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This thesis analyses and catalogues current day Internet of Things (IoT) protocols in relation 
to their relevancy to different mesh networking technologies. A large number of protocols 
are today proposed for different specific applications in the IoT field, but only a few of them 
have mesh networking integrated as an inherent feature of the respective protocol stacks. 
The aim of this thesis is to provide understanding of underlying technologies and narrow 
down the wide field of currently available main technologies. 
 
This thesis reviews openly available documentation and other online material on different 
protocols and describes their relative strengths and weaknesses. This review also shows 
how different protocols and their major design choices have affected the popularity and 
vitality of their respective development ecosystems. 
 
The findings are that, while there certainly exists a large number of more or less specialised 
protocols utilised in the field, the development and support investments have made only a 
few protocols which are relatively widely adopted. 
 
In conclusion, this thesis demonstrates and presents the benefits offered by a lightweight 
mesh connected sensor network in an automotive application. In successfully implementing 
this, it is shown that the benefits are real and easily obtainable. 
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Insinöörityön tarkoituksena oli analysoida ja koota tämän hetken esineiden internetin proto-
kollia suhteessa niiden merkityksellisyyteen eri solmuverkkoteknologioiden suhteen. Erilai-
siin sovelluksiin on nykyään käytettävissä suuri määrä IoT-protokollia, mutta vain muuta-
missa niistä solmuverkot ovat lähtökohtaisesti mukana ominaisuutena. Insinöörityön tarkoi-
tuksena oli koota katsaus käytettyihin teknologioihin ja keskittyä muutamaan tällä hetkellä 
saatavilla olevaan pääteknologiaan. 
 
Insinöörityössä perehdyttiin avoimesti saatavilla oleviin dokumentteihin ja muihin verkkoma-
teriaaleihin eri protokollista ja pyrittiin kuvaamaan niiden suhteellisia vahvuuksia ja heikkouk-
sia. Insinöörityöstä selvitettiin, miten eri protokollat ja niiden suunnittelulähtökohdat ovat vai-
kuttaneet näiden protokollien ja niiden ekosysteemien suosioon sekä elinvoimaisuuteen. 
Useat tutkituista protokollista ovat painottaneet yhteensopivuutta helpon laajennettavuuden 
ja protokollan avoimuuden kustannuksella, mikä heijastuu usealla eri tavalla sekä sovellus-
kehittäjille että loppukäyttäjille. 
 
Loppupäätelmä oli, että vaikka nykyisin tarjolla on suuri määrä enemmän tai vähemmän 
erikoistuneita protokollia, vain muutamat niistä ovat laajalti käytössä, mikä on seurausta tie-
toisista panostuksista kehitys- ja tukitoimintoihin. 
 
Insinöörityön osana tehtiin esimerkkisovellus käyttäen yhtä analysoiduista protokollista ja 
kaupallisesti saatavilla olevaa kehitysalustaa. Insinöörityöraportissa käytiin läpi sovelluksen 
eri osa-alueet laitteiston, ohjelmiston, kehitysympäristön sekä käytetyn pilvialustan osalta. 
Esimerkkisovelluksen toteutuksen voidaan todeta vahvistaneen aiemmin kuvattujen solmu-
verkkoteknologioiden etujen saavutettavuus ajoneuvokäytössä. Toimivan implementaation 
rakentaminen todisti näiden etujen olevan todellisia ja helposti saavutettavissa. 

Avainsanat Internet of Things, mesh network, solmuverkot, esineiden in-

ternet 
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List of Abbreviations 

3GPP 3rd Generation Partnership Project. Cellular technology industry stand-
ards body. 

API Application Programming Interface. A set of defined functions and proce-
dures exposing an application or service. 

DSRC Dedicated Short-Range Communications. Short-range to medium-range 
wireless communication technology designed for automotive use. 

EDGE Enhanced Data rates for GSM Evolution. Improved technology for allow-
ing higher data speeds in pre-3G mobile networks. 

HWMP Hybrid Wireless Mesh Protocol. A routing protocol used by the 802.11s 
standard. 

IDE Integrated Development Environment. An application providing a compre-
hensive set of functionalities for software development. 

IoT Internet of Things. An overarching set of technologies allowing low com-
puting resource devices and objects to connect to networks and transmit 
data. 

IrDA Infrared Data Association. An industry interest group that has defined an 
optical wireless protocol of the same name using infrared light. 

M2M Machine to Machine. A term describing machine-to-machine communica-
tions. 

NB Narrow Band. A term describing limited communications bandwidth. 

NFC Near-Field Communication. Very close proximity communications technol-
ogy. 

OSI Open Systems Interconnection. A system describing concepts and mod-
els for telecommunications and computing systems, developed by ISO. 

OTA Over the Air.  A concept describing wireless communications to repro-
gram networked mobile devices. 

PDU Protocol Data Unit. A single unit of information transmitted in a data net-
work. 

RFC Request for Comments. Text documents describing internet related tech-
nologies, some of which have later became the foundational standards for 
the Internet. 



 

 

RFID Radio-Frequency Identifier. A term describing devices allowing wireless 
identification of objects or devices. 

RoW Rest of the World. In telecoms, typically non-North American markets. 

SAR Segmentation and Reassembly. Action where a device has to divide, and 
on the other end, reassemble, a single PDU into multiple packets due to 
maximum transmit unit limitations. 

TTL Time to Live. Maximum transmission or lifetime limit for data being stored 
or transmitted. 

V2X Vehicle-to-X. Term describing several possible scenarios where a vehicle 
can transmit data to multiple other entities such as other vehicles (V), In-
frastructure (I) or any other receiver. 

WAN Wide Area Network. A network covering a wide geographical area. 

WLAN Wireless Local Area Network. A wireless network covering a smaller area, 
typically a single building or locale. 

WPAN Wireless Personal Area Network. A wireless network covering an area of 
a single person.
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1 Introduction 

This thesis analyses the current state of different IoT mesh networking technologies. The 

IoT field has been quickly maturing and first generations of deployments are now being 

phased out. Mesh networking as an idea has a long history, the Internet itself being one, 

but it has not been extensively applied to the IoT field previously. 

 

The first generation of what today would be considered IoT technologies were called 

M2M or machine-to-machine technologies and were based on cellular technologies, 

mainly 2G/2.5G(EDGE) networks. These deployments were quickly proven to have 

insufficient spectral efficiency and to be too expensive to support the envisioned number 

of nodes for future IoT deployments. Some industry suppliers suggested that the number 

of IoT nodes might reach tens of billions by 2020, which is several multiples higher than 

the number of mobile devices globally today and was certainly several orders of 

magnitude more than the number of M2M/IoT nodes in existence when the prediction 

was made. [1.] 

 

To counter these challenges, two main approaches have emerged in the IoT field in 

general. On the one hand, to lower cost and to make devices more spectrally efficient 

and energy efficient, several narrow band (NB) radio network technologies have been 

developed. While these are not mesh networks by definition, they are shortly discussed 

to give readers a broader overall picture. Another reason to discuss them is that a few 

edge cases exist. The second approach has been to create technologies to implement 

short range dense node-to-node networks where the main driver for development has 

been low cost and low power consumption. In addition, one of the aims has been to 

require close to zero configuration while remaining fault tolerant and providing a reliable 

communication channel through auto configuring node-to-node communications 

topology. These technologies constitute what are commonly referred to as mesh 

networks. [2.] 

 

This thesis concentrates on providing a current day picture of the IoT mesh networking 

technologies, including a brief historical background as well as analysis of several of the 

major protocols in the field today. 
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2 General overview of applicable communication technologies 

2.1 Comparison of (W)WAN, (W)LAN and (W)PAN 

There are certainly a wide number of technologies that are relevant to the IoT 

communications field, but not all of them are relevant when discussing the current state 

of mesh networking technologies. In the context of IoT mesh networks, the major division 

is between different WAN, (W)LAN and (W)PAN technologies. While these refer to 

distinctly different networking technologies and define separate technical domains, 

“mesh networks” can be used to refer to products in any of the aforementioned 

categories. In technical press, these fields are frequently conflated especially when 

discussing IoT products and services. This section shortly explores what is considered 

relevant in the context of this thesis. 

 

Additionally, it should be noted that only wireless radio frequency technologies are 

considered in this thesis. While there are certainly protocols and technologies that allow 

for wired mesh networks, most notably Ethernet and KNX based networks, these are not 

considered to be relevant in the IoT mesh networking context. Some IoT technology 

standards also consider and define specifications for short-range protocols such as In-

frared Data (IrDA), Near-Field Communication (NFC) and Radio-Frequency Identifier 

(RFID). While these are relevant to IoT products, they are not relevant to mesh networks 

as underlying protocols. In addition, certain highly specialised magnetic induction-based 

technologies are discarded, even though they are used for sensor networks in 

applications that could be considered to be the core the IoT field. 

2.2 Relevant (W)WAN technologies 

Wireless wide area radio networks are and have been one of the core enabling 

technologies for all IoT deployments. More specifically previous large scale M2M or IoT 

deployments have used 2G or 2.5G EDGE networks for connectivity, the most often cited 

example being several national deployments of “smart”, i.e. connected electricity meters. 

While technology has moved forward and today 5G networks are being deployed, the 

focus has been in increasing network throughput, supporting a higher number of 

subscribers and lowering network latency. None of these parameters is directly relevant 
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for many IoT applications, where especially throughput and latency are already sufficient 

today to meet the requirements. Primary drivers in IoT application development are low 

cost and low power usage. To fulfil these requirements for IoT applications, three 

different protocols and protocol families have emerged. [3.] 

2.2.1 3GPP defined standards 

3GPP is the standards organisation behind the current generation of mobile networking 

technologies. As such their IoT efforts build on the existing infrastructure and 

specifications. LTE-M, NB-IoT and EC-GSM-IOT, which are the three major protocols 

defined for different use cases, are all based in using star topology and are not relevant 

to this thesis, apart from being one of the applicable access methods for providing 

connectivity for IoT mesh network access or gateway nodes. [4.] 

 

It should also be noted that since 3GPP represents the current interests and vision of 

the existing operator and technology landscape, the standards preclude any possibility 

of alternative approaches into (W)WAN networking. All of the above-mentioned protocols 

are geared towards ensuring that the current model of deployment is kept unchanged. 

2.2.2 Sigfox 

Sigfox is a proprietary networking technology developed by a French company of the 

same name. The protocol exchanges data transmission rate and latency for very low 

power requirements and good signal coverage. As a consequence, the message and 

data rates are extremely low and Sigfox nodes can only transmit up to 140 messages 

with 8 bytes of data, per day. The network architecture is also exclusively based on star 

topology, which is required to keep the node hardware very simple and cheap to 

manufacture. Due to these limitations, it is not suitable to be used even as a mesh 

network gateway connectivity. [5.] 

2.2.3 LoRaWAN 

The LoRaWan protocol differs from the 3GPP family of protocols and from Sigfox in that 

it is intended as an open standards approach to providing low cost and low power 
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network technology for IoT applications. However, it builds on proprietary LoRa radio 

technology developed by the semiconductor manufacturer Semtech [6.]. 

 

The LoRaWan protocol family also has similar limitations as Sigfox with very low 

bandwidth. Similarly, the protocol specifications limit the network to star topology and 

there are no provisions to creating mesh networks [7.]. 

 

It should be mentioned that there are IoT mesh network development platforms available 

(PyCom LoPy4 / FiPy) that have LoRa hardware integrated, but even they do not 

envision it to be used for creating mesh networks. These platforms utilise other wireless 

protocols such as Bluetooth, which are similarly integrated into the same hardware, to 

form the mesh networks. 

2.2.4 DASH7 

DASH7 originated from American military communications technology development in 

2009. It was derived from the ISO18000-7 standard for RFID technology but has lost 

compatibility with the original specification along with further development. DASH7 

Alliance was formed to promote and ensure interoperability of the standard, which has 

continued to be developed by its members. The latest published specification is DASH7 

Alliance Protocol v1.2 released in January 2019. [8.] 

 

The focus of DASH7 was to provide a very low footprint and low power consumption 

protocol for asset tracking purposes while still enabling node-to-node communications. 

To this end, it exclusively uses sub-1GHz frequency bands and is based on the premise 

that nodes will only infrequently broadcast messages. This also implies basic star shaped 

network topology and the protocol does not include any provisions for nodes 

retransmitting messages, thus excluding mesh networking as an option. As such this 

protocol will not be further discussed in this thesis. [9.]  
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2.3 Relevant (W)LAN technologies 

2.3.1 802.11 Wi-Fi 

When IoT technologies and any connectivity solutions are discussed today, it is natural 

that the currently deployed IEEE 802.11 based Wi-Fi technologies is inherently included 

as one of the foundational technologies that have enabled ubiquitous connectivity 

underlying the entire IoT field. One of the more recent additions to scale and improve 

Wi-Fi networks have been the addition of mesh networking. Several widely available and 

well-known Wi-Fi networking products, such as Google Wifi, NETGEAR Orbi or Ubiquity 

UniFi, have made mesh networking one of their core features and the main selling points. 

[10.] 

 

This is also the specific context in which these Wi-Fi mesh networks might be most easily 

confused being relevant to IoT mesh networks. While Wi-Fi is certainly widely used as a 

pure access medium for different kinds of IoT nodes and terminals, it does not include 

provisions for allowing network clients to retransmit data to extend network reach, which 

is one of the defining features for mesh networks. Mesh networking is simply used to 

provide alternate backhaul data and a control plane for the base stations to communicate 

between themselves, thus increasing network coverage. Individual Wi-Fi network clients, 

be they IoT devices or not, do not form part of or connect into the mesh and are simply 

utilising the available network service as if it was any other standard Wi-Fi network. 

 

However, due to the extendable nature of IEEE standards there are some very specific 

sub-specifications under the 802.11 family that do include mesh networking elements 

extended all the way to end nodes. These are shortly discussed in two following 

subsections. 

2.3.2 802.11p / DSRC / ITS-5G 

IEEE 802.11p was originally published in July 2010 and was created as a protocol to 

enable communication in vehicular environments, for both vehicle-to-vehicle and for 

vehicle-to-infrastructure applications. Protocols based on this specification were 

developed in both in the United States and in Europe. In the United States, it became a 

DSRC specification published by the Department of Transportation, but no official rules 
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were ever published mandating actual use. In Europe, the ITS-5G specification was 

published as part of the Intelligent Transportation System platform, also making any 

implementation optional. It should also be noted that ITS-5G should not be confused with 

mobile 5G technologies as there is no direct relationship, other than roughly parallel 

technological fields. [11.] 

 

However, even after almost 10 years, neither DSRC nor ITS-5G have seen any 

significant deployments in actual production or end product environments. Today it 

seems that the manufacturers are seeing future technological development in different 

mobile networking technologies such as LTE or 5G mobile networks, rather than in a 

dedicated automotive V2X technology. Neither protocol is further discussed in this thesis 

due to lack of actual real-life implementation examples outside testing or lab 

environments. [12.] 

2.3.3 802.11s 

802.11s was designed as the mesh networking extension for standard 802.11 Wi-Fi 

networks. In 2012 when it was standardised and included in the main 802.11 

specification, the envisioned usage was to enable traditional Wi-Fi networks to utilise 

wireless medium to extend their footprint, which is one of the key benefits of features of 

any mesh technology. While specification allows for any Mesh Station (Mesh STA) with 

compatible features to participate in the mesh, in reality no provisions have been made 

for key IoT requirements such as a small footprint or low available system resources. 

Quite the opposite, 802.11s specification includes default mandatory routing protocol 

implementation for the HWMP routing protocol. In addition, the node can only be a 

member of either traditional Wi-Fi network BSS (Basic Service Set) or Mesh BSS, but 

never both. This has created a situation where 802.11s has been widely implemented 

only as a backhaul service for traditional Wi-Fi networks, rather than extending all the 

way to end user nodes. As such the 802.11s mesh networks are more relevant as device 

backhaul networks rather than as the access media for IoT device network connectivity. 

[13.] 
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2.4 Relevant (W)PAN technologies 

2.4.1 ANT / ANT+ 

ANT and its ANT+ interoperability extension, created by Garmin, are a proprietary but 

open standard. They are intended as a standard to connect different health and sports 

related sensors and systems. ANT also includes a very flexible connectivity scheme 

enabling multiple different options based on the actual application needs as shown in 

Figure 1. 

 

Figure 1: ANT network configurations. Copied from ANT Message Protocol and Usage [14]. 

 

 

While the ANT protocol is implementing connectivity for devices and things, such as 

bicycles and other sports equipment, which can be clearly seen as being in the core IoT 

field, it has clear focus on providing sensor data to measure the performance of individual 

users. In addition, to keep power requirements exceptionally low, allowing sensors to 

function years with off the shelf batteries, the ANT protocol has made several 

compromises in effort to keep the hardware simple. These compromises have resulted 

in allowing only very specific use cases for devices in the interest of providing 



 

  8 (50) 

 

 

compatibility. This is made apparent by ANT+ device profiles that only allow for 19 

different “device profiles” which each define a specific use case for a device using any 

of the profiles. While the underlying protocol can be used to implement applications 

outside the predefined profiles, there is no specifications-based interoperability between 

different devices. As such, ANT is not a general use IoT technology and will not be 

considered further in the context of this thesis. [15.] 

2.4.2 Bluetooth 

Bluetooth might be considered to be the original lightweight short distance wireless 

protocol to support low power sensors and other similar devices. In some cases, 

scatternet, as implemented by the original Bluetooth specification, is referred to as a 

mesh network. This is not entirely accurate and until Bluetooth LE implemented Mesh 

Profiles, no real mesh networking application existed in Bluetooth. [16.] 

 

Bluetooth is one of the major IoT networking protocols today and it is further analysed in 

section 3.3. 

2.4.3 Thread 

Thread is one of the more widely supported mesh networking protocols today. It 

originated from Nest, which was later acquired by Google. However, today Google is 

only one part of Thread Group along with Apple, Arm, Nordic Semiconductor, 

STMicroelectronic and Texas Instruments. 

 

As one of the major mesh networking technologies today, Thread is discussed in detail 

in section 3.4 

2.4.4 Insteon 

Insteon is a purely home automation focused communications protocol designed by a 

company called SmartLabs, which also holds all the rights and trademarks for the 

technology. One of the unique aspects of Insteon is that it utilises both wireline as well 

as wireless communication medium to create the network. This affords a certain amount 
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of flexibility to sensors and other nodes in connecting to the network, allowing for some 

unique use cases and increasing overall network reliability. Both wired and wireless links 

can form any part of the mesh and any node will also retransmit messages creating the 

mesh. 

 

However, Insteon is inherently a closed system and the manufacturer has only chosen 

to make a limited API available for external interaction with the system. The protocol is 

also explicitly designed for simply relaying short control messages rather than any more 

complex data payloads. The Insteon network is only able to transmit at rates ranging 

from a few hundreds to maybe 1000 bps, which limits it usability [17.]. Additionally, 

SmartLabs have updated the system in 2014 with some more advanced features, but 

also fracturing the protocol at the same time, as they dropped compatibility to certain end 

user devices and older hardware [18.]. In-depth technical documentation is not available 

in the public domain and is only made available at manufacturers’ discretion. Due to 

these factors, this protocol is not considered further in the context of this thesis. 

2.4.5 ISA100 Wireless 

ISA100 and its 101.11a sub-standard define a communications protocol for industrial 

applications. The intention of this standard is to create a highly robust, flexible and secure 

network to replace and/or augment existing wired instrumentation networks in process 

industries. The original standard was approved in 2012 for the first time and included 

mesh networking as one of the key methods to increase network reliability. 

 

ISA100 standards also have a very tight focus on specific industrial applications due to 

their highly critical nature. Manufacturer devices are required to go through rigorous 

testing to ensure their compliance with the standard specifications. The protocol is not 

intended for use outside the industrial field, and as such the ISA100 standards governing 

body, ASCI (Automation Standards Compliance Institute) or the specifications are not 

suitable for use outside this specific field. This is made abundantly clear by the standards 

official goal setting as articulated by ASCI in their official materials: 

ISA100 Wireless (ISA100.11a / IEC 62734) is an international, industrial wireless 
networking and communications standard engineered to serve the needs of pro-
cess industries. With native IPv6 networking and object architecture, ISA100 Wire-
less extends the Industrial Internet of Things (IIOT) to wireless. [19.] 
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Information on the protocol is not widely available, and also devices are available only to 

industrial end users. Additionally, the ISA101.11a cannot be considered to be of general 

use to IoT networking technology. Thus, it will not be further discussed in this thesis. 

2.4.6 MiWi 

MiWi is a proprietary WPAN protocol developed by Microchip with a focus on very low 

cost/low power applications. It is only available from Microchip directly as an integrated 

chip package with associated software, and none of the specifications are available in 

public domain. Mesh networking is advertised as one of the main features, but any further 

information is not made public. 

 

MiWi has also been on the market for more than 10 years, but still the manufacturer does 

not advertise any major deployments or reference implementations. Quite the opposite, 

even the manufacturer seems to be more focused on alternative technologies such as 

Bluetooth LE, LoRa, 802.15.4 radio and Wi-fi, at the expense of MiWi [20.]. This protocol 

is included for the sake of giving a comprehensive description of the field in this thesis 

but will not be further discussed. 

2.4.7 WirelessHART 

WirelessHART is based on the industrial standard HART protocol and can be considered 

as an extension to the wireless medium. The original HART standard provides 

communication for field instrumentation in industrial applications. In this sense, 

WirelessHART is fairly similar to ISA100, but one of the key differences is that, whereas 

the ISA100 specifications allow for any layer 7 application and thus are more flexible to 

user requirements, WirelessHART only supports HART standard based applications. 

This ensures device compatibility and interoperability between manufacturers but also 

makes the technology less flexible. 

 

While one of the core features of WirelessHART is mesh networking, the protocol has 

the same issues with no publicly available information and not being a generic mesh 

networking technology, as ISA100 [21.].  No further analysis of this protocol is included 

in this thesis. 
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2.4.8 ZigBee 

ZigBee is one of the more popular IoT networking technologies and very widely deployed 

with more than half a billion devices sold [22.]. ZigBee is further discussed and analysed 

in section 3.5 

2.4.9 Z-Wave 

Z-Wave is a wireless networking protocol with heavy emphasis on mesh networking. It 

was originally developed by a Danish company called Zensys, but the rights to the 

technology have changed hands several times over the years. Currently, Z-Wave is 

owned by Silicon Labs, but certification and licensing is managed by Z-Wave Alliance. It 

has grown in popularity over the years with over 2,600 available products utilising it 

today. Z-Wave is analysed and is discussed in detail in section 3.6. 
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3 Current state of the major IoT Mesh networking technologies 

3.1 General overview 

The in-depth part of this thesis is limited to the following competing protocols: Bluetooth, 

Thread, ZigBee and Z-Wave. Products based on these protocols represent the vast ma-

jority of currently commercially available devices utilising IoT mesh networking technol-

ogies. At the same time, each protocol has a different historical technical background 

and area of focus. These differences are discussed in the following sections. 

 

To enable highlighting differences between the protocols, the standard 7-layer ISO Open 

Systems Interconnect (OSI) model is used. However, it must be noted that each protocol 

has very specific implementation for different functions on an individual functional layer 

and not all of them are fully OSI model compliant. At times, the specifications omit some 

functionalities entirely, sometimes aggregating the functionalities of several different lay-

ers into one sub-protocol layer. For example, Thread and ZigBee specifications  do not 

strictly speaking include OSI layer 1 or 2, since they utilize standard IEEE 802.15.4 LR-

WPAN radio, whereas Z-Wave and Bluetooth both define their own radio layer function-

ality. Similarly, none of the protocols include full OSI model compliant session or presen-

tation layer implementation, in the interest of keeping required software implementations 

simple and lightweight. Pertinent functions from these layers are included in the overlay-

ing applications or omitted altogether as unnecessary. 

3.2 General enabling technologies 

3.2.1 Radio frequencies 

As previously noted, all of the discussed protocols are based on wireless radio frequency 

technologies. Common to all of these protocols is their use of Industrial, Scientific and 

Medical (ISM) radio bands. The benefit is that the use of these bands does not require 

any kind of licensing from the end user’s part. However, there are regional differences 

as to which frequencies are available, in some cases necessitating the implementation 

of region-specific hardware. 
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In general, the 2.4GHz ISM band is used by all of these protocols with the exception of 

Z-Wave, but this band has some shortcomings when it comes to frequency congestion 

and general interference due to its wide popularity. In general, higher frequencies also 

suffer from poor penetration in physically congested spaces, which can be an issue for 

IoT applications. To counter this, all the protocols include the use of lower 800-900 Mhz 

ISM bands with a notable exception of Bluetooth. Table 1 summarises the different fre-

quencies used by the protocols. 

Table 1. Frequency bands in use by different protocols 

Protocol Frequency Notes 

Bluetooth 
LE Mesh 2401.5 – 2480.5 MHz (Global) 

2.4 Ghz ISM bands only 
Same as BT Basic Rate / 
Enhanced Data Rate 

Thread 

and 

Zigbee 

2400 – 2 483.5 MHz (Global) 

868 – 868.6 MHz (Europe) 

902 – 928 MHz (North America) 

Both Thread and Zigbee use 

802.15.4 PHY 

Z-Wave 
Numerous bands between: 

865.2 – 926 MHz  

Z-Wave uses individual country 

and region-specific bands. 

3.2.2 IEEE 802.15.4 LR-WPAN protocol 

Both Thread and Z-Wave utilise IEEE 802.15.4 Low Rate Wireless Personal Area 

Network (LR-WPAN) for the layer 1 and layer 2 functionality. The IEEE802.15.4 protocol 

provides a very energy efficient and low footprint radio technology for upper layer 

applications and protocols to use. 802.15.4 is fully open and well-defined standard and, 

as a consequence, there is a wide availability of hardware and software implementations, 

enabling easy integration with other higher-level protocols and eventual products. 

 

IEEE released the initial 802.15.4 specification in 2003, and it has been updated, 

amended and revised since. The latest main version is 802.15.4-2018 and while specific 

amendments add new functionalities and expand the specification to different use cases, 
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the basic specification is still backwards compatible and ensures hardware 

interoperability. 

 

The main focus of IEEE 802.15.4 is to specify the low complexity/cost/power radio 

frequency protocol for data communication devices, but with the design parameters, the 

available bandwidth remains low. The devices are only able to communicate at speeds 

from 20-30 kbps to 250 kbps depending on the used frequency band. One of the newest 

amendments, 802.15.4x, enables 2.4 Mbps data rate. However, no hardware 

implementation using this amendment exists yet. 

3.2.3 External connectivity 

Internet connectivity is of course one of the absolute core features of any IoT service or 

product. Counter-intuitively, most of the IoT products or protocols do not actually provide 

direct IP connectivity, but rather require a border node to mediate any access into the 

local node or network. Only partial exception to this is Thread, which uses 6LoWPAN 

that includes a partial IPv6 stack, but still requires a similar border node to provide access 

control and translation services for the connectivity. 

 

This is due to the requirement of keeping the footprint of any implementation very small 

to enable the very low cost and minimal power usage of devices. In addition, the 

requirements for IoT node connectivity differ significantly from any fully Internet 

connected node. For example, the need to support higher level protocols, such as TCP, 

UDP or ICMP, does not exist in IoT applications, since a single node usually has very 

limited functionality, for example simply collecting data from a sensor/sensors or the 

basic control/actuation of devices. Thus, any aggregation of features and functionalities 

can be achieved by a higher-level application that has basic reachability into an individual 

node. As such full IP connectivity with the associated complexity is not required. 

 

Each of the protocols described/discussed in this thesis takes a slightly differing 

approach to providing public network connectivity and border mediation functions. These 

differences are shortly discussed in each individual section. 
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3.3 Bluetooth 

3.3.1 Overview of Bluetooth 

The Bluetooth protocol was originally intended to be a way for mobile phones to connect 

accessories and to other mobile/fixed devices. The Bluetooth protocol was never devel-

oped with pure IoT applications in mind. One such clear limitation was the maximum 

number of nodes which was limited to eight for a long period of time and which was only 

changed with later revision of the specification. 

Today Bluetooth has evolved to a much more capable protocol family, and at the same 

time mobile phones and smartphones have become one of the key devices for accessing 

and using everyday IoT networks and applications. One of the features that have enabled 

this change was the addition of Bluetooth Mesh protocol in 2017, which was based on 

the earlier Bluetooth LE standard. 

3.3.2 Bluetooth pre-LE 

The original versions of Bluetooth, until version 4.0, were developed mostly by mobile 

phone manufacturers with a clear aim of providing better interoperability, more robust 

connectivity and enhanced data rates for their application. These were, however, of lim-

ited applicability for IoT applications. The main downside of this approach was that en-

ergy efficiency or a small implementation footprint were not significant design consider-

ations. Due to this, IoT devices utilising early versions of Bluetooth never really gained 

much success and were very limited in scope, mainly providing access to individual sen-

sor/control devices rather than allowing a larger network of devices to be accessed. 

3.3.3 Bluetooth LE 

In 2010 Bluetooth SIG introduced updated version 4.0 specification for the protocols. 

Part of this update was an entirely new Bluetooth Low Energy (LE) protocol stack with a 

clear focus on enabling very low powered devices and rapid link establishment, both of 

which are core requirements for IoT mesh devices. The Bluetooth LE protocol stack later 

became one of the building blocks for Bluetooth LE Mesh or BLE Mesh, which launched 

in 2017. The previous version provided devices with simple 1-to-1 connections and even 
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a hub-and-spoke model by multiplying the single connections, but only Bluetooth LE en-

abled broadcasting data without pre-established connectivity. This feature formed the 

fundamental building block later enabling BLE Mesh. 

3.3.4 BLE Mesh 

Previous versions of Bluetooth are mainly concerned with enabling device-to-device con-

nectivity in a robust and interoperable fashion. BLE Mesh is a networking technology 

created to enable a large number of these devices to form a mesh network and com-

municate with each other. While newer versions of Bluetooth have always remained 

backwards compatible, new additions to the specifications require devices to specifically 

support them, even though the basic building blocks are pieces of the specification from 

an earlier version. 

BLE Mesh is easily the newest specification out of the four protocols discussed in this 

thesis. The basic protocol stack specification was only published in 2017, but as with any 

protocol, true maturity is only reached later. By January 2019, only version 1.01 has been 

published for the core stack. It must also be noted that there is a relative dearth of offi-

cially certified BLE Mesh components. At the end of 2017, only 13 individual components 

had been certified and that number has only increased to 223 today. In reality, the num-

ber of actual products is much smaller because individual components in the same prod-

uct family are individually certified, in effect multiplying the number of certified products. 

However, the real power of BLE Mesh is not the number of components that are natively 

supported but its implementation of a specific backwards compatible component that 

enables any relatively modern Bluetooth device to connect into BLE Mesh network. 

In the current form, the basic use case envisioned seems to be lighting control. The basic 

concepts and models have been designed with this in mind. Although there is nothing 

that would limit the use of BLE Mesh for other purposes, most of the available hardware 

and applications are also for building lighting management. While this is one of the most 

popular IoT mesh technology applications currently, all the other protocols described in 

this thesis have a broader scope of applications available today. It remains to be seen if 

BLE Mesh will prove to be popular outside this initially envisioned field. 
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3.3.5 Basic features of BLE Mesh 

The BLE Mesh network is a fairly low bandwidth and a relatively high latency protocol for 

low powered devices. It is intended for transmission of small control messages and/or 

for a small amount of sensor data. While node-to-node links can theoretically have 

speeds up to 2 Mbps, the network structure and basic specification significantly limit 

bandwidth available to a single node [23.]. 

Bandwidth and latency are also very strongly affected by network size. An increased 

number of hops has a negative effect on both. Even in the best-case scenario, where 

there is only a single intermediary hop and the payload size matches the packet size, 

the realised bandwidth is in low single digits in kbps. Similarly, while effective latency in 

an optimal case might be approximately 20-30 ms, adding further intermediary nodes 

effectively multiplies the latency at every hop. When this is coupled with segmentation-

and-reassembly (SAR) overhead when the payload size increases, it is possible to have 

latencies in the magnitude of several hundreds of milliseconds or even seconds, for fairly 

small payloads. 

While this is not in itself a clearly disqualifying issue, it is something to be kept in mind 

as the limitations are significant from current day technology standpoint. These 

limitations are also compatible with many IoT applications, where bandwidth and latency 

requirements are overridden by a small footprint, application compatibility or low power 

considerations. 

 

BLE Mesh also relies on managed flooding to deliver messages in the mesh. This 

effectively means that all nodes with relay functionality will rebroadcast messages to all 

other nodes within range. Receiving nodes will then again rebroadcast the message 

unless they have previously received it or unless the message time-to-live (TTL) has 

been exhausted. These mechanisms, along with the Friend/Low Power Node friendship 

relationship, form the “managed” part of the managed flooding method. While this is an 

inefficient way to utilise available bandwidth, reliability increases since messages can 

take multiple paths to reach their destination. 
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3.3.6 Network elements of BLE Mesh 

The BLE Mesh specification defines four different functional node types. Any node can 

have one or more of these functionalities at any time and they can be disabled/enabled 

when needed. For example, a node with the Relay function can also act as a Proxy and 

Friend node. Only Low Power Node is usually functionally limited and is intended as a 

very low powered device with a low duty cycle, allowing minimal power consumption. 

Other nodes are envisioned to have permanent (AC) power sources not limiting their 

power usage [24.]. 

 

Different node type functionality is as follows: 

• Relay Node – a basic node type which, in addition to a normal transmit/receive 

function, also forwards messages originally transmitted by other nodes in the net-

work. 

• Proxy Node – a node with proxy functionality implementing a standard Bluetooth 

LE stack in addition to the BLE Mesh stack. This enables Proxy Nodes to function 

as an intermediary device between the mesh and any Bluetooth LE compatible 

device, such as a mobile phone. Proxy nodes expose a GATT or Generic Attrib-

ute Profile interface to compatible external devices, which enables them to inter-

act with the mesh network. 

• Friend Node – a mesh node that functions in tandem with Low Power Nodes. 

Friend Nodes store messages addressed to Low Power Nodes when they are 

unreachable. The relationship between Friend and Low Power Nodes is called a 

friendship.  

• Low Power Node – nodes that have very low power available for functionality. 

Low Power Nodes can be sleeping or turned off for long periods of time to con-

serve energy and will only wake up intermittently to perform their intended func-

tion. The Friendship relationship formed with Friend Nodes enables them to be 

addressed outside these periods. 

3.3.7 Networking stack and structure of BLE Mesh  

BLE Mesh stack is built on the existing Bluetooth LE specification. All nodes must include 

this basic level implementation to be able to communicate with each other. The BLE 
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Mesh networking stack has a well-defined structure, as shown by Figure 2, with distinct 

functionalities for each layer described below. 

 
Figure 2: Bluetooth LE Mesh stack. Copied from Bluetooth Mesh Networking / An Introduction for 

Developers [24.] 

 

Different layers include the following functions: 

1) Bluetooth Low Energy: 

This layer is responsible for actual physical transmission of the data and abstracts 

some traditional OSI model layer 1 and 2 functionalities. Thus, any BLE Mesh 

implementation can remain physical media parameter agnostic, since this is all 

included and managed by the Bluetooth Low Energy part of the stack. 

2) bearer layer: 

This layer is slightly non-consistent with the standard OSI model and simply cre-

ates additional encapsulation for higher level PDUs. It is used for backwards com-

patibility with standard Bluetooth LE devices that do not support the BLE Mesh 

protocol stack. This layer supplies two different bearers, Advertising Bearer and 

GATT Bearer. GATT Bearer encapsulates PDUs in a way that allows non-BLE 

Mesh devices to receive and transmit BLE Mesh PDUs and interact with BLE 

Mesh in limited capacity. One of the limitations is that they cannot be part of the 

mesh beyond communication with a single node. 

3) network layer: 

The BLE Mesh network layer performs the more traditional functions of the stand-

ard OSI model. It defines the different message formats, network addressing and 
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performs basic filtering functions. It should be noted that BLE Mesh does not 

include any routing protocol functionality. This is also the layer where the Proxy 

and Relay Node functionality is implemented. 

4) lower transport layer 

This layer partially implements functionality from the OSI model transport layer. 

The lower transport layer is only responsible for the segmentation and reassem-

bly (SAR) of higher layer PDUs that do not fit into a single lower transport layer 

PDU.  

5) upper transport layer 

The upper transport layer manages the secure access aspect of the BLE Mesh 

protocol. It is responsible for encrypting, decrypting and authenticating data pass-

ing through to and from the access layer. Additionally, some node-to-node control 

messages and management messages are generated on this layer. Friend Node 

functionality is also implemented on this layer. 

6) access layer 

As the name suggests, this layer controls higher level application access into 

lower layers and implements OSI model presentation layer functionalities. The 

access layer defines how application data is formatted and verifies received data. 

The control of upper transport layer encryption/decryption functionality is also part 

of this layer.  

7) foundation models 

While foundation models are described as one of the layers, they are not quite 

congruent with the standard OSI model. It defines special foundational function-

alities for the network that are related to node provisioning, management and 

monitoring, but does not directly affect actual data transmission. The implemen-

tation of these foundation models is mandatory to any BLE Mesh device. 

8) models 

The model’s part of the BLE Mesh stack defines four predefined functions for the 

BLE Mesh network nodes. These categories are split into four general categories: 

generics, sensors, time and scene, and lighting. While these categories include 

several ready-made functionalities for the envisioned intended uses of BLE Mesh 

devices, their implementation is optional, and developers are free to define their 

own models. 
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3.3.8 External connectivity of BLE Mesh 

BLE Mesh does not make any kind of provisions for native external addressability from 

general IP networks. Addressing, security schemes and lower level network limitations, 

such as PDU size, make direct external addressing entirely impractical. However, this 

naturally does not exclude the use of a separate device that is connected to both an 

external network and to the BLE Mesh. It can even be argued that the relative simplicity 

of BLE Mesh Model hierarchy makes implementing such a device relatively 

straightforward. Additionally, this makes BLE Mesh slightly more secure, since any 

translation of external messages would inherently include sanity checking and parameter 

verification. 

 

However, BLE Mesh has a unique benefit and an advantage due to its backwards 

compatibility mode created with a special lower level bearer layer. Special GATT Bearer 

allows any Bluetooth Low Energy device to connect directly to BLE Mesh using Proxy 

Nodes implementing this functionality. This instantly allows almost any modern mobile 

phone, tablet or laptop computer to interact with the BLE Mesh network. Using a mobile 

phone as the platform for creating applications for end users to interface with the IoT 

device network has become the de facto standard and BLE Mesh has this support 

natively built into the protocol stack. A natural shortcoming of this approach is that the 

end user must be within reach of the network to be able to connect to it. While the short 

range of BLE Mesh might not be an issue for all applications, it is one of the limiting 

factors since allowing external connectivity would then require extra steps and devices 

to be included. 

3.3.9 Energy consumption of BLE Mesh  

One of the focus points for IoT applications is certainly low power operation of the 

network nodes. BLE Mesh implements a special Low Power Node (LPN) to allow devices 

with very low resources to participate in the network. The specifications allow the 

application to define the communication interval for the node which lowers the needed 

power even further. The interval may extend to hours or even days for applications that 

require only very infrequent communications between devices. In some cases, standard 

button battery can provide even multi-year lifetime for an individual LPN device. [25.] 
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Other node types in the BLE Mesh network are assumed to be permanently powered by 

an AC power source, and specifications do not include any provisions for lower power 

usage. Friend Nodes (FN), that enable LPN nodes to communicate only intermittently, 

must remain powered to ensure cached messages destined to LPN nodes, are not lost 

due to power loss. 

3.4 Thread 

3.4.1 Overview of Thread 

The Thread mesh protocol is an open mesh networking protocol based on the IPv6 

specification with emphasis on low power and security. The protocol is maintained and 

owned by Thread Group that makes the specification available free of charge to its 

members. Thread makes extensive use of other industry standard protocols: IEEE 

802.15.4 for layer 1 and layer 2 connectivity and 6LoWPAN for IP connectivity. 

Thread is a fairly new protocol having been published only in July 2015. It originates from 

Google’s Nest product family but was significantly revised when made open and public. 

Current day Thread Group is a much larger ecosystem including, in addition to Google, 

some of the IoT industry’s largest companies including ARM, Nordic Semiconductor, 

Apple, Amazon and Qualcomm. Thread Group also has a free academic tier making all 

the documentation available free of charge to students and educational institutions, 

which further encourages adoption. 

 

The focus for Thread has been from the beginning to provide a lightweight IoT protocol 

using existing IP technologies. This makes connecting to existing networks painless and 

allows a low barrier of entry for developers that are familiar with associated protocol 

stacks. It also allows for products to be relatively future proof since the foundational 

technologies are very well defined and support is universal. In addition to this, Thread 

Group also has a certification program available to its members, which allows for testing 

product interoperability and protocol compliance, thus removing ambiguity from the 

eventual end user, ensuring that the product actually works. 
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3.4.2 Network elements of Thread 

The main element of the Thread mesh is one Thread network. Networks are defined by 

their common security credentials and while a network can be divided into smaller 

entities called partitions, the security credentials are the same and retained when the 

network partitions. Each network has a single leader, and should the network partition, it 

will dynamically proceed to maintain this by electing a new leader node. When 

connectivity between partitions is restored, they will automatically merge into a single 

network again. 

 

Individual building blocks for the Thread mesh are divided into two main categories, Full 

Thread Devices (FTD) and Minimal Thread Devices (MTD). FTDs are envisioned as 

permanently powered elements of the network, which can fully take part in forming the 

mesh rather than being simple client connected to it. MTDs are then the low powered or 

even temporarily powered end nodes that provide basic IoT functionality such as 

switches, actuators or sensors.  

 

 

FTDs can have one of the following roles: 

• Leader: Each network or partition has a single leader elected, which assigns 

router addresses and processes new router requests. 

• Router: Forms the basis of the mesh network performing routing services. 

• Border router: A special routing device that includes additional functionality to 

connect into other physical networks. The Thread network can have more than 

one border router to provide redundancy. 

• Router Eligible End Device (REED): Router devices that can perform routing 

functions but are not currently acting as routers due to network topology or other 

conditions. 

• Full End Device (FED): A normal Thread node that is only sending data through 

a parent Router or REED node. 

 

MTDs can have the following functionalities: 

• Minimal End Device (MED): A low power device that does not include any routing 

capability and communicates only through its parent node. 
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• Sleepy End Device (SED): A very low powered node with basic functionality. It 

will only communicate with its parent node intermittently. It includes polling func-

tionality for queued communication. 

 

The relationship between a router and end node is always parent-child relationship. The 

end node will attach to a single router or REED. The end node can have FED, MED or 

SED functionality but is always the child. The Thread node taxonomy is further clarified 

in Figure 3. 

 

 
Figure 3: Thread node taxonomy. Copied from OpenThread – Thread Primer [26.] 

3.4.3 Networking stack and structure of Thread 

Unlike other protocols discussed in this thesis, Thread does not define application layer 

functionality and can actually accommodate multiple applications as long as the end 

node is able to process them. The Thread protocol provides a secure and transparent 

communications channel and a robust provisioning mechanism for network nodes, while 

staying application agnostic. Figure 4 shows the delineation between the underlying layer 

1-2 protocol, the Thread core stack and the layer 7 application layer. 
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Figure 4: Thread networking stack. Copied from Thread - An Introduction [27.] 

 

 

As previously noted, one of the core tenets of Thread is building the protocol on open 

and  well-standardised building blocks. To this end, Thread uses the IEEE standard 

802.15.4 for layer 1 and 2, allowing the usage of widely available standards-based radios 

and software components. Please see section 3.2.2. for further description of this 

protocol. 

 

For layers 3 and 4, Thread more closely resembles normal IP networks. This is one of 

the original design goals for Thread since it enables direct connectivity to the Internet. 

However, Thread is purely implemented using IPv6 standards and since global IPv6 

connectivity today is not available, one of the core functions for Thread Border Routers 

is providing translation service between IPv4 based networks and a local Thread mesh 

network. 

 

For routing inside the Thread mesh, a simple RIP-like distance vector protocol is used. 

Thread borrows algorithms while omitting protocol specific message formats from the 

relevant RFCs. Thread node IDs also include basic topology information by including a 

parent router ID in the child ID. [28.] 

 

Transport layer functionality is implemented using UDP. Since UDP does not provide for 

confirmed packet delivery via acknowledgements, similar functionality is implemented on 
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a lower MAC layer. Additionally, if an application has a strict requirement for packet de-

livery reliability, developers can implement any suitable mechanism on the application 

layer. The exception to this is Thread management and device provisioning traffic. Before 

the new node is allowed to join the mesh network or the network management application 

is used to access it, secure Datagram Transport Layer Security (DTLS) connection is 

first established to allow access. 

 

Above the transport layer, Thread does not provide any services in the network and all 

functionalities beyond it are left for application developers to implement. 

3.4.4 External connectivity of Thread 

External connectivity is inherently one of the key functional aspects of any IoT product, 

and this service in the Thread mesh network is provided by specialised nodes called 

Border Routers. Border Gateways provide important service for the Thread mesh net-

work, namely external connectivity, but they are not required for the network to function. 

The Thread mesh can be established and operated without any external connectivity and 

all aspects of it remain operational. In addition, one of the key points that Thread Group 

makes about their mesh protocol, is that it does not have single points of failure. Any 

gateway that connects to external networks is a such a point, but Thread supports mul-

tiple gateways for redundancy. 

 

Border Routers also have some additional functions in addition to plain forwarding of the 

traffic. Since the Thread mesh network is inherently based on IPv6, Border Routers pro-

vide the necessary translation service for global IPv4 connectivity. In addition, basic fire-

wall and rate limiting functions are usually implemented by Border Gateways to protect 

the relatively low bandwidth of the Thread mesh from malicious external or even site 

local traffic. 

Beyond these network-focused services, Border Routers can also implement additional 

features to improve user experience with different applications. For example, different 

application-specific service discovery mechanisms can be created to allow more seam-

less integration of devices into a Thread mesh network. Another example is application-

specific proxy service allowing access to sleepy SED node data through caching of the 

said data and without waking up the node, thus saving energy. 
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3.4.5 Energy consumption of Thread 

The Thread protocol was originally designed for IoT applications and as such low energy 

consumption is one of the key features. Most Thread node types are envisioned to be 

permanently powered using an external power source, with the exception of SED nodes. 

While the MTD nodes can also be considered for low power application, the focus is 

more on a small footprint for hardware and software implementation and continuously 

powered operation is assumed. 

 

SED nodes, on the other hand, can be very low power, to the extent that they can be 

powered by simple button batteries. For a simple sensor node connecting to the Thread 

mesh through its parent node, even this kind of minimal power source is able to provide 

sufficient power for several years [29.]. Achieving this kind of low power usage, of course, 

requires application developers to carefully consider their approach to communicating 

with individual nodes, but Thread and the underlying hardware platforms offer a good 

basis for achieving long device lifetimes.  

3.5 ZigBee 

3.5.1 Overview of Zigbee 

The Zigbee protocol was originally developed alongside the IEEE 802.15.4 LR-WPAN 

protocol by Zigbee Alliance and was the first standard made available using this lower 

level protocol. The original Zigbee standard, which has since been obsoleted by newer 

versions, was published in 2005 as “Zigbee 2004 Specification”. Later on, a separate 

Zigbee PRO specification was published, which broke some aspects of interoperability 

with the standard Zigbee protocol family. In addition to this, Zigbee 2006 specification 

introduced the concept of Cluster Library, which is basically the application layer 

functionality built on top of the lower lever Zigbee protocol. However, these specifications 

and standards have changed several times and the current Zigbee 3.0 specification 

builds on all of these separate components.  

 

In addition to the original Zigbee specification family, Zigbee Alliance has continued to 

build on the existing platform by publishing several other related technology standards 

that take advantage of and complement the Zigbee platform, such as: 



 

  28 (50) 

 

 

• Dotdot – Replaces Zigbee Cluster Library for the IP network focus application 

layer, which can also be used with other competing IoT technologies such as 

Thread. 

• rf4CE – Consumer Electronic layers 3-7 stack focused on a low device footprint. 

• JupiterMesh – Industrial grade IoT mesh networking stack standard for layers 1-

4 based on relevant industry standards. 

• Green Power – Extension to Zigbee PRO standard allowing the use of ultra-low 

power devices with no external power sources, utilising power harvesting. 

3.5.2 Network elements of Zigbee 

Zigbee networks have three main functional elements: Zigbee Coordinator (ZC), Zigbee 

Router (ZR) and Zigbee End Device (ZED). These elements have very similar functions 

compared to other similar IoT mesh networking protocols. ZC nodes are responsible for 

coordinating the network and providing security services for node provisioning. ZR nodes 

provide message routing and parent functionality for child ZED nodes. The ZED nodes 

are then limited feature set low powered nodes that are able to communicate only 

intermittently with their parent node allowing for very low powered devices. ZC and ZR 

nodes are generally assumed to be permanently powered. However, one of the unique 

aspects of Zigbee mesh networks is the usage of beaconing networks. This option allows 

ZR nodes to also sleep and send a beacon to the network at preconfigured intervals. All 

ZED nodes will then wakeup intermittently to listen for this beacon to confirm network 

availability. While this would in general lower power requirements, it also requires 

accurate time keeping at ZED nodes, which might be counterproductive from a power 

management point of view. 

3.5.3 Networking stack and structure of Zigbee 

Zigbee uses IEEE 802.15.4 LP-WPAN for layer 1 and 2 services, Zigbee PRO for layer 

3 and 4 services, and the Cluster Library provides the upper layers with an application 

focus. Zigbee takes a similar approach to BLE Mesh that also has a clearly defined 

application layer. The benefit of this approach is easier interoperability between devices 

from different manufacturers. However, this comes at the expense of implementation 

flexibility. 
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Zigbee has resolved this partly by allowing both private and company specific profiles in 

the Cluster Library. 

 

In addition to this, Zigbee Alliance publishes several different protocol stacks under the 

Zigbee umbrella with different focuses dependent on the intended application. These 

build on the same underlying technologies such as the IEEE 802.15.4 protocol and partly 

on Zigbee PRO. These multiple protocol stacks are displayed in Figure 5, which clearly 

shows the flexibility of the Zigbee family protocols for different applications. 

 

Figure 5: Different Zigbee networking stacks. From left to right: Zigbee 3.0, Zigbee Dotdot, Zigbee 

Smart Energy, Zigbee JupiterMesh and Zigbee PRO with Green Power. Copied from Zigbee Al-

liance website section [30.] 

3.5.4 External connectivity of Zigbee 

The Zigbee mesh network is not directly addressable from any other network and all 

connectivity relies on a special border router doing the necessary adaptation. Similar to 

BLE Mesh, this affords some security benefits since traffic filtering and sanity checking 

is inherently part of any translation process. However, the Zigbee 3.0 specification does 

not include any standardised way of implementing this kind of external gateway and 

developers are left with creating their own approach to connecting to any external 

services. There is certainly a large number of hardware platforms available, but today no 

simple way of connecting the Zigbee mesh to external networks exists. 

3.5.5 Energy consumption of Zigbee 

Zigbee 3.0 specification is designed from the ground up with low power applications in 

mind. While most network critical nodes including ZC and ZR are intended to be perma-

nently powered, Zigbee does allow some flexibility in the form of beaconed networks. 

This allows even ZR nodes to sleep, lowering power consumption. ZED nodes, on the 
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other hand, are clearly intended for low power devices with limited resources. Nodes with 

very low duty cycles can remain dormant most of the time enabling multi-year battery 

life. New extensions allow Zigbee devices to function even without a primary power 

source only using power harvested from the environment or user action. [31.] 

3.6 Z-Wave 

3.6.1 Overview of Z-Wave 

Z-Wave differs from other protocols in this thesis in that it was originally developed by a 

single company. Danish Zensys published the first version of the protocol that would later 

be standardised as Z-Wave in the early 2000’s. It was based on their proprietary system-

on-chip (SOC) product and at the time offered a unique combination of high performance 

and low cost. However, this approach was seen as too inherently dependant on a single 

company and in 2005 several industry players along with Zensys formed Z-Wave 

Alliance. The purpose of this organisation was to promote Z-Wave technology and 

ensure system interoperability between devices from different manufacturers. To this 

end, Z-Wave Alliance launched an official certification program in 2013. 

One of the key differentiating factors for Z-Wave is that all the core intellectual property 

assets are owned by a single company and thus are not available to public. Silicon 

System, as the current owner of the original Z-Wave assets, has elected to make only 

small part of the core technologies publicly available. All implementations rely on SOC 

hardware from this single vendor. While this mitigates any lower layer compatibility 

issues, it leaves the whole ecosystem dependent on the technology choices that this 

single company makes. This closed nature of the ecosystem has been used as one of 

the arguments against larger adoption of Z-Wave. 

 

Z-Wave, however, has had a significant early mover advantage having been an 

established technology for more than 15 years. It also has several unique technical 

attributes that are well suited for IoT deployments, such as exclusive use of lower 

frequency ISM bands in the 865-926 MHz range. 
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3.6.2 Network elements of Z-Wave 

Z-Wave networks are relatively simple compared to the other protocols. It only has two 

basic node types called Controllers and Slave Nodes. The Z-Wave network also has a 

hard limit of 232 nodes in the network, due to original specification limiting Node ID to an 

8-bit value. Today networks can be extended with a special bridge device if required, but 

this was only added as a feature in 2015. 

 

A network can have several controller nodes, but only one of them can be Primary 

Controller (PC) at a time. The others will remain Secondary Controllers (SC) but one of 

them can take place of the PC node after network or node malfunction, in a process 

called healing. The PC node is responsible for administrating Network ID and allocating 

Node IDs during the node network joining process. The PC node also gathers, maintains 

and distributes the network topology information. Any Controller node must be 

permanently powered, but in addition to this, their position in the network must remain 

static, for them  not to cause topology changes which then must be separately 

propagated. 

 

Slave nodes are the Z-Wave standard nodes. They may repeat received frames, thus 

creating a mesh network, but they do not take part in network topology administration. 

Additionally, if a slave node repeats or routes frames not intended to it, permanent power 

is required. Z-Wave also has a low power feature called beaming, which allows low 

powered slave nodes to sleep for a set period of time and then wake up to process 

commands. These nodes are called Frequently Listening Routing Slaves (FLiRS). 

3.6.3 Networking stack and structure of Z-Wave 

The Z-Wave networking stack is superficially similar to the other protocols described in 

this thesis. However, there are also significant differences in individual layers. For layer 

1-2, Z-Wave uses the ITU-T g.9959 standard short-range narrow band radio. The key 

difference is that the Z-Wave radio only utilises sub-GHz ISM bands, which affords it 

more range, but comes with a significant data rate disadvantage. Z-Wave raw data rates 

are fairly low at 100/40 kbps for the United States and 100/20 kbps for Europe and the 

rest of the world. Using region specific frequencies also requires separate hardware 
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implementations, but since there is only a single supplier for Z-Wave chips, this is less 

of an issue. 

 

Layer 3-4 implementation is largely similar to other protocols, with a few notable features. 

Z-Wave layer 3 inherently includes deterministic message delivery with a mechanism to 

ensure retransmission of any partial or lost frames. In addition, Z-Wave is the only 

protocol described in this thesis to use source routing. This allows transmitting nodes to 

choose the best path through the mesh, but at the same time, it requires even low 

powered nodes to maintain at least minimal topology information. 

 

One of Z-Wave’s features enabling a high degree of interoperability is the usage of a 

standard application layer. The protocol includes a number of Command Classes 

specifying node functionalities and any node will declare which of these functions it 

supports when a network is being joined / is joined. 

 

In general, the Z-Wave networking stack includes all the layers from 1 to 7 as displayed 

in Figure 6. This limits flexibility and reinforces the Z-Wave Alliance’s message on their 

focus on providing interoperability above other technical attributes. 

 

Figure 6: Z-Wave network stack. Copied from Application-oriented wireless sensor network com-

munication protocols and hardware platforms: A survey [32.] 
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3.6.4 External connectivity of Z-Wave external 

The Z-Wave mesh network is not directly addressable through any other common net-

work infrastructure. One of the defining factors for Z-Wave devices is a very small device 

footprint and low power consumption which limits the functionality of individual nodes. 

Any device providing external connectivity to a Z-Wave network, must provide all trans-

lation and command interpretation functions to enable the control of any Z-Wave device. 

The protocol specifications do not include or contain provisions of any kind for facilitating 

external control. 

3.6.5 Energy consumption of Z-Wave 

Z-Wave devices are intended for low power applications, for example, in light switches 

and simple sensor devices. While most of the nodes are assumed permanently powered, 

low power nodes have support for sleeping and only transmit data periodically. This low-

ers their power consumption significantly. Newer generation Silicon Labs Z-Wave 700-

series chips even have a decade long battery life with a normal coin battery. [33.] 

3.7 Summary and comparison of primary attributes 

3.7.1 Summary 

All of the main protocols reviewed in this thesis are actively being developed today and 

have wide availability of systems and vendors. This does not mean that they are equal 

in all aspects. Their background and history, in addition to fundamental protocol design 

choices, make them different in several different ways. This section reviews and com-

pares these differences from an overall systems point of view to give the reader some 

understanding of the strengths and weaknesses of each protocol. 

3.7.2 Energy efficiency 

Energy efficiency has been one of the fundamental enablers of a large number of IoT 

applications. The objects that are to be connected are largely not electronic devices nor 

even necessarily powered at all. All four protocols clearly take into account this kind of 

use cases. All include a node type that allows for extremely low power usage, mostly 



 

  34 (50) 

 

 

through some intermittent transmission mechanism. While most protocols allow this 

mechanism to be controlled by the application, Thread uniquely leaves more control and 

also responsibility for the application developer since it does not include any application 

layer in the protocol. All the other protocols have set application layers or mandatory 

libraries of functionalities that set certain limitation for the usage. This kind of integration 

with the lower level systems can enable more efficient power usage. 

 

All of the protocols enable basic IoT functionalities with very few power resources, for 

example with normal coin battery. In general, the lifetime of such a device can be 

measured in years or even more. The one improvement over this is Zigbee, which has 

an ultra-low power networking stack component that allows devices to operate even 

without an integrated power source at all, only using harvested energy. 

3.7.3 The ecosystems 

The number and wide availability of different devices and systems is of course important 

to end users. 

BLE Mesh, due to its recent launch, has the smallest number of devices available today. 

This is partly offset by the ability of almost any mobile device to connect to the BLE Mesh 

devices. It is almost one of the most universally implemented networking protocols, 

making it a very attractive for developers. 

 

Thread today has a fairly low number of devices available, but the fact that it utilises 

fundamental IP technologies makes it a very attractive platform. This is clearly shown by 

the fact that some of the largest consumer technology brands including Apple and 

Google are active members and contributors of Thread Group. 

 

The same is also true for Zigbee, which has taken an open approach allowing almost 

anyone to access and implement their technology without major barriers of entry. Zigbee 

has also been well established in the IoT field and this is apparent from the number of 

devices and companies supporting Zigbee. 

 

Z-Wave is the only protocol taking a slightly different approach. The system is strictly 

defined and there are significant cost barriers for entry. In addition to this, the Z-Wave 

Alliance has a single supplier hardware platform, not allowing any third parties to 
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implement fundamental Z-Wave technologies. Z-Wave Alliance has a long history in the 

field going back more than a decade. During the nascent years of IoT technology, the 

limited access approach was seen as a benefit due to guaranteed interoperability. This 

means that Z-Wave has significant existing support from the current install base and 

from the companies that have created product using it, but it is not seen as the most 

competitive platform anymore. Especially the announcement published in January 2020 

that Amazon would be joining Zigbee Alliance was seen as a big loss for Z-Wave [34.]. 

3.7.4 Comparison of open and closed models 

All of the protocols discussed in this thesis are managed and owned by central authorities 

with different models for ensuring technological viability. These entities generally own 

the core intellectual property and are involved in licensing relevant parts of it. This differs 

significantly from other Internet technologies, which are generally made available openly 

and without significant fees. 

 

Z-Wave is closest to what could be termed as a closed technology model. Critical pieces 

of the technology are entirely closed and available only as commercial products, but also 

part of the software implementation is kept strictly accessible to consortium members for 

hefty fees. Small part of the application layer library was made openly available in 2017, 

but even that represented a very small part of the whole networking stack. 

 

Beyond this, Bluetooth SIG makes almost all of the technology available to its consortium 

members, but fairly steep yearly fees are required. There are also specific licensing 

requirements and agreements that members must agree to. In general, Bluetooth SIG 

member is a corporation using BT in its products and due to historical reasons 

membership is heavily skewed to mobile phone and related product industries. However 

also due to Bluetooth´s wide availability, almost any platform has readily available BT 

libraries and software packages that make developing products easy. 

 

Zigbee is slightly more readily available. Paid membership is required to access full 

protocol specification and other information, and also certifying products incurs separate 

fees. Zigbee has recognised this as one of their weaknesses and has made part of the 

stack available to public. In general, Zigbee licensing fees are less prohibitive and there 
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is a clear aim towards more open policies, while still ensuring core functionality and the 

brand not being diluted by poorly functioning products. 

 

Thread is closest to what could be considered an open technology platform. When 

Thread Group was originally formed, one of the goals was to enable easier adoption of 

the specification, and to this end, Google  published OpenThread. OpenThread is a freely 

available implementation of the Thread networking stack. In addition to this, the 

membership of Thread Group is available for free to certain developers and other fees 

are similarly very low. This makes developing applications for Thread easy, in 

comparison with all of the other protocols analysed in this thesis. 
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4 Example implementation using Thread 

4.1 General description 

The intention of this example implementation is to give an idea of complexity involved in 

developing a simple system to monitor environmental parameters in an automotive ap-

plication. This is based on the author’s need to obtain temperature data for several dif-

ferent storage spaces over a period of time from an example vehicle to facilitate safe 

storage of both automotive chemicals and consumer grade lithium-ion batteries, both of 

which are vulnerable to extreme temperature changes. 

It should also be noted that in this test case, the specific vehicle allows the user to actively 

condition the interior space of the vehicle to allow persons and pets to remain inside the 

vehicle even while the vehicle is not being operated. However, the manufacturer’s mobile 

application only provides a single temperature measurement for user monitoring. In this 

case the vehicle is what is commonly referred to as a “hatchback” model, in which the 

passenger compartment and trunk are one continuous space. The trunk is the area 

where pets are commonly kept, but the temperature of this space is not monitored at all. 

In addition to this use case, the system could easily accommodate temperature monitor-

ing for trailers connected to vehicles. In this case, having a probe connected to a mesh 

would be clearly beneficial, as other options, such as having wired sensors, would prob-

ably not be possible or would be extremely expensive. 

In the test scenario, there are four separate interior spaces of which only two are effec-

tively conditioned. In addition, the difference in estimated ambient temperatures during 

a single 24-hour test period exceeded 30 degrees Celcius, thus necessitating active 

measures to understand temperature parameters. 

4.2 Test system 

The tested system is based on the development boards of Particle.io, namely a single 

“Boron” LTE enabled mesh gateway and three “Xenon” mesh nodes. These boards use 

Thread to form the mesh network between nodes and are designed to easily enable 
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prototyping of IoT mesh networking products. All Particle.io products are tightly inte-

grated into cloud services and all the communication to and from the created mesh net-

work passes through their API layer. Integration through third party services is enabled 

by creating application specific event handlers which Particle.io calls “web hooks”. 

However, one of the major downsides of the system in its current stage is that Particle.io 

does not make any diagnostic tools available for the mesh part. Mesh functionality was 

confirmed and simply deducted from device behaviour when individual nodes were re-

peatedly placed outside range and then an intermediary node was introduced into the 

topology by moving one of the other mesh nodes between the two disconnected nodes. 

Further tools and improvements are needed in the future, but they are not available at 

the time. 

Beyond this, Particle.io provides good diagnostic tools to check the health of the non-

mesh part of the devices. Several technical parameters are followed, such as signal 

strength, quality and connectivity latency. The user is also able to initiate checks in real 

time for any node if needed. The console also tracks history data, so that any trend and 

deviation can be gleaned from it. Figure 7 shows the device console view for the mesh 

LTE gateway node used in this example implementation. 

Figure 7: Individual console view of Particle.io. Screenshot [35.]  
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In the test system, the collected data points were pushed to the Ubidots cloud service, 

which allows for both easy integration with the chosen platform and also provides very 

flexible data analytics tools. Integration was achieved with the functions library of Ubidots 

which is compatible with the Particle.io devices. 

The temperature measurements were done using a basic DHT11 type temperature sen-

sor providing 1 °C resolution with +-2 °C accuracy. While not exceptional, these param-

eters were deemed acceptable for the demonstrated application. There is also a well-

documented functions library available for the DH11 sensor on the Particle.io platform. 

4.3 Network and device setup 

One of the core features of Thread is an easy setup of mesh network nodes while main-

taining good security. The Particle.io device setup process mirrors the suggested setup 

procedure of Thread where devices are recognised based on a physical QR code on the 

device and network access is authenticated through physical access to an existing mesh 

member device and the mesh password. 

The setup and node configuration process is as follows: 

 

Primary node and mesh setup: 

 

Since a mesh cannot exist without at least a single device associated with it, it is usually 

created at the same time with initial device setup. The QR code is read with a mobile 

application to allow the user to access the device through Bluetooth. The mesh node is 

then placed in listening mode by pressing a physical button after which Bluetooth is used 

to setup initial configuration parameters for any other connectivity and to create the mesh 

network and associated password. During this step, the device is associated with the 

Particle.io user account which enables connection to their cloud services if external 

connectivity is available. 
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Creation of additional mesh nodes: 

 

When a new mesh node is created, the initial process is the same. The QR code is read 

with the mobile application and the device is placed in listening mode. After this step, the 

user must place another node, which is already associated with the mesh network, in 

listening mode. After scanning the second device QR code, parameters for the mesh are 

automatically associated with the new device. The last step is for the user to provide the 

mesh password for the new device. This is to prevent unauthorised users that have 

physical access to devices from adding nodes to the mesh. 

 

It should be also noted that Particle.io has a CLI tool available for more granular manual 

access to the same mesh setup process. Device QR codes are just used to simplify the 

setup process and allow the user to configure new devices without manually entering 

unique 24-character device IDs. This CLI based method only works when devices have 

external connectivity available and the devices have already been associated with a user 

account. 

4.4 Particle.io integrated development environment 

After the hardware setup, device programming and software management has been 

made simple through a web-based IDE environment. All devices sold by Particle.io are 

associated with cloud accounts for the service to enable the tie-in to a specific account 

and software. Non-configurable device firmware has a unique ID enabling identification 

of specific devices, which will then show up in the management console and develop-

ment environment automatically. 

This web-based development environment is also one of the key features of Particle.io 

devices in general. It is the main method for updating device programming over the air 

(OTA), and while the same process can be completed without connectivity, using a sup-

plied USB cable and CLI software, it is clearly made the preferred method. When devices 

are not connected, software updates can also be queued so that an update is pushed to 

the device after connectivity is re-established. 
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In the IDE, the user is presented with a basic code editor, but the user is of course free 

to use any preferred editor. Particle.io uses C++ for programming, making it very familiar 

to anyone who has previously programmed comparable embedded systems. 

IDE is very simple and only includes basic functions to compile, verify and push software 

into a single selected device. Also, a repository of different ready-made libraries is avail-

able free, in addition to any software and libraries previously created by the user. Links 

are available to separate management console and also to particle documentation as 

seen in Figure 8. 

 

Figure 8:  Particle.io integrated development environment showing the device selection menu. 
Screenshot [36].  

4.5 Device programming and configuration 

When the initial setup and device association with the used account was completed, all 

devices automatically became available in the IDE. A WiFi gateway device was used for 

development purposes, but it was replaced with the LTE gateway for the actual test data 

collection. 

For both WiFi and LTE gateway devices, basic software was created where main loop 

simply listened out for any Thread Mesh publish events, which were then individually 
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pushed into the Ubidots cloud. The loop forked to read the local temperature sensor 

every 60 seconds and pushed that data into the cloud as well. 

Software programming for the Mesh nodes was similarly very rudimentary, containing 

only main loop which published Mesh event containing collected temperature information 

every 60 seconds. In addition to the temperature information, also local battery supply 

voltage was read and pushed to Ubidots as well.  

Both sensor integration and Ubidots connectivity were done using a ready-made library 

for the components. The biggest challenge was caused by low speed sensor chips, 

which required significant error handling to read reliably. This part was actually almost 

half of the actual code. 

Overall, this approach to IDE seemed ideal especially as cloning software to individual 

sensors became a question of pushing the same software to each device effectively 

cloning the sensors. All device and event identification and sorting was entirely automatic 

and did not require any coding. 

4.6 Ubidots cloud setup 

Ubidots provides basic level free account access on trial basis to almost all functionalities 

with small “dot” counts. These dots are the individual data samples that can then be 

stored, analysed and further processed in the Ubidots cloud. Such an account was reg-

istered for the purposes of collecting the data for this thesis. 

After registration, a single API key was created to access the Ubidots cloud from the 

devices. This API key was hard coded into all of the devices and it provides device au-

thentication for the Ubidots cloud. When any event is pushed, it includes the unique de-

vice ID which then becomes automatically associated with all further data from the de-

vice. The Ubidots console displays all devices that have pushed data to the cloud using 

credentials associated with the account. Each variable pushed by an individual device is 

also listed in the console and these variables then become available for analysis, event 

triggering and visualisation using Ubidots tools. 
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In this case, a dashboard was constructed associating temperature variables from the 

gateway and all sensors into a single line chart and battery variables into individual bat-

tery charge level indicators. Ubidots is flexible in allowing customization of almost all 

aspects of these visualisation tools, including appearance, data selection and setting 

limits for individual variables. For example, the battery indicators have a four-level colour 

coding, allowing quickly identifying whether the device requires charging. 

4.7 Test procedure and results 

As indicated, the mesh is a combination of four mesh devices. One of them is an LTE 

modem which allows external connectivity. Each device was placed into a separate com-

partment in the vehicle to track the interior temperatures. One of the compartments is 

also a semi-effective faraday cage. Placing one of the sensors in the cage immediately 

allowed for an acceptable signal. 

 Figure 10 shows the overall sensor location in the vehicle. However, the devices were 

all placed in open, unclosed space in their respective compartments, to allow the sensor 

to accurately measure ambient temperature. The LTE gateway was placed in the main 

cabin to allow a good signal through the glass windows of the vehicle. 

 

Figure 10: Compartment placement in the vehicle and the sensors located in each space. 

Overall, the system proved to be very reliable and no major gaps were observed in the 

data samples, even in known poor signal areas. In addition, even with special power 

management code, all of the nodes had about half a week battery life with miniature 1000 

mAh Li-po cells. The device duty cycle used was 1/60, and this seems to imply that multi-
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month battery life would be achievable fairly easily with proper code optimisation and 

some additional logic in the sampling period, even with this limited power capacity. 

The devices were left in the vehicle for 72 hours spanning normal use. The collected 

data had several interesting findings that could not be simply deducted from other infor-

mation and had to be empirically tested. For example, the vehicle front motor quickly 

increased front storage space temperature after driving, due to residual heat transferring 

into the compartment. The lower rear storage did not have similar heating, even though 

the vehicle rear motor was similarly in close proximity. Figure 11 shows the collected 

data and the Ubidots dashboard that was created to track it. 

 

Figure 11: Ubidots data dashboard used to track and analyse collected data. Screenshot [37]. 
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5 Conclusions 

IoT Mesh networked sensors are an ideal solution for collecting data in real time from 

challenging environments such as passenger vehicles. They provide a solution that 

would otherwise require a considerable amount of manual collection and processing of 

data from traditional data loggers or otherwise instrumenting a vehicle, which would be 

both time consuming and technically difficult. 

The tested system, even in development form proved to be very functional and reliable 

in providing real time data. While the mesh network devices and protocols are quickly 

developing, even in their current form, implementing this kind of system was fairly 

straightforward and could be done with a minimal budget. 

It can easily be imagined that this kind of a system could prove useful in monitoring a 

multitude of physical parameters or actuating a simple function. Especially when vehicles 

get larger than normal passenger cars, it becomes increasingly more costly to provide 

wired sensors for non-safety critical applications. 

Beyond the maturing application field for IoT technologies, also the protocols themselves 

seem to be developing towards more uniform platforms. The recent announcement of 

the CHIP alliance has taken an approach similar to Thread’s in that on base level the IP 

protocol was made transparent to applications. Since this alliance now includes many of 

the major IoT companies, including Google, Apple, Amazon and the Zigbee Alliance, it 

seems that there is a clear direction towards making IP truly a universal protocol. While 

the focus of this alliance is in connected home technologies, it can easily be seen as 

validation of the Internet centric approach taken beyond just this single application realm. 

While all of the protocols in this thesis can be made to be compatible with the pure IP 

world, it is only Thread that previously had the IP protocol as one of the fundamental 

building blocks. Now Zigbee has also made it their choice. Inside the connected home 

application realm, there certainly seems to be need for a highly interoperable protocol 

that can be used in low power devices in conjunction with higher speed and higher power 

nodes. It remains to be seen whether Google’s involvement in this latest development is 

problematic for Thread Group, since Google still has a strong influence on the project. 
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What is notable is that while BT has been one of the most well-known protocols in the 

IoT field for decades, it has not been able to transfer that footprint into the IP centric 

world. The same is also true for Z-Wave, which seems most at risk to be abandoned with 

further technological development. 

Regardless of what the underlying technologies are, it seems indisputable that IP cen-

tricity is one of the core requirements for the future. It seems logical that the protocols 

that have been able to grow and include this in their fundamental nature are poised to 

be the platforms for tomorrow’s applications.  
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