not used inside the application, then wrapping the app by CSRFProtect from the Flask-

WTF form library should do the job.

For user login and logout, the Flask-Login library was used. It was registered to the main

view `social.login`. The login manager was then initialized during the application boot-

strap. This can be seen happening in Figure 14 above.

Configurations

Every application needs a separate configuration for separate purposes. For example,

settings should be different for the testing, development and production purposes. It is

not best practice to have all the configuration in one object or one file. Because the con-

figuration is very much an integral part of an application of the infrastructure. It is crucial

to separate the setting purpose specific. This will help in securing the one-off passwords,

database connection URL, private SSH keys and many more.

Generally, it is not a good idea to store those in the file itself; instead, those configura-

tions should be picked up from the hosted machine environment variable and converted

to the purpose-specific object. For example, the sample app uses the object approach

while also adding the possibility of reading the required configuration from the environ-

ment variables. See Figure 15 below.

The sample app provides three different configurations, DevelopmentConfig for having

the settings for app development purpose, TestingConfig for application testing purpose

and ProductionConfig, which is used in the production environment when the app is live.

19

Figure 15 Configuration handling

Deployment

To make the application accessible on the internet, Heroku a Platform as a Service pro-

vider is used. The reason behind choosing the Heroku is because of its seamless de-

ployment process, easiness of the deployment, logging and its scalability.

Since the app is minimal in size, only one dynos/containers were used to deploy, and

With Heroku CLI, the containers can be increased to the desired numbers. No additional

resources were used except for the web. For the internet, the app uses the gunicorn

WSGI HTTP server. This server is configured in a file called “Procfile” within the project

from which the Heroku knows what type of server it should require to run. Because Her-

oku works with git, it can be easily deployed with one-liner command, as shown below.

Figure 16 Deploy in Heroku

4.1.4 Error handling

The application uses Python’s error handling techniques while throwing and catching

exceptions when needed. This allowed the application to run seamlessly. With the help

of logging and error tracking tools like Sentry. It made it much more comfortable to track

and monitor the errors. However, Sentry was not used for brevity.

Flask approach to error handling is to bind the generic/custom python exceptions to the

defined error handler. This error handler can be decorated to the view to render the error

message, accordingly, as shown in the figure below.

20

Figure 17 Error Handling

4.1.5 Caching

Since the application created during this project was built with the minimal viable product

mentality, hence any caching mechanism was not used whatsoever. The cache is useful

when the application is getting a lot of traffic, meaning, a user might request the same

content frequently. To reduce the server load from the same traffic, the same content

can be saved to the preferred cache and then serve to the user from the cache instead

of the primary server

According to the framework’s official documentation, we can find few supported caching

mechanisms. Currently supported types of caches are Filesystem Cache, Redis Cache,

UWSGI Cache, Memcached Cache and SASLM Cache. Above mentioned types of

caches have already built-in support for it. To use the Redis and Memcached Cache,

however, the separate instance should be configured in the backend. For Memcached

and SASL type cache, Pylibmc must be installed.

4.1.6 Flexibility

During the development of the framework, few extensions were required to make the

app functional. Form, login manager, template engine and encryption etc. were needed.

These libraries were installed need basis; hence the application is not bloated with overly

installed libraries.

Flask framework is very much flexible in various aspects. As mentioned above the free-

dom of choosing the libraries when needed is the most important one. This helped to

focus on the development of the app features instead of worrying about the performance

21

and its maintainability. This helped to rocket the speed of the development and imple-

menting the features like follow/unfollow functionality. From templating to security, all the

features were ready and available to install. A few of the main factors are as follows:

1. It’s based on Model View Controller design pattern
2. Supports both function and class-based views
3. ORM agnostic pattern s
4. Abundant libraries to use for the full-fledged application from client to server-

side
5. If any publicly available extensions do not cater to the need, then new exten-

sions can be written easily
6. Pytest, Unittests, Nosetests are easily applicable for testing.

4.1.7 Developer Support

Documentation

Flask has an extensive documentation with full of examples and implementation details.

The documentation can be found along with other application built under the umbrella of

Pallets Project. Quite often, when developing an application, the main issue for the de-

veloper is to find the proper instruction of the implementation detail. The first point of the

solution is usually the official documentation. Also, the focus is on the maturity and the

comprehensiveness of the application matter.

During the development of the application, Flask’s documentation, however, has not

been the issue. Implementation details have been organized and explained to the point

where it’s needed the most. It also includes Jinja template engine and the Werkzeug

WSGI toolkit documentations.

For the beginners, the documentation contains a section called QuickStart. A minimal

and simpler application can be built by just following the previously mentioned section.

Instruction is quite easy to read, straight forward and understandable. The documenta-

tion can be found on https://flask.palletsprojects.com/

Learning Curve

With the help of the Flask’s extensive documentation and the broader community in

Stack Overflow, the time taken for learning and getting started was quite fast. Most of

the general issues regarding know-how are covered in the documentation; therefore, the

need for looking for help during any implementation was quite minimal.

22

Flask’s API is very more straightforward and easier to comprehend. They are quite

straight forward, and it does exactly what it says unlike other APIs having hidden logic

inside. Community plays a vital role in the popularity of an open-source software appli-

cation. Flask, however, is very well known around the python developers on StackOver-

flow. Currently, on that platform, there are more than 35 thousand flasks tagged ques-

tions with answers. With that number of the problem posted, most of the general issues

on the usage of the framework can already be found.

4.2 Django

As discussed, earlier Django is a full-fledged battery included web application framework.

An MVP version of an e-commerce application is build using the Django framework. Alt-

hough the app developed for the comparison is different, the main motive of the study

will be the same. The study should reasonably provide the distinctive properties of the

framework from getting started steps to final deployment. For the study, Django 1.8 is

used with python 2.7

4.2.1 Design Pattern

Often touted as the battery included web application framework, Django does come with

a lot of functionality and support. Much smaller application can be bootstrapped within

the main application are make them talk them talk to each other with simple APIs. It has

its own rules and way of implementing the functionality. It also follows the MVC principle

while saving valuable time of the developer. This is because most of the heavy lifting has

already been done as long as the implementation follows the Django own rulesets.

As shown in the picture below, an organization of different sections of apps are packaged

in a separate directory. Within those directories, we can see “admin.py”, “forms.py”,

“models.py” and “views.py”, “urls.py” those are the standard filename from where Django

tries to find the resources. Most of the database related implementation resides on the

models.py and views.py consisting of the endpoint serving functions and urls.py contain-

ing the routings.

23

4.2.2 Requests and Routing

Requests

Django handles the requests differently in contrast to the Flask’s request. In Django,

requests object needs to be explicitly provided to the view function or the class. The

request object then contains all the required information from the current application state

to the current session. When a client requests a resource from an application, the

HttpRequest object is created, and the corresponding view function is called. If the re-

quest object needs to be modified or accessed, it needs to be provided explicitly to the

implemented function.

As shown in the figure below the request context is explicitly passed through the “post”

function of a class-based view or access it through the class scope.

Figure 18 Django requests

Routing

24

In Django routing is handled through URL dispatcher. The view function/class is written

somewhere and the URL with the required pattern. Default URL dispatcher is already

configurable in the settings. Once the root URL is configured, other URL routes can be

added. These routes can either be global or application specific. The routes can be con-

figured in the “urls.py” as shown below. “VariationListView” is called when a user re-

quests http://0.0.0.0:5000/products/1/inventory endpoint.

Figure 19 Django URL routing

Blueprints

Blueprint is the application like object that has the information regarding the views, tem-

plates and static assets. Django, however, takes a different approach of organizing and

managing the application views, templates and assets. Django has a root project, and

within that project, many applications can be created as shown below. These applica-

tions need to be added to the INSTALLED_APPS list found in the settings file

Figure 20 Django project structure

Each application can have its own sets of views, templates and assets. These views are

routed with its URL pattern with the main route being configured in the main URL conf

file. Therefore, needing of a blueprint in Django is very minimal.

http://0.0.0.0:5000/products/1/inventory

25

4.2.3 Infrastructure and Configurations

Database

Django supports many variants of the database. Majority of the database backend is

already included in the framework. According to the official documentation website [],

curPostgresSQL, MariaDB, MYSQL, Oracle and SQLite are supported out of the box. In

this project, however, the SQLite database was used with a very minimal relational da-

tabase model is used. Database host, its backend and the port can be added in the

settings file of use. For brevity the project does not use the separate database server,

instead it uses the same host as a database server as shown below.

Figure 21 Database backend

Security

Security is the most important aspects of any web application. It plays a vital role in

managing and maintaining the end user’s information. There are various types of web

security issues and threats lurking around the web. Every day new threats and vulnera-

bilities can be found. Not all risks are mitigated immediately, nor future threats are known.

However, adopting the preventive measures and using the best practices is what a web

application framework should vouch for. This is because the users use web application,

and the user’s confidential information must be intact in the server.

Since Django is an open-sourced project, all the security aspects of the framework are

thought out. It covers the following security issues.

• Cross-site request forgery protection (CSRF)

• Cross-site scripting (XSS)

• SQL injection

• Clickjacking

• Host header validation

• SSL/HTTPS

Django’s templating system protects the app from the majority of XSS attack by. In the

case of CSRF, it has a Csrf Middleware which checks whether the requests referring

26

header is coming from the same origin. Django comes with inbuilt ORM which helps one

to query the database without hardcoding the SQL code. These queries and query sets

are constructed using query parameterization. By using these standard query sets most

of the SQL injections issues are resolved already. In terms of Clickjacking problem, the

framework comes with the middleware called X-Frame-Options. Django comes with the

possibility to configure the SSL/HTTPS, so that end to end requests and response are

encrypted. All of the above configurations can be done, as shown below.

Figure 22 Django security configurations

Configurations

Configurations are the heart of the whole application. These contain important infor-

mation to runt the applications. In Django, it is termed as settings, and these settings can

include various details from setting the behaviour, installing application within the frame-

work, middleware’s, secrets, database backend, URL, host etc.

Since there are no bulletproof rules to use the configuration, Django provides the free-

dom on how to add the settings as long as the main configuration is configured in the

WSGI file. The e-commerce project, however, has a three configurations file one being

the base file where the standard settings sit. Separate configuration file was defined for

the local development environment and production environment, as shown bel

Figure 23 Configurations

27

The rationale behind separating the configuration file is to separate it based on the

purpose and the environment. It is better to use the separate configurations for each

environment because each configuration file has different sets of configuration that is

only required for each environment. This will isolate the configurations and help not leak

the secrets and sensitive information such as production database host, URL, api keys

e.t.c.

Deployment

Django requires the configuration file for all of its settings. This setting file should also

contain the required deployment configuration. The e-commerce project built for this

study utilizes the configuration file for the deployment. It was deployed by creating a

separate application in the Heroku.

Following mandatory settings were configured in the settings file for the production

1. SECRET_KEY,
2. ALLOWED_HOSTS
3. DEBUG,
4. CACHES
5. ALLOWED_HOSTS
6. DATABASES
7. STATIC_ROOT and STATIC_URL
8. MEDIA_ROOT and MEDIA_URL

Apart from the above settings, few were set in the “.env” files which were added as en-

vironment variables in the Heroku as shown in the figure below. Since the application

runs on Python 2.7, the version was specified on a file called “runtime.txt” as shown

below

Figure 24 Configure python version Heroku

4.2.4 Error handling

Django’s approach to application error handling is the same as Python’s way of error

handling. This includes using Pythons exception. Django comes with many Exception

28

classes which are quite handy when handling the erroneous actions in the code. When

needed, these exceptions can be thrown and handled accordingly.

Django’s exceptions are divided as follows:

1. Django Core Exceptions - Mostly includes core exceptions such as
a. AppRegistryNotReady,
b. ObjectDoesNotExist
c. EmptyResultSet
d. FieldDoesNotExist
e. MultipleObjectsReturned
f. SuspiciousOperation
g. PermissionDenied
h. ViewDoesNotExist
i. MiddlewareNotUsed
j. ImproperlyConfigured
k. FieldError
l. ValidationError
m. RequestAborted
n. SynchronousOnlyOperation

2. URL Resolver Exceptions
a. Resolver404
b. NonReverseMatch

3. Database Exceptions
4. HttpExceptions

a. UnreadablePostError
5. Transaction Exceptions

a. TransactionManagementError
6. Testing Framework Exception

In this project, Django provided exceptions, as well as Python’s built-in core exceptions,

are used as shown in Figure 24 below.

Figure 25 Exception Handling

4.2.5 Caching

The user’s web requests are sent to the server and server response back with the re-

quested content. If the number of users is very high and the requests have to do the

29

whole cycle for the same content time, and again then, this will hamper the performance

of the application as well as the server. Eventually increasing the request-response

lifecycle. Any web sites that receive a relatively high number of requests benefits by

having a cache system in place.

Django already comes with the support for various kind of caching framework described

below.

1. Memcached: General purpose distributed in-memory caching system. This is one

of the fastest and the preferred caching system for Django

2. Database Caching: As the name suggests the all the cached content are stored

in the database table and queried when needed.

3. Filesystem Caching: With this type of caching, the cached values are stored in a

separate file.

4. Local-Memory Caching: This is the simple version of the Memcached while func-

tionality being the same. This, however, stores the cached value in the same

server where the application runs.

All of the above-caching frameworks can be configured in the setting file with the respec-

tive backend. Even though the project did not require any caching framework, it uses

Local-Memory Caching. It is configured as shown in Fig

Figure 26 Django LocalMem Cache

4.2.6 Flexibility

With plenty of features included, it is fair to assert that Django is a battery included frame-

work. This gives developers more room to think about the product and its features within

those criteria. These inbuilt supports are mature and thoroughly tested. Since it is an

open-sourced project, al the source code is publicly available in the GitHub. Features

30

that are benefited by the developer during the development of an application are as fol-

lows.

• Matured ORM

• Multi-site and multi-language support;

• MVC layout

• RSS and Atom feeds

• AJAX support

• URL routing

• Easy Database Migrations;

• Session handling;

• HTTP libraries and templating libraries;

• Code Layout (you can plug new capabilities by using applications);

• Default Admin

However, when it comes to the development flexibility, Django seems to lack behind.

This is because developers need to follow Django’s way of implementation. At times

making a significant change which would have been benefitted by a small change is a

bit too cumbersome. This is mainly because not always the technical implementation is

support. To overcome this issue developer has to write their own custom Django features

for it. Django might not be the right framework for the smaller size web application, be-

cause not all its inbuilt features are needed. Especially when deploying a feature, all

components get deployed together because it is monolithic.

Application path a WSGI configuration for the Heroku was configured in the file called

“Procfile”. For performing the database migrations, “release:” tag was added in the pre-

viously mentioned filename. Above was configured, as shown in the picture below.

Figure 27 Django Procfile configuration

Since the Heroku was connected with the Github, the project can be deployed seam-

lessly deployed. The prerequisite for it to be able to get deployed from local computer is

to have the Heroku configured locally and logged in. With that configured, the project can

be deployed with a simple one-liner command, as shown in the picture below.

31

Figure 28 Django app deployment to Heroku

4.2.7 Developer Support

Documentation

Django’s documentation is one of the most extensive and detailed ones. Developers do

not have to read the code to understand how the implementation should be done. It

covers from getting started to the final deployment. Not only that, but it also includes the

latest rele4ase notes, backwards-incompatible changes, online topics and discussions

on development and its scalability.

It also comes with the basic tutorial for the very beginners. Following the instructions in

the tutorial one can quickly bootstrap the project in no time. From January 1, 2020, Py-

thon software foundation has officially stopped supporting the python version 2.7. Django

also has added a set of instructions to help current running projects migrate from Python

2.7 to Python 3.0. The documentation is publicly available at http://docs.djangopro-

ject.com.

Learning Curve

During the implementation of the e-commerce project, the foremost important aspect of

the Django was that most of the necessary details are covered in the documentation.

Developers do not need to go out of the documentation for the standard implementation.

However, it is not always the case when there is a need for a different approach when

solving the same problem. For example, if one has to modify the view to work differently

than it might require much work. This requires much investigation and reading the source

code.

The framework itself comes with wide ranges of features and supports. Hence it is inev-

itable that documentation will also be vast. Nevertheless, developers who have some

http://docs.djangoproject.com/
http://docs.djangoproject.com/

32

experience with Python programming language will likely to learn the framework faster

than developers coming from other languages. On the other hand, it has a broader com-

munity, and one can get help from the fellow developers very quickly. At the time of

writing, there are 227,839 Django tagged questions posted on stackoverflow.com, which

is one of the popular platforms for tech-related questions and answers.

5 Conclusion

The goal of the project was to compare the two Python web development frameworks.

The comparison was made while developing a simple web application from each of the

frameworks. Every framework has its advantages and disadvantages. Both, the app

tries to fulfil the same goal with a different approach because of the framework's features

and limitations.

Every web application is made to solve problems with a particular business motive.

These business motives might come from a small start-up to a large corporation. Usually,

products are the facets of the business motive. At times the product needs to be built

and shipped and evaluated quickly and vice versa. Depending upon the business deci-

sion, and the available resources, one can choose the suitable framework. Both frame-

works are matured and production ready. Each has its unique and standard features.

One of the main achievements of this project was that the comparative study helped

understand both frameworks. When tested through various approaches to solve the

problems, it was found that both frameworks have their advantages and disadvantages.

Both frameworks seem to be viable options if they take into use when solving business

problems. There are also limitations to the study as not all aspects of the framework have

been covered. Based on the study, it is evident that Django can be best fit for large-scale

projects with the cost of the learning curve. Flask is best fit for the prototyping and small-

scale projects but not limited to it. Flask can be learned and set up quickly, but when it

comes to managing and maintaining, it requires more work than the former.

There are many limitations to this study primarily because not all of each framework's

features were studied. This type of study requires highly detailed comparison of each

and every feature.

33

6 References

1. Cern. (2019). A short history of the Web | CERN. [online] Available at:

https://home.cern/science/computing/birth-web/short-history-web [Accessed 26

Oct. 2019].

2. Upwork.com. (2019). THE FUNDAMENTALS: THE FRONT END VS. THE

BACK END. [online] Available at: https://content-static.upwork.com/blog/up-

loads/sites/3/2015/05/05110024/Back-end-dev-logo.png [Accessed 26 Oct.

2019].

3. Upwork.com. (2019). A Beginner’s Guide to Front-End Development. [online]

Available at: https://content-static.upwork.com/blog/up-

loads/sites/3/2015/05/05110037/Front-end-dev1.png [Accessed 27 Oct. 2019].

4. www.oreilly.com. (n.d.). History of Python - Core Python Programming [Book].

[online] Available at: https://learning.oreilly.com/library/view/core-python-pro-

gramming/0130260363/0130260363_ch01lev1sec2.html [Accessed 1 Nov.

2019e].

5. Kuhlman, D. (2011). A Python Book: Beginning Python, Advanced Python, and

Python Exercises. Platypus Global Media, p.14.

6. Python.org. (n.d.). PEP 537 -- Python 3.7 Release Schedule. [online] Available

at: https://www.python.org/dev/peps/pep-0537/ [Accessed 1 Nov. 2019].

7. Introduction to the Java Environment (2011). Java in a Nutshell, 7th Edition.

[online] O’Reilly | Safari. Available at: https://learning.oreilly.com/li-

brary/view/java-in-a/9781492037248/ch01.html#idm45941151548920 [Ac-

cessed 24 Nov. 2019].

8. Chapter 1 The History and Evolution of Java (2019). Java: The Complete Refer-

ence, Eleventh Edition, 11th Edition. [online] O’Reilly | Safari. Available at:

https://learning.oreilly.com/library/view/java-the-com-

plete/9781260440249/ch01.xhtml#ch01 [Accessed 24 Nov. 2019].

9. Php.net. (2019). PHP: What is PHP? - Manual. [online] Available at:

https://www.php.net/manual/en/intro-whatis.php [Accessed 4 Nov. 2019].

34

10. History (2019). C++ for Lazy Programmers: Quick, Easy, and Fun C++ for Be-

ginners. [online] O’Reilly | Safari. Available at: https://learning.oreilly.com/li-

brary/view/c-for-lazy/9781484251874/html/477913_1_En_25_Chapter.xhtml

[Accessed 1 Dec. 2019].

11. The Origins of Go (2019). The Go Programming Language. [online] O’Reilly |

Safari. Available at: https://learning.oreilly.com/library/view/the-go-program-

ming/9780134190570/ebook_split_005.html [Accessed 2 Nov. 2019].

12. The history of Go (2009). Mastering Go. [online] O’Reilly | Safari. Available at:

https://learning.oreilly.com/library/view/mastering-

go/9781788626545/c3fbaeb6-9974-4bbd-a282-57866c463ce5.xhtml [Accessed

3 Dec. 2019].

13. www.oreilly.com. (n.d.). 1. getting started: A Quick Dip - Head First Kotlin

[Book]. [online] Available at: https://learning.oreilly.com/library/view/head-

first-kotlin/9781491996683/ch01.html#welcome_to_kotlinville [Accessed 2

Nov. 2020a].

14. Features of Kotlin (2019). Kotlin for Enterprise Applications using Java EE.

[online] O’Reilly | Safari. Available at: https://learning.oreilly.com/li-

brary/view/kotlin-for-enterprise/9781788997270/187c79f5-f084-4df8-8fe9-

659639db6e6a.xhtml [Accessed 4 Nov. 2019].

15. www.oreilly.com. (n.d.). Writing and Running Ruby Programs - The Ruby

Workshop [Book]. [online] Available at: https://learning.oreilly.com/li-

brary/view/the-ruby-workshop/9781838642365/C14197_01_Fi-

nal_ePub_SZ.xhtml#_idParaDest-9 [Accessed 12 Nov. 2019].

16. More with Less: Code the Way You Want (2019). Head First Ruby. [online]

O’Reilly | Safari. Available at: https://learning.oreilly.com/library/view/head-

first-ruby/9781449372644/ch01.html#ruby_philosophy [Accessed 3 Nov. 2019].

17. 8.2 History of JavaScript (2019). Web Programming with HTML5, CSS, and Ja-

vaScript. [online] O’Reilly | Safari. Available at: https://learning.oreilly.com/li-

brary/view/web-programming-with/9781284091809/xhtml/23_Chap-

ter08_02.xhtml#ch8lev1_2 [Accessed 5 Nov. 2019].

35

18. Front Matter (2019). JavaScript Next: Your Complete Guide to the New Fea-

tures Introduced in JavaScript, Starting from ES6 to ES9. [online] O’Reilly | Sa-

fari. Available at: https://learning.oreilly.com/library/view/javascript-next-

your/9781484253946/html/481812_1_En_BookFrontmatter_OnlinePDF.xhtml

[Accessed 30 Oct. 2019].

19. W3C (2008). HTML & CSS - W3C. [online] W3.org. Available at:

https://www.w3.org/standards/webdesign/htmlcss [Accessed 4 Nov. 2019].

20. www.oreilly.com. (n.d.). Chapter 1. Understanding How the Web Works -

HTML, CSS and JavaScript All in One, Sams Teach Yourself: Covering HTML5,

CSS3, and jQuery, Second Edition [Book]. [online] Available at: https://learn-

ing.oreilly.com/library/view/html-css-

and/9780133795165/ch01.html#ch01lev1sec1 [Accessed 19 Nov. 2019a].

21. W3.org. (2019). Cascading Style Sheets. [online] Available at:

https://www.w3.org/Style/CSS/Overview.en.html [Accessed 25 Dec. 2019]

22. www.oreilly.com. (n.d.). MVC and Classes - JavaScript Web Applications

[Book]. [online] Available at: https://learning.oreilly.com/library/view/javas-

cript-web-applications/9781449308216/ch01.html#I_sect11_d1e506 [Accessed

11 May 2020c].

23. www.oreilly.com. (n.d.). Lesson 4 Understanding JavaScript - Sams Teach

Yourself HTML, CSS, and JavaScript All in One, Third Edition [Book]. [online]

Available at: https://learning.oreilly.com/library/view/sams-teach-your-

self/9780135167069/ch04.xhtml#ch04lev1sec2 [Accessed 23 Nov. 2019b].

24. Flask: Building Python Web Services. [online] O’Reilly | Safari. Available at:

https://learning.oreilly.com/library/view/flask-building-py-

thon/9781787288225/ch01.html [Accessed 26 Nov. 2019].

25. www.oreilly.com. (n.d.). 1. Installation - Flask Web Development, 2nd Edition

[Book]. [online] Available at: https://learning.oreilly.com/library/view/flask-

web-development/9781491991725/ch01.html#ch_install [Accessed 2 Dec.

2019a].

26. RedHat (2018). Flask. Available at: https://developers.redhat.com/blog/wp-con-

tent/uploads/2018/06/python-flask-logo.png [Accessed 3 Dec. 2019].

36

27. flask.palletsprojects.com. (n.d.). Extensions — Flask Documentation (1.1.x).

[online] Available at: https://flask.palletsprojects.com/en/1.1.x/extensions/ [Ac-

cessed 5 Dec. 2019]

28. www.oreilly.com. (n.d.). Introduction to Django - The Definitive Guide to

Django: Web Development Done Right, Second Edition [Book]. [online] Availa-

ble at: https://learning.oreilly.com/library/view/the-definitive-

guide/9781430219361/ch01.html#django_apostrophy_s_history [Accessed 5

Dec. 2019c].

29. Django.org (2020). [online] Djangoproject.com. Available at: https://static.djan-

goproject.com/img/logos/django-logo-positive.png [Accessed 12 Dec. 2019].

30. docs.djangoproject.com. (n.d.). Databases | Django documentation | Django.

[online] Available at: https://docs.djangoproject.com/en/3.0/ref/databases/ [Ac-

cessed 7 Dec. 2019].

31. Python Web Frameworks. [online] O’Reilly | Safari. Available at: https://learn-

ing.oreilly.com/library/view/python-web-frame-

works/9781492037873/ch02.html#idm139950201323888 [Accessed 7 Nov.

2019].

32. www.oreilly.com. (n.d.). 18. The Web, Untangled - Introducing Python, 2nd

Edition [Book]. [online] Available at: https://learning.oreilly.com/li-

brary/view/introducing-python-2nd/9781492051374/ch18.html#bottle [Accessed

10 May 2020b].

33. zoriana (n.d.). Bottle, Python framework for building websites. [online] Quinta-

group. Available at: https://quintagroup.com/cms/python/bottle.py [Accessed 20

Dec. 2019].

34. www.oreilly.com. (n.d.). Some Frameworks to Keep an Eye On - Python Web

Frameworks [Book]. [online] Available at: https://learning.oreilly.com/li-

brary/view/python-web-frame-

works/9781492037873/ch02.html#idm139950199964416 [Accessed 24 Dec.

2019f].

35. www.oreilly.com. (n.d.). CherryPy in Depth - CherryPy Essentials [Book].

[online] Available at: https://learning.oreilly.com/library/view/cherrypy-essen-

tials/9781904811848/ch04.html#ch04lvl2sec25 [Accessed 26 Dec. 2019c].

37

36. Introduction (2009). Introduction to Tornado. [online] O’Reilly | Safari. Availa-

ble at: https://learning.oreilly.com/library/view/introduction-to-tor-

nado/9781449312787/ch01.html#what-is-tornado [Accessed 6 Dec. 2019].

37. www.oreilly.com. (n.d.). Asynchronous Web Services - Introduction to Tornado

[Book]. [online] Available at: https://learning.oreilly.com/library/view/Introduc-

tion+to+Tornado/9781449312787/ch05.html#asynchronous-web-services [Ac-

cessed 30 Dec. 2019b].

	1 Introduction
	2 Web Application Development
	2.1 Background
	2.2 Backend Technologies
	2.3 Front End Technologies

	3 Python Web Frameworks
	3.1 Flask
	3.2 Django
	3.3 Pyramid
	3.4 Bottle
	3.5 CherryPy
	3.6 Tornado

	4 Comparison and Observation
	4.1 Flask
	4.1.1 Design Pattern
	4.1.2 Requests and Routing
	4.1.3 Infrastructure and Configurations
	4.1.4 Error handling
	4.1.5 Caching
	4.1.6 Flexibility
	4.1.7 Developer Support

	4.2 Django
	4.2.1 Design Pattern
	4.2.2 Requests and Routing
	4.2.3 Infrastructure and Configurations
	4.2.4 Error handling
	4.2.5 Caching
	4.2.6 Flexibility
	4.2.7 Developer Support

	5 Conclusion
	6 References

