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Abstract 

 

This paper describes the functionality of hybrid energy system (HES) located near Stuttgart, 

Germany. The hybrid system consists of photovoltaics, a battery bank, an electrolyser and a 

hydrogen storage tank. The hydrogen is meant to be sold for use in hydrogen busses belonging 

to the local public transport. This paper aims to build a MATLAB model for the Institute of 

Sustainable Energy Engineering and Mobility (INEM) which they can use in their later projects. 

The purpose is a calculation of the system and to see how the battery system, electrolyser and 

storage system should be sized for optimum performance, with regards to an adequate 

hydrogen production amount. This paper also gives a short analysis whether it would be better 

to have the FCV fuelling station on- or off-site. 

Kurzfassung 

 

Die vorliegende Arbeit beschreibt die Funktionalität von einem Hybrid-Energie-System (HES) 

in der Nähe von Stuttgart, Deutschland. Dieses HES besteht aus einer PV-Anlage, eine 

Batterie, ein Elektrolyseur und ein Wasserstofftank. Der Wasserstoff wird verkauft für die 

Wasserstoffbusse in die lokal öffentlicher Verkehr. Dieses Papier soll bauen ein MATLAB 

modell für die Institut für Nachhaltige Energietechnik und Mobilität (INEM), damit sie es in 

späteren projekten verwenden können. Das Modell soll dabei helfen, die richtige Größen 

verschiedener Kompotenten im HES zu bestimmen, damit eine angemessene Menge 

Wasserstoff erzeugt und eine hohe Nutzungsrate erreicht wird. Diese Arbeit analysiert 

zusätzlich ob es besser ist die FCV-Tankstelle on-site oder off-site zu betreiben. 
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Abbreviations 

Abbreviation Description 

 

2DS 

CO2 

 

2°C Scenario 

Carbon dioxide 

FCV 

FPR 

HES 

INEM 

IPCC 

NPR 

RE 

Fuel cell vehicle 

Fiber Reinforced Polymer 

Hybrid Energy System 

Institut für Nachhaltige Energietechnik und Mobilität 

Intergovernmental Panel on Climate Change 

Nominal Production Rate 

Renewable energy 

PV Photovoltaic 

PEM Polymer Electrolyte Membrane 

PEME Polymer Electrolyte Membrane Electrolysis 

PCpV 

HFCV 

Power Consumption per Volume (of H2 gas produced) 

Hydrogen fuel cell vehicle 
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1. Introduction 

 

1.1. Motivation  

 

Exploitation of fossil fuels in energy production and transport has allowed humanity to progress 

technologically at a rate never seen before in history. But because the realization of the 

problems caused by this free exploitation, societies are now trying to find fossil-free 

alternatives. So, combatting problems such as climate change means a complete revamp of 

our energy production and transport sectors into something sustainable. 

Renewable energy (RE) sources such as wind power and solar power via photovoltaic (PV) 

panels have widely been accepted as the two main alternatives in energy production. But 

because of the short-term and seasonal fluctuating nature of these energy sources, there is a 

need to find a way to properly store this energy.   

Battery technology is the leading candidate at the moment, yet it is not necessarily the best 

one due to the fact that chemical batteries lose 1-5% of their energy content in one hour and 

so are only suitable for short-term storage [1].  

Acting fast is required to achieve the emission reductions agreed upon in the Paris climate 

agreement and to keep the warming within the 2DS. In the EU this means reducing the Unions 

CO2 emissions from 3 500 Mt of CO2 today to 770 Mt of CO2 in 2050. Hydrogen has the 

potential to supply up to a quarter of the EUs energy demand in 2050, equal to 2 250 TWh 

worth of H2. In comparison, heating 52 million households requires approximately 465 TWh 

[2].  

Due to this reason alternative energy storage methods are being researched continuously. A 

popular candidate is hydrogen, an energy carrier, which does not lose its energy content over 

time and can be utilized in various uses via a fuel cell. In this study electricity produced by PV 

panels is used in polymer electrolyte membrane-, sometimes called proton exchange 

membrane (PEM) electrolysis to produce hydrogen. A MATLAB tool is developed to compare 

different scenarios and sizing methods of the components.  
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1.2. Chapter overview  

 

Chapter one describes the motivation behind this work. Chapter two goes through the theory 

involved in the technologies that are the focus of this study. Chapter three focuses on the work 

in MATLAB and the formulas and methods used. In chapter 4 the MATLAB program is tested, 

different scenarios compared and the optimum one is chosen. Chapter 5 offers an overview 

and a summary of the results and findings. In chapter 6 all the sources used in this work are 

listed. 
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2. Basics and state of the art 

 

The purpose of this chapter is to analyse the basic principles behind the technology relevant 

to this work. The chapter has been divided into four parts. First in subchapters 2.1 and 2.2 this 

paper focuses on solar energy, PVs and battery technology. Next in subchapter 2.3 the paper 

explains the relevant information about hydrogen and electrolysis. Lastly in subchapter 2.4. 

hydrogen storage and compression are discussed.  

 

2.1. Solar energy and photovoltaics  

 

Hydrogen plays an important role when it comes to solar energy, considering that 75% of the 

Sun is formed by hydrogen (23% He and 2% heavy elements). The Sun gets its energy from 

its inner nuclear reactions where four hydrogen nuclei form into a helium nucleus in nuclear 

fusion. Every second 6 ∙ 1011 kilograms of hydrogen is transformed into helium and some of 

this mass is transformed into energy according to Einstein’s law of E = mc2, thus giving off the 

energy as electromagnetic radiation [3]. 

The amount of Suns radiation that arrives on Earth is enormous and in theory is enough to 

cover humanity’s energy need ten thousand fold. About one third of the received radiation is 

reflected to space, but the amount received by surface is still as massive as 3,9 ∙ 1024 MJ per 

year [4]. 

The quantity of solar energy that reaches Earth outside the planet’s atmosphere is called the 

solar constant and it is 1367 W/m2 [3]. The solar constant is measured on a surface 

perpendicular to the rays. After the scattering and diffusing caused by the atmosphere the 

utilizable amount on the surface, in Germany, is usually between 900-1200 kWh/m2, as shown 

in Figure 1. 
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Figure 1. Solar irradiation in Germany, kWh/m2 (edited from [5]) 

 

To utilize this energy, we use photovoltaic (PV) cells designed to convert the sunlight into 

electrical energy. These cells are connected in chains to form panels which in turn can be 

combined to form solar arrays [6]. Because of this scaling possibility, PV panels can answer 

an energy need of virtually any size. The price of implementing PV technology in a sensible 

scale has also reached maturity and is starting to be very competitive with traditional energy 

production methods, partly depending on where you are geographically located. In Germany, 

the electricity generation costs of decentralized PV systems are less than 10 cents/kWh [7].  

The operating principle of PVs is relatively simple. Each PV cell has a positive and a negative 

layer (p-n junction) which between them create an electric field. Photons from the Sun upon 

arrival to Earth hit the layers in the cell and are absorbed by the semiconductor material, freeing 

electrons. These charge carrier pairs are then separated in the electric field of the p-n junction. 

This electric current is then harnessed by cables connected to the two sides, positive and 

negative, of the cell [7, 8].  

There are many different materials that can be used as the semiconductor material. The 

electrical conductivity of semiconductors is almost zero in absolute zero temperature and 

increases with rising temperature. In approximately 90% of all panels today, silicon is the 

semiconductor material and as seen in figure 2, its advantages include a very good conductivity 

scale. It is also the second most abundant material on Earth, and it offers a combination of low 

cost, high efficiency, and a long lifetime. 
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Figure 2. Electrical conductivity σ of different materials (Ωcm)-1 [7] 

 

2.2. Battery technology 

 

The rise of portable electronics from Walkman cassette players to the latest smartphones 

created the demand to store energy so it can be used anywhere. This demand was met with 

batteries that have seen rapid development over the years after first being introduced in the 

early 1800s. The “modern” rechargeable battery can be considered to have begun in 1859 

when a French scientist, Gaston Planté, produced the first lead-acid rechargeable battery [9].  

Right now, the most prominent battery technology is the lithium-ion battery which can be used 

in a wide range of appliances partly thanks to its high volumetric and gravimetric energy density 

when compared with other battery types, as demonstrated in figure 3. Lithium-ion batteries are 

a popular choice because of their long cycling life and high energy capacity [10].  

 

Figure 3. Volumetric- (Wh/l) and gravimetric (Wh/kg) energy density for different battery types [11]  

The working principle of Li-ion cells can be understood as a “rocking-chair” principle, proposed 

by M.S. Whittingham in the 1970s, because within the cell the lithium ions swing between the 
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anode and the cathode through an organic liquid electrolyte, in a similar manner as a rocking 

chair swings from side to side [11]. 

The anode is usually made of hard carbon, graphitic carbon or treated graphite while the 

cathode consists of a layered oxide, spinel (i.e. lithium manganese oxide) or a polyanion (i.e. 

lithium iron phosphate). The electrolyte can be generalized to contain lithium-containing salt 

dissolved in a solvent that contains a mixture of organic carbonates [11]. 

All Li-ion batteries have a certain cycle life, the amount of charges and discharges they can 

withstand, given by the manufacturer. But these lifetimes are not always as in the given 

datasheets. Lithium-ion cells can degrade can also be affected by temperature, operation of 

extended voltage levels state of charge and depth of discharge [12]. 

 

2.3. Hydrogen and electrolysis 

 

2.3.1. Hydrogen 

 

Hydrogen (H2) is the most abundant element in the universe yet it cannot be found in its pure 

molecular form on Earth. The most common isotope of hydrogen consists of one proton and 

one electron. 

Hydrogens is in solid form at 11 Kelvins (-262°C) and stays liquid only in a small zone before 

turning into gas in its boiling point at 20,3 Kelvins, above which it is always in gaseous form in 

normal atmospheric pressure, as illustrated by figure 4. It has a very wide ignition range, the 

mixture being able to ignite from a hydrogen concentration of 4 vol% to 77 vol%. But despite 

its wide flammability range, hydrogen vehicles use fuel cells instead of combustion engines 

[13]. 

 

Figure 4. Phase diagram of hydrogen [14] 
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There is also collaboration between SSAB, LKAB and Vattenfall to replace coking coal, used 

in ore-based steel making, with fossil free hydrogen by 2045. This could eventually eliminate 

virtually all CO2 emissions associated with steel making (currently ~7% of global CO2 

emissions). Though eliminating the emissions completely would require a massive increase in 

clean electricity production [15]. 

There are numerous ways to produce hydrogen but as seen in Figure 5, the greenhouse gas 

emissions of producing hydrogen with reforming methods are much higher than those of 

renewable electricity electrolysis. Therefore, using steam reforming in the long term is not 

feasible when you consider that the reason to start using hydrogen in the first place is to cut 

down emissions in the energy sector. Producing hydrogen with surplus energy from renewable 

sources guarantees the lowest emissions and with electrolysis you get the high purity hydrogen 

demanded by many end-uses [13, 14]. 

 

Figure 5. GHG emissions of different hydrogen supplies (in CO2 eq./MJ H2) [13] 

 

 

2.3.2.  Electrolysis 

 

Electrolysis uses electricity to split water molecules into hydrogen and oxygen. An electrolyser 

consists of an DC electricity source and two noble-metal-coated electrodes, the negative 

electrode is called an anode and the positive one is cathode, that are separated by an aqueous 

solution called the electrolyte. An electrolyser consists of separate cells and by combining 

these, the electrolysers hydrogen production can be tailored to different requirements just like 

with PV cells.  

Different types of electrolysis techniques exist such as alkaline-, polymer electrolyte-, anion 

exchange membrane- and solid oxide electrolysis. Typical water electrolysers reach an 
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efficiency of 60-80%. The price of producing hydrogen via electrolysis is tightly tied with the 

price of electricity, which is also why electrolysis still plays such a small role (about 5%) of 

global hydrogen production. For widespread introduction of the hydrogen-economy it is vital to 

use surplus energy from RE sources for electrolysis [13]. 

In this project a PEM electrolyser is chosen due to its lower cost of operation and ability to 

function with a wide power input range [16]. 

 

Figure 6. Working principle of PEM electrolysis [17]. 

As shown in Figure 6, in a PEM electrolyser the cathode and anode are bonded together 

forming the membrane electrode assembly (MEA) and a polymer membrane is the electric 

conductor. Water molecules are supplied to the anode where they break down to form oxygen, 

protons and electrons (Eq. 1.1). The protons move through the conductive membrane to the 

cathode where they, together with the electrons, re-combine with the result being hydrogen 

gas (Eq. 1.2) [17]. 

 

Anode: 𝐻2𝑂 → 2𝐻+ +
1

2
𝑂2 + 2𝑒− (Eq. 1.1) 

 

Cathode:  2𝐻+ + 2𝑒− → 𝐻2 (Eq. 1.2) 

 

 

Overall:  𝐻2𝑂 → 𝐻2 +
1

2
𝑂2 (Eq. 1.3) 
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The PEM electrolysis (PEME) has some advantages over other means of electrolysis, mostly 

because the nature of the membrane itself. The PEM provides high proton conductivity and 

allows for compact system design together with high pressure operation, partly because of its 

low thickness (~20-300μm). They can achieve a current density of up to 2 A cm-2 thus reducing 

costs of operation. Because the gas crossover rate of the PEM is low, the electrolyser can 

work with a wide power input range [16]. 

One potentially negative aspect of PEME is that the catalyst material on the anode is iridium 

which is one of the rarest metals on earth. This is the chosen material because the anode 

and cathode both must be coated with a corrosion resistant material in the PEME. Iridium’s 

demand has risen due to its usage in home electronics and its price may further rise if PEME 

technology becomes the leading choice for electrolysis [16]. 

 

2.4. Hydrogen compression and storage 

 

There are multiple ways to store hydrogen as an energy medium, some techniques are more 

widely used whereas others are still in their infancy while being intensively researched. These 

methods include physical storage as a compressed hydrogen gas (CGH2) or as liquid hydrogen 

(LH2) and materials-based storage, sometimes called solid storage of hydrogen (SSH2). Of 

these, the first two are more widely in industrial use and fuel cells and fuel cell vehicles rely on 

gaseous hydrogen storage.  

Materials-based storage is researched extensively and may come a competitive alterative in 

the future, particularly due to improved safety and volumetric energy density achieved by these 

technologies. Materials-based storage still has many problems to overcome such as those 

related to thermal management and up-scaling [16]. 

Liquid hydrogen, though an effective storage method, also has some disadvantages. These 

include the required energy input to liquefy the gas and the strict criteria that container 

technology must meet to achieve temperature and pressure stability. One weak link, with the 

biggest risk for leaking, is the point between the two cryogenic storages. For example, the point 

between storage tank and vehicle, called “cryogenic coupling”. But in recent years progress 

has been made also in this sector [18]. 
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Figure 7. Energy densities of different fuels [13]. 

 

As can be seen from Figure 7, the volumetric energy density of H2 in ambient conditions is just 

0,01 MJ/l and hence the density must be significantly increased before storage. CGH2 is the 

most popular storage method especially in the mobility sector. Gaseous hydrogen is stored in 

high-pressure cylinders where the industry standard pressure is usually at 350 bar or 700 bar. 

The storage tank material should have a very high tensile strength, low density and it should 

not react with hydrogen or allow H2 to diffuse into it.  

Common choice of materials includes austenitic stainless steels such as AISI 316 and -304, 

aluminium alloys and carbon fibre materials. There also exists large-scale underground 

storage facilities for gaseous hydrogen, such as salt cavities, which benefit from lower 

investment- and construction costs, low leakage rates and minimal risk of hydrogen 

contamination. The same kind of pipeline storage that exists for natural gas has also been 

suggested for hydrogen and it is estimated that 12 tonnes of hydrogen could be stored per 

kilometre of pipeline. [14, 19].  

  Pressure [bar] 

T (°C) 1 10 30 300 

0 0,0887 0,8822 2,6630 22,1510 

25 0,0813 0,8085 2,4400 20,5370 

50 0,0750 0,7461 2,2510 19,1490 

80 0,0687 0,6865 2,0596 16,9080 
 

Table 1. Hydrogen gas density in different pressures in kg/m3 

When hydrogen gas is compressed to 350 bar or 700 bar its volumetric energy density 

increases to 2,9 MJ/l and 4,8 MJ/l respectively. From the data in Table 1 it is apparent that the 



Basics and state of the art 
 

 

   11 

gas temperature should be as low as possible to guarantee optimum density and that 

maximum compression pressure should be targeted.   

Usually the ideal gas law (PV = nRT) predicts the behaviour of gasses in different 

environments. But this is not the case with hydrogen due to the nature of hydrogen gas: the 

hydrogen molecule is highly polarised and thus the attraction forces between molecules 

change the gas pressure slightly [18].  

This results in that hydrogen gas always occupies more space than the ideal gas law predicts. 

Different equations have been proposed for real gases to predict their behaviour, such as the 

inclusion of a compressibility factor, Z. Compressibility factor is added to the ideal gas law in 

the following way: 

PV = nZRT (Eq. 2.1) 

 

It is worth noting that in low pressures the compressibility factor Z equals one and can be 

neglected [20].  

 

 

Figure 8. Compressibility factor Z of H2 in different temperatures [20] 

 

Figure 8 illustrates that to compress hydrogen to 300 bars in ambient temperature would give 

us a compressibility factor of 1,2. This means that to compress a given volume of hydrogen 

gas you would need the energy to compress 1,2 times that amount. Another equation proposed 

to assist in real gas calculations is the ‘van der Waals’ model [18], where constants 𝛼 and b 

are experimentally determined: 

(𝑃 + 𝑛2 ∗
𝛼

𝑉2
) ∗ (

𝑉

𝑛
− 𝑏) = 𝑅𝑇 

(Eq. 2.2) 
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Because the compression of hydrogen is a polytropic process the temperature of the gas 

changes during compression thus increasing the final temperature. Cooling during the 

compression process could reduce the work required. But obtaining continuous cooling 

throughout the entire process is difficult and would require complicated cooling systems to 

guarantee uniform removal of heat and a uniform temperature distribution in the gas. A better 

way to do this is to use a multistage compressor and cooling the gas between compressor 

stages using an intercooler [18]. 

 

Figure 9. Visualization of the compression process [21] 

To achieve minimum work in multistage compression, the pressure ratio should be identical in 

both stages as illustrated by figure 9. The optimal intermediate pressure, Pm, can then be found 

with (Eq. 2.3) 

𝑃𝑚 = √𝑃1 ∗ 𝑃2 (Eq. 2.3) 

 

 

2.5. Overview of the system 

 

The system that this work is meant to analyse consist of PV panels, a PEM electrolyser, a 

battery, a hydrogen storage tank and compressors. The energy from the PV panels is used 

to create hydrogen with one or two electrolysers. This hydrogen is then compressed to 300 

bar. It can be compressed further up to pressures of 800 or 1000 bar if necessary. 
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3. MATLAB Files 

 

The intention of this chapter is to describe the MATLAB files associated with this work and to 

explain how they are used. The files are demonstrated in the order they are to be executed 

once the experiment is run. Figure 10 illustrates the MATLAB files and shows the Excel files 

that are automatically created, summarizing the resulting data. 

 

Figure 10. Illustration of the MATLAB files and the resulting Excel files 

 

3.1. Compressibility factor 

 

As section 2.4 explains, hydrogen does not behave like an ideal gas under high pressures and 

that multiple predictions have been made as demonstrated by [18, 20]. This part helps to 

predict hydrogens behaviour in different environments. 

By using formulas provided by [22] and [21] we can determine the compressibility factor, Z. 

Section 3.1.1. is meant if you only need to calculate a single Z-factor, for example when you 

use a one-stage compressor. Section 3.1.2. describes the main file meant for two-stage 

compression. 

 

3.1.1. Single-stage Z-factor 

 

This file (Z_factor_1stage.m) enables the user to quickly calculate a single compressibility 

factor in case a single-stage compressor is used in one point of the process.  
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The compressibility factor is calculated with these steps by combining the Van der Waals 

equation and the virial equation of state according to Babel [22]. 

0 = 𝑉𝑚𝑧
3 − (𝑏 +

𝑅𝑇

𝑝
) ∗ 𝑉𝑚𝑧

2 + (
𝑎

𝑝
) ∗ 𝑉𝑚𝑧 −

𝑎𝑝

𝑏
 

(Eq. 3.1) 

 

𝑉𝑚 =
𝑅𝑇

𝑝
 

(Eq. 3.2) 

 

𝑍 =
𝑉𝑚𝑧

𝑉𝑚
 

(Eq. 3.3) 

 

Where a and b are Van der Waals constants, 24645,79 Nm4/kmol2 and 0,0267 m3/kmol 

respectively, R is the universal gas constant, T is the compression temperature in Kelvins and 

p is the compression pressure in Pascals.  

Only input variables required in this step are the gas temperature in Kelvins and the gas 

pressure in Pascals. Once these values are inserted and the file is executed, the resulting 

compressibility factor will show in the workspace as Z.  

 

3.1.2. Two-stage Z-factor 

 

As demonstrated in the end of section 2.4. multistage compression should be used to 

guarantee minimum work in the compression process. When compressing in two stages, this 

file (Z_factor.m) is used.  

 

The input variables in this file are: 

T Gas temperature [K] (Var 1.1) 

P1 Gas inlet pressure [Pa] (Var 1.2) 

P2 Gas outlet pressure [Pa] (Var 1.3) 

Pm Gas int.med. pressure [Pa] (Var 1.4) 

 

Compressibility factor is calculated according to (Eq. 3.1), (3.2) and (3.3). Once the above 

mentioned input variables are decided and inserted into the file, execute the file. This will result 

in three different compressibility factors: Z-factor in inlet pressure (Z1), Z-factor in outlet 

pressure (Z2) and Z-factor in intermediate pressure (Zm). These values are then later used in 

‘Compressor_2-stage.m’. An important trend of the Z-factor is its relation to both pressure and 

temperature, as indicated in Table 2. 
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  Pressure [bar] 

T (°C) 30 100 300 700 

0 1,0210 1,0780 1,2712 1,7215 

25 1,0208 1,0741 1,2518 1,6616 

50 1,0200 1,0704 1,2352 1,6113 

80 1,0190 1,0664 1,2181 1,5606 
 

Table 2. Hydrogen compressibility factor in different temperature and pressure. 

  

3.2. Compression 

 

3.2.1. Single-stage compression 

 

When dealing with low pressures, or for some other reason single-stage compression is 

chosen, this file (Compressor_1stage.m) calculates the work needed to compress one cubic 

meter of gas according to [21]. To calculate the compressibility factor for this step, refer to 

section 3.1.1.  

The required input variables for this file are: 

T Temperature [°C] (Var 2.1) 

P1 Inlet pressure [Pa] (Var 2.2) 

P2 Outlet pressure [Pa] (Var 2.3) 

CEff Compressor electrical efficiency (Var 2.4) 

 

To calculate the necessary work, we begin by first calculating the volume occupied by one Nm3 

(VN) of hydrogen gas in inlet pressure P1 (V1). 

𝑉1 = (
𝑃𝑎𝑡𝑚

𝑃1
)

1
𝑘

∗ 𝑉𝑁 

(Eq. 3.4) 

 

The work required to compress this volume of hydrogen gas into outlet pressure P2 is then 

calculated [21] and multiplied by the compression factor Z. 

𝑊 =
𝑘 ∗ 𝑃1 ∗ 𝑉1

𝑘 − 1
∗ ((

𝑃2

𝑃1
)

(
𝑘−1

𝑘
)

 − 1) ∗ 𝑍  

(Eq. 3.5) 

 

Result from this calculation is expressed in Newton meters and to convert it to kilowatt hours 

the following conversion is done. 
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𝑊𝑘𝑊ℎ = 𝑊 ∗ 2,777778 ∗ 10−7 (Eq. 3.6) 

 

Ratio of specific heats is interpolated from the values illustrated in Table 3. 

T (°C) Gas k 

-181   1,597 

-76   1,453 

20   1,41 

100 H2 1,404 

400   1,387 

1000   1,358 

2000   1,318 
Table 3. k-values for hydrogen in different temperatures (based on [23]) 

 

 

3.2.2. Two-stage compression 

 

As instructed in section 3.1.2 you should now have three compressibility factors in your 

MATLAB workspace for this file (Compression_2stage.m). Z1 for inlet pressure, Zm optimum 

intermediate pressure and Z2 for outlet pressure.  

This file requires the following input variables: 

CEff Compressor efficiency (Var 2.5) 

T Temperature [°C] (Var 2.6) 

Z1 

Zm 

Z-factor for Pressure P1 

Z-factor for pressure Pm 

(Var 2.7) 

(Var 2.8) 

Z2 Z-factor for pressure P2 (Var 2.9) 

P1 Inlet pressure [Pa] (Var 2.10) 

P2 Outlet pressure [Pa] (Var 2.11) 

 

Just like in section 3.2.1. the k-value is interpolated from Table 3 and volume of one Nm3 is 

calculated according to (Eq. 3.4). Next the same is repeated to calculate what is the volume 

for this amount of hydrogen in intermediate pressure Pm, this will be denoted as V2.  

The process to calculate the volume requires three steps which are explained below. 

 

Firstly (Eq. 3.4) is repeated to get V1. After that the density of the gas in given pressure, P1, is 

calculated with the mass and number of moles in that given volume. Density is calculated 

according to Zhengs method [24]. 
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𝐷𝑒𝑛𝑠𝑃1 =  
𝑃1 ∗ 𝑀

𝑅 ∗ 𝑍1 ∗ 𝑇
 

(Eq. 3.7) 

 

𝑚 =
𝑉1

𝐷𝑒𝑛𝑠𝑃1
 

 

(Eq. 3.8) 

 

𝑛 =
(𝑚 ∗ 1000)

𝑀
 

 

(Eq. 3.9) 

 

Where R is the universal gas constant, T is the temperature in Kelvins, m equals mass in 

kilograms, M is the molecular weight of hydrogen in grams and n is the number of moles in the 

given amount of gas. After having acquired this information we can calculate the volume of 

hydrogen in pressure Pm according to Makridis [20]. 

 

𝑉2 =
𝑛 ∗ 𝑍𝑚 ∗ 𝑅 ∗ 𝑇

𝑃𝑚
 

(Eq. 3.10) 

 

We then calculate the work required for the compression according to [21]. Some sources have 

calculated this slightly differently. Whereas some books, like [21], use volume as a variable, 

Tzimas [18] replaces this variable with temperature. This paper uses the former, due to 

uncertainties about the consistency of gas temperature during compression. 

 

𝑊 =
𝑘 ∗ 𝑃1 ∗ 𝑉1

𝑘 − 1
∗ ((

𝑃𝑚

𝑃1
)

𝑘−1
𝑘

− 1) ∗ 𝑍𝑚 +
𝑘 ∗ 𝑃𝑚 ∗ 𝑉2

𝑘 − 1
∗ ((

𝑃2

𝑃𝑚
)

𝑘−1
𝑘

− 1) ∗ 𝑍2 

(Eq. 3.11) 

 

𝑊𝑘𝑊ℎ = 𝑊 ∗ 2,777778 ∗ 10−7 

 

(Eq. 3.12) 

 

Finally, the resulting compression work is converted from Newton meters per m3 to kWh/m3 in 

equation 3.12.  

 

3.2.3. HD compressor 

 

This file (Compressor_HD.m) is meant to get an overlook of the compressor work if the 

compression process is continued to an additional high-pressure storage which is usually 

around 800 to 1000 bars. It calculates the compressibility factor and compressor work per 
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cubic meter according to sections 3.1.2. and 3.2.2. According to Tzimas [18], significantly less 

energy is required to compress hydrogen from 350 bar to 700 bar, than from ambient pressure 

to 350 bar and the result should reflect this.  

 

 

 

3.3. Electrolysis 

 

After executing the previous calculations next is the file (Electrolyser_Dynamic.mlx) for the 

whole electrolysis process. The objective of this file is to help analyse and determine the 

optimum sizing of the components. In order to do so we need to get outputs such as the 

hydrogen production amounts, utilization rates and how much of the incoming energy is left 

unspent. 

The calculations are done for two different scenarios; one where the system consists of a single 

electrolyser and a battery, and one where the system consists of two electrolysers with no 

battery. For clarity the former scenario is from now on described as ‘battery system’, and the 

latter scenario is described as a ‘dual system’. 

This file is divided into segments, where in parts I-IV the preliminary solar data is organized 

into better readable forms, and in parts 1-12 the results are gathered. All abbreviations 

mentioned and not mentioned in this paper can be found in the MATLAB file called 

‘Abbreviations_Dynamic.m’.  

The efficiency of an electrolyser changes in accordance with the amount of hydrogen it is 

producing at each moment, as illustrated in figure 10. The efficiency parameters are different 

for every electrolyser and these parameters “are part of a manufacturer’s know-how and 

consequently are not frequently disclosed” [25]. This paper utilizes the efficiency curve of a 

Siemens SILYZER 200 PEM electrolyser, but as said, the results are not 100 % applicable to 

other electrolysers. The results should still give the best available outlook on the sizing of 

components.  
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Figure 11. A typical production characteristic and efficiency curve of an example system (edited from 

[26]) 

3.3.1. Parts I-IV: Arranging the PV data  

 

The excel file with data of the PV production for one year works as the basis for this MATLAB 

file. It contains the yearly output of the selected amount of PV panels for one year, with fifteen 

(15) minute intervals. This data is brought to MATLAB and converted from watt hours to 

kilowatt hours in part I. In file parts II and III the program combines the PV output into values 

corresponding intervals of one hour and one day. 

 

3.3.2. Part 1: Input variables 

 

In this part the input variables of different components are determined and after this no further 

action is required from the user. The required input variables are: 

 

Npr Nominal production rate [Nm3/h] (Var 2.12) 

NMP Nominal power [kW] (Var 2.13) 

PCpV Power consumption [kWh/Nm3] (Var 2.14) 

TempE Operating temperature [°C] (Var 2.15) 

BtCap Available battery capacity [kWh] (Var 2.16) 

Npr2 Nominal production rate [Nm3/h] (Var 2.17) 

NMP2 Nominal power [kW] (Var 2.18) 

PCpV2 Power consumption [kWh/Nm3] (Var 2.19) 

HVL Hydrogen valve losses [%] (Var 2.20) 

BGL Battery general losses [%] (Var 2.21) 

TankCap Transport/storage capacity [kg] (Var 2.22) 
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Nominal production rate, nominal power and power consumption depend on the electrolyser 

model and can be found in the data sheets provided by the manufacturer. It is important to 

notice that Npr2, NMP2 and PCpV2 indicate the values of the second electrolyser of the 

system. In case the user wants to ignore the possibility of a second electrolyser, these values 

should be set to zero. 

 It is important to notice that BtCap refers to the available capacity that the system can charge 

and discharge completely. It should thus be set to a smaller value than what is the actual 

battery size. With a depth of discharge of more than 50 % the battery life can decrease to 

under 1000 cycles, as shown in figure 12. 

 

Figure 12. Expected average cycles vs. battery depth of discharge [27] 

TankCap is meant for later analysing when estimating the location of the hydrogen filling 

station. With TankCap we can set a certain limit to the storage tank size and see on which time 

intervals it is filled. Most common tube trailers can carry a load of 500 kilograms of hydrogen, 

with container trailers reaching  a maximum load of 1000 kilograms [13]. If the hydrogen filling 

station is located off-site, with TankCap we can estimate the frequency of transport needed. 

Or we can in general see how fast the local storage tank is filled. 

For finding out later how many kilograms of hydrogen is produced, the density is calculated 

according to the input values inserted by the user. In low pressures the compressibility factor 

is almost equal to one, and can thus be neglected [20].  

𝐷𝑒𝑛𝑠𝐸𝑙𝑒𝑐 =  
𝑃 ∗ 𝑀

𝑅 ∗ 𝑇
 

(Eq. 3.13) 
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Where P equals electrolysis pressure (Pa), M the molecular weight of hydrogen (2,0158 g/mol), 

R the universal gas constant and T the electrolysis temperature (Kelvin). Density is then given 

in kilograms per cubic meter. 

 

3.3.3. Part 2: Hydrogen production of main electrolyser 

 

The hydrogen production of the system depends on the efficiency of the electrolyser. In this 

paper, in absence of real-life parameters, the parameters of a Siemens SILYZER 200 

electrolyser are used to estimate the efficiencies of different electrolysers. The hydrogen 

production amount is calculated according to an equation provided by Kopp [26]. 

 

𝐻2 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  −6,45 ∗  106 ∗ (𝑃𝑒𝑙)2  + 0,2065 ∗ 𝑃𝑒𝑙 − 7,6559 (Eq. 3.14) 

 

Where Pel is the energy the electrolyser uses to produce hydrogen. The production must cover 

at least 10 % of the nominal production rate of the electrolyser, otherwise the production is 

zero. 

The following outputs are calculated in this part. The program also shows how many days of 

the year the electrolyser does not run on its own and shows this as DNR1. All of them are 

production rates from the primary electrolyser:  

H2PVs_hourly Hourly H2 production data [m3/h] (Var 2.23) 

H2PVs_daily Daily H2 production data [m3/day] (Var 2.24) 

H2yr_kg_PVs Hourly H2 production data [kg/h] (Var 2.25) 

H2yr_kg_PVsdaily Daily H2 production data [kg/day] (Var 2.26) 

H2PV_Nm_sum Total H2 produced with 1st electrolyser [m3] (Var 2.27) 

H2PV_kg_sum Total H2 produced with 1st electrolyser [kg] (Var 2.28) 

Efficiency_Ely Efficiency of electrolyser at any moment (Var 2.29) 

   

 

 

3.3.4. Part 3-4: Power consumption 

 

After determining the hydrogen production amount of the electrolyser, we can calculate how 

much power is required to compress it by multiplying the hydrogen production amount (Var 

2.23) with the compression power requirement. Which is gained either from (Eq. 3.6) or (3.12) 

depending if one- or two-stage compression is used.  
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In part 4, the compression- and electrolyser consumption are summed together, and the result 

is the required power of the electrolysis process of one electrolyser. From this a new data, a 

vector with 24-hour intervals is created. 

Important variables created in this part are: 

Electrolysis_kWh Electrolysis consumption [kWh/hour] (Var 2.30) 

Electrolysis_kWh_year Total yearly consumption [kWh] (Var 2.31) 

Electrolysis_daily Electrolysis consumption [kWh/day] (Var 2.32) 

 

 

3.3.5. Part 5-7: Excess energy & production 

 

In the two scenarios this paper analyses, the primary electrolyser is accompanied by either a 

battery or a second electrolyser. A key factor in how efficient the system is overall is how the 

excess energy is utilized. The first step into finding out the utilizable amount of excess energy 

is deducting the electrolysis consumption from the total available energy, which is done in 

segment 5.  

The sixth segment concentrates on the scenario where the electrolyser is accompanied by a 

battery. The battery is only used after PV energy is not enough to run the electrolyser. For this 

reason, daily values are used in excess energy for battery production, and daily results are 

gotten. If one were to use hourly values, MATLAB would calculate that the system has BtCap 

worth of kWh for every hour and as if the battery was used simultaneously with PVs. By using 

daily values, we can simulate a scenario where the battery is run during the night.  

The available excess energy is limited according to the previously defined battery capacity. 

The production is again set to zero if it is insufficient for 10 % of the nominal production rate. 

We also determine how many days of the year the battery is not used at all and show this as 

DNRB.   

 

Pexcess_usable Hourly excess energy [kWh] (Var 2.33) 

Pexcess_usable_daily Daily usable excess energy [kWh] (Var 2.34) 

H2batdaily_m3 H2 produced with battery [m3/day] (Var 2.35) 

H2batdaily_m3sum Total H2 produced with battery [m3] (Var 2.36) 

H2batdaily_kg H2 produced with battery [kg/day] (Var 2.37) 

H2batdaily_kgsum Total H2 produced with battery [kg] (Var 2.38) 

NumOf_Cycles # of battery cycles in one year (Var 2.39) 

 

Part seven repeats the previous task for the dual system. Hourly excess energy data (Var 2.33) 

is used because the second electrolyser can run simultaneously with the primary electrolyser. 

The days that the electrolyser is not running is shown as DNR2 and the estimated hydrogen 
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gas losses are deducted from the production amount.  

 

H2excess_2ndelec H2 from the 2nd electrolyser [m3/hour] (Var 2.40) 

H2excess_sum_m3 Total H2 from the 2nd electrolyser [m3] (Var 2.41) 

H2excess_kg H2 from the 2nd electrolyser [kg/hour] (Var 2.42) 

H2excess_sum_kg Total H2 from the 2nd electrolyser [kg] (Var 2.43) 

H2_2elec_daym3 H2 from the 2nd electrolyser [m3/day] (Var 2.44) 

Efficiency_Ely_2 Efficiency of the 2nd electrolyser (Var 2.45) 

 

 

3.3.6. Part 8-9: Unspent energy 

 

In an optimum situation all the energy from the PV panels is used. But, especially with large 

PV installations like this, some of the energy is most likely left unspent. Part eight calculates 

the following variables for the two scenarios.  

 

Unspent_bat Unspent energy in a battery system 

[kwh/day] 

(Var 2.46) 

Unspent_batsum Total unspent energy in a battery 

system [kWh] 

(Var 2.47) 

Unspent_elec Unspent energy in a dual system 

[kWh/day] 

(Var 2.48) 

Unspent_elecsum Total unspent energy in a dual system 

[kWh] 

(Var 2.49) 

H2unspent_batKG Corresponding H2 amount in a battery 

system [kg] 

(Var 2.50) 

H2unspent_elecKG Corresponding H2 amount in a dual 

system [kg] 

(Var 2.51) 

 

With these variables, MATLAB now creates a plot of the amount of energy that is left unspent 

in both scenarios and compares these two amounts to each other. Three more variables are 

created to help further comparison: 

Prc_bat How many % is left unspent in a 

battery system 

(Var 2.52) 

Prc_elec How many % is left unspent in a dual 

system 

(Var 2.53) 

Pdiff How many % more is left unspent in 

the least efficient option 

(Var 2.54) 
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The percentual difference of the two systems is calculated with the following if-loop. By always 

dividing the larger variable with the smaller one, we can with a quick glance determine how 

much more energy would be wasted if we were to choose that option.  

If Prc_bat > Prc_elec  

 
𝑃𝑑𝑖𝑓𝑓 =  

𝑈𝑛𝑠𝑝𝑒𝑛𝑡_𝑏𝑎𝑡𝑠𝑢𝑚

𝑈𝑛𝑠𝑝𝑒𝑛𝑡_𝑒𝑙𝑒𝑐𝑠𝑢𝑚
∗ 100 

else  

 
𝑃𝑑𝑖𝑓𝑓 =  

𝑈𝑛𝑠𝑝𝑒𝑛𝑡_𝑒𝑙𝑒𝑐𝑠𝑢𝑚

𝑈𝑛𝑠𝑝𝑒𝑛𝑡_𝑏𝑎𝑡𝑠𝑢𝑚
∗ 100 

end  

 

 

3.3.7. Part 10: Total H2 yield 

 

After determining the separate hydrogen production amounts for the different components, in 

this part they are combined to enable further comparison. Firstly, the production amount in the 

battery system is calculated by combining the production from the primary electrolyser (Var 

2.23-26) and the production that the battery is capable of (Var 2.33-38). 

Then the variables of the battery system are replaced with variables from the dual system (Var 

2.40-44) and the previous step is repeated. What is different, is that the data in the battery 

system has intervals of one day whereas the dual system data is given by each hour. Only the 

gravimetric production of the dual system is also transformed to daily values.  

The final task done in this part is the creation of pie- and bar charts to visualize the results. 

The pie charts illustrate what proportion of the produced hydrogen is produced with the primary 

production method (electrolyser), secondary method (battery/electrolyser) and how much 

could still be produced if the system could use all available energy from the PV panels. The 

bar charts on the other hand indicate the total volumetric and gravimetric amounts of hydrogen 

produced with both systems.  

 

3.3.8. Part 11: Utilization rates 

 

Utilization rates for both systems are calculated following two strategies. In the first one, the 

maximum potential output of the systems is calculated with the assumption that they can be 

run non-stop even during the night. In the second one it is assumed the system only runs when 

there is sunshine for the PV panels. It is not known what is the absolute maximum production 

rate for different commercial electrolysers [25] , so openly disclosed nominal production rates 

are used for the calculations.  
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𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡
 

(Eq. 3.15) 

 

 

Thus, in the first strategy the potential output is assumed to be 𝑂𝑢𝑡𝑝𝑢𝑡𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙,𝑚𝑎𝑥 = 𝑁𝑃𝑅1,2 ∗

24 ∗ 365. This assumes the electrolyser(s) can be run around the clock. The second principle 

on the other hand assumes that the electrolysers are only run during the hours of daylight. This 

results that the potential output is 𝑂𝑢𝑡𝑝𝑢𝑡𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙,𝑑𝑎𝑦 = 𝑁𝑃𝑅1,2 ∗ 𝐷𝐿𝐻 where DLH is the number 

of daylight hours in the year.  

This part also calculates the average efficiencies for both electrolysers in the system. 

 

3.3.9. Part 12: Timetables and results  

 

Lastly the program complies all results into tables and timetables for further analysing. A 

summary of all of them can be found in ‘Abbreviations_Dynamic.m’. Timetables with hourly 

data are available for the dual system whereas for the battery system timetables with daily 

intervals are provided. In addition to these, the following two tables sum up the data for both 

systems. 

 

TResultsElecBat Summary of battery system (Var 2.55) 

TResultsTwoElec Summary of dual system (Var 2.56) 

 

Parts 12.2 and 12.4 also have a loop that enable the user to see the storage tank level on each 

time interval. Lastly the file compiles all the results in the following excel files in the MATLAB 

folder. 

SinglesystemHourly_Dynamic Excel spreadsheet of the main electrolyser data 

BatterysystemAll_Dynamic Excel spreadsheet of the battery system data 

DualsystemAll_Dynamic Excel spreadsheet of the dual system data 
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3.4. Hydrogen storage 

 

This MATLAB file (Storage_H2.m) is meant for a quick method to estimate how the storage 

tanks could be sized if the filling station is located on-site. The model consists of two storage 

tanks for different purposes. 

Firstly, there is the low-pressure (ND) storage tank between the electrolyser and the 

compressor. Its purpose is to guarantee a uniform flow of gas to the compressor and the 

storage pressure varies between approximately 5 bars and 30 bars. After compression, the 

gas is stored momentarily in a storage tank of 300 bars (MD storage).  

To calculate the necessary storage volume of the ND storage it is assumed that it is only 

required to have a storage bumper the size equal to the maximum volumetric production of 

hydrogen in any given hour. In our calculations we can utilize the ideal gas law, since in low 

pressures hydrogen behaves as such.  

𝑉2 =
𝑃1 ∗ 𝑉1

𝑃2
 

(Eq. 3.16) 

 

Where P1 is the electrolysis pressure and P2 is the compressor inlet pressure. V1 equals the 

maximum amount of hydrogen in cubic meters produced at any moment during the year. 

Storage volume is calculated for two scenarios, one where production is done with a single 

electrolyser and another where two electrolysers are used. 

 

VND1 ND volume for battery system [m3] (Var 2.57) 

VND2 ND volume for dual system [m3] (Var 2.58) 

 

Next, we assume that the MD storage tank can be emptied on regular intervals. We find out 

what is the maximum mass amount of hydrogen produced in a day in both scenarios and size 

the MD storage accordingly. The only variable in this file is how many days’ worth of production 

the storage tank must be able to hold.  

𝑉𝑀𝐷 = 𝑚𝐻2,𝑚𝑎𝑥 ∗ 𝑡 (Eq. 3.17) 

 

Where m is the maximum amount of hydrogen produced in one day (kg) and t is the time 

frequency of emptying the tanks (days). The high-pressure storage tank sizes are usually 

defined by how many kilograms of hydrogen they can hold and not by their volume as is done 

with the ND storage. 

Days # of days between emptying of the tanks (Var 2.59) 

MD1 Tank size for battery system [kg] (Var 2.60) 

MD2 Tank size for dual system [kg] (Var 2.61) 
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It is worth noting that the timetables containing gravimetric production amounts also show the 

storage tank level according to (Var 2.22). This variable can be set according to the calculated 

storage tank size (Var 2.60-61) or, for example, to 500 kilograms, which is the usual limit of 

hydrogen transport lorries that can be used to transport the hydrogen to an external filling 

station. 
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4. System performance in different scenarios 

 

This chapter demonstrates what outputs the MATLAB program can provide and compares 

different scenarios regarding electrolyser and battery sizes. Section 4.3. gives a quick look into 

the hydrogen refueling station and the pros and cons in different locations. 

The system is located near Stuttgart, Germany, and it consists of 9 937 pieces of BenQ Solar 

PM060M02-290 Green Triplex -PV panels. The panels have an overall efficiency of 18%. They 

are orientated in a 20° angle and together cover 32 000 square meters of roof area. The 

optimum panels and their setup have been selected with Polysun software.  

 

Panel type BenQ Solar PM060M02-290 Green Triplex 

# of panels 9 937 

Area (m2) 32 000 

Declination 20° 

Alignment 50% East / 50% West 

Peak power 2 882 kWp 

Produced per year 4 747 MWh 
Table 4. Specifications of the PV setup 

 

Because the main source of power are the PV panels, it is assumed that the more self-sufficient 

the system is, the better. This is why the utilization rates of the electrolysers are calculated 

with the assumption that only the hours of daylight are considered. 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝐻2 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑀𝑎𝑥 𝐻2 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡
 

(Eq. 3.18) 

  

The potential output of the electrolyser is thus estimated to be the amount produced if the 

electrolyser was running on full capacity only during the hours of daylight. With the available 

data this equals to 4 708 hours of the year. As summarized in table 5, hydrogen losses 

resulting from compression and decompression are in all scenarios assumed to be 5 %. The 

compressor electrical efficiency is set to 80 %.  The general losses of the battery are assumed 

to be 10%. From electrolyser data [28] electrolysis itself is assumed to happen at 1 bar. All the 

electrolysers can achieve an output pressure of 30 bar with in-situ compression. 
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Electrolysis pressure 1 bar 

Electrolysis temperature 80°C  

Compressor efficiency 0,8 

Compression temperature 50°C 

Battery losses 10 % 

Hydrogen gas losses 5 % 
Table 5. Assumptions for all scenarios 

For the results, the hydrogen is compressed from 30 bar to 300 bar with a two-stage 

compressor. It is assumed the compressor contains an intercooler, keeping the gas 

temperature at 50 degrees Celsius. With equations 3.1 – 3.3 the following Z-factors are 

achieved. The compression work required for each nominal cubic meter is calculated with 

equations 3.11 and 3.12. 

 

P (bar) 30 94,86 300 

T (°C) Z1 Zm Z2 

50 1,0201 1,0666 1,2352 

WkWh 0,1709 kWh/m3 
Table 6. Compression variables for all scenarios 

 

4.1. Analyzing different scenarios 

 

This section analyses the results and tries to determine the most optimum sizing of 

components. To do so, four different scenarios are chosen, some with two electrolysers and 

some with an electrolyser and a battery. 

 

4.1.1. Scenario #1: Large electrolyser and a battery 

 

In scenario #1 the system consists of a large 2 MW electrolyser teamed up with a battery. The 

available battery capacity is set to 750 kWh which corresponds to about 1 500 kWh of installed 

capacity. This means that one full cycle equals a depth of discharge of 50 %. 

Electrolyser model nel Proton M400 

Nominal power 2 MW 

Type PEM 

H2 flow rate 413 Nm3/h 

Power consumption 4,53 kWh/Nm3 

Available battery capacity 750 kWh (1 500 kWh) 

Feedwater consumption 373 l/h 
Table 7. Scenario #1 spesifications 
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Firstly, we look at the hydrogen production rates achieved with the electrolyser and with the 

help of the battery. Figure 12 illustrates that the electrolyser is able to achieve a production 

rate of about 350 Nm3/h almost throughout the year. This is behind its nominal production rate, 

most likely due to poor efficiency. In December and January, we see that the PVs cannot 

provide the system with enough energy to achieve the same peak production rates. 

 

Figure 13. Volumetric H2 production without battery in scenario #1 

In total there are twelve days during the year that the electrolyser is not running without battery 

assistance, or in other words the PV output is not enough to meet the required power of the 

electrolyser which is 10% of its nominal production amount. 

 

Figure 14. Volumetric H2 production with battery capacity in scenario #1 
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With 750 kWh of available battery capacity we can reach a peak production of about 140 Nm3 

per day. And as shown by figure 13, we have a similar kind of production curve as in figure 12, 

with the exception that there seems to be close to no production between October and March. 

The battery is mostly used during the summer, with single peaks also in December and 

January. With a quick glance, the battery in this scenario seems like a bad investment due to 

long periods of non-operation.  

 

Figure 15. Battery cycles each day in scenario #1 

Known reasons for Li-ion cell degradation are high rate of operation, cycling rate, temperature, 

operation on extended voltage levels, state of charge and depth of discharge [12]. As illustrated 

by figure 14, the battery in this system goes through 115 full cycles a year. The depth of 

discharge is 50 %. And as demonstrated by figure 15, the battery is only able to increase the 

hydrogen production by a small fraction. Because of this we conclude that the battery is not 

worth the investment in this system.  
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Figure 16. Hydrogen production distribution and amount that could still be produced in scenario #1  

We see from figure 15 that most of the hydrogen (85%) is produced without the assistance of 

the battery and only 2% increase in production is done with the help of the battery capacity.  

 

Figure 17. Unspent electricity for one year in scenario #1 

The 10 % of electricity that is left for waste is distributed mostly during the summer months as 

shown in figure 16 and peaks around 12 000 kWh in June. The electrolyser requires a power 

input equal to 10 % of its nominal production rate, so in this case the electrolyser does not start 

unless it gets enough power to produce 41,3 Nm3/h. From table 8 and figure 12 we can see 
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that there are twelve days during which the PV output is not enough, and that the days are 

situated in December and January.   

 

  Electrolyser Battery Total 

H2 produced 49423 1116 50539 

Days not running 12 235   

  Without battery With battery Cycles  

Utilization rate 0,37 0,38  115 

  % of total kWh   

Unspent electricity 10,28 % 488 257   
Table 8. Summary of scenario #1 results 

Because the battery is only used for a third of the year and produces so little hydrogen, and 

because aging tests using real operation conditions are very time- and cost intensive [29], this 

scenario is not selected.  

 

 

4.1.2. Scenario #2: Large & small electrolyser 

 

This scenario estimates if it would be better to replace the battery from the previous scenario 

with a small electrolyser. By using electrolysers from the same manufacturer we can expect 

lower maintenance costs. 

Electrolyser models nel Proton M400 nel Proton M100 

Nominal power 2 MW 0,5 MW 

Type PEM PEM 

H2 flow rate 413 Nm3/h 103 Nm3/h 

Power consumption 4,53 kWh/Nm3 4,53 kWh/Nm3 

Feedwater consumption 373 l/h < 200 l/h 
Table 9. Scenario #2 spesifications 

The main electrolyser is identical to the one in scenario one and figure 17 shows the hydrogen 

production of the electrolyser which is meant to replace the battery. 
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Figure 18. Secondary electrolyser volumetric production in scenario #2 

We can see that the production chart is similar to that of the battery, with operation only 

between March and November. This indicates a very poor utilization rate, shown in table 10. 

In addition, the second electrolyser can only achieve production rate of 90 Nm3/h.  

 

Figure 19. Unspent electricity in kWh in scenario #1 (blue) vs scenario #2 (red, filled) 

From figure 18 we discern that providing the system with a second electrolyser instead of a 

battery is still not enough to take advantage of all the available energy from the PVs. The peak 

of lost electricity drops from 12 000 kWh/day to around 8 000 kWh/day. But even in the winter 

months there is some electricity going to waste due to the fact that it is not a sufficient amount 

to start the electrolysers. 
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Figure 20. Gravimetric H2 production in scenario #2 

As shown by the gravimetric production data, the monthly average in winter months such as 

December is well below 100 kg/day with some individual below-average days also in the 

summer months. The large variability of the production can be a problem, especially if the 

hydrogen is to be used by public or private mobility users that need a steady flow of fuel around 

the year. The most optimum situation would be a uniform production of H2, but this might be 

impossible without a connection to the national electricity grid to guarantee production also in 

winter. 

  Electrolyser #1 Electrolyser #2 Total 

H2 produced (kg) 49423 3647 53070 

Days not running 12 223   

Average efficiency 0,558 0,552   

  Electrolyser #1 Electrolyser #2 Total 

Utilization rate 0,37 0,11 0,32 

  % of total kWh   

Unspent electricity 5,98 % 283 712   
Table 10. Summary of scenario #2 results 

By looking at table 10 we can see that switching the battery to a small electrolyser provides us 

with close to 2 000 kg more hydrogen. Both the battery and the small electrolyser have over 

200 days of non-operation during the year, thus achieving a very poor utilization rate. PEM 

electrolysers suffer from a high cost of components [16], so for this scenario to be feasible, the 

utilization rate should be increased for example with grid electricity. By fitting the system with 

a smaller primary electrolyser we can expect the electrolysers to have less non-operational 

days than in these scenarios.  
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4.1.3. Scenario #3: Two medium electrolysers 

 

In this scenario we use two medium-sized, identical electrolysers without a battery. Again, by 

using two electrolysers from the same manufacturer we can expect lower maintenance costs 

of the system. We hope that using two electrolysers of equal size the utilization rate of the 

system can be improved from previous scenarios. 

Electrolyser models 2x H-TEC ME 450/1400 

Nominal power 2x 1 MW 

Type PEM 

H2 flow rate 2x 210 Nm3/h 

Power consumption 2x 4,9 kWh/Nm3 

Feedwater consumption 2x 350 l/h 
Table 11. Scenario #3 spesifications 

 

We can expect the primary electrolyser have a much more uniform production rate also in the 

winter months due to the smaller required energy that the electrolyser needs to start. From 

figure 20 we can see that unlike with the large electrolyser (Fig. 12), we can now achieve the 

peak production rate also during the winter months. 

 

Figure 21. Primary electrolyser hourly production in one year in scenario #3 
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Figure 22. Secondary electrolyser hourly production in scenario #3 

Figure 21 illustrates that we can expect a much worse utilization rate from the second 

electrolyser compared to the primary one, and a large number of days of non-operation in the 

winter months. Yet it is clear this option is much better as a secondary solution than the ones 

offered in the previous scenarios (Fig. 13 & Fig. 17). The production is also much more evenly 

split between both electrolysers as shown in figure 22. This makes the second equally sized 

electrolyser a much worthwhile investment than the battery or the small electrolyser from 

previous scenarios. 

 

Figure 23. Hydrogen production distribution and amount that could still be produced in scenario #3 
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The primary electrolyser has a superior utilization rate compared to the other scenarios as 

shown in table 12, and the utilization rate of the second electrolyser can be improved by 

running the electrolyser(s) with additional off-peak electricity. In December 2018 and January 

2019, the rough average price of off-peak electricity was about 50 €/MWh [30].  

Even though a slightly bigger portion of electricity is left unspent, hydrogen production amount 

is almost as large as in previous scenarios. And due to the high utilization rate of the first 

electrolyser, this scenario seems like the most optimum one. The average efficiencies of both 

electrolysers are also slightly better in this scenario rather than the previous one. 

  Electrolyser #1 Electrolyser #2 Total 

H2 produced (kg) 34256 15462 49718 

Days not running 6 113   

Average efficiency 0,560 0,562   

  Electrolyser #1 Electrolyser #2 Total 

Utilization rate 0,50 0,23 0,37 

  % of total kWh   

Unspent electricity 12,94 % 614 490   
Table 12. Summary of scenario #3 results 

 

4.1.4. Scenario #4 Medium electrolyser with battery 

 

Because the cost of components in PEM electrolysis is high [16], it might be more feasible to 

use a battery instead of a second electrolyser to drive up the system utilization rate. The final 

scenario will use an identical electrolyser from the previous scenario coupled with a 1 500 kWh 

battery which has 750 kWh of available capacity (with assumed depth of discharge of 50 %).  

 

Electrolyser models H-TEC ME 450/1400 

Nominal power 1 MW 

Type PEM 

H2 flow rate 210 Nm3/h 

Power consumption 4,9 kWh/Nm3 

Feedwater consumption 350 l/h 

Battery capacity 750 kWh (1 500 kWh) 
Table 13. Scenario #4 specifications 

With figure 23 we can compare how well the battery performs when compared with a second 

electrolyser (Fig. 21). The battery seems to achieve higher production rates also in December 

and January, which is something the second electrolyser in Fig. 21 cannot do.  
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Figure 24. Volumetric H2 production with battery capacity in scenario #4  

As mentioned earlier, multiple variables have an effect on Li-ion cells degradation rate, cycling 

rate being one of them. Barré [31] concludes that real life estimation of the battery life without 

actual experiments is nigh impossible and that “there is currently no study considering ageing 

as a consequence of all the existent interactions between environment and utilization mode”.  

But in a study by Bryden [12], after 400 cycles the Li-ion battery capacity was around 80% of 

the original capacity. As shown in figure 24, the battery in this system would go through 248 

cycles within one year, thus rapidly shortening its lifespan meaning it would have to be replaced 

more often. 

 

 

Figure 25. Battery cycles each day in scenario #4  
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Figure 26. Unspent electricity in scenario #4 (blue) compared to #3 (red, filled) 

High cycling rate together with a larger portion of wasted electricity (Fig. 25), shows that this 

scenario is not an improvement and replacing the second electrolyser is not a feasible option 

and thus we choose scenario #3 as our optimum system model. 

  Electrolyser Battery Total 

H2 produced 34256 2318 36574 

Days not running 6 91   

  Without battery With battery Cycles 

Utilization rate 0,50 0,54 248 

  % of total kWh   

Unspent electricity 35,83 % 1 701 380   
Table 14. Summary of scenario #4 results 

 

 

4.2. Summary of the chosen scenario 

 

The chosen sizing of components is decided as having two medium sized electrolysers without 

a battery. A medium sized primary electrolyser has a superior utilization rate compared to a 

bigger one and the second electrolyser produces significantly more hydrogen than would be 

possible to produce with a battery. A battery would also suffer from a high cycling rate which 

in turn would decrease its lifespan significantly faster than what is reasonable.  
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Electrolyser models 2x H-TEC ME 450/1400 

Nominal power 2x 1 MW 

Type PEM 

H2 flow rate 2x 210 Nm3/h 

Power consumption 2x 4,9 kWh/Nm3 

Feedwater consumption 2x 350 l/h 
Table 15. Optimum scenario specifications 

 

  Electrolyser #1 Electrolyser #2 Total 

H2 produced (kg) 34256 15462 49718 

Days not running 6 113   

Average efficiency 0,560 0,562   

  Electrolyser #1 Electrolyser #2 Total 

Utilization rate 0,50 0,23 0,37 

  % of total kWh   

Unspent electricity 12,94 % 614 490   
Table 16. Optimum scenario summary of results 

Next, we take a look at the production and related storage tank level for one winter week and 

one summer week to estimate how often the hydrogen would need to be transported to a filling 

station. 

 

Figure 27. Hydrogen production in relation to storage tank level, winter week (one spike equals one 

hour) 
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Figure 28. Hydrogen production in relation to storage tank level, summer week (one spike equals one 

hour) 

By comparing the winter production (Fig. 26) with production in the summer (Fig. 27), we see 

that when the storage tank level is set to 500 kilograms, we would require a hydrogen transport 

lorry on average twice a week. Whereas during summer it would require transporting the 

hydrogen three, sometimes four, times a week. Tube trailers most commonly have a transport 

capacity of 500 kilograms but by using a container trailer, this can be increased to 1000 

kilograms [13] thus decreasing our transport needs and costs. From figure 26 we also see the 

reason for the poor utilization rate of the second electrolyser: for example, on 28/02 the second 

electrolyser is in operation only for two hours. In the summer it is used simultaneously with the 

first one during almost every hour. 

 

Figure 29. Gravimetric daily H2 production in optimum scenario 

As demonstrated by figure 29, the daily production of hydrogen does not even reach an 

average of 50 kilograms per day in the winter. Starting from November all the way until 

February, we have very low production amounts. Hydrogen busses carry approximately 30 -

50 kilograms of H2 on board. And newer busses consume 8 – 9 kg/100km [13]. Small variation 
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in the production is not a problem. The refuelling schedule of the busses can be arranged to 

accommodate this variation. But in the winter months the production is still unacceptably low 

and not enough to supply an entire bus fleet. This is another reason to improve the utilization 

rate of the electrolysers with electricity from the power grid.  

 

4.3. Hydrogen delivery and refuelling station 

 

One major obstruction to the spread of hydrogen fuel cell vehicles (HFCVs) is the lack of 

hydrogen refuelling station infrastructure. To achieve the favour of consumers, hydrogen 

needs to be competitively priced and conveniently available. The location of the hydrogen 

refuelling stations affects the hydrogen life cycle cost and the price of hydrogen [32]. That is 

why their placement should be carefully considered to ensure that the hydrogen demand is 

met. Having the hydrogen station on-site would create cost savings in the transportation to the 

refuelling station. But if also passenger HFCVs, not only busses, would use this refuelling 

station, it’s location might push consumers away. 

Gaseous hydrogen can be transported to the refuelling station either by compressed pressure 

vessels or via a pipeline. Using compressed pressure vessels and transporting the hydrogen 

with tube trailers is usually the simplest method in terms of infrastructure requirements. Tube 

trailers also have very small hydrogen losses and the compression cost at the refuelling station 

is low [33]. Capital costs of transport trucks are around ~300.000 USD ($) per truck with 

additional operating costs of around 0,10 – 0,40 $/kg. Total operating costs would thus be 0,5 

– 2,0 $/kg/100 km [34]. 

Using traditional pipelines, i.e. pipelines such as those for natural gas, is capital intensive and 

require large quantities of gas [34] and thus is not suitable for a situation such as this where 

production amounts are low. Capital costs for hydrogen pipeline have a large variation, from 

200.000 – 1.000.000 $ per kilometre. Total costs of operation can still be very low, around 0,10 

– 1,00 $/kg/100km [34].  

 

Figure 30. FRP pipeline cross section [35] 
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Hydrogen embrittlement is a concern with steel materials. Instead of using steel materials, one 

potential pipeline material is Fiber Reinforced Polymer (FRP), shown in figure 29. The 

installation of FRP pipelines is less labour-demanding and requires less heavy machinery. This 

lowers the installation costs by up to 30 % [33].  

The customer in this case is the public transportation fleet of the Stuttgart area, i.e. hydrogen 

busses. Because the customer is a single entity, there is less pressure the consider the 

positioning of the refuelling station. By having the hydrogen refuelling station on-site, cost-

savings in hydrogen transportation are achieved. If the hydrogen would also be sold for private 

passenger cars, we would have to position the refuelling station as close to the consumer as 

reasonably possible.  
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5. Summary and outlook 

 

5.1. Summary 

 

Due to the unchecked use of fossil fuels, we are now facing a multitude of environmental 

problems. Hydrogen is widely seen as a fuel of the future that will help societies get rid of their 

fossil fuel dependency. In answer to this, a solar-fed power-to-gas plant will be built in an 

industrial area near Stuttgart. There photovoltaic panels will cover a roof area of approximately 

32 000 square meters. This energy is then used to create hydrogen in a PEM electrolyser. The 

hydrogen is then used by the public transports’ bus fleet. 

The purpose of this paper is to create a MATLAB modelling tool that will help in sizing the 

components. The MATLAB tool consists of multiple files, and there are separate files for 

different stages of the process. After comparing different scenarios, the best combination of 

components one is chosen. It is found that equipping the system with a battery would provide 

only a marginal increase in hydrogen production. In addition, the battery degradation rate will 

increase if it goes through too many cycles during a year. For these reasons, a system with 

two electrolysers is chosen.  

As the most optimum scenario, two H-TEC ME 450/1400 electrolysers are selected. By using 

two 1 MW electrolysers, we reach utilization rates of 50 % and 23 % with a total hydrogen 

production of almost 50 000 kilograms. All available energy from the PVs cannot be utilized, 

with 600 000 kWh (13 %) being unspent. It is advisable that the utilization rates of both 

electrolysers are improved by using off-peak electricity, especially during the winter months 

when production is low. The hydrogen refuelling station is recommended to have on-site, 

because the customers are only the HFC busses belonging to the public transport fleet.  

 

5.2. Outlook 

 

Future research might attempt to use more sophisticated methods in sizing the components. 

One such possible way could be using the HOMER energy software that evaluates the different 

components and chooses the most economical and technological combination of components, 

and then performing a multi-year performance analysis with TRNSYS software as done by 

[36].  

A possible improvement would also be a more thorough model of the battery degradation rate. 

The battery loses its capacity according to the number of cycles it goes through. Implementing 

this degradation rate would help evaluate the battery efficiency better. Detailed calculations 

about the costs of running the system with off-peak electricity would also benefit this work. 

These calculations could also include what would be gained if the unspent electricity from the 
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summer months is sold to the national electricity grid. Or perhaps an energy management 

system can increase the utilization rates. 

Doubts may also be raised as to whether the compressibility factor calculations provided by 

Babel [22] are completely correct. Previous studies, such as those by Makridis and Zhou et al. 

[20, 37, 38], suggest that the compressibility factors are smaller than those in this paper. Yet 

problems arise because the values provided in previous studies also contradict each other. 

Online data by LBS GmbH [38] does not provide calculations.  A book by Hirscher [39] on the 

other hand is not available as open-access. A study by Tzimas et al. [18] provides different 

values even within one paper. So, despite there being a substantial body of literature on the 

subject, a consensus on the correct compressibility factor is almost impossible to discern.  
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