

Magento Module Development

Richárd Gergő Madarász

Bachelor’s thesis
May 2020
Programme of Information and Communication Technology

Description

Author(s)

Madarász, Richárd Gergő
Type of publication

Bachelor’s thesis
Date

May 2020

Language of publication:
English

Number of pages

57
Permission for web publi-

cation: x

Title of publication

Magento Module Development

Degree programme

Programme of Information and communication Technology

Supervisor(s)

Manninen, Pasi & Salmikangas, Esa

Assigned by

Solteq Oyj

Abstract

In the company there was a need for a module which makes it possible to edit webpage
translations directly, since the only way to make changes was to edit the translation files
directly, which required a redeploy of the environment every single time.

The task was to create a module which works as a panel in the configuration menu of the
admin panel. This way the customer can make changes themselves without the need of
creating support tickets and having the company make changes and deploys.

The implementation is done using Magento 2 Platform. The module directory mainly con-
sists of blocks, controllers models and configuration files. It is written in HTML, PHP lan-
guages and XML in the configuration files, while also using SQL for database management
and Composer as module manager.

The study resulted in a working custom module, that has the ability to edit localization files
directly from the admin menu, with the added feature of saving changes to the project’s
database. The module is ready to be implemented in any Magento 2 Project.

The module is ready to be used, albeit it is not featured in any of the company’s project as
of May 2020, yet is has been considered for many various old and new projects.

Keywords/tags (subjects)

eCommerce, HTML, JavaScript, Magento, PHP, SQL, Webstore

Miscellaneous

http://finto.fi/en/

3

Contents

1 Introduction ... 9

1.1 Project Goal ... 9

1.2 Background of the author and Solteq ... 9

2 E-commerce ... 10

2.1 Introduction to E-commerce ... 10

2.2 Ecommerce categorization .. 11

2.2.1 Buiness-to-Customer (B2C) .. 11

2.2.2 Business-to-Business (B2B) ... 11

2.2.3 Consumer-to-Consumer (C2C) ... 11

2.2.4 Consumer-to-Business (C2B) .. 11

2.2.5 Business-to-Administration (B2A) .. 12

2.2.6 Consumer-to-Administration (C2A) .. 12

2.3 Ecommerce platforms ... 12

3 Magento eCommerce ... 15

3.1 Overview .. 15

3.2 Magento Community Edition .. 16

3.3 Magento Commerce Edition ... 16

3.4 Key Differences of Community and Commerce Edition 17

4 Magento Environment .. 18

4.1 Used Languages ... 18

4.1.1 PHP .. 18

4.1.2 HTML ... 19

4.1.3 JavaScript .. 20

4.2 Magento Environment Prerequisites .. 21

4.2.1 Web Server ... 21

4

4.2.2 Composer .. 21

4.2.3 Database ... 22

4.2.4 PHP .. 22

4.2.5 Authentication keys .. 22

4.3 Magento Environment Install .. 22

4.3.1 New Project .. 22

4.3.2 Cloning Existing Projects from Git .. 25

4.4 File Structure ... 27

5 Magento Modules .. 28

5.1 Overview .. 28

5.2 Module Relations .. 28

5.2.1 Overview ... 28

5.2.2 A module uses B, C customizes B ... 29

5.2.3 A module reacts to B, C customizes B .. 29

5.2.4 A module and C customize B .. 29

5.2.5 A module replaces B ... 30

5.3 Module Dependencies .. 30

5.3.1 Overview ... 30

5.3.2 Hard dependency ... 31

5.3.3 Soft dependency ... 31

5.4 Module Areas .. 32

5.5 Module Management .. 33

5.5.1 Composer Install ... 33

5.5.2 Manual Install ... 34

5.5.3 Managing modules ... 34

5.6 Module structure... 36

5

6 Translation Module .. 38

6.1 Overview .. 38

6.2 Initial Configuration ... 39

6.3 Frontend View ... 41

6.4 Background Logic... 42

6.4.1 Controller .. 42

6.4.2 Loading files .. 43

6.4.3 Editing translations ... 45

6.4.4 Database connection .. 46

6.4.5 Saving and Loading to database ... 48

7 Conclusion .. 49

References ... 50

Figures

Figure 1. Ecommerce sales trend ... 10

Figure 2. Market share of Ecommerce platforms .. 12

Figure 3. The pricing of Bigcommerce with the category differences showcased 14

Figure 4. Magento Admin panel ... 15

Figure 5. Example of embedded PHP code in HTML .. 19

Figure 6. HTML code and how it's rendered .. 20

Figure 7. Basic JavaScript functionality .. 21

Figure 8. Magento composer installation .. 22

Figure 9. Magento version specific installation ... 23

Figure 10. Magento setup with command line .. 23

Figure 11. Magento web setup wizard ... 24

Figure 12. Magento homepage on a fresh install .. 24

Figure 13. Magento project env.php configuration ... 25

Figure 14. Magento project WordPress configuration .. 25

6

Figure 15. Commands to create a DB dump and import ... 26

Figure 16. Magento local database fix ... 26

Figure 17. Magento Admin user creation .. 27

Figure 18. A uses B, C customizes B ... 29

Figure 19. A reacts to B, C customizes B .. 29

Figure 20. A and C customize B .. 30

Figure 21. A replaces B ... 30

Figure 22. Hard dependency example ... 31

Figure 23. Soft dependency example ... 32

Figure 24. Module installation with Composer .. 33

Figure 25. Authentication during module installation ... 33

Figure 26. composer.json example .. 34

Figure 27. composer.lock example of a specific module ... 35

Figure 28. Change module state .. 35

Figure 29. config.php declaring module states .. 36

Figure 30. Translation module in admin panel .. 38

Figure 31. module.xml of translation module.. 39

Figure 32. registration.php of translation module ... 39

Figure 33. menu.xml of translation module ... 39

Figure 34. Effects of menu.xml of translation module .. 40

Figure 35. routes.xml of translation module ... 40

Figure 36. Structure of view directory that contains all display logic 41

Figure 37. layout .xml file of translation module ... 41

Figure 38. Controller of translation module .. 42

Figure 39. Controller checking POST parameters to call functions from Block 43

Figure 40. findLanguageFiles() function ... 43

Figure 41. Dropdown menu code to display and select files 44

Figure 42. openLanguageFile() function ... 44

Figure 43. Table of translation lines ... 45

Figure 44. saveLanguageFile() function .. 46

Figure 45. InstallSchema .. 46

Figure 46. Model of a Module .. 47

Figure 47. Resource Model of a Module .. 47

7

Figure 48. Collection of a Module .. 47

Figure 49. saveToDatabase() function ... 48

Figure 50. loadFromDatabase() function ... 48

Tables

Table 1. eCommerce platform differences .. 13

Table 2. Magento edition differences .. 17

Table 3. Magento directory structure .. 27

Table 4. Magento module directory structure ... 37

8

Acronyms:

API Application Programming Interface

CLI Command Line Interface

Cron Time-based job scheduler

DB Database

Ecommerce Electronic Commerce

HTML Hypertext Markup Language

i18n Internationalization and localization

JS JavaScript

MVC Model, View, Controller model

OOP Object-oriented programming

PHP Hypertext Preprocessor

SQL Structured Query Language

XML eXtensible Markup Language

9

1 Introduction

1.1 Project Goal

The project’s main goal was to address the issue of web translations in many of the

company’s customer webstores. Since many of these webstores utilise not only

Finnish but also Swedish and English languages there is a need for the easy

management of translations. The translations are kept in CSV files which are part of

the Magento projects’ filesystem and the git repositories. This means that the

customers can’t directly reach them and it comes to a developer to make changes to

it which causes unnecessary workload. For this reason a tool is needed that allows

editing of said files through a simple tool found in the admin panel of the webstore’s

magento backend, which is accessible by anyone with admin access.

The idea of this development project and study comes from the employer of the

author, Solteq Oyj. The author is currently employed in said company as Software

trainee part of the Magento Ecommerce team. This project allowed the author to get

familiar with the Magento platform, development processes and practises used in

everyday tasks.

1.2 Background of the author and Solteq

The author started his studies in Jyväskylä University of Applied Sciences (Jyväskylän

ammattikorkeakoulu) as part of a Double Degree programme agreement with his

own university, University of Debrecen (Debreceni Egyetem). After a recruitment

process the author started his practical training at Solteq in January 2020.

Solteq (Solteq Oyj Website, 2020) is a Nordic IT service provider and software house

that specializes in digital business solutions and vertical software markets. The com-

pany offers comprehensive digital services for omnichannel business, information

management, analytics and business management and delivers digital commerce so-

lutions for eCommerce, product information management, and omnichannel order

10

and supply chain management. In addition to Finland, the company has offices in

Sweden, Norway, Denmark, Poland and the United Kingdom with over 580 employ-

ees worldwide. (Solteq Company Information, 2020)

2 E-commerce

2.1 Introduction to E-commerce

Also known as electronic commerce or internet commerce. It refers to the activity of

buying and selling goods or services online. The technologies that allow ecommerce

platforms are electronic funds transfer, supply chain management, internet market-

ing, online transaction processing, electronic data interchange, inventory manage-

ment systems, data collection. Additional technologies that can support businesses

may include live chat support, chat bots, data gathering and the use of demographic

data to boost sales.

As seen on Error! Reference source not found., Ecommerce has been growing im-

mensely, and thanks to customers enjoying the comfort of purchasing goods online,

this trend is not stopping. (eMarketer Sales Information, 2020)

Figure 1. Ecommerce sales trend

11

Recently, at the time of writing with the prevalence of the SARS-CoV-2 (Coronavirus),

which resulted in people staying home, webstores see an even bigger rise in user

numbers. Solteq’s own data suggests that some webstores see a peak traffic bigger

than during Black Friday of previous years. Some suggests this number will stay,

thanks to the fact that even older people are pressured into online shopping, while

previously the act of online consumerism was mainly present in younger demo-

graphic groups.

2.2 Ecommerce categorization

Ecommerce businesses can be categorized by several factors regarding the business

model they apply and the service they provide. Each category of ecommerce plat-

forms has different technological and market needs.

2.2.1 Buiness-to-Customer (B2C)

The most common type of relation where the transaction is made between a busi-

ness and consumer. Buying a product from an online retailer counts as B2C.

2.2.2 Business-to-Business (B2B)

B2B ecommerce relates to sales between business entities. Often it refers to the sale

of raw materials to other business that are assembled or bundled before facing con-

sumer sales.

2.2.3 Consumer-to-Consumer (C2C)

The earliest form of ecommerce, that happens between consumers. Main examples

would be sites like eBay or Tori.

2.2.4 Consumer-to-Business (C2B)

C2B refers to individual consumers making their own products available for busi-

nesses to purchase. This includes the sale of photos online.

12

2.2.5 Business-to-Administration (B2A)

Covers transactions made between businesses and administrations. Best example is

services regarding legal documentation and government services.

2.2.6 Consumer-to-Administration (C2A)

Consumers selling to administration. It includes online education, consulting, tax

preparation among others.

2.3 Ecommerce platforms

There are multiple different platforms on the market that each offer different inte-

grations and features along with their own limitations. The market share of the top 5

platforms can be seen on Figure 2. It is important for a retail company to choose the

perfect platform that fits their business, campaign strategies and vision. Among the

several differences the most important when it comes to decision is the price of up-

keep, development processes, the size of business and the ability to grow.

(Ecommerce popularity, 2020)

Figure 2. Market share of Ecommerce platforms

13

The main differences in basic features between the top 5 platform can be summed

up on Table 1. (Ecommerce Comparison, 2020)

Table 1. eCommerce platform differences

Shopify WooCommerce BigCommerce Magento
Wix

eCommerce

Subscription-based
service

Standalone software
Standalone software +
subscription-based ser-

vice

Subscription-based
service

Subscription-based
service

A subdomain and
hosting space for
your eCommerce

store included + you
can hook up your

own domain name.

It’s part of your existing
WordPress website,
and it’s deeply inte-

grated with it.

A subdomain and host-
ing space for your

eCommerce store in-
cluded + you can hook
up your own domain

name.

A subdomain and
hosting space for
your eCommerce

store included + you
can hook up your

own domain name.

A subdomain and
hosting space for
your eCommerce
store included + a

free custom domain
name (or connect

your own)

Multiple payment
gateways

Multiple payment
gateways

Multiple payment
gateways

Multiple payment
gateways

Multiple payment
gateways

Basic customer
management

Customer management
only via third-party

plugins

Customer management
through customer
groups and other

Basic customer
management

Basic customer
management

100+ professional
themes, plus hun-
dreds more third-

party

Thousands of themes
available on the web

(free and paid).
Some themes available

100+ professional
themes

500+ professional
templates

Mobile-friendly + you
can edit HTML and

CSS directly

Mobile-friendly to the
extent made available

by the theme

Mobile-optimized
structure

Mobile-friendly Mobile-friendly

Unlimited bandwidth
Bandwidth depends on

the host
Bandwidth depends on

the host
Unlimited bandwidth Unlimited bandwidth

Good reports on
sales and store activ-

ity

Good reports on sales
and store activity

Advanced and in-depth
reports on sales and

store activity

Great analytics mod-
ule, with reports,

purchase

Okay reports on sales
and store activity

Different sales chan-
nels, including Point

of Sale, Facebook
module

Thousands of
extensions available

More than 5,000
extensions available

Lets you sell in per-
son with Square, and
also sell on market-

places and social
platforms

Hundreds of Wix
apps available

As it is seen from this table the difference in main features between the platform are

not that big. The differences start to show with development work being done. Some

platforms require zero to very little technical, coding knowledge. Platforms like Wix

or Shopify for example require zero coding to set up a webshop, and are very accessi-

ble. These platforms include easy to use premade themes and WYSIWYG editors that

allow people with no expertise in web development to easily make changes and ap-

ply them right away to their store. Others allow for extensive customization in just

about every aspect, however this requires coding skills and a wide knowledge of the

platform. This ties to the question of whether to use an open source platform or a

paid software. Open source allows for deeper customization, but if it is ease of ac-

cess, pre-built templates and customer support feels your needs, paid software is the

14

one to go for. The next thing to consider is your market. The categories described in

3.2 dictate the needs of your platform. The main markets are B2B and B2C. B2B busi-

nesses will need to have the ability to set up business groups, customizable pricing

and configuration options. On the other hand, B2C stores needs better marketing

tools, advertisement feeds on other websites, better performance to allow for the

surge of customers during sales and weekends without interruptions, user recom-

mendations and support for a wide range of payment options and a more available

customer support.

Retailers also need to keep in mind the cost of upkeep and maintenance of their

webshop. The price of the software, cloud hosting, third party modules all add up to

the initial price. However companies also need to consider development and support

costs. A pricing example can be seen on Figure 3. (BigCommerce Pricing, 2020)

Figure 3. The pricing of Bigcommerce with the category differences showcased

15

3 Magento eCommerce

3.1 Overview

Magento is an open-source ecommerce platform written in PHP, built upon the Zend

Framework. The software was originally developed by Varien Inc, and first published

in 2008. Since then it was sold to eBay, later Premira and now it is part of the Adobe

software family. It is one of the most popular ecommerce platform on the market. By

2017 out of the top 100,000 website 31.4% ran on Magento. Its wide popularity is

thanks to high customizability and scalability.

The main feature set of Magento includes the ability to search and order products in

different ways, it provides support for multiple different payment methods, enables

the shipping of one order to multiple addresses, accessible admin panel that allows

for customization and easy management of products, categories and orders. It has

built in Search Engine Optimization, product status and history view, while also sup-

porting multiple languages, currencies and different tax rates. It is highly customiza-

ble with many different third party extensions available from many vendors and has

the ability to install custom themes and configure them to the needs of every store-

front. Figure 4 shows an example of Magento’s admin panel.

Figure 4. Magento Admin panel

16

While all of this sounds good on paper, unfortunately it comes with its own nega-

tives. Thanks to its feature rich environment it uses large disk space and memory,

and is in need of a hosting platform with high computing ability, otherwise the users

can face many problems regarding functionality. Thanks to this it is also relatively

slower than other platforms. Whilst it is highly customizable platform it also means

that development is no easy task especially for beginners, since the Magento frame-

work is deeply complex.

Magento is constantly in development, meaning that new versions and patches are

released frequently. This transforms into more work as updates are to be installed

manually, and often so can break functionality, which results in more development

work. As it is an in-development platforms as old issues disappear with new releases,

new ones might and will appear. As of writing the Magento Github has currently

1200+ open issues.

3.2 Magento Community Edition

Community Edition, also known as Opensource Edition is the free version of Magento

available to download and use for everyone. Users of the platform are free to make

adjustments, further develop and configure the software to their needs. New mod-

ules, extensions are constantly being developed by the community.

3.3 Magento Commerce Edition

The Commerce Edition, albeit built on the same code stack allows larger companies

with higher traffic, larger product inventory and business complexity to perform up

to standards thanks to the added benefit of more customizability features and tech-

nical support from Magento. Commerce also offers Magento/Adobe’s own cloud

solution.

17

3.4 Key Differences of Community and Commerce Edition

The main differences of Magento editions are found in the features it offers for re-

tailers. While they offer the same functionality, several tools listed on Table 2 are

missing from the free Community edition.

The tools listed on Table 2, are expanded business features. ElasticSearch is an open

source search and data analytics engine that is used for website and enterprise

search, performance monitoring, metrics and data visualization. Bluefoot is a tool

that helps to create and manage website content such as product pages and blogs.

Others help the retailer manage more sides of their business straight from Magento,

such as shipping.

Table 2. Magento edition differences (Magento Version Comparison, 2020)

Feature Community Commerce

License Costs Free
Revenue based tiered

license cost

Responsive Ecomm website ✔ ✔

Promotions Engine / Product & Cata-
log Management

✔ ✔

Checkout, Payment, Shipping & Or-
der management

✔ ✔

Site management (admin) ✔ ✔

ElasticSearch ✕ ✔

Bluefoot CMS ✕ ✔

Magento Order Management ✕ ✔

Content Staging & Preview ✕ ✔

Magento Shipping ✕ ✔

Out of the box B2B Functionality ✕ ✔

18

As it is seen from the feature list Commerce Edition is truly for larger retail compa-

nies with needs for data analytics and tools to boost sales and help further grow their

businesses, while smaller might not find need for such tools.

4 Magento Environment

4.1 Used Languages

4.1.1 PHP

PHP or PHP: Hypertext Preprocessor is a general purpose scripting language mainly

suited for web development. PHP code is processed on a web server by an inter-

preter and the results of the ran code, which can be any type of data or generated

HTML content would be a part of the HTML response and is returned to the browser

and displayed as plain HTML on the rendered page. This way the client receives only

the results of the scripts, without knowing what the underlying code was.

As such, PHP is used to generate dynamic page content, and thanks to its functional-

ity that extends beyond HTML is used to make database operations, collect data and

can do file operations on the server. As PHP is free to use and runs on various plat-

form while supporting a wide range of servers and web browsers it is a popular

choice in web development.

The main advantage of PHP is it can be embedded into any HTML file and code. The

code is enclosed in special start and end instructions as seen on Figure 5.

19

Figure 5. Example of embedded PHP code in HTML

4.1.2 HTML

HTML, or HyperText Markup Language is the standard markup language for web

pages. It can be described as the foundation of a website as its content defines the

structure of how a page is built. It uses markup to display text. images and other ele-

ments in a web browser. The markup includes special elements, represented by

HTML tags that tell the browser how to display the contents, while said tags are hid-

den and only the referred content is rendered for the user.

As HTML itself only defines the structure, other technologies are used besides it to

describe a page’s appearance, such as CSS (Cascadian Style Sheet) or functionality,

behaviour and data behind it, such as JavaScript and PHP (Figure 6).

20

Figure 6. HTML code and how it's rendered

As seen on Figure 6, HTML only code is only used to define general structure and

without any additional technology even simple display features like table borders are

missing, which would be added with CSS.

4.1.3 JavaScript

JavaScript is a high-level, multi-paradigm programming language that is ”just-in-

time” compiled, meaning the execution of the code is made during run time rather

than before execution, unlike PHP. This allows for functions to run, events to trigger

functions and contents to be changed in realtime by manipulating HTML and CSS

codes, such allowing for interactive web design.

JavaScript code is ran client-side meaning the browser’s API has to support JS to exe-

cute its code, but all popular web browser have built in support. Javascript is applied

to a HTML page with elements, similar to CSS. In the code it uses the <script> ele-

ment to let the interpreter know the code under the element is JS. JS code can also

be in an external file. To achieve this we need the following added to our HTML code:

<script src="script.js" defer></script> where the <script> element defines our file

which stores all the JS code instead of explicit JS codes (Figure 7).

21

Figure 7. Basic JavaScript functionality

4.2 Magento Environment Prerequisites

4.2.1 Web Server

Magento 2.3 requires Apache 2.4 or nginx 1.x version to be installed. These act as a

web server and load balancer for the webstore as well as allowing us to host the Ma-

gento store on our own machine as localhost for development purposes.

4.2.2 Composer

Composer is a dependency manager tool in PHP. It allows for libraries to be declared

that a projects depend on and will install, update them. In Magento it us used to in-

stall and Magento core packages, modules extensions. Each project includes a com-

poser.json file which stores the installed module descriptions, and is the recom-

mended way of updating existing packages.

22

4.2.3 Database

Magento uses MySQL version 5.6 or 5.7 for its database. For development purposes

the user can install phpMyAdmin as a tool to perform database operations via an

user interface in the local development environment.

4.2.4 PHP

Magento requires PHP versions 7.2.0 or 7.3.0 along with Zend Framework as these

are the technologies Magento is built on and allow for basic functionality.

4.2.5 Authentication keys

A Magento Marketplace account is required to generate a pair of authentication keys

in order for the user to access the repo.magento.com repository where Magento 2

and third-party composer packages are stored.

4.3 Magento Environment Install

4.3.1 New Project

Once we have all the prerequisites in place we can create a new Magento project

with composer. This way composer will automatically install Magento metapackages

and their dependencies. This can be achieved with the commands shown on Figure 8.

Figure 8. Magento composer installation

23

Depending on whether we want the Community or Enterprise Edition it will install

the latest edition of Magento in the directory declared in place of <install-directory-

name>.

We can also specify a minor release version to install with the command shown on

Figure 9.

Figure 9. Magento version specific installation

After we have the Magento metapackage and dependency packages installed, we

still need to initialize the project. This setup step will initialize the database and ad-

min user to access the admin panel, along with general store information such as lan-

guage, currency and time zone. This can be done in a terminal with the command

shown on Figure 10.

Figure 10. Magento setup with command line

24

Alternatively it can be done with a web setup wizard which can be accessed at

http://localhost/<project-name>/setup (Figure 11).

Figure 11. Magento web setup wizard

After the readiness check the setup wizard will walk you through the same configura-

tions as defined in the command line install process, when the process is done we

are greeted with the homepage shown on Figure 12.

Figure 12. Magento homepage on a fresh install

25

4.3.2 Cloning Existing Projects from Git

Generally Magento repositories will not include base Magento packages and environ-

ment specific files, these will have to be setup by the developer.

When the project is pulled to local environment we need to setup the environment

file for the webserver. The file is <root>/app/etc/env.php (Figure 13).

Figure 13. Magento project env.php configuration

The main configurations needed to be done here are the crypt-key, which is used by

the database to encrypt sensitive information, and the local database specifics are

needed to be configured in order for Magento to use our own local DB for develop-

ment purposes. If the project uses WordPress, the WP database connection configu-

ration also needs to be setup to use local database. It is found as <root>/word-

press/wp-config.php (Figure 14).

Figure 14. Magento project WordPress configuration

26

After the project is set up to use local database, we need data to work with. As it is

an already existing project, there is more than likely a database for it hosted. This can

be copied to our local environment by creating a database dump and importing it to

our local database (Figure 15).

Figure 15. Commands to create a DB dump and import

Once the database is set up, a fix is needed to replace original domain names with

the local one. It can be done easily by executing the SQL query shown on Figure 16.

Figure 16. Magento local database fix

After the project is fixed for local use Magento installation can be run with the fol-

lowing steps:

• composer install
Installs core Magento packagaes and additional ones found in composer.json

• php bin/magento setup:upgrade
With the module installed and enabled the database schema will need to be updated

• php bin/magento setup:di:compile
General code compiler

• php bin/magento indexer:reindex
Reindexes all Magento indexes

• php bin/magento cron:run
Enables CRON jobs to run

• php bin/magento setup:static-content:deploy
Deploys static view files such as images and CSS

27

After the setup is done Magento will be accessible on our local machine, however

and admin user still needs to be added for access to the admin panel (Figure 17).

Figure 17. Magento Admin user creation

4.4 File Structure

Magento’s each directory contains files related to one specific business feature as

seen on Table 3.

Table 3. Magento directory structure

Directory Purpose

/app
This is where the core php code is located. It contains all coded configurations, cus-
tom modules and themes

/bin
Contains all Magento 2 CLI executable scripts. The Magento CLI utility commands
help install and manage modules, cache and indexers along with many more com-
mand features.

/dev Stores automated functional tests which are run by the Magento Test Framework.

/generated
The folder were Magento’s generated doe is stored. As default configuration if a
class is injected in a constructor, the code will be generated by Magento to create
non-existent factory classes.

/lib
This directory contains the Magento core code along with the software’s PHP li-
brary, basically all the non-module based Magento code.

/phpserver
Contains the Router.php file which is PHP’s built in web server that provides a
router script to use with server rewrites.

/pub
Contains all publicly accessible files such as static files and site media like images
and videos. It also contains the used theme’s generated static files.

/setup
Installation setup files are located inside this folder used for installation processes
mainly, alongside with a pre-included performance toolkit.

/update Contains files used by Magento during upgrade processes.

/var
Includes generated classes, sessions and caches. The content is generated here
when php bin/magento setup:di:compile is run. Var/log contains log and error files,
var/cache contains all of Magento’s cache.

/vendor

The vendor directory contains the framework core of base Magento modules and
this is where all additionally installed third party modules, that are defined in com-
poser.json are installed. The contents of this directory are generated at install from
composer.json.

28

5 Magento Modules

5.1 Overview

Modules and themes act as the front for customization in Magento. A module encap-

sulates one specific feature and has minimal dependencies on other modules. They

provide specific business features, with supporting logic. Themes serve the same pur-

pose, but unlike modules they affect the storefront appearance and influence user

experience.

The purpose of one module is to implement specific features needed for one ecom-

merce store by implementing new functionality or by extending functionality of al-

ready existing modules. Each module is designed to function independently from

others if they don’t act as extensions to others, so that the workings of one module

does not affect the functionality of others.

5.2 Module Relations

5.2.1 Overview

As described above modules can extend other modules, thus creating a relation be-

tween them. (Magento Module Relations, 2020)

• uses: module A uses module B if it invokes behavior of module B

• reacts to: module A reacts to module B if its behavior is triggered by an event in
module B without module B knowing about module A

• customizes: module A customizes module B if it modifies the behavior of module B

• implements: module A implements module B if it implements some, not necessarily
all, behavior that is defined in module B

• replaces: module A replaces module B if it provides its own version of the API ex-
posed and implemented by module B

29

5.2.2 A module uses B, C customizes B

As seen on Figure 18, module A uses module B and module C customizes module B,

the customizations in module C must not break the API of module B so that module A

still functions properly.

Figure 18. A uses B, C customizes B

5.2.3 A module reacts to B, C customizes B

As seen on Figure 19, module A reacts to module B and module C customizes module

B, the customizations in module C must not interfere with the events in module B

that module A depends on.

Figure 19. A reacts to B, C customizes B

5.2.4 A module and C customize B

As seen on Figure 20, if both module A and C customize module B, be careful about

how these customizations are implemented so that you avoid conflicts

30

Figure 20. A and C customize B

5.2.5 A module replaces B

As seen on Figure 21, if module A replaces module B, it needs to be able to do so in

such a way that other modules are not affected. That will mean not having direct

hard dependencies on module B, but rather dependencies on a third module, mod-

ule C, that both module A and B implement.

Figure 21. A replaces B

5.3 Module Dependencies

5.3.1 Overview

Software dependency identifies a software component’s reliance on another for

proper functioning. A core principle of Magento architecture is the minimization of

software dependencies. Instead of being closely interrelated with other modules,

31

modules are optimally designed to be loosely coupled. Loosely coupled modules re-

quire little or no knowledge of other modules to perform their tasks.

Each Magento module is responsible for a unique feature. This means that several

modules cannot be responsible for one feature, while one module can only be re-

sponsible for one feature. Module dependencies must be declared explicitly with any

other component dependency such as theme, language package or library. Disabling

one module should not result in disabling others.

5.3.2 Hard dependency

A module with a hard dependency on another module cannot function without the

module it depends on. These modules contain code that uses logic from another

module, such as class constrains, static method, interfaces etc, or dependent on

other modules’ classes, methods. Hard dependency can also be achieved if one mod-

ules uses the database table declared by another module.

The module’s own composer.json file contains hard dependency definitions as seen

on Figure 22.

Figure 22. Hard dependency example

5.3.3 Soft dependency

A module with a soft dependency on another module can function properly without

the other module, even if it has a dependency on the other module. It is present

when one module checks another’s availability, extends its configuration or layout.

32

The module’s composer.json file declares soft dependency as seen on Figure 23.

Figure 23. Soft dependency example

5.4 Module Areas

An area is a logical component that organizes code for optimized request processing.

Magento uses areas to streamline web service calls by loading only the dependent

code for the specified area. Each of the default areas defined by Magento can con-

tain completely different code on how to process URLs and requests.

Magento is organized into these areas:

• Admin panel (adminhtml): Admin area contains all the code needed for Magento’s
admin panel (store management).

• Storefront (frontend): The storefront (or frontend) contains template and layout
files that define the appearance of your storefront.

• Basic (base): used as a fallback for files absent in adminhtml and frontend areas.

• Cron (crontab): Contains cron jobs that are scheduled activities, such as reindexing,
currency rate updates, newsletter sendout etc.

Modules define which resources are visible and accessible in an area, as well as an

area’s behavior. The same module can influence several areas, but each area must

have separate behavior and view components. Areas can be disabled within a mod-

ule and the developer must ensure it does not depend on other modules’ areas.

33

5.5 Module Management

5.5.1 Composer Install

Installing a module via Composer is the recommended way. Using the extension

name and version we can install the module, which will also update the require sec-

tion of the project’s composer.json file (Figure 24).

Figure 24. Module installation with Composer

The commands above will install the module alongside updating dependencies.

Setup:upgrage is necessary to update the database scheme with additional tables

from the new module.

Often times, modules will require authentication. This is the case with payed mod-

ules, where the developer will need to enter the authentication key pair to access

the module’s repository. The key pair will be added to auth.json, so later updates will

not require manual authentication (Figure 25).

Figure 25. Authentication during module installation

34

5.5.2 Manual Install

Some modules don’t support Composer and will have to be installed manually. This is

simply done by downloading the module’s package and copying it into our project’s

/code directory and running the commands shown on Figure 24. without ”composer

require” as the module lacks support.

5.5.3 Managing modules

The composer.json file contains all modules installed via composer alongside their re-

quired version number (Figure 26).

Figure 26. composer.json example

Further information of the modules can be found in composer.lock where the down-

load location of said module can be found alongside with a checksum to ensure it

downloaded without error. Module dependencies are also found here, see Figure 27.

35

Figure 27. composer.lock example of a specific module

Modules can be enabled or disabled with the commands shown on Figure 28.

Figure 28. Change module state

These commands will change the module’s state in the /app/etc/config.php file

alongside updating the database to reflect changes as shown on Figure 29.

36

Figure 29. config.php declaring module states

It is important to note that modules installed via composer will be located in the

/vendor directory, and as such will be installed during the project’s setup. The pro-

ject’s composer.json and composer.lock file must be part of the git repository as the

composer install command reads the composer.lock file to enable the defined de-

pendencies in the remote environment.

5.6 Module structure

Magento modules are installed and developed in /app/code directory in the follow-

ing way: <vendor-name>/<module-name>/... The contents of each directory are ex-

plained in detail in Table 4.

37

Table 4. Magento module directory structure

Directory Purpose

/Api

Contains any PHP classes exposesd to the API. Magento allows the
developer to cre-ate an own custom API to perform an action based
on respone. While Magento sup-ports default API features like prod-
uct or order APIs, custom responses are to be de-veloped here.
Magento supports both SOAP and REST.

/Block
Contains PHP view classes as part of Model View Controller(MVC)
vertical imple-mentation of module logic. It contains all application
view logic without any html or css.

/Console Contains custom CLI commands

/Controller
Contains PHP controller classes as part of MVC vertical implementa-
tion of module logic. Generally controls how the page is built to ren-
der view.

/Cron
This directory contains the Magento core code along with the soft-
ware’s PHP library, basically all the non-module based Magento code.

/etc
Contains module specific configuration that are required for the mod-
ule to work.

/Helper

Contains helpers, that are used to override or modify functionality of
other modules or core Magento. As it is not recommended to modify
core files, helpers can be written and their modified functions or clas-
ses called when needed.

/Model
Contains PHP model classes as part of MVC vertical implementation
of module logic. In Magento 2 CRUD, models have many different
functions such as manage data, install or upgrade module.

/Observer
Observers influence general behavior, performance, or change busi-
ness logic. Ob-servers are executed whenever the event they are con-
figured to watch is dispatched by the event manager.

/Plugin
A plugin, or interceptor, is a class that modifies the behavior of public
class functions by intercepting a function call and running code be-
fore, after, or around that func-tion call.

/setup
Contains classes for module database structure and data setup which
are invoked when installing or upgrading.

/view
Contains view files, including static view files, design templates, email
templates, and layout files. HTML and CSS files go here.

38

6 Translation Module

6.1 Overview

The purpose of the module is to add the ability to manage translation .csv files

straight from the admin panel. This is done by creating a new configuration page

which finds and loads all the .csv files found in directories where localization files are

placed. The overview of the module can be seen on Figure 30.

Figure 30. Translation module in admin panel

The admin has the ability to open files, add new lines, delete or modify already exist-

ing ones. A function is added to save to and load changes from the database. This is

needed since localization files are part of the git repository and will reset to their

original version at every new version deploy. The changes can be loaded from the da-

tabase table and will be saved to the deployed files.

39

6.2 Initial Configuration

To allow the module to work and exist in Magento we need certain configurations

done. The first required file is <module>/etc/module.xml This is required for the

module to exist as it contains the name, version and dependencies (Figure 31).

Figure 31. module.xml of translation module

Each module must also have a registration.php file, which tells Magento how to lo-

cate the module. It is a standardized file that follows the same pattern for all mod-

ules (Figure 32).

Figure 32. registration.php of translation module

Next, the access location of the module needs to be specified. It can be done in the

<module>/etc/adminhtml/menu.xml file (Figure 33).

Figure 33. menu.xml of translation module

This file tells Magento that the module will be found in the Admin Panel, System

menu, under Other Settings category (Figure 34).

40

Figure 34. Effects of menu.xml of translation module

In the same directory a routes.xml file is also needed, which maps the module to a

specific URL (Figure 35).

Figure 35. routes.xml of translation module

41

6.3 Frontend View

Magento’s view directory contains all the logic connected to the front-end view of

the module (Figure 36).

Figure 36. Structure of view directory that contains all display logic

The layout.xml file defines the page structure (Figure 37). It serves the purpose of de-

claring the Block class, which will contain all background logic such as functions and

classes, and declares the template, which is the main HTML file of the module. It con-

tains HTML code alongside JavaScript and PHP that defines the structure of the web

page and calls functions from the Block.

Figure 37. layout .xml file of translation module

42

6.4 Background Logic

6.4.1 Controller

Controller is the most important part of module development. It receives requests,

processes and renders the page. Its main purpose is to initialize PageFactory, along-

side with Model objects to work with the database. The module’s controller is shown

on Figure 38.

Figure 38. Controller of translation module

The execute() function of controller is a dispatch method that will initialize the web

page when it is called to be loaded. In this function PageFactory will render the page,

and will define the Block, where functions will be called from. It is also the place to

declare HTTP parameters such as GET and POST, as it will check for those parame-

ters, and can call functions based on their values. All of the modules functionality,

such as loading, editing files, lines are called by POST requests (Figure 39).

43

Figure 39. Controller checking POST parameters to call functions from Block

6.4.2 Loading files

Upon the HTML is initialized it calls findLanguageFiles() function from Block to load

and display all files from the language select dropdown menu seen on Figure 40.

Figure 40. findLanguageFiles() function

The findLanguageFiles() functions calls listFolderFiles() with the parameter of direc-

tory path of /app folder. This recursive function goes through all folders and subfold-

ers inside /app to find all language .csv files. findLanguageFiles() returns _language-

Files[] array, which will be displayed in the dropdown menu, that also acts as the se-

lector to open said files. The code is seen on Figure 41.

44

Figure 41. Dropdown menu code to display and select files

The dropdown menu also calls languageFiletoName() function for each file, that is a

simple string parser function to display each file in an easily readable name instead

of displaying the whole directory path. Selecting an item from the dropdown list will

act as submitting this POST form with the selected language and form_key as the pa-

rameters. The form_key value is needed to validate the POST request. If it is missing

Magento will send an error. After the POST request is sent, the page gets reloaded,

calling the Controller’s execute() function again, which will check if POST parameters

are set, and saves the current file to registry for further use and calls openLanguage-

File() function, which is shown on Figure 42.

Figure 42. openLanguageFile() function

The function uses PHP’s built in csv parser to open the files and save them to arrays.

Generally .csv files have 2 values separated by a delimiter, however some files can

have a third and fourth value defining the module where those strings are used.

45

These values are also needed to be loaded, so they can be saved to the database

later.

6.4.3 Editing translations

The values of .csv files are displayed in an editable table, in which each line acts as a

form input value (Figure 43).

Figure 43. Table of translation lines

Here each line of the table edits the langArray[][] array that stores all of the opened

file’s lines. When the Save button is clicked, the array will be sent in a POST request,

and as described above, the Controller will check for the parameter and call the save-

LanguageFile() function in Block to save the changes, which is a simple function that

overwrites the whole content of the opened file the contents of the array. The func-

tion is shown on Figure 44.

46

Figure 44. saveLanguageFile() function

Deleting a line works also calls the same function, but without that one line in the ar-

ray that is being deleted, while Adding a new line will simply append an empty value

to the end of langArray[][].

6.4.4 Database connection

In order to use a database, a connection Model is needed. First an InstallSchema is

needed, which will contain the database table’s attributes. This file will run when the

module is installed, and creates the table (Figure 45).

Figure 45. InstallSchema

A model is to be created in <module>/Model, which will called whenever a model is

instantiated, and will define the resource model which will actually fetch the infor-

mation from the database (Figure 46).

47

Figure 46. Model of a Module

The Resource model will contain database logic and executes SQL queries. It will de-

fine the database table and the primary key (Figure 47).

Figure 47. Resource Model of a Module

A Collection will also needs to be created, as this will allow to filter and fetch a collec-

tion from the table (Figure 48).

Figure 48. Collection of a Module

48

A Factory object is needed to use the Model. This is used to instantiate the object. It

is automatically created by Magento, same way as the pageFactory, it has to be de-

clared in Controller, it is seen on Figure 38 as TranslationFactory.

6.4.5 Saving and Loading to database

Whenever a change is made in the translation files a saveToDatabase() function is

called. This function turns the array of translations into a model in accordance to our

database schema and saves it. The function is displayed on Figure 49.

Figure 49. saveToDatabase() function

One thing to note is that the table requires a unique id for each record. The solution

was to create hash ids from each line. This way we can have unique ids. (Figure 50).

Figure 50. loadFromDatabase() function

49

7 Conclusion

The main goal of the thesis project was to find a solution where web admins can

make changes to localization when need be instead of creating a support ticket and

going through a development process.

As this was the first ever big project in Magento it caused some difficulties at the be-

ginning, as the Platform itself is different from any other. During the first few weeks

of working on it the focus was mainly on understanding the platform itself, and how

changes relate to other parts of the project and getting familiar with Magento’s de-

velopment processes. However it provided a great learning platform to improve and

it was generally easy to develop thanks to the documentation and developing tutori-

als found online, and after taking the first steps and having an understanding of the

platform, development proceeded quickly.

The result of the project is a fully working module that can load .csv localization file

and the user can edit said files with a user-friendly web editor and save changes lo-

cally with the added ability to synchronize changes with the database. The module is

ready to be installed in any Magento project. It was considered for use in several of

the company’s project, however as most of the projects are deployed with fully setup

localizations it has yet to be installed anywhere as its priority is low.

Thanks to this project I understand the inner workings of Magento, have a general

knowledge about its structure and processes, which I now can use in different pro-

jects and tasks I am working on.

50

References

BigCommerce Pricing 2020. Accessed on 28 April 2020. Retrieved from
https://www.bigcommerce.com/essentials/pricing/

Ecommerce Comparison 2020. Accessed on 24 April 2020. Retrieved from
https://www.digitaltechnologylabs.com/2020/02/23/how-to-choose-the-right-ecom-
merce-platform/

Ecommerce popularity 2020. Accessed on April 23 2020. Retrieved from
https://www.digitaltechnologylabs.com/2020/02/23/how-to-choose-the-right-ecom-
merce-platform/

eMarketer Sales Information 2020. Accessed on 23 April 23 2020. Retrieved from
https://www.emarketer.com/chart/194275/retail-ecommerce-sales-worldwide-
2015-2020-trillions-change-of-total-retail-sales

Magento Module Relations 2020. Accessed on 26 April 26 2020. Retrieved from
https://devdocs.magento.com/guides/v2.3/architecture/archi_perspectives/compo-
nents/modules/mod_relationships.html

Magento Version Comparison 2020. Accessed on 25 April 2020. Retrieved from
https://magento.com/compare-open-source-and-magento-commerce

Solteq Company Information 2020. Accessed on 22 April 2020. Retrieved from
https://www.solteq.com/en/services

Solteq Oyj Website 2020. Accessed on 22 April 2020. Retrieved from
https://www.solteq.com

https://www.bigcommerce.com/essentials/pricing/
https://www.digitaltechnologylabs.com/2020/02/23/how-to-choose-the-right-ecommerce-platform/
https://www.digitaltechnologylabs.com/2020/02/23/how-to-choose-the-right-ecommerce-platform/
https://www.digitaltechnologylabs.com/2020/02/23/how-to-choose-the-right-ecommerce-platform/
https://www.digitaltechnologylabs.com/2020/02/23/how-to-choose-the-right-ecommerce-platform/
https://www.emarketer.com/chart/194275/retail-ecommerce-sales-worldwide-2015-2020-trillions-change-of-total-retail-sales
https://www.emarketer.com/chart/194275/retail-ecommerce-sales-worldwide-2015-2020-trillions-change-of-total-retail-sales
https://devdocs.magento.com/guides/v2.3/architecture/archi_perspectives/components/modules/mod_relationships.html
https://devdocs.magento.com/guides/v2.3/architecture/archi_perspectives/components/modules/mod_relationships.html
https://magento.com/compare-open-source-and-magento-commerce
https://www.solteq.com/en/services
https://www.solteq.com/

