

Joni Nurmimetsä

Analysis of Current IoT Mesh Technol-
ogies and Sample Implementation for
Automotive Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

21 April 2020

 Abstract

Author
Title

Number of Pages
Date

Joni Nurmimetsä
Analysis of current IoT mesh technologies and sample imple-
mentation for automotive application

50 pages
21.4.2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Instructors Keijo Länsikunnas, Senior Lecturer

This thesis analyses and catalogues current day Internet of Things (IoT) protocols in relation
to their relevancy to different mesh networking technologies. A large number of protocols
are today proposed for different specific applications in the IoT field, but only a few of them
have mesh networking integrated as an inherent feature of the respective protocol stacks.
The aim of this thesis is to provide understanding of underlying technologies and narrow
down the wide field of currently available main technologies.

This thesis reviews openly available documentation and other online material on different
protocols and describes their relative strengths and weaknesses. This review also shows
how different protocols and their major design choices have affected the popularity and
vitality of their respective development ecosystems.

The findings are that, while there certainly exists a large number of more or less specialised
protocols utilised in the field, the development and support investments have made only a
few protocols which are relatively widely adopted.

In conclusion, this thesis demonstrates and presents the benefits offered by a lightweight
mesh connected sensor network in an automotive application. In successfully implementing
this, it is shown that the benefits are real and easily obtainable.

Keywords Internet of Things, mesh network, Bluetooth LE, Thread, Z-

Wave, ZigBee

Tekijä
Otsikko

Sivumäärä
Aika

Joni Nurmimetsä
Esineiden internetin solmuverkkoteknologiat ja esimerkkitoteu-
tus käytännön sovelluksesta ajoneuvokäytössä

50 sivua
21.4.2020

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tietotekniikka

Ohjaaja Lehtori Keijo Länsikunnas

Insinöörityön tarkoituksena oli analysoida ja koota tämän hetken esineiden internetin proto-
kollia suhteessa niiden merkityksellisyyteen eri solmuverkkoteknologioiden suhteen. Erilai-
siin sovelluksiin on nykyään käytettävissä suuri määrä IoT-protokollia, mutta vain muuta-
missa niistä solmuverkot ovat lähtökohtaisesti mukana ominaisuutena. Insinöörityön tarkoi-
tuksena oli koota katsaus käytettyihin teknologioihin ja keskittyä muutamaan tällä hetkellä
saatavilla olevaan pääteknologiaan.

Insinöörityössä perehdyttiin avoimesti saatavilla oleviin dokumentteihin ja muihin verkkoma-
teriaaleihin eri protokollista ja pyrittiin kuvaamaan niiden suhteellisia vahvuuksia ja heikkouk-
sia. Insinöörityöstä selvitettiin, miten eri protokollat ja niiden suunnittelulähtökohdat ovat vai-
kuttaneet näiden protokollien ja niiden ekosysteemien suosioon sekä elinvoimaisuuteen.
Useat tutkituista protokollista ovat painottaneet yhteensopivuutta helpon laajennettavuuden
ja protokollan avoimuuden kustannuksella, mikä heijastuu usealla eri tavalla sekä sovellus-
kehittäjille että loppukäyttäjille.

Loppupäätelmä oli, että vaikka nykyisin tarjolla on suuri määrä enemmän tai vähemmän
erikoistuneita protokollia, vain muutamat niistä ovat laajalti käytössä, mikä on seurausta tie-
toisista panostuksista kehitys- ja tukitoimintoihin.

Insinöörityön osana tehtiin esimerkkisovellus käyttäen yhtä analysoiduista protokollista ja
kaupallisesti saatavilla olevaa kehitysalustaa. Insinöörityöraportissa käytiin läpi sovelluksen
eri osa-alueet laitteiston, ohjelmiston, kehitysympäristön sekä käytetyn pilvialustan osalta.
Esimerkkisovelluksen toteutuksen voidaan todeta vahvistaneen aiemmin kuvattujen solmu-
verkkoteknologioiden etujen saavutettavuus ajoneuvokäytössä. Toimivan implementaation
rakentaminen todisti näiden etujen olevan todellisia ja helposti saavutettavissa.

Avainsanat Internet of Things, mesh network, solmuverkot, esineiden in-

ternet

Contents

List of Abbreviations

1 Introduction 1

2 General overview of applicable communication technologies 2

2.1 Comparison of (W)WAN, (W)LAN and (W)PAN 2
2.2 Relevant (W)WAN technologies 2

2.2.1 3GPP defined standards 3

2.2.2 Sigfox 3

2.2.3 LoRaWAN 3

2.2.4 DASH7 4

2.3 Relevant (W)LAN technologies 5
2.3.1 802.11 Wi-Fi 5

2.3.2 802.11p / DSRC / ITS-5G 5

2.3.3 802.11s 6

2.4 Relevant (W)PAN technologies 7
2.4.1 ANT / ANT+ 7

2.4.2 Bluetooth 8

2.4.3 Thread 8

2.4.4 Insteon 8

2.4.5 ISA100 Wireless 9

2.4.6 MiWi 10

2.4.7 WirelessHART 10

2.4.8 ZigBee 11

2.4.9 Z-Wave 11

3 Current state of the major IoT Mesh networking technologies 12

3.1 General overview 12
3.2 General enabling technologies 12

3.2.1 Radio frequencies 12

3.2.2 IEEE 802.15.4 LR-WPAN protocol 13

3.2.3 External connectivity 14

3.3 Bluetooth 15
3.3.1 Overview of Bluetooth 15

3.3.2 Bluetooth pre-LE 15

3.3.3 Bluetooth LE 15

3.3.4 BLE Mesh 16

3.3.5 Basic features of BLE Mesh 17

3.3.6 Network elements of BLE Mesh 18

3.3.7 Networking stack and structure of BLE Mesh 18

3.3.8 External connectivity of BLE Mesh 21

3.3.9 Energy consumption of BLE Mesh 21

3.4 Thread 22
3.4.1 Overview of Thread 22

3.4.2 Network elements of Thread 23

3.4.3 Networking stack and structure of Thread 24

3.4.4 External connectivity of Thread 26

3.4.5 Energy consumption of Thread 27

3.5 ZigBee 27
3.5.1 Overview of Zigbee 27

3.5.2 Network elements of Zigbee 28

3.5.3 Networking stack and structure of Zigbee 28

3.5.4 External connectivity of Zigbee 29

3.5.5 Energy consumption of Zigbee 29

3.6 Z-Wave 30
3.6.1 Overview of Z-Wave 30

3.6.2 Network elements of Z-Wave 31

3.6.3 Networking stack and structure of Z-Wave 31

3.6.4 External connectivity of Z-Wave external 33

3.6.5 Energy consumption of Z-Wave 33

3.7 Summary and comparison of primary attributes 33
3.7.1 Summary 33

3.7.2 Energy efficiency 33

3.7.3 The ecosystems 34

3.7.4 Comparison of open and closed models 35

4 Example implementation using Thread 37

4.1 General description 37
4.2 Test system 37
4.3 Network and device setup 39
4.4 Particle.io integrated development environment 40
4.5 Device programming and configuration 41
4.6 Ubidots cloud setup 42
4.7 Test procedure and results 43

5 Conclusions 45

References 47

List of Abbreviations

3GPP 3rd Generation Partnership Project. Cellular technology industry stand-
ards body.

API Application Programming Interface. A set of defined functions and proce-
dures exposing an application or service.

DSRC Dedicated Short-Range Communications. Short-range to medium-range
wireless communication technology designed for automotive use.

EDGE Enhanced Data rates for GSM Evolution. Improved technology for allow-
ing higher data speeds in pre-3G mobile networks.

HWMP Hybrid Wireless Mesh Protocol. A routing protocol used by the 802.11s
standard.

IDE Integrated Development Environment. An application providing a compre-
hensive set of functionalities for software development.

IoT Internet of Things. An overarching set of technologies allowing low com-
puting resource devices and objects to connect to networks and transmit
data.

IrDA Infrared Data Association. An industry interest group that has defined an
optical wireless protocol of the same name using infrared light.

M2M Machine to Machine. A term describing machine-to-machine communica-
tions.

NB Narrow Band. A term describing limited communications bandwidth.

NFC Near-Field Communication. Very close proximity communications technol-
ogy.

OSI Open Systems Interconnection. A system describing concepts and mod-
els for telecommunications and computing systems, developed by ISO.

OTA Over the Air. A concept describing wireless communications to repro-
gram networked mobile devices.

PDU Protocol Data Unit. A single unit of information transmitted in a data net-
work.

RFC Request for Comments. Text documents describing internet related tech-
nologies, some of which have later became the foundational standards for
the Internet.

RFID Radio-Frequency Identifier. A term describing devices allowing wireless
identification of objects or devices.

RoW Rest of the World. In telecoms, typically non-North American markets.

SAR Segmentation and Reassembly. Action where a device has to divide, and
on the other end, reassemble, a single PDU into multiple packets due to
maximum transmit unit limitations.

TTL Time to Live. Maximum transmission or lifetime limit for data being stored
or transmitted.

V2X Vehicle-to-X. Term describing several possible scenarios where a vehicle
can transmit data to multiple other entities such as other vehicles (V), In-
frastructure (I) or any other receiver.

WAN Wide Area Network. A network covering a wide geographical area.

WLAN Wireless Local Area Network. A wireless network covering a smaller area,
typically a single building or locale.

WPAN Wireless Personal Area Network. A wireless network covering an area of
a single person.

 1 (50)

1 Introduction

This thesis analyses the current state of different IoT mesh networking technologies. The

IoT field has been quickly maturing and first generations of deployments are now being

phased out. Mesh networking as an idea has a long history, the Internet itself being one,

but it has not been extensively applied to the IoT field previously.

The first generation of what today would be considered IoT technologies were called

M2M or machine-to-machine technologies and were based on cellular technologies,

mainly 2G/2.5G(EDGE) networks. These deployments were quickly proven to have

insufficient spectral efficiency and to be too expensive to support the envisioned number

of nodes for future IoT deployments. Some industry suppliers suggested that the number

of IoT nodes might reach tens of billions by 2020, which is several multiples higher than

the number of mobile devices globally today and was certainly several orders of

magnitude more than the number of M2M/IoT nodes in existence when the prediction

was made. [1.]

To counter these challenges, two main approaches have emerged in the IoT field in

general. On the one hand, to lower cost and to make devices more spectrally efficient

and energy efficient, several narrow band (NB) radio network technologies have been

developed. While these are not mesh networks by definition, they are shortly discussed

to give readers a broader overall picture. Another reason to discuss them is that a few

edge cases exist. The second approach has been to create technologies to implement

short range dense node-to-node networks where the main driver for development has

been low cost and low power consumption. In addition, one of the aims has been to

require close to zero configuration while remaining fault tolerant and providing a reliable

communication channel through auto configuring node-to-node communications

topology. These technologies constitute what are commonly referred to as mesh

networks. [2.]

This thesis concentrates on providing a current day picture of the IoT mesh networking

technologies, including a brief historical background as well as analysis of several of the

major protocols in the field today.

 2 (50)

2 General overview of applicable communication technologies

2.1 Comparison of (W)WAN, (W)LAN and (W)PAN

There are certainly a wide number of technologies that are relevant to the IoT

communications field, but not all of them are relevant when discussing the current state

of mesh networking technologies. In the context of IoT mesh networks, the major division

is between different WAN, (W)LAN and (W)PAN technologies. While these refer to

distinctly different networking technologies and define separate technical domains,

“mesh networks” can be used to refer to products in any of the aforementioned

categories. In technical press, these fields are frequently conflated especially when

discussing IoT products and services. This section shortly explores what is considered

relevant in the context of this thesis.

Additionally, it should be noted that only wireless radio frequency technologies are

considered in this thesis. While there are certainly protocols and technologies that allow

for wired mesh networks, most notably Ethernet and KNX based networks, these are not

considered to be relevant in the IoT mesh networking context. Some IoT technology

standards also consider and define specifications for short-range protocols such as In-

frared Data (IrDA), Near-Field Communication (NFC) and Radio-Frequency Identifier

(RFID). While these are relevant to IoT products, they are not relevant to mesh networks

as underlying protocols. In addition, certain highly specialised magnetic induction-based

technologies are discarded, even though they are used for sensor networks in

applications that could be considered to be the core the IoT field.

2.2 Relevant (W)WAN technologies

Wireless wide area radio networks are and have been one of the core enabling

technologies for all IoT deployments. More specifically previous large scale M2M or IoT

deployments have used 2G or 2.5G EDGE networks for connectivity, the most often cited

example being several national deployments of “smart”, i.e. connected electricity meters.

While technology has moved forward and today 5G networks are being deployed, the

focus has been in increasing network throughput, supporting a higher number of

subscribers and lowering network latency. None of these parameters is directly relevant

 3 (50)

for many IoT applications, where especially throughput and latency are already sufficient

today to meet the requirements. Primary drivers in IoT application development are low

cost and low power usage. To fulfil these requirements for IoT applications, three

different protocols and protocol families have emerged. [3.]

2.2.1 3GPP defined standards

3GPP is the standards organisation behind the current generation of mobile networking

technologies. As such their IoT efforts build on the existing infrastructure and

specifications. LTE-M, NB-IoT and EC-GSM-IOT, which are the three major protocols

defined for different use cases, are all based in using star topology and are not relevant

to this thesis, apart from being one of the applicable access methods for providing

connectivity for IoT mesh network access or gateway nodes. [4.]

It should also be noted that since 3GPP represents the current interests and vision of

the existing operator and technology landscape, the standards preclude any possibility

of alternative approaches into (W)WAN networking. All of the above-mentioned protocols

are geared towards ensuring that the current model of deployment is kept unchanged.

2.2.2 Sigfox

Sigfox is a proprietary networking technology developed by a French company of the

same name. The protocol exchanges data transmission rate and latency for very low

power requirements and good signal coverage. As a consequence, the message and

data rates are extremely low and Sigfox nodes can only transmit up to 140 messages

with 8 bytes of data, per day. The network architecture is also exclusively based on star

topology, which is required to keep the node hardware very simple and cheap to

manufacture. Due to these limitations, it is not suitable to be used even as a mesh

network gateway connectivity. [5.]

2.2.3 LoRaWAN

The LoRaWan protocol differs from the 3GPP family of protocols and from Sigfox in that

it is intended as an open standards approach to providing low cost and low power

 4 (50)

network technology for IoT applications. However, it builds on proprietary LoRa radio

technology developed by the semiconductor manufacturer Semtech [6.].

The LoRaWan protocol family also has similar limitations as Sigfox with very low

bandwidth. Similarly, the protocol specifications limit the network to star topology and

there are no provisions to creating mesh networks [7.].

It should be mentioned that there are IoT mesh network development platforms available

(PyCom LoPy4 / FiPy) that have LoRa hardware integrated, but even they do not

envision it to be used for creating mesh networks. These platforms utilise other wireless

protocols such as Bluetooth, which are similarly integrated into the same hardware, to

form the mesh networks.

2.2.4 DASH7

DASH7 originated from American military communications technology development in

2009. It was derived from the ISO18000-7 standard for RFID technology but has lost

compatibility with the original specification along with further development. DASH7

Alliance was formed to promote and ensure interoperability of the standard, which has

continued to be developed by its members. The latest published specification is DASH7

Alliance Protocol v1.2 released in January 2019. [8.]

The focus of DASH7 was to provide a very low footprint and low power consumption

protocol for asset tracking purposes while still enabling node-to-node communications.

To this end, it exclusively uses sub-1GHz frequency bands and is based on the premise

that nodes will only infrequently broadcast messages. This also implies basic star shaped

network topology and the protocol does not include any provisions for nodes

retransmitting messages, thus excluding mesh networking as an option. As such this

protocol will not be further discussed in this thesis. [9.]

 5 (50)

2.3 Relevant (W)LAN technologies

2.3.1 802.11 Wi-Fi

When IoT technologies and any connectivity solutions are discussed today, it is natural

that the currently deployed IEEE 802.11 based Wi-Fi technologies is inherently included

as one of the foundational technologies that have enabled ubiquitous connectivity

underlying the entire IoT field. One of the more recent additions to scale and improve

Wi-Fi networks have been the addition of mesh networking. Several widely available and

well-known Wi-Fi networking products, such as Google Wifi, NETGEAR Orbi or Ubiquity

UniFi, have made mesh networking one of their core features and the main selling points.

[10.]

This is also the specific context in which these Wi-Fi mesh networks might be most easily

confused being relevant to IoT mesh networks. While Wi-Fi is certainly widely used as a

pure access medium for different kinds of IoT nodes and terminals, it does not include

provisions for allowing network clients to retransmit data to extend network reach, which

is one of the defining features for mesh networks. Mesh networking is simply used to

provide alternate backhaul data and a control plane for the base stations to communicate

between themselves, thus increasing network coverage. Individual Wi-Fi network clients,

be they IoT devices or not, do not form part of or connect into the mesh and are simply

utilising the available network service as if it was any other standard Wi-Fi network.

However, due to the extendable nature of IEEE standards there are some very specific

sub-specifications under the 802.11 family that do include mesh networking elements

extended all the way to end nodes. These are shortly discussed in two following

subsections.

2.3.2 802.11p / DSRC / ITS-5G

IEEE 802.11p was originally published in July 2010 and was created as a protocol to

enable communication in vehicular environments, for both vehicle-to-vehicle and for

vehicle-to-infrastructure applications. Protocols based on this specification were

developed in both in the United States and in Europe. In the United States, it became a

DSRC specification published by the Department of Transportation, but no official rules

 6 (50)

were ever published mandating actual use. In Europe, the ITS-5G specification was

published as part of the Intelligent Transportation System platform, also making any

implementation optional. It should also be noted that ITS-5G should not be confused with

mobile 5G technologies as there is no direct relationship, other than roughly parallel

technological fields. [11.]

However, even after almost 10 years, neither DSRC nor ITS-5G have seen any

significant deployments in actual production or end product environments. Today it

seems that the manufacturers are seeing future technological development in different

mobile networking technologies such as LTE or 5G mobile networks, rather than in a

dedicated automotive V2X technology. Neither protocol is further discussed in this thesis

due to lack of actual real-life implementation examples outside testing or lab

environments. [12.]

2.3.3 802.11s

802.11s was designed as the mesh networking extension for standard 802.11 Wi-Fi

networks. In 2012 when it was standardised and included in the main 802.11

specification, the envisioned usage was to enable traditional Wi-Fi networks to utilise

wireless medium to extend their footprint, which is one of the key benefits of features of

any mesh technology. While specification allows for any Mesh Station (Mesh STA) with

compatible features to participate in the mesh, in reality no provisions have been made

for key IoT requirements such as a small footprint or low available system resources.

Quite the opposite, 802.11s specification includes default mandatory routing protocol

implementation for the HWMP routing protocol. In addition, the node can only be a

member of either traditional Wi-Fi network BSS (Basic Service Set) or Mesh BSS, but

never both. This has created a situation where 802.11s has been widely implemented

only as a backhaul service for traditional Wi-Fi networks, rather than extending all the

way to end user nodes. As such the 802.11s mesh networks are more relevant as device

backhaul networks rather than as the access media for IoT device network connectivity.

[13.]

 7 (50)

2.4 Relevant (W)PAN technologies

2.4.1 ANT / ANT+

ANT and its ANT+ interoperability extension, created by Garmin, are a proprietary but

open standard. They are intended as a standard to connect different health and sports

related sensors and systems. ANT also includes a very flexible connectivity scheme

enabling multiple different options based on the actual application needs as shown in

Figure 1.

Figure 1: ANT network configurations. Copied from ANT Message Protocol and Usage [14].

While the ANT protocol is implementing connectivity for devices and things, such as

bicycles and other sports equipment, which can be clearly seen as being in the core IoT

field, it has clear focus on providing sensor data to measure the performance of individual

users. In addition, to keep power requirements exceptionally low, allowing sensors to

function years with off the shelf batteries, the ANT protocol has made several

compromises in effort to keep the hardware simple. These compromises have resulted

in allowing only very specific use cases for devices in the interest of providing

 8 (50)

compatibility. This is made apparent by ANT+ device profiles that only allow for 19

different “device profiles” which each define a specific use case for a device using any

of the profiles. While the underlying protocol can be used to implement applications

outside the predefined profiles, there is no specifications-based interoperability between

different devices. As such, ANT is not a general use IoT technology and will not be

considered further in the context of this thesis. [15.]

2.4.2 Bluetooth

Bluetooth might be considered to be the original lightweight short distance wireless

protocol to support low power sensors and other similar devices. In some cases,

scatternet, as implemented by the original Bluetooth specification, is referred to as a

mesh network. This is not entirely accurate and until Bluetooth LE implemented Mesh

Profiles, no real mesh networking application existed in Bluetooth. [16.]

Bluetooth is one of the major IoT networking protocols today and it is further analysed in

section 3.3.

2.4.3 Thread

Thread is one of the more widely supported mesh networking protocols today. It

originated from Nest, which was later acquired by Google. However, today Google is

only one part of Thread Group along with Apple, Arm, Nordic Semiconductor,

STMicroelectronic and Texas Instruments.

As one of the major mesh networking technologies today, Thread is discussed in detail

in section 3.4

2.4.4 Insteon

Insteon is a purely home automation focused communications protocol designed by a

company called SmartLabs, which also holds all the rights and trademarks for the

technology. One of the unique aspects of Insteon is that it utilises both wireline as well

as wireless communication medium to create the network. This affords a certain amount

 9 (50)

of flexibility to sensors and other nodes in connecting to the network, allowing for some

unique use cases and increasing overall network reliability. Both wired and wireless links

can form any part of the mesh and any node will also retransmit messages creating the

mesh.

However, Insteon is inherently a closed system and the manufacturer has only chosen

to make a limited API available for external interaction with the system. The protocol is

also explicitly designed for simply relaying short control messages rather than any more

complex data payloads. The Insteon network is only able to transmit at rates ranging

from a few hundreds to maybe 1000 bps, which limits it usability [17.]. Additionally,

SmartLabs have updated the system in 2014 with some more advanced features, but

also fracturing the protocol at the same time, as they dropped compatibility to certain end

user devices and older hardware [18.]. In-depth technical documentation is not available

in the public domain and is only made available at manufacturers’ discretion. Due to

these factors, this protocol is not considered further in the context of this thesis.

2.4.5 ISA100 Wireless

ISA100 and its 101.11a sub-standard define a communications protocol for industrial

applications. The intention of this standard is to create a highly robust, flexible and secure

network to replace and/or augment existing wired instrumentation networks in process

industries. The original standard was approved in 2012 for the first time and included

mesh networking as one of the key methods to increase network reliability.

ISA100 standards also have a very tight focus on specific industrial applications due to

their highly critical nature. Manufacturer devices are required to go through rigorous

testing to ensure their compliance with the standard specifications. The protocol is not

intended for use outside the industrial field, and as such the ISA100 standards governing

body, ASCI (Automation Standards Compliance Institute) or the specifications are not

suitable for use outside this specific field. This is made abundantly clear by the standards

official goal setting as articulated by ASCI in their official materials:

ISA100 Wireless (ISA100.11a / IEC 62734) is an international, industrial wireless
networking and communications standard engineered to serve the needs of pro-
cess industries. With native IPv6 networking and object architecture, ISA100 Wire-
less extends the Industrial Internet of Things (IIOT) to wireless. [19.]

 10 (50)

Information on the protocol is not widely available, and also devices are available only to

industrial end users. Additionally, the ISA101.11a cannot be considered to be of general

use to IoT networking technology. Thus, it will not be further discussed in this thesis.

2.4.6 MiWi

MiWi is a proprietary WPAN protocol developed by Microchip with a focus on very low

cost/low power applications. It is only available from Microchip directly as an integrated

chip package with associated software, and none of the specifications are available in

public domain. Mesh networking is advertised as one of the main features, but any further

information is not made public.

MiWi has also been on the market for more than 10 years, but still the manufacturer does

not advertise any major deployments or reference implementations. Quite the opposite,

even the manufacturer seems to be more focused on alternative technologies such as

Bluetooth LE, LoRa, 802.15.4 radio and Wi-fi, at the expense of MiWi [20.]. This protocol

is included for the sake of giving a comprehensive description of the field in this thesis

but will not be further discussed.

2.4.7 WirelessHART

WirelessHART is based on the industrial standard HART protocol and can be considered

as an extension to the wireless medium. The original HART standard provides

communication for field instrumentation in industrial applications. In this sense,

WirelessHART is fairly similar to ISA100, but one of the key differences is that, whereas

the ISA100 specifications allow for any layer 7 application and thus are more flexible to

user requirements, WirelessHART only supports HART standard based applications.

This ensures device compatibility and interoperability between manufacturers but also

makes the technology less flexible.

While one of the core features of WirelessHART is mesh networking, the protocol has

the same issues with no publicly available information and not being a generic mesh

networking technology, as ISA100 [21.]. No further analysis of this protocol is included

in this thesis.

 11 (50)

2.4.8 ZigBee

ZigBee is one of the more popular IoT networking technologies and very widely deployed

with more than half a billion devices sold [22.]. ZigBee is further discussed and analysed

in section 3.5

2.4.9 Z-Wave

Z-Wave is a wireless networking protocol with heavy emphasis on mesh networking. It

was originally developed by a Danish company called Zensys, but the rights to the

technology have changed hands several times over the years. Currently, Z-Wave is

owned by Silicon Labs, but certification and licensing is managed by Z-Wave Alliance. It

has grown in popularity over the years with over 2,600 available products utilising it

today. Z-Wave is analysed and is discussed in detail in section 3.6.

 12 (50)

3 Current state of the major IoT Mesh networking technologies

3.1 General overview

The in-depth part of this thesis is limited to the following competing protocols: Bluetooth,

Thread, ZigBee and Z-Wave. Products based on these protocols represent the vast ma-

jority of currently commercially available devices utilising IoT mesh networking technol-

ogies. At the same time, each protocol has a different historical technical background

and area of focus. These differences are discussed in the following sections.

To enable highlighting differences between the protocols, the standard 7-layer ISO Open

Systems Interconnect (OSI) model is used. However, it must be noted that each protocol

has very specific implementation for different functions on an individual functional layer

and not all of them are fully OSI model compliant. At times, the specifications omit some

functionalities entirely, sometimes aggregating the functionalities of several different lay-

ers into one sub-protocol layer. For example, Thread and ZigBee specifications do not

strictly speaking include OSI layer 1 or 2, since they utilize standard IEEE 802.15.4 LR-

WPAN radio, whereas Z-Wave and Bluetooth both define their own radio layer function-

ality. Similarly, none of the protocols include full OSI model compliant session or presen-

tation layer implementation, in the interest of keeping required software implementations

simple and lightweight. Pertinent functions from these layers are included in the overlay-

ing applications or omitted altogether as unnecessary.

3.2 General enabling technologies

3.2.1 Radio frequencies

As previously noted, all of the discussed protocols are based on wireless radio frequency

technologies. Common to all of these protocols is their use of Industrial, Scientific and

Medical (ISM) radio bands. The benefit is that the use of these bands does not require

any kind of licensing from the end user’s part. However, there are regional differences

as to which frequencies are available, in some cases necessitating the implementation

of region-specific hardware.

 13 (50)

In general, the 2.4GHz ISM band is used by all of these protocols with the exception of

Z-Wave, but this band has some shortcomings when it comes to frequency congestion

and general interference due to its wide popularity. In general, higher frequencies also

suffer from poor penetration in physically congested spaces, which can be an issue for

IoT applications. To counter this, all the protocols include the use of lower 800-900 Mhz

ISM bands with a notable exception of Bluetooth. Table 1 summarises the different fre-

quencies used by the protocols.

Table 1. Frequency bands in use by different protocols

Protocol Frequency Notes

Bluetooth
LE Mesh 2401.5 – 2480.5 MHz (Global)

2.4 Ghz ISM bands only
Same as BT Basic Rate /
Enhanced Data Rate

Thread

and

Zigbee

2400 – 2 483.5 MHz (Global)

868 – 868.6 MHz (Europe)

902 – 928 MHz (North America)

Both Thread and Zigbee use

802.15.4 PHY

Z-Wave
Numerous bands between:

865.2 – 926 MHz

Z-Wave uses individual country

and region-specific bands.

3.2.2 IEEE 802.15.4 LR-WPAN protocol

Both Thread and Z-Wave utilise IEEE 802.15.4 Low Rate Wireless Personal Area

Network (LR-WPAN) for the layer 1 and layer 2 functionality. The IEEE802.15.4 protocol

provides a very energy efficient and low footprint radio technology for upper layer

applications and protocols to use. 802.15.4 is fully open and well-defined standard and,

as a consequence, there is a wide availability of hardware and software implementations,

enabling easy integration with other higher-level protocols and eventual products.

IEEE released the initial 802.15.4 specification in 2003, and it has been updated,

amended and revised since. The latest main version is 802.15.4-2018 and while specific

amendments add new functionalities and expand the specification to different use cases,

 14 (50)

the basic specification is still backwards compatible and ensures hardware

interoperability.

The main focus of IEEE 802.15.4 is to specify the low complexity/cost/power radio

frequency protocol for data communication devices, but with the design parameters, the

available bandwidth remains low. The devices are only able to communicate at speeds

from 20-30 kbps to 250 kbps depending on the used frequency band. One of the newest

amendments, 802.15.4x, enables 2.4 Mbps data rate. However, no hardware

implementation using this amendment exists yet.

3.2.3 External connectivity

Internet connectivity is of course one of the absolute core features of any IoT service or

product. Counter-intuitively, most of the IoT products or protocols do not actually provide

direct IP connectivity, but rather require a border node to mediate any access into the

local node or network. Only partial exception to this is Thread, which uses 6LoWPAN

that includes a partial IPv6 stack, but still requires a similar border node to provide access

control and translation services for the connectivity.

This is due to the requirement of keeping the footprint of any implementation very small

to enable the very low cost and minimal power usage of devices. In addition, the

requirements for IoT node connectivity differ significantly from any fully Internet

connected node. For example, the need to support higher level protocols, such as TCP,

UDP or ICMP, does not exist in IoT applications, since a single node usually has very

limited functionality, for example simply collecting data from a sensor/sensors or the

basic control/actuation of devices. Thus, any aggregation of features and functionalities

can be achieved by a higher-level application that has basic reachability into an individual

node. As such full IP connectivity with the associated complexity is not required.

Each of the protocols described/discussed in this thesis takes a slightly differing

approach to providing public network connectivity and border mediation functions. These

differences are shortly discussed in each individual section.

 15 (50)

3.3 Bluetooth

3.3.1 Overview of Bluetooth

The Bluetooth protocol was originally intended to be a way for mobile phones to connect

accessories and to other mobile/fixed devices. The Bluetooth protocol was never devel-

oped with pure IoT applications in mind. One such clear limitation was the maximum

number of nodes which was limited to eight for a long period of time and which was only

changed with later revision of the specification.

Today Bluetooth has evolved to a much more capable protocol family, and at the same

time mobile phones and smartphones have become one of the key devices for accessing

and using everyday IoT networks and applications. One of the features that have enabled

this change was the addition of Bluetooth Mesh protocol in 2017, which was based on

the earlier Bluetooth LE standard.

3.3.2 Bluetooth pre-LE

The original versions of Bluetooth, until version 4.0, were developed mostly by mobile

phone manufacturers with a clear aim of providing better interoperability, more robust

connectivity and enhanced data rates for their application. These were, however, of lim-

ited applicability for IoT applications. The main downside of this approach was that en-

ergy efficiency or a small implementation footprint were not significant design consider-

ations. Due to this, IoT devices utilising early versions of Bluetooth never really gained

much success and were very limited in scope, mainly providing access to individual sen-

sor/control devices rather than allowing a larger network of devices to be accessed.

3.3.3 Bluetooth LE

In 2010 Bluetooth SIG introduced updated version 4.0 specification for the protocols.

Part of this update was an entirely new Bluetooth Low Energy (LE) protocol stack with a

clear focus on enabling very low powered devices and rapid link establishment, both of

which are core requirements for IoT mesh devices. The Bluetooth LE protocol stack later

became one of the building blocks for Bluetooth LE Mesh or BLE Mesh, which launched

in 2017. The previous version provided devices with simple 1-to-1 connections and even

 16 (50)

a hub-and-spoke model by multiplying the single connections, but only Bluetooth LE en-

abled broadcasting data without pre-established connectivity. This feature formed the

fundamental building block later enabling BLE Mesh.

3.3.4 BLE Mesh

Previous versions of Bluetooth are mainly concerned with enabling device-to-device con-

nectivity in a robust and interoperable fashion. BLE Mesh is a networking technology

created to enable a large number of these devices to form a mesh network and com-

municate with each other. While newer versions of Bluetooth have always remained

backwards compatible, new additions to the specifications require devices to specifically

support them, even though the basic building blocks are pieces of the specification from

an earlier version.

BLE Mesh is easily the newest specification out of the four protocols discussed in this

thesis. The basic protocol stack specification was only published in 2017, but as with any

protocol, true maturity is only reached later. By January 2019, only version 1.01 has been

published for the core stack. It must also be noted that there is a relative dearth of offi-

cially certified BLE Mesh components. At the end of 2017, only 13 individual components

had been certified and that number has only increased to 223 today. In reality, the num-

ber of actual products is much smaller because individual components in the same prod-

uct family are individually certified, in effect multiplying the number of certified products.

However, the real power of BLE Mesh is not the number of components that are natively

supported but its implementation of a specific backwards compatible component that

enables any relatively modern Bluetooth device to connect into BLE Mesh network.

In the current form, the basic use case envisioned seems to be lighting control. The basic

concepts and models have been designed with this in mind. Although there is nothing

that would limit the use of BLE Mesh for other purposes, most of the available hardware

and applications are also for building lighting management. While this is one of the most

popular IoT mesh technology applications currently, all the other protocols described in

this thesis have a broader scope of applications available today. It remains to be seen if

BLE Mesh will prove to be popular outside this initially envisioned field.

 17 (50)

3.3.5 Basic features of BLE Mesh

The BLE Mesh network is a fairly low bandwidth and a relatively high latency protocol for

low powered devices. It is intended for transmission of small control messages and/or

for a small amount of sensor data. While node-to-node links can theoretically have

speeds up to 2 Mbps, the network structure and basic specification significantly limit

bandwidth available to a single node [23.].

Bandwidth and latency are also very strongly affected by network size. An increased

number of hops has a negative effect on both. Even in the best-case scenario, where

there is only a single intermediary hop and the payload size matches the packet size,

the realised bandwidth is in low single digits in kbps. Similarly, while effective latency in

an optimal case might be approximately 20-30 ms, adding further intermediary nodes

effectively multiplies the latency at every hop. When this is coupled with segmentation-

and-reassembly (SAR) overhead when the payload size increases, it is possible to have

latencies in the magnitude of several hundreds of milliseconds or even seconds, for fairly

small payloads.

While this is not in itself a clearly disqualifying issue, it is something to be kept in mind

as the limitations are significant from current day technology standpoint. These

limitations are also compatible with many IoT applications, where bandwidth and latency

requirements are overridden by a small footprint, application compatibility or low power

considerations.

BLE Mesh also relies on managed flooding to deliver messages in the mesh. This

effectively means that all nodes with relay functionality will rebroadcast messages to all

other nodes within range. Receiving nodes will then again rebroadcast the message

unless they have previously received it or unless the message time-to-live (TTL) has

been exhausted. These mechanisms, along with the Friend/Low Power Node friendship

relationship, form the “managed” part of the managed flooding method. While this is an

inefficient way to utilise available bandwidth, reliability increases since messages can

take multiple paths to reach their destination.

 18 (50)

3.3.6 Network elements of BLE Mesh

The BLE Mesh specification defines four different functional node types. Any node can

have one or more of these functionalities at any time and they can be disabled/enabled

when needed. For example, a node with the Relay function can also act as a Proxy and

Friend node. Only Low Power Node is usually functionally limited and is intended as a

very low powered device with a low duty cycle, allowing minimal power consumption.

Other nodes are envisioned to have permanent (AC) power sources not limiting their

power usage [24.].

Different node type functionality is as follows:

• Relay Node – a basic node type which, in addition to a normal transmit/receive

function, also forwards messages originally transmitted by other nodes in the net-

work.

• Proxy Node – a node with proxy functionality implementing a standard Bluetooth

LE stack in addition to the BLE Mesh stack. This enables Proxy Nodes to function

as an intermediary device between the mesh and any Bluetooth LE compatible

device, such as a mobile phone. Proxy nodes expose a GATT or Generic Attrib-

ute Profile interface to compatible external devices, which enables them to inter-

act with the mesh network.

• Friend Node – a mesh node that functions in tandem with Low Power Nodes.

Friend Nodes store messages addressed to Low Power Nodes when they are

unreachable. The relationship between Friend and Low Power Nodes is called a

friendship.

• Low Power Node – nodes that have very low power available for functionality.

Low Power Nodes can be sleeping or turned off for long periods of time to con-

serve energy and will only wake up intermittently to perform their intended func-

tion. The Friendship relationship formed with Friend Nodes enables them to be

addressed outside these periods.

3.3.7 Networking stack and structure of BLE Mesh

BLE Mesh stack is built on the existing Bluetooth LE specification. All nodes must include

this basic level implementation to be able to communicate with each other. The BLE

 19 (50)

Mesh networking stack has a well-defined structure, as shown by Figure 2, with distinct

functionalities for each layer described below.

Figure 2: Bluetooth LE Mesh stack. Copied from Bluetooth Mesh Networking / An Introduction for

Developers [24.]

Different layers include the following functions:

1) Bluetooth Low Energy:

This layer is responsible for actual physical transmission of the data and abstracts

some traditional OSI model layer 1 and 2 functionalities. Thus, any BLE Mesh

implementation can remain physical media parameter agnostic, since this is all

included and managed by the Bluetooth Low Energy part of the stack.

2) bearer layer:

This layer is slightly non-consistent with the standard OSI model and simply cre-

ates additional encapsulation for higher level PDUs. It is used for backwards com-

patibility with standard Bluetooth LE devices that do not support the BLE Mesh

protocol stack. This layer supplies two different bearers, Advertising Bearer and

GATT Bearer. GATT Bearer encapsulates PDUs in a way that allows non-BLE

Mesh devices to receive and transmit BLE Mesh PDUs and interact with BLE

Mesh in limited capacity. One of the limitations is that they cannot be part of the

mesh beyond communication with a single node.

3) network layer:

The BLE Mesh network layer performs the more traditional functions of the stand-

ard OSI model. It defines the different message formats, network addressing and

 20 (50)

performs basic filtering functions. It should be noted that BLE Mesh does not

include any routing protocol functionality. This is also the layer where the Proxy

and Relay Node functionality is implemented.

4) lower transport layer

This layer partially implements functionality from the OSI model transport layer.

The lower transport layer is only responsible for the segmentation and reassem-

bly (SAR) of higher layer PDUs that do not fit into a single lower transport layer

PDU.

5) upper transport layer

The upper transport layer manages the secure access aspect of the BLE Mesh

protocol. It is responsible for encrypting, decrypting and authenticating data pass-

ing through to and from the access layer. Additionally, some node-to-node control

messages and management messages are generated on this layer. Friend Node

functionality is also implemented on this layer.

6) access layer

As the name suggests, this layer controls higher level application access into

lower layers and implements OSI model presentation layer functionalities. The

access layer defines how application data is formatted and verifies received data.

The control of upper transport layer encryption/decryption functionality is also part

of this layer.

7) foundation models

While foundation models are described as one of the layers, they are not quite

congruent with the standard OSI model. It defines special foundational function-

alities for the network that are related to node provisioning, management and

monitoring, but does not directly affect actual data transmission. The implemen-

tation of these foundation models is mandatory to any BLE Mesh device.

8) models

The model’s part of the BLE Mesh stack defines four predefined functions for the

BLE Mesh network nodes. These categories are split into four general categories:

generics, sensors, time and scene, and lighting. While these categories include

several ready-made functionalities for the envisioned intended uses of BLE Mesh

devices, their implementation is optional, and developers are free to define their

own models.

 21 (50)

3.3.8 External connectivity of BLE Mesh

BLE Mesh does not make any kind of provisions for native external addressability from

general IP networks. Addressing, security schemes and lower level network limitations,

such as PDU size, make direct external addressing entirely impractical. However, this

naturally does not exclude the use of a separate device that is connected to both an

external network and to the BLE Mesh. It can even be argued that the relative simplicity

of BLE Mesh Model hierarchy makes implementing such a device relatively

straightforward. Additionally, this makes BLE Mesh slightly more secure, since any

translation of external messages would inherently include sanity checking and parameter

verification.

However, BLE Mesh has a unique benefit and an advantage due to its backwards

compatibility mode created with a special lower level bearer layer. Special GATT Bearer

allows any Bluetooth Low Energy device to connect directly to BLE Mesh using Proxy

Nodes implementing this functionality. This instantly allows almost any modern mobile

phone, tablet or laptop computer to interact with the BLE Mesh network. Using a mobile

phone as the platform for creating applications for end users to interface with the IoT

device network has become the de facto standard and BLE Mesh has this support

natively built into the protocol stack. A natural shortcoming of this approach is that the

end user must be within reach of the network to be able to connect to it. While the short

range of BLE Mesh might not be an issue for all applications, it is one of the limiting

factors since allowing external connectivity would then require extra steps and devices

to be included.

3.3.9 Energy consumption of BLE Mesh

One of the focus points for IoT applications is certainly low power operation of the

network nodes. BLE Mesh implements a special Low Power Node (LPN) to allow devices

with very low resources to participate in the network. The specifications allow the

application to define the communication interval for the node which lowers the needed

power even further. The interval may extend to hours or even days for applications that

require only very infrequent communications between devices. In some cases, standard

button battery can provide even multi-year lifetime for an individual LPN device. [25.]

 22 (50)

Other node types in the BLE Mesh network are assumed to be permanently powered by

an AC power source, and specifications do not include any provisions for lower power

usage. Friend Nodes (FN), that enable LPN nodes to communicate only intermittently,

must remain powered to ensure cached messages destined to LPN nodes, are not lost

due to power loss.

3.4 Thread

3.4.1 Overview of Thread

The Thread mesh protocol is an open mesh networking protocol based on the IPv6

specification with emphasis on low power and security. The protocol is maintained and

owned by Thread Group that makes the specification available free of charge to its

members. Thread makes extensive use of other industry standard protocols: IEEE

802.15.4 for layer 1 and layer 2 connectivity and 6LoWPAN for IP connectivity.

Thread is a fairly new protocol having been published only in July 2015. It originates from

Google’s Nest product family but was significantly revised when made open and public.

Current day Thread Group is a much larger ecosystem including, in addition to Google,

some of the IoT industry’s largest companies including ARM, Nordic Semiconductor,

Apple, Amazon and Qualcomm. Thread Group also has a free academic tier making all

the documentation available free of charge to students and educational institutions,

which further encourages adoption.

The focus for Thread has been from the beginning to provide a lightweight IoT protocol

using existing IP technologies. This makes connecting to existing networks painless and

allows a low barrier of entry for developers that are familiar with associated protocol

stacks. It also allows for products to be relatively future proof since the foundational

technologies are very well defined and support is universal. In addition to this, Thread

Group also has a certification program available to its members, which allows for testing

product interoperability and protocol compliance, thus removing ambiguity from the

eventual end user, ensuring that the product actually works.

 23 (50)

3.4.2 Network elements of Thread

The main element of the Thread mesh is one Thread network. Networks are defined by

their common security credentials and while a network can be divided into smaller

entities called partitions, the security credentials are the same and retained when the

network partitions. Each network has a single leader, and should the network partition, it

will dynamically proceed to maintain this by electing a new leader node. When

connectivity between partitions is restored, they will automatically merge into a single

network again.

Individual building blocks for the Thread mesh are divided into two main categories, Full

Thread Devices (FTD) and Minimal Thread Devices (MTD). FTDs are envisioned as

permanently powered elements of the network, which can fully take part in forming the

mesh rather than being simple client connected to it. MTDs are then the low powered or

even temporarily powered end nodes that provide basic IoT functionality such as

switches, actuators or sensors.

FTDs can have one of the following roles:

• Leader: Each network or partition has a single leader elected, which assigns

router addresses and processes new router requests.

• Router: Forms the basis of the mesh network performing routing services.

• Border router: A special routing device that includes additional functionality to

connect into other physical networks. The Thread network can have more than

one border router to provide redundancy.

• Router Eligible End Device (REED): Router devices that can perform routing

functions but are not currently acting as routers due to network topology or other

conditions.

• Full End Device (FED): A normal Thread node that is only sending data through

a parent Router or REED node.

MTDs can have the following functionalities:

• Minimal End Device (MED): A low power device that does not include any routing

capability and communicates only through its parent node.

 24 (50)

• Sleepy End Device (SED): A very low powered node with basic functionality. It

will only communicate with its parent node intermittently. It includes polling func-

tionality for queued communication.

The relationship between a router and end node is always parent-child relationship. The

end node will attach to a single router or REED. The end node can have FED, MED or

SED functionality but is always the child. The Thread node taxonomy is further clarified

in Figure 3.

Figure 3: Thread node taxonomy. Copied from OpenThread – Thread Primer [26.]

3.4.3 Networking stack and structure of Thread

Unlike other protocols discussed in this thesis, Thread does not define application layer

functionality and can actually accommodate multiple applications as long as the end

node is able to process them. The Thread protocol provides a secure and transparent

communications channel and a robust provisioning mechanism for network nodes, while

staying application agnostic. Figure 4 shows the delineation between the underlying layer

1-2 protocol, the Thread core stack and the layer 7 application layer.

 25 (50)

Figure 4: Thread networking stack. Copied from Thread - An Introduction [27.]

As previously noted, one of the core tenets of Thread is building the protocol on open

and well-standardised building blocks. To this end, Thread uses the IEEE standard

802.15.4 for layer 1 and 2, allowing the usage of widely available standards-based radios

and software components. Please see section 3.2.2. for further description of this

protocol.

For layers 3 and 4, Thread more closely resembles normal IP networks. This is one of

the original design goals for Thread since it enables direct connectivity to the Internet.

However, Thread is purely implemented using IPv6 standards and since global IPv6

connectivity today is not available, one of the core functions for Thread Border Routers

is providing translation service between IPv4 based networks and a local Thread mesh

network.

For routing inside the Thread mesh, a simple RIP-like distance vector protocol is used.

Thread borrows algorithms while omitting protocol specific message formats from the

relevant RFCs. Thread node IDs also include basic topology information by including a

parent router ID in the child ID. [28.]

Transport layer functionality is implemented using UDP. Since UDP does not provide for

confirmed packet delivery via acknowledgements, similar functionality is implemented on

 26 (50)

a lower MAC layer. Additionally, if an application has a strict requirement for packet de-

livery reliability, developers can implement any suitable mechanism on the application

layer. The exception to this is Thread management and device provisioning traffic. Before

the new node is allowed to join the mesh network or the network management application

is used to access it, secure Datagram Transport Layer Security (DTLS) connection is

first established to allow access.

Above the transport layer, Thread does not provide any services in the network and all

functionalities beyond it are left for application developers to implement.

3.4.4 External connectivity of Thread

External connectivity is inherently one of the key functional aspects of any IoT product,

and this service in the Thread mesh network is provided by specialised nodes called

Border Routers. Border Gateways provide important service for the Thread mesh net-

work, namely external connectivity, but they are not required for the network to function.

The Thread mesh can be established and operated without any external connectivity and

all aspects of it remain operational. In addition, one of the key points that Thread Group

makes about their mesh protocol, is that it does not have single points of failure. Any

gateway that connects to external networks is a such a point, but Thread supports mul-

tiple gateways for redundancy.

Border Routers also have some additional functions in addition to plain forwarding of the

traffic. Since the Thread mesh network is inherently based on IPv6, Border Routers pro-

vide the necessary translation service for global IPv4 connectivity. In addition, basic fire-

wall and rate limiting functions are usually implemented by Border Gateways to protect

the relatively low bandwidth of the Thread mesh from malicious external or even site

local traffic.

Beyond these network-focused services, Border Routers can also implement additional

features to improve user experience with different applications. For example, different

application-specific service discovery mechanisms can be created to allow more seam-

less integration of devices into a Thread mesh network. Another example is application-

specific proxy service allowing access to sleepy SED node data through caching of the

said data and without waking up the node, thus saving energy.

 27 (50)

3.4.5 Energy consumption of Thread

The Thread protocol was originally designed for IoT applications and as such low energy

consumption is one of the key features. Most Thread node types are envisioned to be

permanently powered using an external power source, with the exception of SED nodes.

While the MTD nodes can also be considered for low power application, the focus is

more on a small footprint for hardware and software implementation and continuously

powered operation is assumed.

SED nodes, on the other hand, can be very low power, to the extent that they can be

powered by simple button batteries. For a simple sensor node connecting to the Thread

mesh through its parent node, even this kind of minimal power source is able to provide

sufficient power for several years [29.]. Achieving this kind of low power usage, of course,

requires application developers to carefully consider their approach to communicating

with individual nodes, but Thread and the underlying hardware platforms offer a good

basis for achieving long device lifetimes.

3.5 ZigBee

3.5.1 Overview of Zigbee

The Zigbee protocol was originally developed alongside the IEEE 802.15.4 LR-WPAN

protocol by Zigbee Alliance and was the first standard made available using this lower

level protocol. The original Zigbee standard, which has since been obsoleted by newer

versions, was published in 2005 as “Zigbee 2004 Specification”. Later on, a separate

Zigbee PRO specification was published, which broke some aspects of interoperability

with the standard Zigbee protocol family. In addition to this, Zigbee 2006 specification

introduced the concept of Cluster Library, which is basically the application layer

functionality built on top of the lower lever Zigbee protocol. However, these specifications

and standards have changed several times and the current Zigbee 3.0 specification

builds on all of these separate components.

In addition to the original Zigbee specification family, Zigbee Alliance has continued to

build on the existing platform by publishing several other related technology standards

that take advantage of and complement the Zigbee platform, such as:

 28 (50)

• Dotdot – Replaces Zigbee Cluster Library for the IP network focus application

layer, which can also be used with other competing IoT technologies such as

Thread.

• rf4CE – Consumer Electronic layers 3-7 stack focused on a low device footprint.

• JupiterMesh – Industrial grade IoT mesh networking stack standard for layers 1-

4 based on relevant industry standards.

• Green Power – Extension to Zigbee PRO standard allowing the use of ultra-low

power devices with no external power sources, utilising power harvesting.

3.5.2 Network elements of Zigbee

Zigbee networks have three main functional elements: Zigbee Coordinator (ZC), Zigbee

Router (ZR) and Zigbee End Device (ZED). These elements have very similar functions

compared to other similar IoT mesh networking protocols. ZC nodes are responsible for

coordinating the network and providing security services for node provisioning. ZR nodes

provide message routing and parent functionality for child ZED nodes. The ZED nodes

are then limited feature set low powered nodes that are able to communicate only

intermittently with their parent node allowing for very low powered devices. ZC and ZR

nodes are generally assumed to be permanently powered. However, one of the unique

aspects of Zigbee mesh networks is the usage of beaconing networks. This option allows

ZR nodes to also sleep and send a beacon to the network at preconfigured intervals. All

ZED nodes will then wakeup intermittently to listen for this beacon to confirm network

availability. While this would in general lower power requirements, it also requires

accurate time keeping at ZED nodes, which might be counterproductive from a power

management point of view.

3.5.3 Networking stack and structure of Zigbee

Zigbee uses IEEE 802.15.4 LP-WPAN for layer 1 and 2 services, Zigbee PRO for layer

3 and 4 services, and the Cluster Library provides the upper layers with an application

focus. Zigbee takes a similar approach to BLE Mesh that also has a clearly defined

application layer. The benefit of this approach is easier interoperability between devices

from different manufacturers. However, this comes at the expense of implementation

flexibility.

 29 (50)

Zigbee has resolved this partly by allowing both private and company specific profiles in

the Cluster Library.

In addition to this, Zigbee Alliance publishes several different protocol stacks under the

Zigbee umbrella with different focuses dependent on the intended application. These

build on the same underlying technologies such as the IEEE 802.15.4 protocol and partly

on Zigbee PRO. These multiple protocol stacks are displayed in Figure 5, which clearly

shows the flexibility of the Zigbee family protocols for different applications.

Figure 5: Different Zigbee networking stacks. From left to right: Zigbee 3.0, Zigbee Dotdot, Zigbee

Smart Energy, Zigbee JupiterMesh and Zigbee PRO with Green Power. Copied from Zigbee Al-

liance website section [30.]

3.5.4 External connectivity of Zigbee

The Zigbee mesh network is not directly addressable from any other network and all

connectivity relies on a special border router doing the necessary adaptation. Similar to

BLE Mesh, this affords some security benefits since traffic filtering and sanity checking

is inherently part of any translation process. However, the Zigbee 3.0 specification does

not include any standardised way of implementing this kind of external gateway and

developers are left with creating their own approach to connecting to any external

services. There is certainly a large number of hardware platforms available, but today no

simple way of connecting the Zigbee mesh to external networks exists.

3.5.5 Energy consumption of Zigbee

Zigbee 3.0 specification is designed from the ground up with low power applications in

mind. While most network critical nodes including ZC and ZR are intended to be perma-

nently powered, Zigbee does allow some flexibility in the form of beaconed networks.

This allows even ZR nodes to sleep, lowering power consumption. ZED nodes, on the

 30 (50)

other hand, are clearly intended for low power devices with limited resources. Nodes with

very low duty cycles can remain dormant most of the time enabling multi-year battery

life. New extensions allow Zigbee devices to function even without a primary power

source only using power harvested from the environment or user action. [31.]

3.6 Z-Wave

3.6.1 Overview of Z-Wave

Z-Wave differs from other protocols in this thesis in that it was originally developed by a

single company. Danish Zensys published the first version of the protocol that would later

be standardised as Z-Wave in the early 2000’s. It was based on their proprietary system-

on-chip (SOC) product and at the time offered a unique combination of high performance

and low cost. However, this approach was seen as too inherently dependant on a single

company and in 2005 several industry players along with Zensys formed Z-Wave

Alliance. The purpose of this organisation was to promote Z-Wave technology and

ensure system interoperability between devices from different manufacturers. To this

end, Z-Wave Alliance launched an official certification program in 2013.

One of the key differentiating factors for Z-Wave is that all the core intellectual property

assets are owned by a single company and thus are not available to public. Silicon

System, as the current owner of the original Z-Wave assets, has elected to make only

small part of the core technologies publicly available. All implementations rely on SOC

hardware from this single vendor. While this mitigates any lower layer compatibility

issues, it leaves the whole ecosystem dependent on the technology choices that this

single company makes. This closed nature of the ecosystem has been used as one of

the arguments against larger adoption of Z-Wave.

Z-Wave, however, has had a significant early mover advantage having been an

established technology for more than 15 years. It also has several unique technical

attributes that are well suited for IoT deployments, such as exclusive use of lower

frequency ISM bands in the 865-926 MHz range.

 31 (50)

3.6.2 Network elements of Z-Wave

Z-Wave networks are relatively simple compared to the other protocols. It only has two

basic node types called Controllers and Slave Nodes. The Z-Wave network also has a

hard limit of 232 nodes in the network, due to original specification limiting Node ID to an

8-bit value. Today networks can be extended with a special bridge device if required, but

this was only added as a feature in 2015.

A network can have several controller nodes, but only one of them can be Primary

Controller (PC) at a time. The others will remain Secondary Controllers (SC) but one of

them can take place of the PC node after network or node malfunction, in a process

called healing. The PC node is responsible for administrating Network ID and allocating

Node IDs during the node network joining process. The PC node also gathers, maintains

and distributes the network topology information. Any Controller node must be

permanently powered, but in addition to this, their position in the network must remain

static, for them not to cause topology changes which then must be separately

propagated.

Slave nodes are the Z-Wave standard nodes. They may repeat received frames, thus

creating a mesh network, but they do not take part in network topology administration.

Additionally, if a slave node repeats or routes frames not intended to it, permanent power

is required. Z-Wave also has a low power feature called beaming, which allows low

powered slave nodes to sleep for a set period of time and then wake up to process

commands. These nodes are called Frequently Listening Routing Slaves (FLiRS).

3.6.3 Networking stack and structure of Z-Wave

The Z-Wave networking stack is superficially similar to the other protocols described in

this thesis. However, there are also significant differences in individual layers. For layer

1-2, Z-Wave uses the ITU-T g.9959 standard short-range narrow band radio. The key

difference is that the Z-Wave radio only utilises sub-GHz ISM bands, which affords it

more range, but comes with a significant data rate disadvantage. Z-Wave raw data rates

are fairly low at 100/40 kbps for the United States and 100/20 kbps for Europe and the

rest of the world. Using region specific frequencies also requires separate hardware

 32 (50)

implementations, but since there is only a single supplier for Z-Wave chips, this is less

of an issue.

Layer 3-4 implementation is largely similar to other protocols, with a few notable features.

Z-Wave layer 3 inherently includes deterministic message delivery with a mechanism to

ensure retransmission of any partial or lost frames. In addition, Z-Wave is the only

protocol described in this thesis to use source routing. This allows transmitting nodes to

choose the best path through the mesh, but at the same time, it requires even low

powered nodes to maintain at least minimal topology information.

One of Z-Wave’s features enabling a high degree of interoperability is the usage of a

standard application layer. The protocol includes a number of Command Classes

specifying node functionalities and any node will declare which of these functions it

supports when a network is being joined / is joined.

In general, the Z-Wave networking stack includes all the layers from 1 to 7 as displayed

in Figure 6. This limits flexibility and reinforces the Z-Wave Alliance’s message on their

focus on providing interoperability above other technical attributes.

Figure 6: Z-Wave network stack. Copied from Application-oriented wireless sensor network com-

munication protocols and hardware platforms: A survey [32.]

 33 (50)

3.6.4 External connectivity of Z-Wave external

The Z-Wave mesh network is not directly addressable through any other common net-

work infrastructure. One of the defining factors for Z-Wave devices is a very small device

footprint and low power consumption which limits the functionality of individual nodes.

Any device providing external connectivity to a Z-Wave network, must provide all trans-

lation and command interpretation functions to enable the control of any Z-Wave device.

The protocol specifications do not include or contain provisions of any kind for facilitating

external control.

3.6.5 Energy consumption of Z-Wave

Z-Wave devices are intended for low power applications, for example, in light switches

and simple sensor devices. While most of the nodes are assumed permanently powered,

low power nodes have support for sleeping and only transmit data periodically. This low-

ers their power consumption significantly. Newer generation Silicon Labs Z-Wave 700-

series chips even have a decade long battery life with a normal coin battery. [33.]

3.7 Summary and comparison of primary attributes

3.7.1 Summary

All of the main protocols reviewed in this thesis are actively being developed today and

have wide availability of systems and vendors. This does not mean that they are equal

in all aspects. Their background and history, in addition to fundamental protocol design

choices, make them different in several different ways. This section reviews and com-

pares these differences from an overall systems point of view to give the reader some

understanding of the strengths and weaknesses of each protocol.

3.7.2 Energy efficiency

Energy efficiency has been one of the fundamental enablers of a large number of IoT

applications. The objects that are to be connected are largely not electronic devices nor

even necessarily powered at all. All four protocols clearly take into account this kind of

use cases. All include a node type that allows for extremely low power usage, mostly

 34 (50)

through some intermittent transmission mechanism. While most protocols allow this

mechanism to be controlled by the application, Thread uniquely leaves more control and

also responsibility for the application developer since it does not include any application

layer in the protocol. All the other protocols have set application layers or mandatory

libraries of functionalities that set certain limitation for the usage. This kind of integration

with the lower level systems can enable more efficient power usage.

All of the protocols enable basic IoT functionalities with very few power resources, for

example with normal coin battery. In general, the lifetime of such a device can be

measured in years or even more. The one improvement over this is Zigbee, which has

an ultra-low power networking stack component that allows devices to operate even

without an integrated power source at all, only using harvested energy.

3.7.3 The ecosystems

The number and wide availability of different devices and systems is of course important

to end users.

BLE Mesh, due to its recent launch, has the smallest number of devices available today.

This is partly offset by the ability of almost any mobile device to connect to the BLE Mesh

devices. It is almost one of the most universally implemented networking protocols,

making it a very attractive for developers.

Thread today has a fairly low number of devices available, but the fact that it utilises

fundamental IP technologies makes it a very attractive platform. This is clearly shown by

the fact that some of the largest consumer technology brands including Apple and

Google are active members and contributors of Thread Group.

The same is also true for Zigbee, which has taken an open approach allowing almost

anyone to access and implement their technology without major barriers of entry. Zigbee

has also been well established in the IoT field and this is apparent from the number of

devices and companies supporting Zigbee.

Z-Wave is the only protocol taking a slightly different approach. The system is strictly

defined and there are significant cost barriers for entry. In addition to this, the Z-Wave

Alliance has a single supplier hardware platform, not allowing any third parties to

 35 (50)

implement fundamental Z-Wave technologies. Z-Wave Alliance has a long history in the

field going back more than a decade. During the nascent years of IoT technology, the

limited access approach was seen as a benefit due to guaranteed interoperability. This

means that Z-Wave has significant existing support from the current install base and

from the companies that have created product using it, but it is not seen as the most

competitive platform anymore. Especially the announcement published in January 2020

that Amazon would be joining Zigbee Alliance was seen as a big loss for Z-Wave [34.].

3.7.4 Comparison of open and closed models

All of the protocols discussed in this thesis are managed and owned by central authorities

with different models for ensuring technological viability. These entities generally own

the core intellectual property and are involved in licensing relevant parts of it. This differs

significantly from other Internet technologies, which are generally made available openly

and without significant fees.

Z-Wave is closest to what could be termed as a closed technology model. Critical pieces

of the technology are entirely closed and available only as commercial products, but also

part of the software implementation is kept strictly accessible to consortium members for

hefty fees. Small part of the application layer library was made openly available in 2017,

but even that represented a very small part of the whole networking stack.

Beyond this, Bluetooth SIG makes almost all of the technology available to its consortium

members, but fairly steep yearly fees are required. There are also specific licensing

requirements and agreements that members must agree to. In general, Bluetooth SIG

member is a corporation using BT in its products and due to historical reasons

membership is heavily skewed to mobile phone and related product industries. However

also due to Bluetooth´s wide availability, almost any platform has readily available BT

libraries and software packages that make developing products easy.

Zigbee is slightly more readily available. Paid membership is required to access full

protocol specification and other information, and also certifying products incurs separate

fees. Zigbee has recognised this as one of their weaknesses and has made part of the

stack available to public. In general, Zigbee licensing fees are less prohibitive and there

 36 (50)

is a clear aim towards more open policies, while still ensuring core functionality and the

brand not being diluted by poorly functioning products.

Thread is closest to what could be considered an open technology platform. When

Thread Group was originally formed, one of the goals was to enable easier adoption of

the specification, and to this end, Google published OpenThread. OpenThread is a freely

available implementation of the Thread networking stack. In addition to this, the

membership of Thread Group is available for free to certain developers and other fees

are similarly very low. This makes developing applications for Thread easy, in

comparison with all of the other protocols analysed in this thesis.

 37 (50)

4 Example implementation using Thread

4.1 General description

The intention of this example implementation is to give an idea of complexity involved in

developing a simple system to monitor environmental parameters in an automotive ap-

plication. This is based on the author’s need to obtain temperature data for several dif-

ferent storage spaces over a period of time from an example vehicle to facilitate safe

storage of both automotive chemicals and consumer grade lithium-ion batteries, both of

which are vulnerable to extreme temperature changes.

It should also be noted that in this test case, the specific vehicle allows the user to actively

condition the interior space of the vehicle to allow persons and pets to remain inside the

vehicle even while the vehicle is not being operated. However, the manufacturer’s mobile

application only provides a single temperature measurement for user monitoring. In this

case the vehicle is what is commonly referred to as a “hatchback” model, in which the

passenger compartment and trunk are one continuous space. The trunk is the area

where pets are commonly kept, but the temperature of this space is not monitored at all.

In addition to this use case, the system could easily accommodate temperature monitor-

ing for trailers connected to vehicles. In this case, having a probe connected to a mesh

would be clearly beneficial, as other options, such as having wired sensors, would prob-

ably not be possible or would be extremely expensive.

In the test scenario, there are four separate interior spaces of which only two are effec-

tively conditioned. In addition, the difference in estimated ambient temperatures during

a single 24-hour test period exceeded 30 degrees Celcius, thus necessitating active

measures to understand temperature parameters.

4.2 Test system

The tested system is based on the development boards of Particle.io, namely a single

“Boron” LTE enabled mesh gateway and three “Xenon” mesh nodes. These boards use

Thread to form the mesh network between nodes and are designed to easily enable

 38 (50)

prototyping of IoT mesh networking products. All Particle.io products are tightly inte-

grated into cloud services and all the communication to and from the created mesh net-

work passes through their API layer. Integration through third party services is enabled

by creating application specific event handlers which Particle.io calls “web hooks”.

However, one of the major downsides of the system in its current stage is that Particle.io

does not make any diagnostic tools available for the mesh part. Mesh functionality was

confirmed and simply deducted from device behaviour when individual nodes were re-

peatedly placed outside range and then an intermediary node was introduced into the

topology by moving one of the other mesh nodes between the two disconnected nodes.

Further tools and improvements are needed in the future, but they are not available at

the time.

Beyond this, Particle.io provides good diagnostic tools to check the health of the non-

mesh part of the devices. Several technical parameters are followed, such as signal

strength, quality and connectivity latency. The user is also able to initiate checks in real

time for any node if needed. The console also tracks history data, so that any trend and

deviation can be gleaned from it. Figure 7 shows the device console view for the mesh

LTE gateway node used in this example implementation.

Figure 7: Individual console view of Particle.io. Screenshot [35.]

 39 (50)

In the test system, the collected data points were pushed to the Ubidots cloud service,

which allows for both easy integration with the chosen platform and also provides very

flexible data analytics tools. Integration was achieved with the functions library of Ubidots

which is compatible with the Particle.io devices.

The temperature measurements were done using a basic DHT11 type temperature sen-

sor providing 1 °C resolution with +-2 °C accuracy. While not exceptional, these param-

eters were deemed acceptable for the demonstrated application. There is also a well-

documented functions library available for the DH11 sensor on the Particle.io platform.

4.3 Network and device setup

One of the core features of Thread is an easy setup of mesh network nodes while main-

taining good security. The Particle.io device setup process mirrors the suggested setup

procedure of Thread where devices are recognised based on a physical QR code on the

device and network access is authenticated through physical access to an existing mesh

member device and the mesh password.

The setup and node configuration process is as follows:

Primary node and mesh setup:

Since a mesh cannot exist without at least a single device associated with it, it is usually

created at the same time with initial device setup. The QR code is read with a mobile

application to allow the user to access the device through Bluetooth. The mesh node is

then placed in listening mode by pressing a physical button after which Bluetooth is used

to setup initial configuration parameters for any other connectivity and to create the mesh

network and associated password. During this step, the device is associated with the

Particle.io user account which enables connection to their cloud services if external

connectivity is available.

 40 (50)

Creation of additional mesh nodes:

When a new mesh node is created, the initial process is the same. The QR code is read

with the mobile application and the device is placed in listening mode. After this step, the

user must place another node, which is already associated with the mesh network, in

listening mode. After scanning the second device QR code, parameters for the mesh are

automatically associated with the new device. The last step is for the user to provide the

mesh password for the new device. This is to prevent unauthorised users that have

physical access to devices from adding nodes to the mesh.

It should be also noted that Particle.io has a CLI tool available for more granular manual

access to the same mesh setup process. Device QR codes are just used to simplify the

setup process and allow the user to configure new devices without manually entering

unique 24-character device IDs. This CLI based method only works when devices have

external connectivity available and the devices have already been associated with a user

account.

4.4 Particle.io integrated development environment

After the hardware setup, device programming and software management has been

made simple through a web-based IDE environment. All devices sold by Particle.io are

associated with cloud accounts for the service to enable the tie-in to a specific account

and software. Non-configurable device firmware has a unique ID enabling identification

of specific devices, which will then show up in the management console and develop-

ment environment automatically.

This web-based development environment is also one of the key features of Particle.io

devices in general. It is the main method for updating device programming over the air

(OTA), and while the same process can be completed without connectivity, using a sup-

plied USB cable and CLI software, it is clearly made the preferred method. When devices

are not connected, software updates can also be queued so that an update is pushed to

the device after connectivity is re-established.

 41 (50)

In the IDE, the user is presented with a basic code editor, but the user is of course free

to use any preferred editor. Particle.io uses C++ for programming, making it very familiar

to anyone who has previously programmed comparable embedded systems.

IDE is very simple and only includes basic functions to compile, verify and push software

into a single selected device. Also, a repository of different ready-made libraries is avail-

able free, in addition to any software and libraries previously created by the user. Links

are available to separate management console and also to particle documentation as

seen in Figure 8.

Figure 8: Particle.io integrated development environment showing the device selection menu.
Screenshot [36].

4.5 Device programming and configuration

When the initial setup and device association with the used account was completed, all

devices automatically became available in the IDE. A WiFi gateway device was used for

development purposes, but it was replaced with the LTE gateway for the actual test data

collection.

For both WiFi and LTE gateway devices, basic software was created where main loop

simply listened out for any Thread Mesh publish events, which were then individually

 42 (50)

pushed into the Ubidots cloud. The loop forked to read the local temperature sensor

every 60 seconds and pushed that data into the cloud as well.

Software programming for the Mesh nodes was similarly very rudimentary, containing

only main loop which published Mesh event containing collected temperature information

every 60 seconds. In addition to the temperature information, also local battery supply

voltage was read and pushed to Ubidots as well.

Both sensor integration and Ubidots connectivity were done using a ready-made library

for the components. The biggest challenge was caused by low speed sensor chips,

which required significant error handling to read reliably. This part was actually almost

half of the actual code.

Overall, this approach to IDE seemed ideal especially as cloning software to individual

sensors became a question of pushing the same software to each device effectively

cloning the sensors. All device and event identification and sorting was entirely automatic

and did not require any coding.

4.6 Ubidots cloud setup

Ubidots provides basic level free account access on trial basis to almost all functionalities

with small “dot” counts. These dots are the individual data samples that can then be

stored, analysed and further processed in the Ubidots cloud. Such an account was reg-

istered for the purposes of collecting the data for this thesis.

After registration, a single API key was created to access the Ubidots cloud from the

devices. This API key was hard coded into all of the devices and it provides device au-

thentication for the Ubidots cloud. When any event is pushed, it includes the unique de-

vice ID which then becomes automatically associated with all further data from the de-

vice. The Ubidots console displays all devices that have pushed data to the cloud using

credentials associated with the account. Each variable pushed by an individual device is

also listed in the console and these variables then become available for analysis, event

triggering and visualisation using Ubidots tools.

 43 (50)

In this case, a dashboard was constructed associating temperature variables from the

gateway and all sensors into a single line chart and battery variables into individual bat-

tery charge level indicators. Ubidots is flexible in allowing customization of almost all

aspects of these visualisation tools, including appearance, data selection and setting

limits for individual variables. For example, the battery indicators have a four-level colour

coding, allowing quickly identifying whether the device requires charging.

4.7 Test procedure and results

As indicated, the mesh is a combination of four mesh devices. One of them is an LTE

modem which allows external connectivity. Each device was placed into a separate com-

partment in the vehicle to track the interior temperatures. One of the compartments is

also a semi-effective faraday cage. Placing one of the sensors in the cage immediately

allowed for an acceptable signal.

 Figure 10 shows the overall sensor location in the vehicle. However, the devices were

all placed in open, unclosed space in their respective compartments, to allow the sensor

to accurately measure ambient temperature. The LTE gateway was placed in the main

cabin to allow a good signal through the glass windows of the vehicle.

Figure 10: Compartment placement in the vehicle and the sensors located in each space.

Overall, the system proved to be very reliable and no major gaps were observed in the

data samples, even in known poor signal areas. In addition, even with special power

management code, all of the nodes had about half a week battery life with miniature 1000

mAh Li-po cells. The device duty cycle used was 1/60, and this seems to imply that multi-

 44 (50)

month battery life would be achievable fairly easily with proper code optimisation and

some additional logic in the sampling period, even with this limited power capacity.

The devices were left in the vehicle for 72 hours spanning normal use. The collected

data had several interesting findings that could not be simply deducted from other infor-

mation and had to be empirically tested. For example, the vehicle front motor quickly

increased front storage space temperature after driving, due to residual heat transferring

into the compartment. The lower rear storage did not have similar heating, even though

the vehicle rear motor was similarly in close proximity. Figure 11 shows the collected

data and the Ubidots dashboard that was created to track it.

Figure 11: Ubidots data dashboard used to track and analyse collected data. Screenshot [37].

 45 (50)

5 Conclusions

IoT Mesh networked sensors are an ideal solution for collecting data in real time from

challenging environments such as passenger vehicles. They provide a solution that

would otherwise require a considerable amount of manual collection and processing of

data from traditional data loggers or otherwise instrumenting a vehicle, which would be

both time consuming and technically difficult.

The tested system, even in development form proved to be very functional and reliable

in providing real time data. While the mesh network devices and protocols are quickly

developing, even in their current form, implementing this kind of system was fairly

straightforward and could be done with a minimal budget.

It can easily be imagined that this kind of a system could prove useful in monitoring a

multitude of physical parameters or actuating a simple function. Especially when vehicles

get larger than normal passenger cars, it becomes increasingly more costly to provide

wired sensors for non-safety critical applications.

Beyond the maturing application field for IoT technologies, also the protocols themselves

seem to be developing towards more uniform platforms. The recent announcement of

the CHIP alliance has taken an approach similar to Thread’s in that on base level the IP

protocol was made transparent to applications. Since this alliance now includes many of

the major IoT companies, including Google, Apple, Amazon and the Zigbee Alliance, it

seems that there is a clear direction towards making IP truly a universal protocol. While

the focus of this alliance is in connected home technologies, it can easily be seen as

validation of the Internet centric approach taken beyond just this single application realm.

While all of the protocols in this thesis can be made to be compatible with the pure IP

world, it is only Thread that previously had the IP protocol as one of the fundamental

building blocks. Now Zigbee has also made it their choice. Inside the connected home

application realm, there certainly seems to be need for a highly interoperable protocol

that can be used in low power devices in conjunction with higher speed and higher power

nodes. It remains to be seen whether Google’s involvement in this latest development is

problematic for Thread Group, since Google still has a strong influence on the project.

 46 (50)

What is notable is that while BT has been one of the most well-known protocols in the

IoT field for decades, it has not been able to transfer that footprint into the IP centric

world. The same is also true for Z-Wave, which seems most at risk to be abandoned with

further technological development.

Regardless of what the underlying technologies are, it seems indisputable that IP cen-

tricity is one of the core requirements for the future. It seems logical that the protocols

that have been able to grow and include this in their fundamental nature are poised to

be the platforms for tomorrow’s applications.

 47 (50)

References

1. Evans, Dave. 2011. The Internet of Things How the Next Evolution of the Inter-
net Is Changing Everything. Cisco IBSG. Online.
<https://www.cisco.com/c/dam/en_us/about/ac79/docs/in-
nov/IoT_IBSG_0411FINAL.pdf>. Accessed 20 April 2020.

2. Sharma, Krishna Sharma; Bogale, Tadilo Endeshaw; Chatzinotas, Symeon;
Wang, Xianbin, & Le, Long Bao. 2016. Physical Layer Aspects of Wireless IoT.
2016 International Symposium on Wireless Communication Systems (ISWCS).
Poznan, Poland.

3. Brito, Jose Marcos Camara. 2016. Trends in Wireless Communications To-
wards 5G Networks — The Influence of e-Health and IoT Applications. 2016 In-
ternational Multidisciplinary Conference on Computer and Energy Science.
Split, Croatia.

4. Standards for the IoT. 2016. Online. 3GPP. <https://www.3gpp.org/news-
events/1805-iot_r14>. Accessed 20 April 2020.

5. Sigfox Connected Objects: Radio Specifications. 2020. Online. Sigfox.
<https://build.sigfox.com/sigfox-device-radio-specifications>. Accessed 20 April
2020.

6. Paret, Dominique; Crégo, Pierre. 2018. Wearables, Smart Textiles & Smart Ap-
parel. London: ISTE Press - Elsevier

7. Sembroiz, David; Ricciardi, Sergio & Careglio, Davide. 2018. A Novel Cloud-
Based IoT Architecture for Smart Building Automation. In: Ficco, Massimo &
Palmiere, Francesco (ed.). Security and Resilience in Intelligent Data-Centric
Systems and Communication Networks, s. 215-233. London: Academic Press.

8. Wael Ayoub, Abed Samhat, Fabienne Nouvel, Mohamad Mroue, Jean-Chris-
tophe Prévotet. 2018. Internet of Mobile Things: Overview of LoRaWAN,
DASH7, and NB-IoT in LPWANs standards and Supported Mobility. 2018 25th
International Conference on Telecommunications (ICT). St. Malo, France.

9. Weyn, Maarten; Ergeerts, Glenn; Wante, Luc; Vercauteren, Charles &
Hellinckx, Peter. 2013. Survey of the DASH7 Alliance Protocol for 433 MHz
Wireless Sensor Communication. International Journal of Distributed Sensor
Networks.

10. Asovsky, Victor; Machani, Yaniv. 2016. Wi-Fi mesh Networks: Discover New
Wireless Paths. Online. Texas Instruments.
<http://www.ti.com/lit/wp/swry024/swry024.pdf>. Accessed 20 April 2020.

11. 4N 5G Americas White Paper: Cellular V2X Communications Towards 5G.
2018. Online. 5G Americas. <https://www.5gamericas.org/wp-content/up-
loads/2019/07/2018_5G_Americas_White_Paper_Cellular_V2X_Communica-
tions_Towards_5G__Final_for_Distribution.pdf>. Accessed 28 May 2020.

 48 (50)

12. Connected Car Technology: Cellular V2X Outperforms DSRC/ITS-G5 in Com-
prehensive Tests as Mobility Industry Moves Towards 5G. Online. 2018. 5GAA
- 5G Automotive Association e.V. <https://www.prnewswire.com/news-re-
leases/connected-car-technology-cellular-v2x-outperforms-dsrc-its-g5-in-com-
prehensive-tests-as-mobility-industry-moves-towards-5g-854688653.html>. Ac-
cessed 20 April 2020.

13. Hiertz, Guido; Denteneer, Dee; Max, Sebastian; Taori, Rakesh; Cardona,
Javier; Berlemann, Lars & Walke, Bernhard. 2010. IEEE 802.11s: The WLAN
Mesh Standard. IEEE Wireless Communications 17(1): 104-111.

14. ANT Message Protocol and Usage. 2014. Online. Garmin Canada inc.
<https://www.thisisant.com/resources/ant-message-protocol-and-usage/>. Ac-
cessed 28 February 2020.

15. ANT+ Device Profiles. 2020. Online. Garmin Canada Inc.
<https://www.thisisant.com/developer/ant-plus/device-profiles>. Accessed 20
April 2020

16. Persson, K. E.; Manivannan, D. & Singhal, M. 2005. Bluetooth Scatternets: Cri-
teria, Models and Classification. In: Ad Hoc Networks, Volume 3, Issue 6,
s.777–794. Lexington, USA.

17. Irwin, David; Wu, Anthony, Barker, Sean; Mishra, Aditya; Shenoy, Prashent &
Albrecht, Jeannie. 2011. Exploiting Home Automation Protocols for Load Moni-
toring in Smart Buildings. Online. University of Massachusetts Amherst.
<http://www.cs.williams.edu/~jeannie/papers/insteon-buildsys11.pdf>. Accessed
28 February 2020.

18. Supported Insteon Devices with the Insteon for Hub App. 2015. Online. Insteon.
<https://www.insteon.com/support-knowledgebase/2015/3/23/insteon-for-hub-
supported-devices-by-platform>. Accessed 28 February 2020.

19. ISA100 Wireless Applications, Technology, and Systems. 2014. Online. Wire-
less Compliance Institute. <https://isa100wci.org/en-US/Documents/White-Pa-
pers/White-Paper-ISA100-Applications-Technology-and-Sys.aspx>. Accessed
28 February 2020.

20. Microchip Technology Inc. - Wireless Connectivity Solutions. Online. Microchip
Technology Inc. <https://www.microchip.com/design-centers/wireless-connectiv-
ity>. Accessed 28 February 2020.

21. Nixon, Mark. 2012. Comparison of WirelessHART and ISA100.11a. Online. Em-
erson Process Management. <https://www.emerson.com/documents/automa-
tion/white-paper-a-comparison-of-wirelesshart-isa100-11a-en-42598.pdf>. Ac-
cessed 28 February 2020.

22. Analysts Confirm Half a Billion Zigbee Chipsets Sold. 2018. Online. ZigBee Alli-
ance. <https://zigbeealliance.org/news_and_articles/analysts-confirm-half-a-bil-
lion-zigbee-chipsets-sold-igniting-iot-innovation-figures-to-reach-3-8-billion-by-
2023>. Accessed 28 February 2020.

 49 (50)

23. SI Labs – Mesh network performance comparison. 2019. Online. Silicon Labor-
atories inc. <https://www.silabs.com/documents/public/application-
notes/an1142-mesh-network-performance-comparison.pdf>. Accessed 28 Feb-
ruary 2020.

24. Woolley, Martin; Schmidt, Sarah. 2017.. Bluetooth Mesh Networking / An Intro-

duction for Developers. Online. Bluetooth SIG.< https://www.bluetooth.com/wp-
content/uploads/2019/03/Mesh-Technology-Overview.pdf>. Accessed 28 Feb-
ruary 2020.

25. Darroudi, Sayed Mahdi; Caldera-Sànchez, Raül & Gomez, Carles. 2019. Blue-

tooth Mesh Energy Consumption: A Model. Sensors 2019: 19(5).

26. OpenThread – Thread Primer. 2019. Online. Google LLC. <https://open-
thread.io/guides/thread-primer/node-roles-and-types>. Accessed 28 February
2020.

27. Thread - An Introduction. 2014. Online. Thread Group. <https://www.thread-

group.org/Portals/0/documents/events/ThreadIntro.pdf>. Accessed 28 February
2020.

28. Thread Stack Fundamentals. 2015. Online. Thread Group. <https://www.si-

labs.com/documents/public/white-papers/Thread-Stack-Fundamentals.pdf>. Ac-
cessed 28 February 2020.

29. Azoidou, Eva. 2016. Battery Lifetime Modelling and Validation of Wireless

Building Automation Devices in Thread. Online. KTH Royal Institute of Technol-
ogy.
<https://kth.diva-portal.org/smash/get/diva2:1067124/FULLTEXT01.pdf>. Ac-
cessed 28 February 2020.

30. Zigbee Solutions. 2019. Online. Zigbee Alliance website section.

<https://zigbeealliance.org/solutions/>. Accessed 28 February 2020.

31. Zigbee Green Power Specification. 2014. Online. Zigbee Alliance.
<https://zigbeealliance.org/wp-content/uploads/2019/11/docs-09-5499-26-batt-
zigbee-green-power-specification.pdf>. Accessed 28 February 2020.

32. Pei, Zhongming; Deng, Zhidong; Yang, Bo; Cheng, Xiaoliang. 2008. Applica-
tion-oriented Wireless Sensor Network Communication Protocols and Hardware
Platforms: A Survey. 2008 IEEE International Conference on Industrial Technol-
ogy.

33. New Smart Home Chip Lets Devices Have 10-year Battery Life. 2018. Online.
The Verge. <https://www.theverge.com/circuit-
breaker/2018/1/8/16839358/sigma-designs-z-wave-700-smart-home-chip-10-
year-battery-life-ces-2018>. Accessed 28 February 2020.

 50 (50)

34. Amazon is Taking More Control Over Smart Home Tech. 2019. Online.
<https://www.theverge.com/2019/1/24/18196463/amazon-zigbee-alliance-
board-smart-home-tech-control>. Accessed 28 February 2020.

35. Particle.io Device Management Console. 2020. Online. <https://console.parti-
cle.io/devices/>. Accessed 28 February 2020.

36. Particle.io Integrated Development Environment. 2020. Online. <https://build.par-

ticle.io/build/>. Accessed 28 February.

37. Ubidots Web Dashboard. 2020. Online. <https://indus-
trial.ubidots.com/app/dashboards/>. Accessed 28 February 2020.

