

Learning programming with

interactive Android application

Csaba Nándor Szilágyi

Bachelor’s thesis
May 2020
Programme of Information and Communication Technology

Description

Author(s)

Csaba Nándor Szilágyi

Type of publication

Bachelor’s thesis
Date

May 2020

Language of publication:
English

Number of pages

39
Permission for web publi-

cation: x

Title of publication

Learning programming with interactive Android application

Degree programme

Programme of Information and Communication Technology

Supervisor(s)

Manninen, Pasi & Salmikangas, Esa

Assigned by

University of Debrecen

Abstract

The aim of this study was to learn to use the Android Studio and prepare an application
which could offer a novelty. The mobiles are nearly as advanced as some computers and a
programming environment or a programming assistant app could not be found to the mo-
bile platform which would enable user-friendly coding.

In the first steps, existing similar programs were collected, familiarized with and compared.
These programs provided some opportunities, for example, the operation, function and
objectives that could help the development.

In the next step, the designs, plans and implementations were made, e.g. the user inter-
face, objects, interactive objects, lines, side menu, class, function, main menu options and
submenu options. Finally, some example programs were created to help with the use and
understanding.

In a Hungarian national scientific competition, the app was entered into the "learning
methodology section" and it took first place.

The actual created application tries to help programming on the mobile platform in an in-
teractive way. It could be used by an amateur, a learner or even by someone who has
some knowledge about coding. The main aim of this report is to demonstrate a major pro-
ject initiation and implementation for beginner programmers who want to learn a new
technology and create software with it.

Keywords/tags (subjects)

Android Studio, Application, IDE, Java, Mobile, Mobile Development, Programming

Miscellaneous

http://finto.fi/en/

1

Contents

1 Introduction ... 4

2 Basics of Android software development .. 5

2.1 Researching technologies .. 5

2.2 Android Studio development environment .. 6

2.3 Test environment .. 7

2.4 Run on real devices ... 8

2.5 Elements of Android application ... 11

2.5.1 Activity .. 11

2.5.2 Fragment ... 12

3 Useful accessories for the developing ... 12

3.1 Debug running application .. 12

3.2 Publishing applications .. 13

3.2.1 A way to publish applications ... 13

3.2.2 Developer Certificate .. 13

3.3 Tools used .. 14

4 Similar applications .. 17

4.1 Researching similar opportunities... 17

4.2 Introducing Blockly .. 17

4.3 Introducing Scratch ... 18

4.4 Introducing Code.org ... 19

4.5 Comparison ... 20

5 Presentation of application ... 21

5.1 User interface .. 21

2

5.2 Menu Bar ... 22

5.3 Integer and Boolean variables ... 23

5.4 Operators... 25

5.5 Presentation of For, While and Do-While cycles....................................... 26

5.6 Conditions .. 27

5.7 Reference and Value Transfer ... 28

5.8 Example Programs ... 29

5.8.1 Variables and operators ... 29

5.8.2 Conditions ... 30

5.8.3 Cycles .. 31

6 Use of software in education .. 32

6.1 Advantages .. 32

6.2 User feedback .. 32

7 Opportunities for further development ... 34

8 Conclusion .. 35

References ... 36

Figures

Figure 1. Working on the IPA ... 6

Figure 2. Android Studio ... 7

Figure 3. Run on real devices ... 9

Figure 4. Turn on USB debugging ... 10

Figure 5. Select Deployment Target ... 10

Figure 6. Activity life cycle .. 11

3

Figure 7. Using Breakpoint ... 12

Figure 8. APK menu .. 14

Figure 9. ViewGroup structure ... 15

Figure 10. Self-made adapter for ScrollView ... 16

Figure 11. Blockly code ... 18

Figure 12. Scratch User Interface ... 19

Figure 13. Code.org .. 20

Figure 14. User interface .. 22

Figure 15. Menu ... 23

Figure 16. Variables .. 24

Figure 17. Variables 2 ... 24

Figure 18. Operators .. 25

Figure 19. Cycles ... 26

Figure 20. Conditions ... 27

Figure 21. Pointer ... 28

Figure 22. Example program 1 ... 29

Figure 23. Example program 2 ... 30

Figure 24. Example program 3 ... 31

Tables

Table 1. Comparison of programs for similar purposes ... 20

Table 2. Feedback ... 33

4

1 Introduction

In the world of the development of Information and Communication Technologies

(ICT), more and more ICT devices are invented, and their quantity and level of devel-

opment can be increased day by day. Nowadays, almost everybody has at least one

smartphone. These mobiles are nearly as advanced as some computers which can be

used more easily since they are portable. Their portability stems from their size, but

that small compact size does not benefit users in all areas. One such area is program-

ming. There is hardly any programming environment, i.e. a mobile platform which al-

lows coding when travelling.

In the H course of the studies in Hungary, students can be familiar with different de-

velopment environments and programming languages within the Programming Lan-

guages Course and the most students sympathized Java language. The Android Studio

IDE specializes in the development of Android applications and one can also build an

app in Java, which was found to be the most ideal for the students. The application

was prepared by the author and his friend.

The primary, most important goal of the application is to help and ease programming

on a mobile platform. The software tries to eliminate the difficulties and barriers of

the coding on the mobile interface with an interactive way and specified programming

elements.

The purpose of creating the software is to be useful for people who are still familiariz-

ing themselves with IT and IT work. In the fast-paced world, it is important to be able

to spend much time as productively as possible. There are many new downloadable

mobile applications every day on the market. Some of them are learning and skills de-

velopment apps, and the thesis would like to expand the range of these. In the follow-

ing, the Android Studio development environment is presented, a similar software that

inspired the author. Finally, the thesis presents the development of the application as

well as its operation and further development possibilities.

5

2 Basics of Android software development

2.1 Researching technologies

The beginning of research was spent collecting and studying the literature. Most of

the example tutorials in textbooks were written to deepen an existing knowledge.

The YouTube video sharing portal also was a good opportunity to watch tutorial vid-

eos which can be very useful for learning new programming technologies. An up-

grade of computers is essential; hence, investigating RAM and SSD is recommended.

Once the tools were ready for development and the initial steps were clarified, then

the opportunity was given to learn and try out different technologies suitable for mo-

bile development. Many possible technologies are provided, for example: React Na-

tive CLI, React Native Expo, Qt, PWA and Xamarin. JavaScript, HTML, C++ and differ-

ent programming languages are used with these. Some knowledge was gained about

these technologies and one technology was selected that the author liked the most.

(Zelena 2017)

In the React Native CLI, it is more difficult to install or initialize projects which are

made in the command line. This can cause problems for inexperienced people. The

React language and the Node.js software system are used by it, which can cause

compatibility issues.

The Android Studio IDE was preferred because it was much more talkative, under-

standable and simpler for the author. The Debug system and error messages are eas-

ier to use. The integrated development environment is developed by JetBrains and

Google, and many companies use their software. Easier management for version

controls, an intelligent code editor, a flexible build system and a fast emulator are

provided; therefore, this environment looked much friendlier.

6

Firstly, the Android Studio environment and the Debug system was learned and

plenty of issues and problems were solved by using these pieces of knowledge. Un-

der the development, many emulators or real devices can be used. By watching vid-

eos and learning on the websites, enough experiences were collected, and some

small games could be prepared, for example, Tic tac toe, Coin Toss, and Drag & Drop.

After the IDE and almost all tools were familiarized with, then the plan-making was

started, for example, the Frontend style was drawn, and the associated functions

were selected.

2.2 Android Studio development environment

Applications can be developed to Android operation system’s devices using the offi-

cial development environment of Android Studio (Figure 1). IntelliJ IDEA serves as a

base which is a JAVA IDE (Integrated Development Environment).

Figure 1. Working on the IPA

7

Google has introduced new features specifically for Android applications which com-

plement the IntelliJ code editor. Google APP engine was built in the IDE, and it has

placed features separately within the project for ease of use; which is why the devel-

opment and testing process was significantly accelerated (Sting 2017). When the GUI

(graphical user interface) was created and edited, the preview and the graphical edi-

tor could be helped a great deal in the designing phase. When this application was

being made, the Android Studio’s version was the newest 3.4.1 version shown in Fig-

ure 2 (Hlács 2019).

Figure 2. Android Studio

2.3 Test environment

The Android Studio offers an opportunity to run the project in an emulator and in the

real device. The ideal environment can be created on the virtual device in which the

result can sometimes be unreal. For example, clicking on the screen is often mislead-

ing thanks to difference between the screen's cursor and finger. The cursor can be

used with more precision than the finger. In the initial stage, Nexus 5.1.1 Android

8

version emulator was used; because of the above, it has been switched to physical

devices, which made the testing easier and faster. Thus, fewer system requirements

were required, and it was more reliable.

2.4 Run on real devices

The runnable application can be run directly from Android Studio on real devices. In

this case, the device has to be connected to the computer with a USB cable which

pairs automatically. If the device cannot be detected, the USB driver software will be

found in the USB directory in the SDK folder. Debug can be run on the code, and its

setup for the using should be read in the following.

On the device, the information of the system and Android OS can be found under

“About the phone” menu which is usually the last option in the settings and can be

seen in Figure 3. This menu is available via the "Software Information" which can pro-

vide further information about the operating system of the phone. To use it as a suc-

cessful development tool, one needs to activate the developer mode. To do this, one

should select the "Build number" menu item many times in succession until the mes-

sage "Developer mode active" appears. After these steps, the "Developer Settings"

menu option will be available in the Settings.

9

Figure 3. Run on real devices

If the installation file of the application is transferred to the device by file-transfer

and then installed from here, it will be necessary to approve the “installation of ap-

plications from unofficial sources”. The “USB Debugging” option is important to be

enabled, by which the device is able to connect via the USB port (see Figure 4). After

the USB connecting, the installations of various interfaces are downloaded. For An-

droid Studio to recognize the phone, the ADB Interface must be successfully in-

stalled. After successful setup and connection, a pop-up window will appear on the

mobile which asks to enable the USB debugging for this computer. If everything is

done correctly, “USB debugger connected” message will be shown on the notifica-

tion label of the mobile. After pressing the “Run” button on the Android Studio, the

virtual or physical device can be selected to run the app on a window panel.

10

Figure 4. Turn on USB debugging

If the physical device has been selected, the application will be installed first and will

start. In this case, the app will be stored on the mobile device after the running. So,

to run the already installed app is possible without the help of a computer (see Fig-

ure 5).

Figure 5. Select Deployment Target

11

2.5 Elements of Android application

2.5.1 Activity

Activities are the fundamental elements of an application allowing a user to create

interactions to access functions. The activities are loosely linked together and an ap-

plication can contain multiple activities. The activities can rotate the screen or can

appear above another Activity. When an Activity is started, firstly the actual Activity

will be put into the background, then another can be shown. The activity can be

stopped or finished if the device’s back button is pushed or the stop method is run.

Then the next Activity from background queue is returned to the foreground. The

Launcher application comes to the fore when the last Activity is activated in the sys-

tem. The developer selects which Activity should start first when the application is

launched, then the Launcher would be added to that Activity. This is a classic LIFO

(Last In, First Out) series. The life of the Activity is similar to the life of the processes

in the Operating System shown in Figure 6 (Park 2017).

Figure 6. Activity life cycle

12

2.5.2 Fragment

Fragments are parts of an application's user interface or an Activity. Each Fragment

has its own lifecycle and method. An Activity can contain multiple Fragments and a

Fragment can be part of multiple Activities. Fragments are actually modular parts of

an Activity. Resource reduction and dynamization can be achieved by using Frag-

ments.

3 Useful accessories for the developing

3.1 Debug running application

While the program is run, an opportunity to get detailed information is provided by

Debug run mode. The detailed properties and values of variables and objects are dis-

played, as long as the given breakpoint is placed. Breakpoints can be placed to the

left of the program bar by clicking and removed simply by clicking again. The line is

tested where the red circle can be found, and the line highlights in the image. The

running is paused on the breakpoint and can be continued in two ways: firstly, by

proceeding point by point, line by line, which is also examined, by the “step over” op-

portunity. Secondly, the running can be continued by proceeding from the actual to

the next breakpoint and the running is paused by the “step into” opportunity as seen

in Figure 7.

Figure 7. Using Breakpoint

13

When a breakpoint is reached during the debug run by the application control, the

app running is suspended, and another view appears in Android Studio where the

contents of variables can be analyzed in a structured way. The current value of the

variable (valid when the breakpoint is reached) is also displayed in the source code in

the code editor window by hovering the mouse cursor over a variable.

3.2 Publishing applications

3.2.1 A way to publish applications

The great advantage of phone applications is that they can be easily accessed by al-

most anyone. There are several options for publishing an application, and the appli-

cation installation package and developer certificate are essential. Google Play Store

is the collection point for the best-known mobile apps in the world, where software

can be uploaded by everyone.

3.2.2 Developer Certificate

Developer certificate can be created by the software developer for an Android appli-

cation, which is protected by a password to identify the programmer. These certifi-

cates must be properly protected and stored by everyone, as they may abuse per-

sonal rights, so the use of certificates is mandatory. Creating certificates is also in-

cluded in the IDE which can be found in Figure 8 where Build is selected to generate

a Signed APK to start it.

14

Figure 8. APK menu

3.3 Tools used

The Layouts determine the structure of the application interface. Layouts are hierar-

chically structured and contain View and ViewGroup objects. View is a part of the dis-

play, e.g. a square that contains some elements such as an image, text, button, or an-

ything that an application shows. These separate View elements are brought to-

gether by the ViewGroups. The Layouts are formatted in XML, and one root element

can be present at a time; hence, if elements are needed for the interface, some uni-

fying element should be used, for example, the ViewGroup. Layout Containers are

derived from the ViewGroup class, and it has the responsibility for the interface be-

cause Views are included in it as seen in Figure 9. (Divinity 2018)

15

Figure 9. ViewGroup structure

The GUI element is created in two ways, for example, it can be predefined in the XML

file or it is dynamically defined at runtime from the program code. The mixture of the

two is also used as a common solution. Pre-defined UI elements may be used and

they are then modified at runtime.

Common ViewGroups are:

• Linear Layout

• Horizontal Layout

• Relative Layout

The layout can be horizontal or vertical. The point is that the View elements in it fol-

low each other. Its orientation can be easily changed using the android:orientation

attribute. An important moment is the weighting of Linear Layout, i.e. Layout

Weight. The same or a specific portion of the display can be used by each child item

of the Layout. Space, which can be gained from the Layout, depends on the Weight

of the given element. The bigger screen-space is obtained from the greater weight,

and smaller screen-space from less weight. The height is adjusted with Weights, so if

the orientation is given vertically, the height should be set to 0 dp. If the orientation

is given horizontally, the width must be set to 0 dp.

The Relative Layout is derived from the ViewGroup that is inferred from its name. Its

children are placed relative to each other or to the parents. One child can be placed

16

next to, below, and above the other item without worrying about the order in which

the widgets come one after the other.

In the next, the RecyclerView will be briefly described. If a scrollable View is needed,

it can be made in two ways. Firstly, the scrollable property can be added to the con-

tainer by helping of ScrollView and the elements are displayed in a ListView. In this

case, manipulation is made difficult because the entire list is rendered at once, and

the use is disabled for a large number of list items; however, it is easy to create this

kind of scrollable View as demonstrated in Figure 10.

Secondly, the more difficult but effective solution is RecyclerView. The elements are

not rendered at the same time, and it can be solved with its own adapter. For this

reason, Java-side manipulation is also required. (Divinity 2018)

Figure 10. Self-made adapter for ScrollView

17

4 Similar applications

4.1 Researching similar opportunities

After the basic idea had emerged, the program was developed. Applications were

searched and compared to the imagined plans; some inspiration was gained from

them. During this research, the Scratch and Blockly programs were found as well as

the Code.org website.

4.2 Introducing Blockly

Blockly is a development platform that can be easily used even by those who do not

understand programming. Blockly was not made to be a traditional text IDE, instead

of it, it was made to a visual mode. The writing of programs is allowed with matching

mosaic elements, which can be easily tried out by children and lay people to whom

the basics of programming languages are not known (Strom 2013). This is illustrated

in Figure 11 (Blockly 2019). JavaScript, Python, Dart, PHP or Lua scripts can be gener-

ated from the visual codes that have been made, thus ensuring the wide applicability

of Blockly in applications and related backends. Initially, Blockly could only be run in

the browser; nevertheless, it can also be integrated into native applications with the

release of 2017, and it is operated on IOS and Android (Divinity 2018). These pro-

grams were used to promote the idea because it was shown how to replace different

programming elements with interactive elements. Tips were provided, for example,

about how to deal with the problem of interconnected items, how to take advantage

of and expand the available user interface.

18

Figure 11. Blockly code

4.3 Introducing Scratch

Scratch is a free programming environment supported by Windows, Mac OS, and

Linux that children can learn to program by playing as shown in Figure 12 (Scratch

2019a). The original Scratch is a Squeak-based environment designed for creating

games and simulations. It is given in a dynamic interpreted language, so the code can

be changed at runtime. The first official version was published in 2007 by the Life-

long Kindergarten group at MIT (Massachusetts Institute of Technology; Scratch

2019b). Children’s logical thinking is developed, and this will be awarded when learn-

ing the basics of programming later on. Simple, playful and funny animations can be

created that also develop creativity. The program is made easy to use, easy to under-

stand and visualize with the interactive elements (Knuckles 2000). The popularity is

further enhanced by the community experience, as the completed programs/anima-

tions can be shared. In Scratch, commands are made up of terms used every day, so

even those who are inexperienced in programming can easily get practice. The com-

mands are placed in different colored forms, and only matching elements can be

placed one after the other, thus eliminating syntax errors. This thinking is typically

promoted so that children can rather focus on solving a specific task and not get dis-

tracted by the peculiarities and operation of programming. Nowadays, Scratch has

19

become available in more and more languages, which increases its popularity due to

this, and it is already taught/used in several Hungarian schools.

Figure 12. Scratch User Interface

4.4 Introducing Code.org

Code.org is a non-profit organization, and a website was made to encourage people

and students to learn computer skills (See Figure 13). On the website, free coding les-

sons are offered, and the schools are targeted with this initiative to encourage more

computer lessons to be included in the syllabus. The site contains tasks to be solved

and easily completed by children as young as over 7-8 years old. The mysteries of

programming are introduced step by step on the site. The contents are usually short

puzzles, the solution of which requires logical thinking, spatial orientation, and geo-

metric knowledge (Code 2019).

20

Figure 13. Code.org

The program is created with the help of building blocks, which run the animation of

the task. When using code.org, basic programming concepts and methods are shown

to the user. (Hírmagazin 2015)

4.5 Comparison

The following results were obtained when comparing the programs. They are pre-

sented in Table 1:

Table 1. Comparison of programs for similar purposes

 IPA Scratch Blockly Code.org

High-level
Easy to use
Interactive
elements

Animation
Code
generating

Mobile
platform

21

All four software try to rely on high-level languages. For lay people to use it, ease of

use and transparency are essential for these applications. The introduction of inter-

active elements is closely linked to the ease of use, and the programming process is

sped up and simplified. The animation is only available in Scratch and at Code.org,

which can mainly increase and maintain the interest of children. The advantage of

Blockly is that it can map an interactively created program in predefined languages.

IPA and Blockly are available on mobile platforms but there are already versions of

Scratch that can be run on mobile devices, and Code.org can be used on a mobile

browser.

5 Presentation of application

5.1 User interface

Due to the complexity of the prepared application, it contains many elements and

functions, which are explained in more detail below for ease of understanding.

In the upper left corner of the screen, a side menu opening tab can be found when

the tab is clicked or moved from left to right (see Figure 14). The Play button is lo-

cated on the top menu bar, which after it is has been pressed, the code will be exe-

cuted. The line icon or button is also placed on the menu bar which is needed to con-

nect interactive elements or to create a connecting line.

An item can be deleted when it is dropped into the trash icon in the lower right cor-

ner of the screen.

22

Figure 14. User interface

5.2 Menu Bar

Displaying the menu bar in the upper left corner, the name of the program, IPA, can

be seen, which is short for Interactive Programming on Android. The main menu op-

tions are located in this side menu bar such us Variables, Arithmetic, Relational, Logi-

cal Operators, Cycles, Conditions, Functions. When a main menu option is clicked, a

drop-down menu of it appears where the submenu items can be found. The corre-

sponding object / element will be displayed on the screen if one of the submenu

items is pressed (see Figure 15).

23

Figure 15. Menu

5.3 Integer and Boolean variables

After pressing a submenu item, its corresponding item is displayed. and the examples

of an Integer and Boolean variables are shown in Figure 16. A pop-up window is pre-

sented which can be found on the second and third images of Figure 16, if the ele-

ment is clicked. For the Integer variable, the name can be entered into the first row,

while the value can be entered into the second row. In Figure 16, the Boolean’s name

and value are transmitted, similarly to the Integer, but only here its value can be se-

lected from a drop-down menu.

24

Figure 16. Variables

Figure 17 shows the result of the whole process in an example when the elements

are created. The y=false and the x=3 variables are prepared in this case.

Figure 17. Variables 2

25

5.4 Operators

Arithmetic, Relational, Logical operators and the associated side menus can be seen

in Figure 18. For performing operations, the connections between the interactive ele-

ments are prepared by the lines such as the Integer. In the case of Relational and

Logical Operators, the input values can be connected to the green circle above. The

blue circle below the elements is the output, which is the result of the operation, and

it can be used for further operations. So, the result always true or false and it can be

used for conditions or more inputs of complicated operators.

Figure 18. Operators

26

5.5 Presentation of For, While and Do-While cycles

This chapter presents the cycles. In the first figure, these cycles are displayed in their

state after the creation, and the standard state can be seen when nothing is attached

to it (Figure 19). After clicking, a pop-up window is displayed for the for loop where

the name and value of the initialization statement, the relational operator and end-

value of the test expression to run for how long, and the value of shifting / upgrade

statement can be specified. The relational operator is selected from a drop-down

menu, then the values are set by pressing OK button. the green circle of the while

and do-while cycles waits Boolean types, which can be true or false. Instructions can

be connected to the blue circle, where the instructions will be run in order, from top

to bottom. These blue circles increase downwards dynamically when a line is con-

nected to one circle and the Play button is pressed.

Figure 19. Cycles

27

5.6 Conditions

IF, ELSE and ELSE-IF created conditions can be found in Figure 20. The true/false logi-

cal values of Boolean types can be connected into the green circle. The blue circles

increase downwards dynamically when a line is connected to one circle and the Play

button is pressed.

Figure 20. Conditions

28

5.7 Reference and Value Transfer

Under the Tools menu option, the pointer and value transfer can be found. In the

first line, the Integers are created, in the second line the pointers are created, which

actually looks like an empty button after the creation in the standard state. In a pop-

up window, existing variables can be selected from the drop-down menu by the

name as shown in Figure 21.

Figure 21. Pointer

29

5.8 Example Programs

5.8.1 Variables and operators

The following chapter shows the operation of the application with the help of a few

example programs. In the first image in Figure 22, a 10-valued variable named x and

a 2-valued variable named y were created. Two pointers were also created, and they

are referred to as the x and the other as the y. In the second image, the interactive

elements are connected accordingly to make the x pointer equal to the sum of the

values of the y Integer and the x pointer. After pressing the PLAY button, the value

transfer takes place in the third figure. A plus sign before 12 is referred to as the ad-

ditional element and the 12 is the result of the operation. It can be also seen that the

original Integer variable in the first row has also changed.

Figure 22. Example program 1

30

5.8.2 Conditions

The following example program presents how “if else” works. In the first image in

Figure 23, the appropriate elements for illustration were created. The value of the re-

lational operation for if is evaluated and a logical value is returned. In this case it is

executed as false, so the else connection is run. After pressing the play button, the x -

y operation will be performed on the second image. In the third image, the if branch

will be run, so x + y summation will be calculated.

Figure 23. Example program 2

31

5.8.3 Cycles

In the following simple little example program, the basic operation of the for loop is

demonstrated. A variable of type y = 3 integer is created. In the first image of Figure

24, the for loop will be run from i = 0 to i < 3. Shifting of increment is set 1. After

pressing the play button, the value of adding x and y is added to y 3 times in a row,

which is solved with pointers. In the second image, the result of 18 can be seen. In

the third image, the shifting of increment is just changed to 3, and in this case the re-

sult will be 23.

Figure 24. Example program 3

32

6 Use of software in education

6.1 Advantages

While making the software our goal was to learn programming and to speed up the

learning process. The most effective teaching methods have been proven in numer-

ous studies in which new information is conveyed visually. The curriculum can be

learnt easily with symbols, figures, different colours and highlighting by students (Ká-

tai & Tóth 2010; Shams & Seitz 2008). In this case, when the app is used, the user

meets figures and symbols. Thanks to the program’s interactivity, it can be put to the

service of teaching. The elements can be moved quickly and easily by using the fin-

gers, and a built-in keyboard is hardly needed since a few variable names or values

are entered in a writing program. With the interactive content of the IPA, much is in-

cluded which is more eye-catching for learners than traditional programming meth-

ods.

6.2 User feedback

A small research was conducted involving the IT students and some people who were

not really familiar with the world of IT (N=20 persons), and the framework examined

the usability of the application. The result is summarized in Table 2.

33

Table 2. Feedback

Viewpoints Lay people IT people

Transparency, manageability Easy, fast Simple

Simpler programming

elements

An explanation is

needed
Understandable, clear

More complex programming

elements

An explanation is

needed

A brief explanation is

needed

Solving basic tasks
Can be solved

after understanding
Easy to accomplish

In each case, users could create new objects easily and simply; furthermore, creating

connections between said objects did not cause any issues. Lay people needed a

quick explanation of the simpler elements such as variables and operators, and later

a detailed description of the more complex elements was provided. For competent

individuals, only the use of conditions and cycles caused some issues; however, after

a few helpful sentences, they were able to apply them on their own. For the test, the

participants were instructed to create small samples, which were presented earlier.

Some help was still needed for inexperienced people in carrying out the tasks and all

tasks were successfully completed by people familiar with IT.

Thus, it is believed that the application will be useful in the development of

algorithmic thinking and the practice of programming, both for laypeople and IT

professionals.

34

7 Opportunities for further development

The development of the program is far from over. During the tests, much feedback

was received from acquaintances, how and in what way it could be improved. The

codes mapping function is one example of such options in which the code is gener-

ated with interactive elements, and it would be mapped to a raw executable pro-

gram. It is planned to introduce additional elements belonging to the main menu

items of Variables, Functions, to implement the character management interactive

object, arrays and more complex functions for faster coding. The functionality of the

tool implementing the connection between the elements is to be extended, which

makes the created programs more editable and transparent. Also, it would be great

if its use became more understandable, and this could be gained by an incorporating

Help Center. The implementation of a helper system that can be turned on and off

would make the programming more understandable with interactive explanations

such as videos or animation. Documentation for interactive objects can be created

(Variables, Operators, Cycles) that would also provide a link to documentation for dif-

ferent languages. Novice programmers would be helped with various example tasks,

which make it easier to understand how the app works and uses it. After completing

the tasks, the user will not even notice how much programming knowledge they

have gained, which will make it easier to understand other languages.

Maybe there is the possibility of dividing the program into several versions according

to the knowledge of the given user in the field of programming. More sophisticated

tools would be avoided with the lay persons and the harder version would be used

by students with more knowledge and who want to feel challenged.

35

8 Conclusion

Overall, it can be said that the most basic programming elements and their functions

are included in the application as well it is imagined all in an interactive way in the

completed mobile application. A simple, clean look, a clear and easy-to-use menu

system have been implemented. Therefore, the application is user-friendly, easy to

understand and easier to use compared to “coding” languages. The number type var-

iables and the basic operations have been prepared which are required to perform

operators. The conditions and the essential cycles have also been implemented for

the executed cyclically instructions. The functionality between the elements can be

created via lines. At runtime, the connections are checked, and further actions are

performed accordingly. The created programming elements can be used to create

smaller programs. The basics needed for programming can be learned in it, and the

users are helped to practice and develop in this "world".

In summary, a unique application was coded and the biggest advantage of it its use

on the mobile platform. Based on the experience, a very easy-to-learn tool has been

developed that assists students to learn a programming language and develop their

algorithmic thinking.

With the investment, our knowledge is developed a greatly, and more experiences is

gained in both programming and mobile application development. The thesis project

has helped to broaden our horizons in the world of programming.

While this thesis was prepared, it occurred to us to continue the development of ap-

plications for Android and other platforms in the future, as well as to be more im-

mersed in learning about other mobile technologies and languages. In addition, it

would be great to do further research on the effectiveness of using this tool.

36

References

Blockly 2019. Blockly program. Accessed on 12 May 2019. Retrieved from
https://developers.google.com/blockly.

Code 2019. Code program. Accessed on 12 June 2019. Retrieved from
https://support.code.org/hc/en-us/articles/360000522711-How-can-I-change-the-
language-on-Code-org-?mobile_site=true.

Divinity 2018. Android alkalmazásfejlesztés 2. rész: alapozunk [Android application
development Part 2: Basics]. Accessed on 12 September 2019. Retrieved from
https://logout.hu/cikk/android_alkalmazasfejlesztes_2_resz_alapozunk/android_stu
dio.html.

Hírmagazin 2015. Világméretű összeesküvés: a Code.org titka. [Worldwide
conspiracy: the secret of Code.org]. Accessed on 22 October 2019. Retrieved from
https://hirmagazin.sulinet.hu/hu/evilag/codeorg-titka 2015.

Hlács, F. 2019. Letölthető az Android Studio 3.3 stabil kiadása. [A stable release of
Android Studio 3.3 is available for download]. Accessed on 5 Jule 2019. Retrieved
from https://www.hwsw.hu/hirek/59865/google-android-studio-3-3-ide-stabil.html.

Kátai, Z. & Tóth, L. 2010. Technologically and artistically enhanced multi-sensory
computer-programming education. Teaching and Teacher Education.

Knuckles, C. D. 2000. Introduction to Interactive Programming on the Internet. New
York City: John Wiley & Sons.

Park, S. 2017. Activity Lifecycle in Android Applications. Accessed on 5 Jule 2019. Re-
trieved from https://medium.com/sketchware/activity-lifecycle-in-android-
applications-1b48a7bb584c.

Scratch 2019a. Scratch program. Accessed on 17 August 2019. Retrieved from
https://www.kiditech.org/courses/game-design-stratch/flappy-bird-in-scratch/.

Scratch 2019b. A wikipédia Scratch oldala. [Wikipedia's Scratch page]. Accessed on
12 May 2019. Retrieved from https://hu.wikipedia.org/wiki/Scratch.

Shams, L. & Seitz, A. R. 2008. Benefits of multisensory learning. Trends in Cognitive
Sciences.

Sting 2017. Mobilra is kiadta vizuális programozási nyelvét a Google [Google has
released its visual programming language for mobile]. Accessed on 17 September
2019. Retrieved from https://prog.hu/hirek/4717/mobilra-is-kiadta-vizualis-
programozasi-nyelvet-a-google.

https://developers.google.com/blockly
https://support.code.org/hc/en-us/articles/360000522711-How-can-I-change-the-language-on-Code-org-?mobile_site=true
https://support.code.org/hc/en-us/articles/360000522711-How-can-I-change-the-language-on-Code-org-?mobile_site=true
https://logout.hu/cikk/android_alkalmazasfejlesztes_2_resz_alapozunk/android_studio.html
https://logout.hu/cikk/android_alkalmazasfejlesztes_2_resz_alapozunk/android_studio.html
https://www.hwsw.hu/hirek/59865/google-android-studio-3-3-ide-stabil.html
https://medium.com/sketchware/activity-lifecycle-in-android-applications-1b48a7bb584c
https://medium.com/sketchware/activity-lifecycle-in-android-applications-1b48a7bb584c
https://www.kiditech.org/courses/game-design-stratch/flappy-bird-in-scratch/

37

Strom, C. 2013. 3D Game Programming for Kids, Raleigh: Pragmatic Bookshelf.

Zelena, P. G. 2017. “Mobiltudós Guide” az értékesítés segítő alkalmazás fejlesztése
[“Mobile Scientist Guide” is a sales assistant application development]. (Bachelor’s
thesis) Miskolci Egyetem Gépészmérnöki és Informatikai Kar.

