
Edge MLOps framework for AIoT applications

Continuous delivery for AIoT, Big Data and 5G applications.

Emmanuel Raj

Master’s Thesis

Master of Engineering - Big Data Analytics

June 3, 2020

MASTER’S THESIS
Arcada University of Applied Sciences

Degree Programme: Master of Engineering - Big Data Analytics

Identification number: 7751
Author: Emmanuel Raj
Title: Edge MLOps framework for AIoT applications

Continuous delivery for AIoT, Big Data and 5G ap-
plications.

Supervisor (Arcada): Magnus Westerlund

Commissioned by: TietoEvry

Abstract:
Recent years witnessed a boom in IoT devices resulting in big data and demand for
low latency communication giving rise to a demand for 5G Networks. This shift in
the infrastructure is enabling real-time decision making using artificial intelligence
for IoT applications. Artificial Intelligence of Things (AIoT) is the combination of
artificial intelligence (AI) technologies with the Internet of Things (IoT) infrastruc-
ture to achieve more efficient IoT operations and decision making. Edge computing
is emerging to enable AIoT applications. Edge computing enables generating insights
and making decisions at the data source, reducing the amount of data sent to the cloud
and central repository. An ecosystem to facilitate edge computing for AIoT appli-
cations has become essential to make real-time decisions at the data source. In this
thesis, we develop a framework to facilitate machine learning at the edge for AIoT ap-
plications which enables continuous delivery, deployment and monitoring of Machine
Learning models at the edge (Edge MLOps). We will propose an ideal architecture,
services, tools and methods for optimization of costs, operations, and resources to fa-
cilitate efficient edge-cloud operations at scale using Microsoft Azure. Validation of
the framework is done by performing iterative experiments with IoT devices set up
in rooms on a campus enabled by a private LAN, this campus is based in Helsinki,
Finland. For experiments, multivariate time series forecasting is done to predict future
air quality in respective rooms using machine learning models deployed in respective
edge devices. We conclude these AIoT experiments to validate proposed edge MLOps
framework efficiency, robustness, scalability and resource optimization.
Keywords: Edge Computing, Machine Learning, IoT, 5G Net-

works, AI, automation, digital transformation
Number of pages: 84
Language: English
Date of acceptance: 26.05.2020

CONTENTS
1 Introduction . 8

1.1 Background . 8
1.2 Developments . 9

1.2.1 Origins . 9
1.2.2 Recent Developments . 10

1.3 Edge Computing . 11

2 Framework . 12

2.1 AI and Machine Learning at the edge . 12
2.2 Current Problem . 15
2.3 Solution . 16

2.3.1 Research Question . 17
2.3.2 Studies for addressing the research question 17
2.3.3 Significance to the field . 18

2.4 Components and processes for edge AI ecosystem 18
2.5 Limitations . 20
2.6 Aim of the project . 22

3 Research Theory and Methodology . 23

3.1 Towards a Research Methodology using Design Science 24
3.1.1 Design Cycle . 24
3.1.2 Empirical Cycle . 25

3.2 Applied Machine Learning Methods . 26

4 Experiments . 32

4.1 Setup . 32
4.1.1 Hardware Tools . 33
4.1.2 Software Tools . 33

4.2 Machine Learning Operations for AIoT Application 34
4.2.1 Dataset Analysis . 34
4.2.2 Feature Engineering . 44
4.2.3 Model Training . 47
4.2.4 Model Evaluation . 49
4.2.5 Model Packaging . 50

4.3 Design Cycle: Proposed framework for Edge MLOps 50
4.3.1 Azure Cloud Services used . 51
4.3.2 Continuous Integration for IoT to Edge 52
4.3.3 Continuous Integration IoT to Cloud . 52
4.3.4 Fleet Analytics . 54
4.3.5 Continuous Delivery and Deployment for Edge 55
4.3.6 Proposed and implemented Architecture 57

4.4 Empirical Cycle: AIoT Application . 60
4.4.1 Observations . 61
4.4.2 Limitations . 63

5 Results and Discussion . 65

6 Conclusion . 70

References . 73

Appendix A . 78

Appendix B . 84

3

FIGURES
Figure 1. Development milestones of cloud and edge computing 10

Figure 2. Intelligent edge and Intelligent cloud powered by 5G networks 12

Figure 3. Growth of IoT devices over time. 15

Figure 4. Continuous delivery for Machine Learning on Edge 16

Figure 5. Schematic data flow and communication from sensor machine to edge

device . 20

Figure 6. Limitations of edge computing. 21

Figure 7. The subject of design science: an artifact interacting with a context . . 23

Figure 8. Computing the output of an SLFN (ELM) model 27

Figure 9. Random forest structure . 29

Figure 10. One-dimensional linear SVR . 31

Figure 11. On premises experiment setup . 32

Figure 12. Data snapshot of 3 months of data collected from IoT sensors 36

Figure 13. Data non-stationarity over time observed for selected rooms. 37

Figure 14. Frequency of data in each room. 37

Figure 15. Frequency of data in each room. 38

Figure 16. Normal distribution of air quality in rooms 38

Figure 17. Emprical analysis for room a10. 39

Figure 18. Timeseries data progression for room a10 40

Figure 19. Emprical analysis for room a29 . 41

Figure 20. Timeseries data progression for room a29 42

Figure 21. Emprical analysis for room a30 . 43

Figure 22. Timeseries data progression for room a30 44

Figure 23. Feature Engineering data snapshot . 45

Figure 24. Feature correlation using pearson correlation. 46

Figure 25. Timeseries split - Cross validation . 48

Figure 26. Docker container deployed in each edge device 53

Figure 27. Fleet analytics for edge devices (telemetry data) 54

Figure 28. CI-CD pipeline for continuous delivery of ML models to the edge. . . . 55

Figure 29. Proposed architecture . 57

Figure 30. Extended Framework for Federated Learning 64

TABLES
Table 1. Descriptive statistics for air quality in selected rooms. 39

Table 2. Model training results. 50

Table 3. AIoT experiment machine learning inference results. 61

Table 4. Quantitative analysis - Edge vs cloud based on the experiments. . . . 63

Table 5. Quantitative analysis - Edge vs cloud scaled. 63

5

ACKNOWLEDGEMENT

This thesis is supported by TietoEVRY and 5G-Force project (5G-Force). 5G-Force is

part of 5G Test Network Finland (5GTNF 2020). 5G-Force project is funded by Business

Finland (Finland 2020). Thank you TietoEvry and 5G-Force project for the support.

6

FOREWORD

This thesis is a product of a multifaceted one year endeavor from June 2019 to May 2020.

This was inspired by the idea of finding a solution to the complex landscape of edge com-

puting, IoT and Machine learning. The thesis intends to examine how a framework that

integrates continuous delivery and continuous deployment of machine learning models

at the edge can be implemented using state-of-the-art tools and methods. It was done

under the teaching supervision of Professor Magnus Westerlund, Arcada University of

Applied Sciences and under industry supervision of my colleagues Dr. Ari Rantanen and

Dr. Chengyu Liu from TietoEvry.

I want to thank my supervisors, Magnus Westerlund, Dr. Ari Rantanen and Dr. Chengyu

liu for being a great help during the development of this thesis. This thesis is done in

collaboration with partners TietoEvry and VTT Finland as part of the 5G-Force project

and Smart Otaniemi project, both research projects are based in Helsinki, Finland. This

project focuses on innovation and building smart solutions for the future. With the in-

ception of the project, we got access to the premises arranged by VTT Finland where IoT

devices were set up for our experiments for the project. A key objective of the project is to

understand computing trends and curating smart solutions for the future. Special thanks

to Dr. Seppo Horsmanheimo, Kimmo Ahola and Sami Huilla from VTT Finland for great

collaboration, feedback and support throughout the experiments with the necessary hard-

ware and software support. Lastly, thanks to my family and friends for encouragement

and guidance. Especially my mother Blandina Raj, father Ch. Joseph S Raju and friends

Anton Akusok, Rita Azevedo, Henrik Meyer and Thomas Forss for supporting me to

frame my thoughts and ideas over the last year and a half. This thesis personally enabled

me to understand my strengths, weaknesses and formulate a clear vision.

Emmanuel Raj

7

1 INTRODUCTION
The onset of this millennium resulted in a surge in cloud computing making it a vital

part of businesses and IT infrastructures. Cloud computing is the on-demand availabil-

ity of computer system resources, especially data storage (cloud storage) and computing

power, without direct active management by the user (Dillon et al. 2010). It offers ben-

efits to organizations such as no need to buy and maintain infrastructure, less in-house

expertise required, scaling, robust services and pays as you go features. Especially in

the last decade, many global and regional players like Google, Microsoft, Amazon, IBM,

Upcloud, Alibaba, and more have emerged. Over the years Cloud computing has revolu-

tionized the way organizations build applications and operate their data centers.

Organizations are now able to centrally store massive amounts of data and optimize com-

putational resources to deliver on their data processing needs which depict the change

from localized computing (own servers and data centers) to centralized computing (on the

cloud). With the advent of big data, moving devices (self-driving cars, mobiles, etc) and

industrial IoT, there is an increasing emphasis on local processing of information in order

to enable instantaneous decision-making. So we are witnessing a shift in trend from cen-

tralized (cloud computing) to decentralized computing. Edge Computing is the process of

performing computing tasks physically close to target devices, rather than in the cloud or

on the device itself (Shi et al. 2016). It enables extracting knowledge, insights, and mak-

ing decisions near the data origin. It is quick, secure, local, and facilitates decentralized

processing. Edge computing also enables data confidentiality and privacy preservation

on demand as it is becoming essential across multiple industries. The growing amount

of data (IoT) and the limitations of cloud computing (for networking, computation, and

storage) currently are leading to a decentralized system like Edge Computing.

1.1 Background
There is a paradigm shift in computing approach of resource optimization in terms of

energy, efficiency, finance, and human resources to sustain computing resources and in-

frastructure for organizations to run their services (Bilal et al. 2018) (Raj 2019a). We

are at a phase where energy and resource optimization is becoming important, hence we

see many investments from the public and private sector going towards building smart

solutions and cities which enable smart societies (Bilal et al. 2018). This thesis is done

8

in collaboration with partners TietoEvry and VTT Finland as part of the Smart Otaniemi

project which is a research project based in Helsinki, Finland (VTT 2019). This project

focuses on innovation and building smart solutions for the future. With the inception of

the project, we got access to premises arranged by VTT Finland where IoT devices were

set up for our experiments. This was an ideal setup to begin our experiments to under-

stand computing and infrastructural landscape with a goal to curate smart solutions for

the future.

1.2 Developments
Cloud computing was adopted by the industry in the year 2006 with Sun Microsystems

introducing hardware and data resource sharing, it was launched as Sun Grid in March

2006 and later named Sun Cloud just prior to being acquired by Oracle. Simultaneously

Amazon promoted its cloud computing services as “Elastic Compute Cloud” (Techcrunch

2016). This opened up new opportunities in terms of computation, storage and scaling

which attracted attention across industries.

Although cloud computing evolved to go to solutions to many use cases and industries,

cloud computing as such was not the solution in all use-cases. With the advent of big

data, self-driving cars, and Internet-of-things (IoT), for example, there is an increasing

emphasis on local processing of information in order to enable instantaneous decision-

making using AI which is also called Artificial Intelligence of Things (AIoT) (Tan &

Wang 2010) (Wu et al. 2019). Edge computing unlocks the potential to make real-time

decisions or extract knowledge near the data origins (Shi et al. 2016).

1.2.1 Origins

The genesis of decentralized computing can be backtracked to the 1990s when the content

delivery network(CDN) was launched by Akamai, since then there have been major de-

velopments in cloud computing, edge computing, IoT, and low latency Networks. When

Akamai launched its content delivery network. The idea was to introduce nodes at lo-

cations geographically closer to the end-user for the delivery of cached content such as

images and videos.

In 1997, Akamai’s work on “Agile application-aware adaptation for mobility,” demon-

strated how resource-constrained mobile devices can offload certain tasks to powerful

9

Figure 1. Development milestones of cloud and edge computing

servers especially for different types of applications like web browsers, graphics, video,

and speech recognition (Brian D. Noble 1997) . Akamai’s work was mainly focused on

pervasive computing environment as it facilitates computing and communication capabil-

ities to serve users (Satyanarayanan 2001). For example, today companies like Google,

Apple, and Amazon work in a similar way for speech-recognition services. The cloud

computing era began in 2006 when Sun Microsystems introduced Sun Grid (later named

Sun Cloud) and Amazon introduced its “Elastic Compute Cloud” (Techcrunch 2016).

Amazon introduced the pay-as-you-go model (Amazon Web Services) that popularized

the use of cloud computing. In telecom we did have cloud computing like solutions be-

fore, early 2000s, but not as usage based payments. Amazon Web Services and other

subsequent cloud providers have opened up many new opportunities in terms of com-

putation, visualization, and storage capacities. However, Cloud computing comes with

some security and data privacy issues and challenges, hence it is important to assess what

they provide, limitations, pros, and cons and get an overall understanding of the fast-

developing ecosystem (Popović & Hocenski 2010).

1.2.2 Recent Developments

In 2010, Ericsson predicted that 50 billion devices would be connected by 2020, a pre-

diction echoed by Cisco in 2011, as of 2018 there was an estimated 22B devices (Statista

2020). To enable such a scale of IoT devices in low latency edge computing will play an

10

important role. In year 2012, Edge computing started getting attention with Cisco intro-

ducing fog computing for distributed cloud infrastructures (Bonomi et al. 2012). The aim

was to promote IoT scalability and robustness, to handle a huge number of IoT devices and

big data volumes for real-time low-latency applications. Fog computing shifts data pro-

cessing to a centralized system on a local area network (LAN) by interacting with indus-

trial gateways and embedded computer systems, whereas edge computing performs data

processing on the compute devices directly interfacing to sensors or data origins.

To manage IoT devices, big data and to enable faster decisions, edge computing offers

opportunities to take compute close to data origin, it is an ideal choice when it comes

to cases with IoT devices, low latency, and real-time operations, For IoT applications to

serve at the scale it is important to have the right synergy for cloud and edge. Soon, IoT

solutions have to cover a much broader scope of requirements keeping scalability and

robustness as the focus. As we see AI integrating into industries, it is vital to synergize

edge computing and artificial intelligence to enable real-time decisions near data origins

for robust and scalable systems in future.

1.3 Edge Computing
Edge Computing is the process of performing computing tasks physically close to target

devices, rather than in the cloud or on the device itself (Shi et al. 2016). It enables extract-

ing knowledge, insights, and making decisions near the data origin. It is quick, secure,

local, and facilitates decentralized processing. Edge computing also enables data confi-

dentiality and privacy preservation on demand as it is becoming essential across multiple

industries. The growing amount of data from Internet of Things (IoT) and the limitations

of cloud computing (for networking, computation, and storage) currently are leading to a

decentralized system like Edge Computing.

11

2 FRAMEWORK
In this thesis, we will implement rapid experiments for IoT and 5G set up on the edge to

evaluate offloading machine learning at the edge compared to machine learning centrally

at the cloud and its implications. One of the main goals of this thesis is to develop a robust

and scalable operational framework for efficient continuous integration and continuous

deployment of Machine learning models at the edge for AIoT applications (Wu et al.

2019). Before we delve into the experiment details, setup, and goals, let us look the

benefits of using AI and machine learning at the edge in the next section.

2.1 AI and Machine Learning at the edge
The purpose of edge computing is to put computing close to the data source and to offload

centralized computing to decentralized. Edge computing makes it possible to apply differ-

ent machine learning algorithms at the edge, which enable new kinds of experiences and

new kinds of opportunities across many industries ranging from Mobile and Connected

Home, to Security, Surveillance, and Automotive. It also enables secure and reliable per-

formance for data processing and coordination of multiple devices (Beyer et al. 2018).

Figure 2 depicts an overview diagram of how a secure and reliable intelligent edge archi-

tecture is constructed.

Figure 2. Intelligent edge and Intelligent cloud powered by 5G networks

12

Edge computing has several benefits compared to traditional cloud-based computing. For

example, researchers built a service to run face recognition applications where the re-

sponse time is reduced from 900 ms on the cloud to 169 ms by moving the application

to edge (Yi et al. 2015). Another example where researchers used edge computing to of-

fload computing tasks for wearable cognitive assistance, resulted in the improvement of

response time ranging between 80 to 200 ms which is exponentially better than the central

or cloud computing approach (Ha et al. 2014). Also, a by-product of this approach is the

energy consumption could be reduced by 30 to 40 % by implementing edge computing

(Shi et al. 2016).

The advantages for Machine Learning at the Edge are the following:

1. Stronger Hardware: In today’s world, many applications rely on very strong or spe-

cialized hardware. Modern machine learning algorithms, for example, work best with

GPUs or tensor processing units (TPUs). Day by day, edge devices are getting hardware

upgrades that enable high computation power to small hardware devices (Girish Agarwal

2019). With upgrades and multiple edge devices, we are able to exponentially increase

overall hardware capacity in order to serve and infer robust and scalable machine learning

at the edge (near data origins).

2. Better Latency (compared to cloud): If applications depend on immediate feedback

(e.g. to make “real-time” decisions), sending data to the cloud, calculating and sending

the data back to the device may take too long. However, if the path is reduced to the (much

closer) edge node and back, many use cases can be realised (Satyanarayanan 2017).

3. Hyper Personalization: Devices (IoT) can be in different environments and locations,

they might need to perform tasks customised to their respective environments. in such

cases edge devices or nodes can enable customisation for each device as in a custom ML

model for each device performing realtime inference at close proximity (Girish Agarwal

2019). Also, this way ML models deployed at the edge can optimize and retrain when

needed, constantly learn to serve better. This is limited and not possible on scale in the

Cloud.

13

4. Data throughput: Devices may produce enormous amounts of data. One single

autonomous car for example may produce up to 4000 gigabytes per day (Nelson 2016). If

every single car sent all data it generates all the way to central datacenters it would create

a huge load on the network. By performing the necessary computations on edge nodes

close to the device, most of the paths can be pruned. This is especially important when

considering the increasing importance of the internet of things and the rising number of

devices connected to the internet (Shi et al. 2016).

5. Reliability and robustness: The main functionality of devices should still be available,

even if communications to the central cloud are impaired. This can be achieved by relying

on local communication with an Edge Node which should (in theory at least) be less prone

to problems (Girish Agarwal 2019). If an edge node fails, the devices will be shifted to

an alternative edge node.

6. Privacy: In many use cases collecting user data is required or useful. However, in cases

where aggregated data is sufficient, the users privacy can be preserved by aggregating

the data on the edge node instead of the cloud (Westerlund 2018). Edge computing can

facilitate data and privacy-preserving machine learning which is also called Federated

Learning (Konečnỳ et al. 2016), in which no edge node or centralized compute exchanges

data.

7. Scalability: In most cases the computing power of devices is limited by their small

size. Furthermore, developing a new use case that requires stronger hardware will require

all possible users or the network administrator to update the devices, which limits the use

cases adoption rate. Edge nodes do not suffer from these problems and can be extended

both very easily and continuously (Beck et al. 2014). Using a suitable edge computing

framework, adding, replacing or upgrading edge devices is a simple and highly automated

process.

8. Adaptability: Utility of an edge node instead of a single purpose server has the added

benefit of being adaptable to changing circumstances (Girish Agarwal 2019). After en-

abling a base environment, edge nodes can be easily configured to provide individual sub-

sets of services depending on the environment. Some use cases are only useful in cities

while others may be more beneficial in rural areas. Due to the direct connection

14

to the cloud and higher-level Edge Nodes moving workloads and freeing up computing

power for critical use cases is possible and can be done on the fly.

9. Sustainability and Cost reduction: Devices are producing enormous amounts of data.

One single autonomous car for example may produce up to 4000 gigabytes per day (Nel-

son 2016). If every single car sent all data it generates all the way to the cloud for machine

learning inference it would create a huge load on the network and electricity consumption

to serve these requests would be tremendous burden and in turn this would also result

in huge costs for Businesses. Instead, outsourcing and taking Machine Learning infer-

ence and data pruning at the data origin on the edge will exponentially decrease costs and

enable sustainable business (Girish Agarwal 2019).

2.2 Current Problem
In this section, we will observe and reflect on some current problems, needs and trends

that are leading us to envision a smarter solution to cater to future needs. Every need or

growing problem presents us with opportunities to optimize and improve with the current

tools. Let’s look into some trends and growing needs over the past years.

Figure 3. Growth of IoT devices over time.
source: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

In the last decade, we have seen explosive growth in connected devices which is pioneer-

ing the world into the era of Internet-of-Things. Figure 3 shows how several IoT con-

nected devices installed worldwide are growing in billions. To handle this growth

15

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

cloud computing has its limitations in supporting lightweight IoT devices, especially for

the delay in communication context awareness of applications. These applications need

to serve a high volume of IoT devices, in realtime for data processing, management of IoT

networks and making context-aware decisions in realtime near the vicinity of IoT devices,

this becomes necessary for paving the way to address the challenges of cloud computing

and the emergence of edge computing (Ren et al. 2017). With this huge potential, some

challenges would arise when we do Machine Learning on edge devices at scale to manage

and monitor the machine learning models, edge devices, secure devices and their commu-

nication, and efficiency of the system and many more questions around it. We can tackle

these challenges by taking a systematic approach to enabling continuous deployment and

continuous integration at the edge with the right synergy with the cloud. Implementing

such practices in your AI projects will yield sustainable and fruitful results. You can pro-

duce more productive and robust machine learning models in terms of training, execution

time, deploying, and monitoring.

2.3 Solution
To address the problem of the growing number of IoT devices, big data and limitations of

centralized or cloud computing, here is a birds-eye view of the process for edge and cloud

synergy that will enable robust and scalable Machine Learning at the edge.

Figure 4. Continuous delivery for Machine Learning on Edge

16

In this process, sensor data is collected from IoT device(s) by the edge device(s) where

the model is inferred (ie: ML model prediction) and the collected data is concatenated

with the model prediction and sent in batches for storage at the cloud. Once Data is stored

successfully in the cloud, data collected in the edge is deleted.

It is a good practice to continuously monitor the incoming data and retrain your model on

newer data based on the deployed machine learning model drift, if you find that the data

distribution has deviated significantly from the original training data distribution (Akki-

raju et al. 2018). And based on that perform retraining of the machine learning.

Model Training, Validation, and versioning are done on the cloud due to the availability of

robust and scalable computation and storage enabled by cloud services. Once a machine

learning model is trained or retrained it is rolled out to production deployment at the edge

device(s).

We will be looking into executing this process as a solution using best-fit cloud ser-

vices (from Microsoft Azure) to synergize with edge computers near IoT sensors in a

low latency network to perform machine learning inference or decisions in real-time au-

tonomously.

2.3.1 Research Question

The objective of the thesis is to investigate and develop methods that will enable auto-

mated edge artificial intelligence. The focus of the research will be to answer the ques-

tion:

"How can a framework that integrates continuous delivery and continuous deployment

of machine learning models at the edge be implemented using state-of-the-art tools and

methods."

2.3.2 Studies for addressing the research question

In order to address the research question we will study the following engineering areas.

Following are the studies to curate an automated edge AIOps framework for AIoT appli-

cation:

17

1. To assess the maturity of cloud services to enable operations on the edge and to

identify the limitation.

2. To curate a process for continuous delivery and deployment of Machine learning

models at the edge.

3. To explore ways of working in real-time IoT data processing and machine learning.

4. To observe how automated systems operate in real life and production settings.

2.3.3 Significance to the field

This thesis will contribute to the field of machine learning by exploring applied machine

learning to modern technologies like edge computing, IoT, and modern networking pro-

tocols (MQTT). Contribution to the field as follows,

1. Proposing a flexible architecture that can serve multiple use cases across multiple

industries.

2. Assessing the current limitations of cloud services and looking at work around to

achieve the most efficient ways of working for automated edge AI.

3. Validate benefits of applied machine learning at the edge such as better latency,

reliability, robustness, hyper personalization, sustainability and cost reduction.

2.4 Components and processes for edge AI ecosystem
This sub-section introduces components and processes that are central to solving the re-

search question.

• Edge Computing: Edge Computing allows data to be analyzed near or at the lo-

cation of data origin before being sent to the cloud or data center. At the edge,

knowledge can be extracted and decisions can be made using AI.

• Machine Learning: Machine learning is a method of data analysis that automates

analytical model building, Machine learning algorithms can learn from data, iden-

tify patterns and make decisions without much human involvement.

18

• Continuous Delivery and Deployment: Continuous delivery is focused on keeping

software releasable all the time, continuous deployment extends it to continuously

and automatically deploy new changes into production. A continuous deployment

is a push-based approach, by which code changes are automatically deployed to a

production environment through a pipeline as soon as they are ready, without human

intervention. Continuous delivery is a pull-based approach in which a person (e.g.,

a manager) is required to decide which and when production-ready code changes

should be released to production (Shahin et al. 2019).

• Fleet Analytics: It is aggregated analytics for each edge device used in the exper-

iment which depicts device performance over a period of time with telemetry data

like accelerometer, gyroscope, humidity, magnetometer, pressure and temperature.

This information in turn is useful to monitor edge devices health and longevity.

• Machine Learning Lifecycle Management: Machine Learning lifecycle manage-

ment is an efficient way of working for building, deploying, and managing machine

learning models critical for ensuring the integrity of business processes (Raj 2019b).

• AIoT: Artificial Intelligence of Things (AIoT) is the combination of artificial intel-

ligence (AI) technologies with the Internet of Things (IoT) infrastructure to achieve

more efficient IoT operations, improve human-machine interactions, enhance data

management, analytics and decision making (Wu et al. 2019) (Rouse 2020).

• MQTT (Networking protocol): MQTT is based on clients and brokers, were the

client’s requests of receiving or sending data between each other (e.g. Edge de-

vices) and broker (like a server). The broker is responsible for handling the client’s

requests for receiving or sending data between each other.

1. The MQTT server is called a broker and the clients are simply the connected

devices, in our case it is IoT sensors.

2. When a device (a client) wants to send data to the broker, we call this operation

a “publish”. When a device (a client) wants to receive data from the broker, we call

this operation a “subscribe”.

19

Figure 5. Schematic data flow and communication from sensor machine to edge device

MQTT is designed as a robust, session-oriented protocol especially suitable for the

world of IoT, where the clientID plays the central role for session management. The

MQTT specification requires the clientID to be provided within the first data frame

of the protocol during session establishment. The semantics of the clientID is to

provide the unique way a session can be (re)established between a client and the

broker, without any further information. So the clientID is required to be unique

per broker over time, hence, no collision of clientIDs should ever happen. As the

clients are not aware of each other, but usually provide their own clientID, it must

be drawn from large set of possible clientIDs so the probability of a collision of

clientIDs is negligible.

2.5 Limitations
Edge computing has many advantages (as discussed in section 2.1), but also has certain

limitations. Some limitations of edge computing are shown in figure 6 .

20

Figure 6. Limitations of edge computing.

1. More Hardware: Edge computing requires setting up more local hardware. Eg:

IoT cameras on the street or self driving cars require a built-in compute hardware

to process, infer and send video data over the internet to the cloud as well as a

more sophisticated computing process for more advance process applications, such

as objects-detection, motion-detection or facial-recognition algorithm. So for adop-

tion of edge computing on scale a massive add on to existing infrastructure is needed

in terms of more computing power.

2. Data limitations: Edge devices store, processes and analyzes only a subset of data,

discarding raw information and sending only needed information to the cloud. Or-

ganizations must consider what level of loss of data is acceptable and have a solid

data strategy in place for edge computing. Contrary to this data pruning when done

right can be a major benefit. Edge devices also have limited access to full data in

cloud or on-sight and it’s data governance is limited to edge device only.

3. Security: Edge computing can increase the probability of attacks. With IoT sensors,

networking, and built-in computing the chances of attacks by malicious hackers to

infiltrate the devices and access sensitive data have increased. One potential risk

is data and device manipulation attacks. If hacked, it is possible to manipulate

the device about the data it has collected, leading to bad decisions. Security is an

important area in edge computing, in most of the use cases privacy and compliance

are highly important so edge-cloud setup has to comply with data privacy and laws

for location (Beck et al. 2014).

21

2.6 Aim of the project
The aim of the project is to evaluate, validate or develop a robust and scalable framework

for edge computing that will enable automated machine learning at the edge for AIOT ap-

plications, The application will be fairly industry and use case agnostic. This framework

would facilitate:

• Continuous integration and continuous deployment of Machine Learning models at

the edge.

• Fleet analytics to monitor edge devices in real-time.

• Machine learning model lifecycle management.

22

3 RESEARCH THEORY AND METHODOLOGY
Studies in software engineering are often of an interdisciplinary nature and this thesis

is not an exception. The research field of software engineering is often defined as an

intersection of information technology, business, and data processing. In this study, the

business dimension is focused on private and public companies determined to optimize re-

sources, increase efficiency and upgrade their existing services to be smarter and enabled

by the power of artificial intelligence through real time data using Internet-of-Things. For

the social context of the research these businesses have goals to optimize resources in

terms of energy, time, money and human resources. Optimizing these resources will drive

efficiency, growth and adoption of modern technologies like edge computing, artificial

intelligence of things (AIoT) and low latency networks.

In order to address our research question we will follow a design science method pro-

posed by Wieringa (2014). Design science is the design and investigation of artifacts in a

context. The artifacts we study are designed to interact with a problem context in order to

improve something in that context.

Figure 7. The subject of design science: an artifact interacting with a context

In our case the artifact in context will be the edge MLOps framework for AIoT appli-

cations that we will design iteratively while interacting with the problem context which

boils down to our project or experiments we perform in order to evaluate and validate

the scalability and robustness of the artifact in the context. The project and experiments

we will work on replicates software, hardware, people, organizations, business processes,

services and values of the real world setup with similar social context as discussed above

(VTT 2019).

23

3.1 Towards a Research Methodology using Design Sci-

ence
The research method used follows the outline of design science. In a structured and itera-

tive approach, we implement two cycles (Design cycle and Empirical cycle) for qualitative

and quantitative analysis and conclusions for our design solution.

3.1.1 Design Cycle

Design problems call for a change in the real world and require an analysis of actual

or hypothetical stakeholder goals. A solution is a design, and there are usually many

different solutions. There may even be as many solutions as there are designers. These

are evaluated by their utility with respect to the stakeholder goals, and there is not one

single best solution. For example, what is an accurate algorithm for image classification?

there isn’t a one go to solution for image classification but instead there are different

algorithms, designs and ways of classification. It is about finding the right algorithm

or way of working for the current problem. We can have an ideal design to address

a problem context but not a one and the only design. Ideal design to solve a problem

in a generalized approach is achieved by iterative experiments on problem to find ideal

solution by assessing the utility value for the problem context.

To design an ideal workflow or ecosystem for our problem context (AIoT on edge com-

puting) its application and utility will be industry and use case agnostic. This will be

achieved by exploring and building through services available on a popular cloud service

Microsoft Azure. This ecosystem would facilitate,

• CI/CD of Machine Learning models at the edge

• Fleet Analytics

• Machine learning model lifecycle management

To iterate in design cycle we will work on the following problem context (experiment):

Predict room air quality for anomaly detection using Machine Learning on the edge. Ex-

periment setup has 3 rooms with an edge computer in each (3 edge computers in total)

upon receiving data from sensors, edge devices should make machine learning model in-

24

ference to predict air quality in next 15 minutes, this process or flow has to be automated

using state-of-the-art tools and methods.

3.1.2 Empirical Cycle

Empirical cycle which is a rational way to answer scientific knowledge questions. It

is structured approach for qualitative and quantitative analysis and conclusions for our

design solution.

Below is a set of question in form of a checklist to decide the success of our design

solution. Goal is to get the optimal results in an iterative process.

1. Research problem analysis: To investigate an improvement of problem in the field.

• To explore ways of working in real-time with IoT data processing and machine

learning.

• To explore methods for applied machine learning for real-time multivariate

time series forecasting.

• To observe how automated systems operate in real life and production settings.

2. Research design and inference design: To survey possible methods.

• To assess the maturity of cloud services to enable operations on the edge and

to identify the limitation.

• To curate a process for Continuous delivery and deployment of Machine learn-

ing models at the edge

• Machine Learning lifecycle management design for edge AI.

3. Validation of research and inference design:

• Robustness: Stability of CI/CD pipeline (Number of successful triggers) for

cloud to edge, Stability of CI for IoT devices to edge devices, Hardware

compatibility, Model performance (number of models changed, model drifts),

models retrained (Success and failed), fleet analytics and data storage.

25

• Scalabilty: Number of Devices, Multiple Cloud, Network scaling.

• Application: Industries and use cases agnosticity.

• Resources Optimization: Optimization of Energy, Time, Human interaction

and Cost compared to cloud computing (current setup).

3.2 Applied Machine Learning Methods
We look at the problem of predicting a single variable (future air quality - 15 minutes in

the future) using multiple independent variables. In this section we explore the Machine

Learning methods applied on the data to develop models that will be deployed on the edge

devices to make real-time prediction. Let’s look at them one by one.

1. Multiple Linear Regression (MLR)

Multiple linear regression, models the relationship between two or more explanatory vari-

ables in correlation to a response variable. In order to understand the correlation better,

we segregate all the variables into two categories namely, independent variables and de-

pendent variable

INDEPENDENT VARIABLES (X) : Variables or factors which are used to correlate to re-

sponse or prediction or dependent variable.

DEPENDENT VARIABLES (Y): The outcome variable is called the dependent variable.

Every value of the independent variable x is associated with a value of the dependent

variable y (Preacher et al. 2006). The correlation between the independent and dependent

variables is calibrated by a regression line in an n-dimensional space for all independent

variables. let’s say there are n independent variables x1, x2, ... , xn. To predict y or the

independent variable, correlation is defined to be

y = β0 +β1Xi +β2X2 +β3X3 ++βnXn (1)

26

This line describes how the mean response y changes with the independent variables. The

observed values for y vary about their means y and are assumed to have the same standard

deviation. The coefficients

β0,β1,β2,β3,βn (2)

are fitted or calibrated to estimate the parameters 0, 1, ..., n of the regression line in order

to predict the independent variable y.

2. Extreme Learning Machines

The extreme learning machine has demonstrated excellent performance in a variety of ma-

chine learning tasks including situations with missing values. Extreme learning machine

is a single layer feedforward neural network with randomly generated neurons for regres-

sion, classification, clustering, sparse approximation, compression, and feature learning

(Akusok et al. 2015). In most cases, the output weights of hidden nodes are usually

learned in a single step, which essentially amounts to learning a linear model.

Figure 8. Computing the output of an SLFN (ELM) model
Printed with permission from author Anton Akusok (Akusok et al. 2015).

A hidden layer randomly generates loosely correlated hidden layer features, it allows for

a solution with a small normalization and a good generalized performance.

27

A mathematical description of an ELM is as following. Consider a set of N distinct

training samples (xi, ti), i ∈ [[1, N]] with xi ∈ Rd and ti ∈ Rc. Then a single hidden layer

feed forward network with L hidden neurons has the following output equation:

L

∑
j=1

β jφ(w jxi +b j), i ∈ [1,N] (3)

with φ being the activation function, Sigmoid function is a common choice, but other

activation functions are also possible like linear, tan-sigmoid, sin etc (Huang et al. 2011)

(Huang 2014) (Huang 2015). wi the input weights, bi the biases and βi the output weights.

The relation between inputs xi of the network, target outputs ti and estimated outputs yi

is:

y j =
L

∑
j=1

β jφ(w jxi +b j) = ti+ ∈i, i ∈ [1,N], (4)

where ∈ is noise. Here the noise includes both random noises and dependency on vari-

ables not presented in the inputs X (Akusok et al. 2015).

3. Random Forest Regressor Random forest is a type of ensemble learning with the

use of multiple decision trees and a technique called Bootstrap Aggregation, commonly

known as bagging (Segal 2004). Ensemble Learning is when you take multiple algo-

rithms, combine their output to archive a better combined result than the original (Zhang

& Ma 2012).

28

Figure 9. Random forest structure

Random forest is a bagging technique. There is no interaction between these trees while

building the trees. The trees in random forests are run in parallel (Liaw et al. 2002).

These are the steps to build a random forest regressor

• Step 1: Pick k random points from the training dataset.

• Step 2: Build the decision trees associated with these K data points.

• Step 3: Choose N number of trees you want to build and repeat steps 1 and 2.

• Step 4: For the new data point or test input, make each one of your N trees predict

the value of y for the data point in question, and assign the new data point the

average across all of the predicted y values.

Let’s say y is the dependent variable to predict and x1, x2, x3 xn are independent

variables, then we predict y by making each of N number of trees predict the value of y

and then average all predictions to derive final prediction for y.

ŷ =
1
n

n

∑
i=1

yi =
y1 + y2 + · · ·+ yn

n
(5)

29

4. Support Vector Regressor

The regression problem is a generalization of classification problem, in which the model

returns a continuous-valued output, as opposed to an output from a finite set (Ratkowsky

& Giles 1990). In other words, a regression model estimates a continuous-valued multi-

variate function. SVMs solve binary classification problems by formulating them as con-

vex optimization problems. The optimization problem entails finding the maximum mar-

gin separating the hyperplane, while correctly classifying as many training points as pos-

sible. SVMs represent this optimal hyperplane with support vectors (Drucker et al. 1997).

The sparse solution and good generalization of the SVM lend themselves to the adaptation

to regression problems. SVM generalization to SVR is accomplished by introducing an

ε-insensitive region around the function, called the ε-tube. This tube reformulates the op-

timization problem to find the tube that best approximates the continuous-valued function

while balancing model complexity and prediction error. More specifically, SVR is for-

mulated as an optimization problem by first defining a convex ε-insensitive loss function

to be minimized and finding the flattest tube that contains most of the training instances.

Hence, a multiobjective function is constructed from the loss function and the geometrical

properties of the tube.

Then, the convex optimization, which has a unique solution, is solved, using appropriate

numerical optimization algorithms. The hyperplane is represented in terms of support

vectors, which are training samples that lie outside the boundary of the tube. As in SVM,

the support vectors in SVR are the most influential instances that affect the shape of

the tube, and the training and test data are assumed to be independent and identically

distributed, drawn from the same fixed but unknown probability distribution function in a

supervised-learning context (Gunn et al. 1998).

30

Figure 10. One-dimensional linear SVR

This is a one-dimensional view of an optimized ε-insensitive tube for data points with

potential support vectors. εi and ε∗i are the slack variables with εi being variables repre-

senting training data points above the ε insensitive tube and ε∗i is for data points below ε

insensitive tube.

1
2
||ω||2 +C

m

∑
i−1

(εi− ε
∗
i)→ min (6)

SVR formulates this function approximation problem as an optimization problem that

attempts to find the narrowest tube centered around the surface while minimizing the pre-

diction error, that is, the distance between the predicted and the desired outputs. The

former condition produces the objective function, where ||ω|| is the magnitude of the nor-

mal vector to the surface that is being approximated.

31

4 EXPERIMENTS
The study is performed through a collaboration project - Smart Otaniemi together with Ti-

etoEvry (industry partner) and VTT Finland (research partner). To perform experiments

for the thesis, there was a need for infrastructure (IoT and 5G) and a platform to exper-

iment with AI on the edge and IoT devices in real-time. Partners provisioned needed

infrastructure and platform to perform experiments in VTT’s 5G campus in Helsinki, Fin-

land.

4.1 Setup
At the 5G campus, there are 26 rooms with 26 IoT devices monitoring room air quality

and conditions 24x7. Each sensor collects and sends data to the central network/database

or station on an interval of 5 minutes.

In the execution of the experiment for the thesis, we narrowed it down to three rooms as

shown below in figure 11. The reason for selecting these rooms is described in the Data

Analysis section.

Figure 11. On premises experiment setup

32

4.1.1 Hardware Tools

In order to implement this setup, following hardware is used for edge computers:

• NVIDIA Jetson Nano2: https://www.nvidia.com/jetson-nano/

• Google TPU edge: https://cloud.google.com/edge-tpu/

• Raspberry Pi 4: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Raspberry Pi 4 was setup in room A10, Nvidia Jetson Nano 2 was setup in room A29 and

Google TPU edge was setup in room A30. Detailed steps of setup and installation for

each device listed in Appendix A.

4.1.2 Software Tools

For software development, I have chosen these common data scientist’s tools for the tech

stack to do data analysis, model training and deployment, and monitoring - python, linux,

and docker. The programming language used to conduct experiments for this thesis is

Python (version 3.6.7). Numerous libraries are used for different purposes to assist exper-

iments. Find the list of the major libraries used in Appendix B.

For Deployments - Docker containers are used to deploy applications in runtime, a docker

container image is a lightweight, standalone, executable package of software that includes

everything needed to run an application: code, runtime, system tools, system libraries and

settings. For cloud - Microsoft Azure is used. Microsoft Azure is a cloud computing ser-

vice created by Microsoft for building, testing, deploying, and managing applications and

services through Microsoft-managed data centers. All of these computer systems, middle-

ware and services need to be arranged and coordinated in such a way that they automated

multiple tasks and systems, this process is called as orchestration. Orchestration takes

advantage of multiple tasks that are automated to automatically execute a larger workflow

or process. The goal of orchestration is to streamline frequent and repeatable processes to

ensure optimization and efficient deployment of software. To achieve efficient edge and

cloud synergy, services from Azure cloud are used to orchestrate edge to cloud operations

for continuous delivery and deployment.

33

https://www.nvidia.com/jetson-nano/
https://cloud.google.com/edge-tpu/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

4.2 Machine Learning Operations for AIoT Application
This section describes the systematic approach to Machine Learning operations (MLOps)

for data collection, exploratory data analysis, feature extraction and machine learning

models training done before our experiments for AIoT applications in real-time. To train

we need computation and storage resources and on top of that a platform to train the ma-

chine learning models. For this purpose we use Azure Machine Learning service as a

platform where we can provision compute, storage and needed infrastructure on request.

It is a framework providing an end-to-end solution for machine learning model develop-

ment as follows:

• Resource provisioning

• Data versioning

• Model training

• Model storing and versioning

• Model packetizing

• Model deploying

• Monitoring

With these features we will be able to train, manage, deploy and audit models (model

traceability for data and source code used to train). Models are trained separately to be

deployed in respective rooms and edge devices.

4.2.1 Dataset Analysis

This section describes the data that will be used in the experiments to train the machine

learning models to be deployed in the edge devices to carry out the experiment and eval-

uate. The data has been collected for 3 months, starting from 15th October 2019 to 15th

January 2020 from 26 different IoT devices.

34

4.2.1.1 Data descriptors - Here are the data descriptors for data collected from IoT

devices.

1. timestamp - Time of data (datetime)
2. name - Name of sensor (str)
3. room - The room where sensor is placed or data origin (str)
4. room type - Type of room (str)
5. floor - Floor where data was generated (str)
6. air quality - Air quality index altered (float)
7. air quality static - Air quality index unaltered (float)
8. ambient light - Light present in the room (float)
9. humidity - Humidity in the room (float)

10. iaq accuracy - Indoor Air Quality accuracy altered (float)
11. iaq accuracy static - Indoor air quality accuracy un altered (float)
12. pressure - Pressure in the room (float)
13. temperature - Temperature in the room (float)

• air quality and air quality static: Air quality and air quality Static are air quality

indexes in the room ranging from 0 to 250. Air quality static is raw sensor reading

and air quality is augmented data. Air quality is hazardous for humans in the range

150-250 (Coway 2016). Air quality is augmented data of air quality static. air

quality static is the raw reading for IoT device sensors.

• ambient light: Ambient light is the measurement of ambient light intensity that

matches the human eye’s response to light under a variety of lighting conditions.

• humidity: Humidity measures and reports both moisture and air temperature. The

ratio of moisture in the air to the highest amount of moisture at a particular air

temperature is called relative humidity. Units measured by the sensor are grams

per cubic meter. Humidity ranges from 0 to 50, anything above 40 grams per cubic

meter can be uneasy for human activity in the room.

• iaq accuracy and iaq accuracy static: One of the factors to calibrate indoor air

quality (IAQ) is iaq accuracy. IAQ Accuracy=1 means the background history of

the sensor is uncertain. This typically means the gas sensor data was too stable to

clearly define its references, IAQ Accuracy=2 means sensor found a new calibration

data and is currently calibrating, IAQ Accuracy=3 means data calibrated success-

fully. IAQ accuracy is augmented data and iaq accuracy static is the raw reading for

35

IoT device sensors.

• pressure: Pressure in the room is measured in kpa ranging from 0 to 1040.

• temperature: Temperatures in the room have been measure between 0-26 ◦c.

Here is a snapshot of the raw data collected from IoT devices.

Figure 12. Data snapshot of 3 months of data collected from IoT sensors

Here is an overview of the data collected from IoT devices,

• Timeline - 3 months (15-10-2019 to 15-01-2019)

• Total 537873 number of rows or events were recorded.

• Size of the data: 45.9 MB.

Each IoT device generated an event or recorded data at a time interval of 5 mins which

equals to 12 events in an hours.

4.2.1.2 Stationarity analysis After assessing time series of air quality for each room’s

data, figure 13 shows non-stationary pattern since mean, variance and covariance are ob-

served to be changing over time. Non-stationary behaviors can be trends, cycles, random

walks or combinations of the three as observed in figure 13.

36

Figure 13. Data non-stationarity over time observed for selected rooms.

There are 26 rooms, each room has an IoT device to monitor room conditions. Over

the period in which data was collected, each room has around 46000 events recorded as

shown in figure 14.

Figure 14. Frequency of data in each room.

There are three types of rooms in the premises, most of them are being office rooms. Rest

are meeting rooms and corridor rooms. Here is the collective data frequency for each type

of room described in figure 15.

37

Figure 15. Frequency of data in each room.

After the data analysis, we narrowed down the experiment to only 3 different rooms.

Reason being we wanted to experiment on meeting rooms, since we had only 2 meet-

ing rooms available, they were chosen. And one office room was chosen with highest

frequency of unhealthy air quality. These are the selected rooms: room_a10, room_a29,

room_a30.

Here is the normal distribution of air quality in selected rooms as shown in figure 16.

Figure 16. Normal distribution of air quality in rooms

38

Table 1. Descriptive statistics for air quality in selected rooms.

Selected Rooms
Room name Room type Unhealthy air

quality frequency
Avg. air quality

Room A10 Office room 2033 61.92
Room A29 Meeting Room 2205 61.40
Room A30 Meeting Room 1085 55.45

Descriptive statistics for rooms are listed in table 1 with unhealthy air quality frequency

and Avg. air quality for each room.

4.2.1.3 Empirical data analysis for selected rooms In order to assess room condi-

tions and anomalous behavior. Let us look at data in detail for each room in this order

room a10, room a29 and room a30.

1. Room a10 - Office room

Figure 17. Emprical analysis for room a10.

Histograms for all columns in the data for room a10 are generated (in figure 17) to get a

holistic view of data and observe overall conditions and anomalies.

39

For both, the majority of data points for air quality and air quality static range in good

air quality (ie: 0-100) which is a good sign as it shows quality of the air in the room is

good majority of the time. Quality of the air is also observed to have some anomalies or

worse (ie: 150-250) on some occasions, this range is hazardous for humans in the room

(Coway 2016). Ambient light is in two extremes either 1 or 25-30. Average humidity in

the room is observed to be in the range 25-35 grams per cubic meter which is healthy for

humans, anything above 40 grams per cubic meter can be uneasy for human activity in

the room. IAQ accuracy is mostly 1 with some cases of 3 and very few samples of 2. In

most cases, the pressure is between the range 990 to 1020. The majority of data points for

temperature are ranging in 21-24 ◦C which is optimal room temperature. Some anomalies

have been observed with low temperatures as below 10 ◦C and above 25 ◦C. In figure 18,

a time-series sensor data for room a10 data progression over time can be observed in these

graphs.

Figure 18. Timeseries data progression for room a10

Air quality and air quality static have identical progressions of data over time and the

data is non-stationary. Likewise, humidity, pressure and temperature are observed to be

non-stationary and independent of each other.

40

Some anomalies and peaks are noticeable for ambient light, IAQ accuracy and IAQ ac-

curacy static. For our experiment, we predict air quality static using machine learning at

the edge devices. Figure 13 shows how air quality static has progressed over time. Some

anomalies and peaks have been noticed for the timeline of 25-10-2019 to 01-11-2019,

01-12-209 to 7-12-2019 and 28-12-2019 to 10-01-2020. Upon cross-checking with the

premises authorities they have validated these peaks to be the busiest time during this time

of the year where they have a high amount of human activity, i.e. meetings in our case for

room a10. These peaks in data are useful for our machine learning models to learn and

predict. The average air quality in room_a10 is 61.92.

2. Room a29 - Meeting room

Figure 19. Emprical analysis for room a29

To get a holistic view of data and observe overall conditions and anomalies, histograms

are generated for all columns in the data for meeting room a29 (in figure 19). For both

air quality and air quality static, the majority of data points range in good air quality (ie:

0-100) which is a good sign as it shows air quality in the room is a good majority of the

time. In few instances both are observed to have some anomalies or worse (ie: 150-250),

this range is hazardous for humans in the room. Ambient light is in two extremes either

1-9 or 25-30, the majority being in 1-2.
41

In many instances humidity is observed to be in the range of 25-35 grams per cubic meter

which is healthy for humans. IAQ accuracy is mostly 1 with some cases of 3 similar to

room_a10. Data observed in the histograms shows IAQ accuracy and IAQ accuracy static

are identical. In most events pressure is between the range 1000 to 1020 kpa. In most of

the instances, the temperature is ranging between 21-24 ◦C. Some anomalies have been

observed now and then with low temperatures as below 10 ◦C and above 25 ◦C. In figure

20, a time-series sensor data for room_a29 data progression over time can be observed in

these graphs.

Figure 20. Timeseries data progression for room a29

The data is non-stationary, air quality and air quality static have an identical progression

over time. Humidity, pressure and temperature are observed to be non-stationary and in-

dependent of each other. From Figure 13 we observe that air quality static has progressed

over time and some anomalies and peaks have been noticed for the timeline of 25-10-2019

to 01-11-2019, 01-12-209 to 7-12-2019 and 28-12-2019 to 10-01-2020. These peaks in

data are useful for our machine learning models to learn and predict. The average air

quality in room_a29 is 61.40.

42

3. Room a30 - Meeting room

Like above rooms histograms for all columns in the data for meeting room room a30 are

generated (in figure 21)

Figure 21. Emprical analysis for room a30

Air quality and air quality Static mostly happen to in good range (i.e.: 0-100) Some

anomalies observed (ie: 150-250) on some occasions (Coway 2016). Ambient light is

in two extremes either 1-9 or 60-80. Most of the humidity ranges from 25-40 grams per

cubic meter which is healthy for humans. IAQ and iaq accuracy static are observed to be

1 for all instances. The pressure is mostly distributed in range 990 to 1020. Temperatures

in the room are observed to be optimal mostly.

43

Figure 22. Timeseries data progression for room a30

In figure 22, a time-series sensor data for room_a30 data progression over time can be

observed in these graphs. Some anomalies and peaks are noticeable for ambient light,

IAQ accuracy and IAQ accuracy static. Air quality and air quality static have identical

progression of data over time and the data is non-stationary. Likewise humidity, pressure

and temperature are observed to be non-stationary and independent to each other. Some

anomalies and peaks for air quality have been noticed in Figure 13 for timeline of 11-01-

2019 to 12-11-2019 and 01-12-209 to 10-12-2019.

4.2.2 Feature Engineering

Feature engineering is transforming raw data into meaningful features so that data can

be better represented and prepared for predictive modeling (Severyn & Moschitti 2013).

As a result model accuracy is improved on unseen data. This section describes feature

engineering on the data. Feature engineering steps involved feature extraction, correlation

and scaling to prepare data for machine learning model training. Let us look into each

step.

44

4.2.2.1 Feature Extraction After exploring data and identifying patterns in the above

section, we clearly see important data parameters or columns that correlate to the air

quality inside a room. Based on the data analysis, these are the parameters or columns

that we will choose for training machine learning algorithms to predict air quality inside

a room after 15 minutes.

1. air quality static

2. ambient light

3. humidity

4. iaq accuracy static

5. pressure

6. temperature

In order to predict air quality 15 minutes ahead, a new feature is created "future air qual-

ity" which is 15 minutes ahead of the current event, this feature is created by shifting the

column "air quality static" three rows ahead. As each row or event in air quality static is

created at 5 minutes interval, shifting it 3 rows ahead to create a new column will give

us a column named "future air quality" which has 15 mins ahead air quality for given

air quality static. After selecting needed columns and creating needed features, here is a

snapshot of data in figure 23.

Figure 23. Feature Engineering data snapshot

45

4.2.2.2 Feature Correlation Data and feature correlation is an important step in the

feature selection for machine learning model training, especially when the data type for

the features is continuous, as it is in our case. Pearson Correlation Coefficient can be used

with continuous variables that have a linear relationship (Benesty et al. 2009). To under-

stand the relationship, we observed data and feature correlation between the variable to

predict and other attributes in the data. For the feature "future_air_quality" we calculated

feature scores using Pearson correlation.

Figure 24. Feature correlation using pearson correlation.

We observed patterns for each room for our experiment as shown in figure 24. The fea-

ture "future_air_quality" shows a positive correlation with air_quality_static, pressure,

ambient_light and iaq_accuracy to some extent. Positive correlation implies that feature

A increases then feature B also increases or if feature A decreases then feature B also

decreases. Both features have a linear relationship and move in tandem. In figure 24 we

see a strong positive correlation for feature future_air_quality to air_quality_static and

pressure. Humidity has a strong negative correlation which implies if feature A increases

then feature B decreases and vice versa.

46

4.2.2.3 Feature Scaling The next step is to do feature scaling in order to get the data

ready for Machine Learning training.

Feature Scaling is a technique to standardize the independent features present in the data

in a fixed range. It is performed during the data pre-processing to handle highly varying

magnitudes or values or units. If feature scaling is not done, then a machine learning

algorithm tends to weigh greater values, higher and consider smaller values as the lower

values, regardless of the unit of the values.

We perform standardization technique for feature scaling, in formal terms it is defined

as

Xnew =
Xi−Xmean

standardDeviation
(7)

It re-scales a feature value so that it has distribution with 0 mean value and variance

equals to 1. With this we are ready for machine learning training with our new features

and scaled data.

4.2.3 Model Training

In this section we will assess machine learning models trained to predict air quality based

on variables we engineered in section 4.3. Below are the variables after feature engineer-

ing (that will be input to the model to predict future air quality).

• air quality static

• ambient light

• humidity

• iaq accuracy static

• pressure

• temperature

• future air quality

From the above variables we do multivariate time series prediction to predict future air

quality 15 minutes after current time inside a particular room. These are the algorithms

trained for data (section 4) for each room respectively (Each algorithm explained in detail

in section 4.4)
47

1. Multiple Linear Regression (MLR)

2. Extreme Learning Machines (ELM)

3. Random forest Regressor (RFR)

4. Support Vector Regressor (SVR)

We performed cross validation using Timeseries Split as explained below to train and

evaluate models.

4.2.3.1 Cross Validation - Timeseries Split In time series machine learning analysis,

our observations are not independent but time dependent, so we cannot split the data

randomly as we do in non-time-series analysis (Eg: Train, validation and test). Instead,

we split observations along with the sequences.

Training data is split into multiple segments (10 segments for our experiment). We use the

first segment to train the model with a set of hyper-parameter, to test it with the second.

Then we train the model with first two chunks and measure it with the third part of the

data. In this way we do k-1 times of cross-validation.

Figure 25. Timeseries split - Cross validation

For model training for our experiment timeseries split was implemented with 10 splits

(using scikit-learn library).

48

4.2.4 Model Evaluation

We evaluate trained models using Timeseries split (cross validation) and root mean square

error (RMSE) for metrics.

4.2.4.1 Metrics In order to assess model training performance Root Mean Square

Error (RMSE) is used as it is a standard way to measure the error of a model in predicting

quantitative data. Formally it is defined as,

RMSE =

√
∑(yt− yp)2

n
(8)

yp1,yp2,yp3.....ypn are predicted values by the model. yt1,yt2,yt3.....ytn are the obe-

served values. n is the number of observations.

To calibrate final results for trained models performance Timeseries split (10 fold cross-

validation) was implemented to take the average of RMSE of each fold. Also, trained

models were tested on test data which is 20% of the total data for each respective room.

Detailed results can be observed in table 2 for trained models on the data for respective

rooms after Timeseries split (10-fold cross-validation), hyperparameter tuning and grid

searching for best parameters for each algorithm.

After assessing the performance of each model on 10 fold cross-validation (Timeseries

Split) and test data (20% of training data). Here is the ranking of model performance after

model training in ascending order,

1. Multiple Linear Regression (MLR)

2. Support Vector Regressor (SVR)

3. Extreme Learning Machines (ELM)

4. Random forest Regressor (RFR)

49

Table 2. Model training results.

Model Training Results
Room name Algorithm Cross Validation

RMSE (train)
Test RMSE

Room A10 MLR 5.020 5.875
Room A10 ELM 6.325 6.208
Room A10 RFR 10.710 9.987
Room A10 SVR 6.046 5.977
Room A29 MLR 5.362 4.158
Room A29 ELM 11.202 4.223
Room A29 RFR 11.676 9.208
Room A29 SVR 8.073 4.176
Room A30 MLR 3.648 3.551
Room A30 ELM 7.920 3.895
Room A30 RFR 9.686 7.720
Room A30 SVR 5.177 3.55

4.2.5 Model Packaging

To do machine learning inference at the edge we have to serialize and package needed ar-

tifacts and machine learning models. Following are the artifacts serialized to be exported

to production environments,

4.2.5.1 Input and output scaler : We performed a standardization technique for fea-

ture scaling. It re-scales a feature value so that it has distribution with 0 mean value and

variance equals to 1. Similarly, we have to scale incoming input data for model inference

to be able to predict future air quality 15 minutes in the future. For this purpose, the

feature scaling variable is serialized to a pickle file (.pkl).

4.2.5.2 Machine learning models : All trained and retrained ML models are serial-

ized in the Open Neural Network Exchange (ONNX) format. ONNX is an open ecosys-

tem for interoperable AI models, it enables model interoperability and serialization of

ML and deep learning models in a standard format (.onnx). With this, all trained or

retrained models and artifacts are ready to be exported and deployed to production envi-

ronments.

4.3 Design Cycle: Proposed framework for Edge MLOps
In this section we design a framework for edge MLOps, we start by assessing For edge

and cloud communication to be robust and realtime, it is essential to assess every ser-

50

vice provided by the cloud service to make an efficient synergy between edge and cloud.

There is a range of services Azure offers to facilitate edge-cloud operations. We assessed

some services on Microsoft Azure with a goal to facilitate continuous delivery, deploy-

ment and monitoring on edge devices, to orchestrate cloud to edge communication, data

management, Machine Learning lifecycle management, federated learning, monitoring of

Machine Learning models performance and edge devices. The maturity of these services

has been assessed.

• Azure IoT Edge

• Azure IoT Central

• Azure DevOps

• Azure Machine Learning services

• Logic app

• Azure IoT Hub

• Azure Blob storage

• Azure data lake storage Gen2

After assessment, suitable services were chosen based on the maturity of the service for

the experiment and efficiency for enabling orchestration and automated pipelines for syn-

ergy between edge and cloud. These services are discussed in section 4.3.1.

4.3.1 Azure Cloud Services used

In this section we reflect on the selected services for our experiments and the limitations

of other services. Based on the assessment, these are the selected services,

• Azure ML Workspace: Automatically configure default storage, compute resource,

and deployment target and integrate different services for example AKS, ADB.

• Azure DevOps for Source code managment, CI-CD pipeline job management and

Native support for Azure ML workspace and other workspaces and services.

• Azure IoT Central: Enables bi-directional communication between IoT devices,

edge devices and Azure. Central hub for IoT device and edge device management

and fleet analytics.

• Azure blob storage: Storage for storing unstructured or structured data.

51

Azure IoT Edge was evaluated but as it was under development from Microsoft, we did

not proceed with this service for our experiments. Some of the limitations were the inte-

gration of cloud to edge devices was restricted to C# and Microsoft native components,

It did not have python sdk or python as the main language as it is a go-to language for

Data Scientists and Machine Learning Engineers. These limitations made it less suitable

for our experiments.

4.3.2 Continuous Integration for IoT to Edge

This section explains how we communicate with the IoT devices from edge devices and

establish continuous integration between the respective IoT devices and the edge devices.

Communication between IoT and Edge Devices is established using the MQTT protocol

(as discussed in section 2.4). To fetch or collect sensor data at the edge device we use

a communication protocol called MQTT protocol which is robust reliable and real-time

(Hunkeler et al. 2008). It is a lightweight protocol based on a messaging technique with

minimized data packets resulting in low network usage and latency. It is realtime and this

makes it perfect for IoT applications.

4.3.3 Continuous Integration IoT to Cloud

In order to setup continuous integration for edge to cloud, there are some pre-requisites

which need to be in place to configure CI-CD pipeline for edge-cloud. Here are the pre-

requisites.

• Secure SSH access to running edge devices.

• Sensor to edge device(s) continuous integration working.

• Install needed packages in the edge devices (Eg: python packages, Azure ML).

• Monitoring script or process for Azure IoT central is running inside each edge de-

vice (for fleet analytics on the cloud).

• Docker installed in the edge devices.

52

Once we have done all the above steps, we proceed to configuring CI-CD for edge

cloud. A process was implemented for Continuous Integration, delivery and deployment

as shown in figure 26. These processes were setup to facilitate end to end continous

integration from IoT devices to edge devices and edge devices to cloud.

Figure 26. Docker container deployed in each edge device

There are two scripts or processes running inside docker container. These processes or-

chestrate data pipelines, machine learning, continuous integration and deployment.

• Process 1:

– This process enables and maintains continuous integration of sensor to edge by

fetching data in real time. This is achieved by subscribing to sensor topic using

MQTT protocol. Upon receiving new data (which happens at an interval of

every 5 minutes from a sensor), data is pre-processed by discarding or pruning

unnecessary or extra data, cleaning and converting it to needed format for

machine learning inference.

– Machine Learning inference is done to predict future air quality in next 15

minutes on variables extracted from sensor data: air quality ambient light,

humidity, iaq accuracy static, pressure and temperature. A Machine learning

model previously trained in the cloud is deployed in the edge device inside the

docker container machine.

53

– After getting a prediction using Machine learning model for data retrieved

from sensor, both data from sensor and future air quality in next 15 minutes

are concatenated together and appended to a csv file temporarily stored in the

docker container.

• Process 2: For monitoring ML model performance at a set period of time everyday

(time trigger) this process is triggered. Upon trigger it evaluates the machine learn-

ing model drift by evaluating the RMSE for future air quality predictions vs actual

data. If the RMSE is greater than or equal to 8 it means model performance is poor,

hence the process evokes a call to look for and deploy an alternative model from

the ML model repository on the cloud.

These two processes running inside a docker container in each edge device ensure con-

tinuous integration for IoT devices to edge and applied machine learning to predict future

air quality 15 minutes in the future for the incoming data from the sensor. This way of

working is robust and scalable.

4.3.4 Fleet Analytics

Fleet analytics enables management, monitoring of edge devices (via telemetry data) and

provides a holistic view of data collected from IoT devices data together with machine

learning predictions.

Figure 27. Fleet analytics for edge devices (telemetry data)

54

In figure 27 we observe fleet analytics for each edge device used in the experiment, it

depicts device performance over a period of time with telemetry data like accelerometer,

gyroscope, humidity, magnetometer, pressure and temperature. Useful information to

monitor edge devices health and longevity. Data collected from IoT devices together with

machine learning predictions are observed on a custom Power BI dashboard.

4.3.5 Continuous Delivery and Deployment for Edge

So far we have setup continuous integration for edge and cloud and this will be the driver

for continuous delivery and deployment for machine learning models in the edge. In this

section we will delve into important aspects of continuous delivery and deployment on

the edge.

Figure 28 shows CI-CD pipeline setup on Azure DevOps. A preliminary step is required

to configure this pipeline, that is to create a service connection for each edge device on

Azure devops in order to connect to each device using secure ssh login via pipeline. This

CI-CD pipeline orchestrates services used for the experiment on the cloud like Azure

Machine Learning, Azure devOps and Azure Blob storage. Let us look into each phase in

detail:

Figure 28. CI-CD pipeline for continuous delivery of ML models to the edge.

55

1. Release: A release is triggered on a set time every day to monitor edge devices

to check model performance in realtime for model drift and if needed will deploy

an alternate model if the model drift is high (Akkiraju et al. 2018). To finish the

pipeline run a new model is trained upon the real-time data together with previously

used training data. The trigger can be time-based or can be triggered manually on

demand by an engineer. Other triggers are possible and optional like source code

commit trigger and new model trained trigger, these triggers are not implemented

in our experiment as there was no need.

2. Monitor edge and deploy: In this stage the focus is machine learning performance

and Model monitoring, to evaluate the Model drift of models deployed in each edge

device (Akkiraju et al. 2018). Parallel processes are run to access each edge de-

vice and access the CSV file which has recorded incoming data from sensors and

predictions. From the CSV file we evaluate the future air quality (for the next 15

minutes) by comparing it to actual air quality recorded, for evaluation RMSE is

used as the metric to assess the performance of the deployed model prediction in

real-time. When RMSE is greater than or equal to 10 then the model is concluded

to perform poorly, which results in evoking a call to replace the existing model with

an alternative model from the ML model repository, this is done by deleting the

existing model inside the docker container and replacing it with an alternatively se-

lected model. This mechanism of model drift evaluation and model change ensures

the continuous deployment of Machine learning models to the edge.

3. Model Retrain: This stage is run based in previous stage output. In the previous

stage if an ML model is replaced with another one, then the replacement model is

retrained on the cloud by the fine-tuning of the existing model with realtime data

that it was used to infer. If performance is improved in terms of RMSE then the

retrained model is stored in the ML model repository for future deployments. This

ensures the models are updated with data drift in order to avoid higher model drifts

in the real-time.

56

4.3.6 Proposed and implemented Architecture

In this section, each step of implemented architecture is discussed on a high level where

as in previous sections we have seen the setup of continuous integration for IoT to edge

devices and Continuous Delivery and Deployment for Edge. Below Figure 29 is imple-

mented to enable automated machine learning at the edge, this end to end framework can

be fully automated and run on autopilot. There are two main layers of the architecture -

Edge inference and Cloud orchestration layer. To enable robust network communication

between these two layers WLAN was used to implement continuous delivery triggers,

send and receive data.

Figure 29. Proposed architecture

The architecture is made into two main modules or layers Cloud orchestration layer and

Edge inference layer as shown in figure 29.

Cloud Orchestration

In Cloud Orchestration layer multiple services are running to perform parallel jobs mainly

for four functions as described below,

1. Machine Learning Pipelines: This Machine learning pipeline is enabled by a ser-

vice on Microsoft Azure called "Azure Machine Learning" service, it is an

57

enterprise-grade machine learning service to build and deploy models faster. It

provides compute resources and data storage on demand to enable machine learning

models training and is enabled by Jupyter notebooks or Databricks as a service to

code, develop, and test machine learning models. It also comes with a machine

learning model repository and container storage to enable faster deployment. All

these features can be accessed by python SDK, which was done to implement our

experiment. Here are the steps of the ML pipeline setup for the experiment,

• Data ingestion step: A python script that procures data needed for training and

versions of the data used for machine learning model training. This way an

experiment(model training) is audited and is back traceable.

• Model Training step: A python script performs data pre-processing, feature

engineering, feature scaling before model training or retraining, and performs

machine learning model training by optimizing the hyperparameters to train

the best or optimal models.

• Model evaluation step: Once the ML model is trained this step makes sure to

evaluate and test the model performance on test data using batch inference.

The result of this is model accuracy and RMSE (for this experiment) on test

data.

• Model packaging step: In this step, a trained and tested model is serialized in

order to be exported to edge devices. ONNX serialization format was used to

serialize and package trained and tested models.

• Finally the model is registered and stored in the model registry from where it

is ready for quick deployments into edge devices.

2. Storage: As central storage, Azure blob storage is used. Blob storage allows Mi-

crosoft Azure to store arbitrarily large amounts of structured and unstructured data

and serve them to users over HTTP and HTTPS. It can auto-scale as per the de-

mand. Blob storage was used to store ML training data, sensors data, ML models,

and telemetry data.

58

3. Fleet Analytics: Fleet analytics comprises of telemetry data from edge devices and

IoT devices data together with machine learning predictions. Azure IoT central

was used to have a central view of telemetric fleet analytics. For the experiment,

Azure IoT central enabled telemetric fleet analytics for edge devices, health and

performance could be monitored realtime on Azure IoT central and fleet analytics

for IoT data plus machine learning prediction can be monitored on a custom Power

BI dashboard.

4. CI-CD: Continuous integration and Continuous deployments enable continuous de-

livery to the edge layer. Azure DevOps service was used to maintain and version

the source code used for model training, enable triggers to perform needed jobs in

parallel, and to build artifacts and release for deployments to edge devices. Azure

DevOps is the main driver for monitoring edge layer, Machine Learning models in

production in the edge, and orchestration with other services on the cloud.

All these services and modules work in sync with each other to maintain and monitor

machine learning models performance, maintain fleet analytics for edge devices, and to

store and retrieve data as per the need. This layer is a foundation for the edge inference

layer.

Edge inference

Edge inference layer focuses on orchestrating operations for IoT devices to edge devices,

it also coordinates with the cloud orchestration layer to enable synergy between edge

and cloud. In this layer edge operations with IoT devices, machine learning inference in

realtime and synergy with cloud are performed.

1. Continuous integration and delivery for cloud to edge. Continuous integration is

an important factor for automated systems, it requires high-quality development practice

(edge cases proof) and robust process design, once implemented it is driven by high speed

and low latency network for stable and robust communication and operations. In the ex-

periment, a private network (WLAN) powered this communication between edge devices,

sensors, and cloud layer, inside this network edge devices communicate and infer data

from the sensors using MQTT protocol. Inside the edge device, all these operations

59

are run inside docker containers for stability and standardization. This way of operations

ensures stable continuous delivery from cloud to edge and vice versa. Continuous delivery

facilitates model deployments to the edge, data transfer, and monitoring (ML models and

edge devices).

2. Automated Machine Learning at the edge Machine learning inference and monitor-

ing are automated as part of continuous delivery and deployment operations orchestrated

the services in the cloud orchestration layer. A periodic CI-CD trigger is implemented to

evoke monitoring feature in the edge devices, to evaluate model drift and perform needed

actions to replace the existing machine learning model with an alternative when needed.

This way the whole process of machine learning inference at the edge is automated in

realtime.

4.4 Empirical Cycle: AIoT Application
After the design cycle, we had a proposed framework for Edge MLOps for AIoT appli-

cations as discussed in section 4.3.6. In this section we implemented the framework to

the problem context or AIoT application setup for our experiment. The machine learning

models trained previously in section 4.2 were deployed in respective edge devices to pre-

dict future air quality in respective rooms. On every minute interval a machine learning

inference was done for each edge device setup in respective rooms. During the experiment

(12-03-2020 to 26-04-2020), 23 times new machine learning models have been changed

or continuously deployed on respective edge devices. This was enabled by monitoring

mechanism defined in the process, a trigger from Azure DevOps. Also 23 new models

have been re-trained as a consequence of replacing a previously deployed machine learn-

ing model. For room a10 7 new ML models re-trained, room a29 7 new models re-trained

and room a30 9 new models re-trained as shown in table 3.

60

Table 3. AIoT experiment machine learning inference results.

Realtime machine learning inference at the edge
S.no Date of

model
change

Edge Device Deployed
Model

Model
Drift
(RMSE)

Model
Retrain
(RMSE)

1 15-03-2020 Jetson nano 2 ELM 16.39 4.1
2 16-03-2020 Google TPU edge RFR 14.23 6.3
3 16-03-2020 Raspberry pi 4 MLR 11.91 4.3
4 17-03-2020 Raspberry pi 4 ELM 13.27 8.1
5 22-03-2020 Jetson nano 2 SVR 22.32 6.2
6 24-03-2020 Google TPU edge RFR 17.11 4.4
7 27-03-2020 Raspberry pi 4 MLR 16.22 4.7
8 29-03-2020 Jetson nano 2 ELM 30.28 8.2
9 30-03-2020 Google TPU edge SVR 18.12 5.4
10 05-04-2020 Raspberry pi 4 MLR 12.92 3.2
11 10-04-2020 Jetson nano 2 SVR 17.21 5.2
12 11-04-2020 Google TPU edge MLR 13.42 4.7
13 13-04-2020 Jetson nano 2 ELM 27.29 5.3
14 17-04-2020 Google TPU edge RFR 17.46 6.9
15 19-04-2020 Raspberry pi 4 SVR 16.32 5.1
16 19-04-2020 Google TPU edge MLR 11.91 3.4
17 21-04-2020 Jetson nano 2 ELM 23.26 7.3
18 22-04-2020 Google TPU edge RFR 16.92 7.2
19 24-04-2020 Raspberry pi 4 SVR 17.87 5.2
20 25-04-2020 Google TPU edge MLR 13.92 5.2
21 25-04-2020 Jetson nano 2 SVR 19.21 7.9
22 26-04-2020 Raspberry pi 4 ELM 23.57 6.4
23 26-04-2020 Google TPU edge SVR 18.21 5.5

4.4.1 Observations

Here are the observations and learnings from the AIoT application experiments. Experi-

ment was run for a month to assess robustness and scalability of the automated pipeline

for edge AI.

1. CI-CD pipeline: During the experiment of 45 days, total of 45 time triggers were

triggered, one trigger for each day at a set time of 12:00 EEST. And also 8 manual

triggers were done to test the robustness of the pipeline. For the experiment all the

triggers worked successfully and pipeline was executed each time. This assures the

robustness of the CI-CD pipeline.

61

2. ML models deployed: Machine learning models were deployed 23 times for all 3

edge devices combined as a result of model drift greater than or equal to 10 RMSE.

For room a10-raspberry pi had 7 new ML models deployed, room a29-jetson nano

had 7 models deployed and room a30-google TPU had 9 models deployed during

the experiment timeline.

3. ML models re-trained: Upon a new ML model deployed in the edge device, a new

model is re-trained. 23 new models have been re-trained. For room a10 7 new ML

models re-trained, room a29 7 new models re-trained and room a30 9 new models

re-trained.

4. Edge vs Cloud comparison (Cost, energy and efficiency): We assessed cost, energy

and operational efficiency of edge vs cloud machine learning inference based on our

experiments. For reference edge device we used Raspberry pi 4 and for cloud com-

pute a data science virtual machine DS2 v2 (Azure). We deployed machine learning

models on both edge and cloud for machine learning inference in realtime. Table 4

shows results of monitoring the models deployed in 10 edge devices compared to 1

cloud node.

62

Table 4. Quantitative analysis - Edge vs cloud based on the experiments.

Edge vs Cloud inference based on the experiments
Edge devices (10) Cloud node (1)

Device Raspberry pi 4 DS2 v2 (Azure)
Computation 40 vCPUs (4x10) 2 vCPUs
RAM 40 GB (4x10) 7 GB
Temporary storage 640 GB (64 GB/device) 14 GB
Data pruned 22 % 0 %
ML inference/minute 1/device 10
Avg. inference time 0.2 seconds 2.2 Seconds
Total cost/month $ 10/month $ 93/month

Table 5. Quantitative analysis - Edge vs cloud scaled.

Edge vs Cloud inference - Scaled Scenario
Edge devices (1000) Cloud node (100)

Device Raspberry pi 4 DS2 v2 (Azure)
Computation 4000 vCPUs (4x10) 20 vCPUs (2x100 nodes)
RAM 4 TB (4x1000) 700 GB (7x100 nodes)
Temporary storage 64 TB (64 GB/device) 1.4 TB (14x100 nodes)
Data pruned 22 % 0 %
ML inference/minute 1/device 1000
Avg. inference time 0.2 seconds 2.8 Seconds
Total cost/month $ 1000/month $ 9300/month

In order to see a bigger picture and compare it to a real life production setup, we scaled it

to 1000 edge devices and and 100 cloud nodes as shown in table 5.

4.4.2 Limitations

1. The proposed architecture is limited to cases where data privacy and privacy preser-

vation is not essential for example in healthcare where patient data cannot be used as it

is for model training due to laws like GDPR whose priority is to keep personnel’s data

private or anonymous. In these cases, federated learning approach can be implemented

by extending the proposed framework as shown in figure 30:

63

Figure 30. Extended Framework for Federated Learning

2. CI-CD parallel jobs: For each parallel job in CI-CD Pipelines in Azure DevOps, you

can run a single job at a time which enables high scale parallel processing for edge-cloud

operations. The current alternative is Azure app logic which enables parallel processing

at scale and Azure IoT Edge which is under rapid development with python SDK and

integration of CI-CD pipeline with Azure Machine Learning for continuous deployment

of Machine Learning models at the edge.

64

5 RESULTS AND DISCUSSION
The results are based on the above experiments in section 4. Results are discussed in

co-relation to the research methodology and goals we discussed in section 3. By iter-

ative experimenting on the design cycle, a robust and scalable Edge AIOps framework

for AIoT applications was curated and implemented using design science methodology

described in section 3. Framework and architecture are discussed and implemented in

section 4.3.6.

As the studies are of interdisciplinary nature, validation of design cycle was done in syn-

ergy with empirical cycle. Upon multiple iterations, here are the results of qualitative and

quantitative analysis:

1. Research problem analysis: To investigate an improvement of problem in the field.

• Explore efficient ways of working in real-time with IoT data processing and

machine learning: End to end exploration was done in iterations to understand

applied machine learning for AIoT applications. For efficient Networking

(as discussed in section 2.4), Continuous integration (as discussed in section

4.3.3), Data pipelines, and Continuous deployment (as discussed in section

4.3.5) of machine learning models at the edge devices.

• To explore methods for applied machine learning for real-time multivariate

time series forecasting: A thorough investigation was done into applied ma-

chine learning techniques for multivariate time series analysis, some methods

were applied in our experiments. Like Multiple Linear regression, Extreme

Learning machines, Random forest regressor and support vector regressor (as

discussed in section 3.2). Out of these methods Multiple linear regression per-

formed the best in testing and real-time in production proceeded by support

vector regressor.

• To observe how automated systems operate in real life and production settings:

After curating final architecture using design cycle iterations, we implemented

a designed architecture for an automated system. Then we evaluated for 45

days (12-03-2020 to 26-04-2020) continuously and the running system was

65

monitored. Based on the observation, the CI/CD pipelines performed well

with no instabilities or failures. The implemented architecture in the experi-

ment setup was robust. We noticed 23 new models deployed over time upon

135 (45 x 3, 1 time trigger for every day for each device) CI/CD pipeline

triggers and monitoring deployed models in production.

2. Research design and inference design: To survey possible methods.

• To assess the maturity of cloud services to enable operations on the edge and

to identify the limitation: In order to assess cloud service maturity on Mi-

crosoft Azure, we assessed each potential service one by one to see how it

serves our experiments with respect to the software tooling (Python, Linux,

Docker) selected for the experiments. We assessed Azure IoT hub, Azure IoT

edge, Azure IoT central, Azure Machine Learning services, Azure DevOps,

Azure Container instances, Azure blob storage and Azure data lake. After

the assessment, we selected Azure Machine Learning Services (for data and

machine learning pipelines), Azure DevOps (for CI/CD and source code man-

agement), Azure IoT central (for fleet analytics), Azure container instances

(to manage docker containers) and Azure blob storage (for storage of pruned

data). These services were selected based on compatibility with our software

tooling, robustness, and scalability for our experiment.

• To curate a process for continuous delivery and deployment of machine learn-

ing models at the edge: After final iterations for design and empirical cycles

we have curated and implemented continuous delivery and deployment of ma-

chine learning models at the edge as described in sections 4.3.2 and 4.3.3. This

end to end process for CI-CD for IoT to cloud worked and no interruptions

were detected in the experiments, from fetching data from the IoT devices to

performing machine learning predictions on the edge to deploying new mod-

els in the edge devices.

66

• Machine Learning lifecycle management design for edge AI: End to end pipelines

were implemented for resource provisioning, data versioning, model Train-

ing and model storing for machine learning models deployed on the edge de-

vices. Azure Machine Learning service was vital in orchestrating function-

alities around the experiments the machine learning models as discussed in

section 4.2.

3. Validation of research and inference design:

• Robustness:

– Stability of CI-CD pipeline for edge to cloud: Experiment was carried out

for 45 days, every day at 12:00 a time trigger was executed to monitor the

model drift of each model deployed in the respective edge devices and to

retrain the machine learning models if needed. in total 135 time triggers

were executed successfully without any failure. Also to test the robust-

ness manual triggers from time to time, totally 27 manual triggers were

executed and non of them failed to execute end to end. CI-CD pipeline

was stable throughout the experiments.

– Stability of CI for IoT devices to edge devices: Edge devices received data

at every 5-minute interval from IoT devices without any failure.

– Machine learning models performance: Everyday CI-CD pipeline would

monitor the model drift of each model deployed in respective edge device,

if the model drift (RMSE) of predictions vs actual data is more than 10

then a new model is retrieved and deployed in the respective edge device.

During the experiment of 45 days, 23 new models were deployed based

on the model drift metric RMSE crossing above 10.

– Machine Learning models retrained: Whenever a new model is deployed

in the edge device the previously deployed model is retrained or fine tuned

with the real-time data collected during it’s inference time period. As 23

new models were deployed during the experiment, 23 models have been

retrained as well, all of them successfully without any machine learning

67

pipelines failures to retrain the models.

– Fleet Analytics: fleet analytics for each edge device used in the exper-

iment was collected for the duration of the experiment without any in-

terruptions. Analytics for each device provided an overview of device

performance over a period of time with telemetry data like accelerome-

ter, gyroscope, humidity, magnetometer, pressure and temperature. Use-

ful information to monitor edge devices health and longevity, all edge

devices performance was stable overall.

– Data storage: In total, 22 % incoming data from IoT devices was pruned

(to send only essential data to cloud for storage). An aggregate of 38

MB of data was collected and stored on Azure blob storage without any

interruptions or data leakage, this data comprised of sensor readings from

IoT devices and machine learning model predictions. Data collection and

storage pipeline worked and no interruptions were detected.

– Hardware: All three edge devices (Raspberry pi4, NVIDIA Jetson nano

2, google TPU edge) used in the experiment performed without any in-

terruptions and were stable for 45 days of experiment.

• Scalabilty: The proposed framework is scalable to multiple edge devices (de-

pending on the use case) and is confined to the infrastructure (cloud and net-

working) and tools used to implement the framework and perform experi-

ments.

• Application:

– Application of the proposed framework is flexible for multiple industries

like telecommunications, life sciences, energy, etc.

– The proposed framework is also use case agnostic and can be applied to

any AIoT application. In the case of privacy-preserving use cases, an

extended framework proposed in section 4.4.2 can facilitate automated

machine learning at the edge.

68

– For federated learning based use cases an extended framework proposed

in section 4.4.2 can be applied (Konečnỳ et al. 2016).

• Resources Optimization: Based on experiments the framework setup provided

an almost 9-times improvement of resource use compared to the same exper-

iment performed on cloud computing using micro services. These are the

results of head to head comparision for edge computing vs cloud computing

for the experiments,

– There was an overall 9-times cost reduction.

– 9-times increase in inference speed making the approach more suitable

for real-time decision making using machine learning.

– 22 % of unneccesary data was pruned and save on cloud reducing 22 %

of storage costs.

Lastly, a perspective on hardware setup and installation for edge devices used in the ex-

periments. Here are the ratings for each device in the table below. The hardware of each

device used for the experiment is rated from 1 to 5 based on RAM, processor and hard-

ware performance. Ease of use is about how easy was it to configure, install and run the

device, it is rated from 1 to 5. 1 being hard and time-consuming and 5 being easy and

time-efficient to get started and running.

Comparison

Edge

device

OS Power

usage

Hardware

(1-5)

Ease of use (1-5)

Raspberry

pi 4b

Raspbian OS 5V 5 4

Jetson

Nano 2

Jetson nano de-

veloper kit OS

5V 5 3

Google

TPU edge

Mendel OS 5V 4 2

69

6 CONCLUSION
This thesis has put forward a framework for edge computing, machine learning, cloud

computing and low latency networks to work together to enable operational efficiency

and create business value through resource optimization for real-time AIoT applications.

The overall task has been to design a general framework or architecture that integrates

continuous integration and continuous deployment of Machine learning models at the

edge for AIoT applications.

In the introduction to this thesis, we look into the developments taken place over time in

the infrastructure landscape with cloud computing and edge computing and the outlook

towards using machine learning and low latency networks enabling real-time decisions at

the edge, near the data origins. Following this, the research question was stated as:

RQ: How can a framework that integrates continuous delivery and continuous deployment

of machine learning models at the edge be implemented using state-of-the-art tools and

methods?

In order to address this objective, state of the art tools were selected based on market

trends like popularity, adoption and readiness. Tools selected are commonly used software

engineering tools by data scientists and machine learning engineers to build and deploy

data and machine learning driven products and services. The tools used are Python, Linux

OS, Docker for the software stack, and for infrastructure Microsoft Azure cloud was

preferred based on popularity, adoption and readiness of the services.

This thesis is done in collaboration with partners, thanks to our industry and research part-

ners TietoEvry and VTT Finland for provisioning experimenting facility in the 5G campus

in Helsinki where rapid experiments were performed on three edge devices (Raspberry Pi

4, NVIDIA Jetson Nano 2 and Google TPU edge) located in three different rooms which

had IoT devices setup to sense room conditions like temperature, pressure, ambient light-

ing and air quality. Machine learning algorithms were trained in a systematic approach

(MLOps) as discussed in section 4.2. Multiple algorithms were trained to predict room

air quality in the rooms 15 minutes in the future. These machine learning models were

deployed and monitored in the edge devices during the experiment which lasted for 45

days.

70

To address our research question we followed a design science methodology proposed

by Wieringa (2014). In an Iterative and structured approach, we implemented two cy-

cles (Design cycle and Empirical cycle) to gain qualitative and quantitative results and

conclusions for our design solution. After many iterations and optimizations throughout

the experiments, we concluded with the proposed framework for Edge MLOps for AIoT

applications as described in section 4.3.6. This solution has been concluded in section

5 to be robust, scalable and applicable across multiple industries for AIoT applications.

However, it is needless to say that thesis has it’s limitations. On the one hand, these may

be related to simplifications for experiments like data modeling and pruning, limiting the

scale of edge devices to three and perhaps some choices around limiting the tooling for the

experiments, considering these factors some limitations are observed as follows,

1. The proposed architecture is Microsoft Azure cloud based. Needs to be generalized

further.

2. The proposed architecture is limited to cases where data privacy and privacy preser-

vation is not essential. To overcome this limitation an extended architecture was

proposed in section 4.4.2, this extension enables asynchronous Federated Learning

for data privacy and privacy preservation.

3. For each parallel job in CI-CD Pipelines in Azure DevOps, you can run a single

job at a time which limits to a certain extent the ability to do parallel processing

for edge-cloud operations, some other alternatives to azure for CI-CD pipelines are

discussed in section 4.4.2.

On the other hand, these provide opportunities for further research as the following,

• Implementing this architecture in the industry and multiple sectors like life care

sciences, energy, healthcare, etc.

• Exploring more methods for federated learning.

• Implementing the framework using a 5G network for more efficiency and faster

operations at scale.

71

• Augmenting the Edge MLOps framework to fit other popular cloud infrastructure

providers Google, Amazon and others to further generalize the framework.

With this thesis, we now better understand the benefits of applied AI on edge computing,

with hands-on experience in designing and validating the proposed framework. As a result

of this, we have a clear vision for further research.

72

REFERENCES
5G-Force. 5G-Force project, howpublished = https://5gtnf.fi/projects/5g-force/ , note =

Accessed: 2020-04-18.

5GTNF. 2020, 5G Test Network Finland, howpublished = https://5gtnf.fi/overview/ , note

= Accessed: 2020-04-18.

Akkiraju, Rama; Sinha, Vibha; Xu, Anbang; Mahmud, Jalal; Gundecha, Pritam; Liu, Zhe;

Liu, Xiaotong & Schumacher, John. 2018, Characterizing machine learning process: A

maturity framework, arXiv preprint arXiv:1811.04871.

Akusok, Anton; Björk, Kaj-Mikael; Miche, Yoan & Lendasse, Amaury. 2015, High-

performance extreme learning machines: a complete toolbox for big data applications,

IEEE Access, vol. 3, , pp. 1011–1025.

Beck, Michael Till; Werner, Martin; Feld, Sebastian & Schimper, S. 2014, Mobile edge

computing: A taxonomy, In: Proc. of the Sixth International Conference on Advances

in Future Internet, Citeseer, pp. 48–55.

Benesty, Jacob; Chen, Jingdong; Huang, Yiteng & Cohen, Israel. 2009, Pearson correla-

tion coefficient, In: Noise reduction in speech processing, Springer, pp. 1–4.

Beyer, Betsy; Murphy, Niall Richard; Rensin, David K; Kawahara, Kent & Thorne,

Stephen. 2018, The site reliability workbook: Practical ways to implement SRE, "

O’Reilly Media, Inc.".

Bilal, Kashif; Khalid, Osman; Erbad, Aiman & Khan, Samee U. 2018, Potentials, trends,

and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers,

Computer Networks, vol. 130, , pp. 94–120.

Bonomi, Flavio; Milito, Rodolfo; Zhu, Jiang & Addepalli, Sateesh. 2012, Fog computing

and its role in the internet of things, In: Proceedings of the first edition of the MCC

workshop on Mobile cloud computing, pp. 13–16.

Brian D. Noble, Dushyanth Narayanan James Eric Tilton Jason Flinn Kevin R. Walker

School of Computer Science Carnegie Mellon University, M. Satyanarayanan. 1997,

Agile Application-Aware Adaptation for Mobility, Proceedings of the 16th ACM Sym-

posium on Operating System Principles.

73

https://5gtnf.fi/projects/5g-force/
https://5gtnf.fi/overview/

Coway. 2016, What is the Air Quality Index?, howpublished =

https://www.cowaymega.com/air-quality-index/ , note = Accessed: 2019-11-29.

Dillon, Tharam; Wu, Chen & Chang, Elizabeth. 2010, Cloud computing: issues and chal-

lenges, In: 2010 24th IEEE international conference on advanced information net-

working and applications, Ieee, pp. 27–33.

Drucker, Harris; Burges, Christopher JC; Kaufman, Linda; Smola, Alex J & Vapnik,

Vladimir. 1997, Support vector regression machines, In: Advances in neural informa-

tion processing systems, pp. 155–161.

Finland, Business. 2020, Business Finland, howpublished =

https://www.businessfinland.fi/en/do-business-with-finland/home/ , note = Accessed:

2020-04-24.

Girish Agarwal, hyperight, Ivana Kotorchevikj. 2019, What is

Edge AI and how it fills the cracks of IoT, howpublished =

https:// read.hyperight.com/what-is-edge-ai-and-how-it-fills-the-cracks-of-iot/ ,

note = Accessed: 2019-12-21.

Gunn, Steve R et al.. 1998, Support vector machines for classification and regression, ISIS

technical report, vol. 14, no. 1, pp. 5–16.

Ha, Kiryong; Chen, Zhuo; Hu, Wenlu; Richter, Wolfgang; Pillai, Padmanabhan & Satya-

narayanan, Mahadev. 2014, Towards wearable cognitive assistance, In: Proceedings

of the 12th annual international conference on Mobile systems, applications, and ser-

vices, pp. 68–81.

Huang, Guang-Bin. 2014, An insight into extreme learning machines: random neurons,

random features and kernels, Cognitive Computation, vol. 6, no. 3, pp. 376–390.

Huang, Guang-Bin. 2015, What are extreme learning machines? Filling the gap between

Frank Rosenblatt’s dream and John von Neumann’s puzzle, Cognitive Computation,

vol. 7, no. 3, pp. 263–278.

Huang, Guang-Bin; Zhou, Hongming; Ding, Xiaojian & Zhang, Rui. 2011, Extreme

learning machine for regression and multiclass classification, IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529.

74

https://www.cowaymega.com/air-quality-index/
https://www.businessfinland.fi/en/do-business-with-finland/home/
https://read.hyperight.com/what-is-edge-ai-and-how-it-fills-the-cracks-of-iot/

Hunkeler, Urs; Truong, Hong Linh & Stanford-Clark, Andy. 2008, MQTT-S—A pub-

lish/subscribe protocol for Wireless Sensor Networks, In: 2008 3rd International Con-

ference on Communication Systems Software and Middleware and Workshops (COM-

SWARE’08), IEEE, pp. 791–798.

Konečnỳ, Jakub; McMahan, H Brendan; Yu, Felix X; Richtárik, Peter; Suresh,

Ananda Theertha & Bacon, Dave. 2016, Federated learning: Strategies for improving

communication efficiency, arXiv preprint arXiv:1610.05492.

Liaw, Andy; Wiener, Matthew et al.. 2002, Classification and regression by randomForest,

R news, vol. 2, no. 3, pp. 18–22.

Nelson, Patrick. 2016, Just one autonomous car

will use 4,000 GB of data/day, howpublished =

https://www.networkworld.com/article/3147892/one-autonomous-car-will-use-4000-gb-of-dataday.html,

note = Accessed: 2019-11-29.

Popović, Krešimir & Hocenski, Željko. 2010, Cloud computing security issues and chal-

lenges, In: The 33rd international convention mipro, IEEE, pp. 344–349.

Preacher, Kristopher J; Curran, Patrick J & Bauer, Daniel J. 2006, Computational tools for

probing interactions in multiple linear regression, multilevel modeling, and latent curve

analysis, Journal of educational and behavioral statistics, vol. 31, no. 4, pp. 437–448.

Raj, Emmanuel. 2019a, 8 Enablers For Europe’s

Trustworthy Artificial Intelligence, howpublished =

https://www.tietoevry.com/en/blog/2019/07/8-enablers-for-europes-trustworthy-artificial-intelligence/ ,

note = Accessed: 2019-09-30.

Raj, Emmanuel. 2019b, Robust and scalable Machine Learn-

ing lifecycle for a high performing AI team, howpublished =

https://www.tietoevry.com/en/blog/2019/12/robust-and-scalable-ml-lifecycle-for-a-high-performing-ai-team/ ,

note = Accessed: 2019-12-12.

Ratkowsky, David A & Giles, David EA. 1990, Handbook of nonlinear regression models,

04; QA278. 2, R3., M. Dekker New York.

75

https://www.networkworld.com/article/3147892/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://www.tietoevry.com/en/blog/2019/07/8-enablers-for-europes-trustworthy-artificial-intelligence/
https://www.tietoevry.com/en/blog/2019/12/robust-and-scalable-ml-lifecycle-for-a-high-performing-ai-team/

Ren, Ju; Guo, Hui; Xu, Chugui & Zhang, Yaoxue. 2017, Serving at the edge: A scalable

IoT architecture based on transparent computing, IEEE Network, vol. 31, no. 5, pp.

96–105.

Rouse, Margaret. 2020, Artificial Intelligence of Things(AIoT), howpublished =

https:// internetofthingsagenda.techtarget.com/definition/Artificial-Intelligence-of-Things-AIoT,

note = Accessed: 2020-04-21.

Satyanarayanan, Mahadev. 2001, Pervasive computing: Vision and challenges, IEEE Per-

sonal communications, vol. 8, no. 4, pp. 10–17.

Satyanarayanan, Mahadev. 2017, The emergence of edge computing, Computer, vol. 50,

no. 1, pp. 30–39.

Segal, Mark R. 2004, Machine learning benchmarks and random forest regression.

Severyn, Aliaksei & Moschitti, Alessandro. 2013, Automatic feature engineering for an-

swer selection and extraction, In: Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pp. 458–467.

Shahin, Mojtaba; Zahedi, Mansooreh; Babar, Muhammad Ali & Zhu, Liming. 2019, An

empirical study of architecting for continuous delivery and deployment, Empirical Soft-

ware Engineering, vol. 24, no. 3, pp. 1061–1108.

Shi, Weisong; Cao, Jie; Zhang, Quan; Li, Youhuizi & Xu, Lanyu. 2016, Edge computing:

Vision and challenges, IEEE internet of things journal, vol. 3, no. 5, pp. 637–646.

Statista, Research Department. 2020, Number of internet of things (IoT)

connected devices worldwide in 2018, 2025 and 2030, howpublished =

https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/ ,

note = Accessed: 2020-05-15.

Tan, Lu & Wang, Neng. 2010, Future internet: The internet of things, In: 2010 3rd inter-

national conference on advanced computer theory and engineering (ICACTE), vol. 5,

IEEE, pp. V5–376.

Techcrunch. 2016, How AWS came to be, howpublished =

https:// techcrunch.com/2016/07/02/andy-jassys-brief-history-of-the-genesis-of-aws/ ,

note = Accessed: 2019-04-02.

76

https://internetofthingsagenda.techtarget.com/definition/Artificial-Intelligence-of-Things-AIoT
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://techcrunch.com/2016/07/02/andy-jassys-brief-history-of-the-genesis-of-aws/

VTT. 2019, Smart Otaniemi project, Platforms and Connectivity, howpublished =

https:// smartotaniemi.fi/pilots/platforms-connectivity/ , note = Accessed: 2019-10-30.

Westerlund, Magnus. 2018, A study of EU data protection regulation and appropriate

security for digital services and platforms.

Wieringa, Roel J. 2014, Design science methodology for information systems and soft-

ware engineering, Springer.

Wu, Yung Chang; Wu, Yenchun Jim & Wu, Shiann Ming. 2019, An outlook of a future

smart city in Taiwan from post–Internet of things to artificial intelligence Internet of

things, In: Smart Cities: Issues and Challenges, Elsevier, pp. 263–282.

Yi, Shanhe; Hao, Zijiang; Qin, Zhengrui & Li, Qun. 2015, Fog computing: Platform

and applications, In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and

Technologies (HotWeb), IEEE, pp. 73–78.

Zhang, Cha & Ma, Yunqian. 2012, Ensemble machine learning: methods and applica-

tions, Springer.

77

https://smartotaniemi.fi/pilots/platforms-connectivity/

APPENDIX A
Edge devices setup and installation

This section describes the edge devices in detail. We discuss the process of setting up

hardware and detailed steps to configure the edge devices for our experiment.

1. Raspberry Pi 4

Raspberry pi 4 is the latest small single-board computers developed by Raspberry Pi

Foundation with below hardware specifications.

Specs

Processor Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

Memory 4GB LPDDR4

Connectivity wireless LAN, Bluetooth 5.0, Gigabit Ethernet, USB 2.0 and 3.0 ports.

Internal Storage None

MicroSD card 64GB

Power 5V DC via USB-C connector.

Size 88 x 58 x 19.5mm

OS NOOBS - Raspbian OS (Linux based)

Peripherals

These are the needed peripherals in order to setup and configure raspberry pi 4, to get it

up and running for our experiment.

• microSD card - 64 GB

• Micro-USB port for 5V power input or for data

• Gigabit Ethernet port

• HDMI output port

• DisplayPort connector

78

• USB keyboard and mouse

Once these peripherals are connected to the raspberry pi 4, we are set to configure software

for our experiment as mentioned in the steps below.

1. Write Image to the microSD Card

(a) A microSD card loaded with NOOBS, the software that installs the operating

system is needed.

(b) Downloaded Noobs OS from here: https://www.raspberrypi.org/downloads/noobs/

(c) Write the image to your microSD card by using Etcher: https://www.balena.io/etcher/

2. First Boot and Setup

(a) Keyboard and mouse settings:

(b) Connecting to the internet

(c) Installing software

(d) Updating your Pi

(e) Using the terminal

(f) Install needed packages: Install needed python packages like numpy, pandas,

sklearn, onnx and azureml.

(g) Install Docker: Docker is a tool to make it easier to create, deploy, and run

applications by using containers. Containers allow a developer to package up

an application with required components such as libraries and other depen-

dencies and deploy it as one package

(h) Remote access: Setup remote access to login to the machine from a remote

location. This will be essential to later facilitate edge device to cloud integra-

tions.

79

https://www.raspberrypi.org/downloads/noobs/
https://www.balena.io/etcher/

Here is a reference to detailed steps followed above to setup raspberry pi 4 for our exper-

iment. https://projects.raspberrypi.org/en/projects/raspberry-pi-using

2. Nvidia Jetson Nano 2 NVIDIA Jetson Nano enables the development of millions of

new small, low-power AI systems. It opens new world of embedded IoT applications, in-

cluding entry-level Network Video Recorders (NVRs), home robots, and intelligent gate-

ways with full analytic capabilities.

Processor 128 CUDA core GPU, Quad-core ARM A57 processor

Memory 4 GB 64-bit LPDDR4

Connectivity Wi-Fi requires external chip, USB 3.0, USB 2.0

Internal Storage 16 GB eMMC 5.1 Flash

MicroSD card 64GB

Power Micro-USB port for 5V power input.

Size 69.6 mm x 45 mm

OS Jetson nano developer kit OS (Linux based)

Peripherals

These are the needed peripherals in order to setup and configure Nvidia’s Jetson Nano 2,

to get it up and running for our experiment.

• microSD card - 64 GB

• Micro-USB port for 5V power input or for data

• Gigabit Ethernet port

• HDMI output port

• DisplayPort connector

• USB keyboard and mouse

• USB Wifi connector

Once these peripherals are connected to the Nvidia Jetson Nano 2, we are set to configure

software for our experiment as mentioned in the steps below.

80

https://projects.raspberrypi.org/en/projects/raspberry-pi-using

1. Write Image to the microSD Card

(a) Download the Jetson Nano Developer Kit SD Card Image.

(b) Write the image to your microSD card by using Etcher: https://www.balena.io/etcher/

2. First Boot and Setup

(a) A green LED next to the Micro-USB connector will light as soon as the devel-

oper kit powers on. When you boot the first time, the Jetson Nano Developer

Kit will take you through some initial setup, including:

i. Review and accept NVIDIA Jetson software EULA

ii. Select system language, keyboard layout, and time zone

iii. Create username, password, and computer name

(b) Using the terminal

(c) Install needed packages: Install needed python packages like numpy, pandas,

sklearn, onnx, azureml

(d) Install Docker

(e) Remote access: Setup remote access to login to the machine from a remote

location. This will be essential to later facilitate edge device to cloud integra-

tions.

Here is a reference to detailed steps followed above to setup raspberry pi 4 for our experi-

ment. https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro

3. Google TPU edge Edge TPU is Google’s purpose-built ASIC designed to run AI at

the edge. It delivers high performance in a small physical and power footprint, enabling

the deployment of high-accuracy AI at the edge.

81

https://www.balena.io/etcher/
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro

Specs

Processor Quad Cortex-A53, Cortex-M4F, GPU - GC7000 Lite, TPU coprocessor

Memory 1GB LPDDR4

Connectivity Wi-Fi 2x2 MIMO (802.11b/g/n/ac 2.4/5GHz) and Bluetooth 4.2

Internal Storage 8 GB eMMC

MicroSD card 64GB

Power 5V DC (USB Type-C)

Size 88 mm x 60 mm x 24mm

OS Mendel OS (Linux based)

Peripherals and additional hardware for installation

These are the needed peripherals in order to setup and configure raspberry pi 4, to get it

up and running for our experiment.

• microSD card - 64 GB

• USB-A to USB-micro-B cable (to connect your PC to the board’s serial port)

• USB-A to USB-C cable (to connect your PC to the board’s data port)

• 2 - 3A (5V) USB Type-C power supply (such as a phone charger)

• Ethernet cable or Wi-Fi connection

• USB keyboard and mouse

Unlike Raspberry pi 4 and Jetson Nano 2 this dev board needs to go through flashing and

booting before it can run independently to perform the experiment. Once GoogleTPU

edge is connected to a host computer(Linux or Mac) for flashing and booting we can start

the process of booting the device and configuring the device to install needed software and

packages for the experiment, here are the steps implemented in order to get GoogleTPU

edge dev board ready for the experiment:

82

1. Install fastboot: Fastboot is basically a diagnostic tool used to modify the Android

or linux file system from a computer when the smartphone or smart device is in

bootloader mode.

2. Install Mendel Development tool (MDT): MDT is a command line tool that helps

you perform tasks with connected Mendel devices, such as this GoogleTPU Dev

Board. For example, MDT can list connected devices, install Debian packages on a

device, open a shell with a device, and perform needed operations on the dev board.

(installation done using python pip).

3. Flash the board’s OS image: Some software especially firmware and OS is non-

upgradable or non-rewritable while others are upgradeable, it is possible to install

the firmware and OS of the device by connecting it to another computer (in the spec-

ified configuration) and then running the software provided by the manufacturer.

This process is called flashing. takes about 5-7 minutes for flashing to complete for

the dev board. When it’s done, the board reboots.

4. Generate an SSH public/private key pair and setup remote access: push the key pair

to the board’s authorized keys file, which then allows you to authenticate with SSH.

(Using MDT is just easier than manually copying the key over the serial console.)

5. Install needed packages: Install needed python packages like numpy, pandas, sklearn,

onnx, azureml.

6. Install Docker.

Here is a reference to detailed steps listed by the Manufacturer, followed as above to setup

Google TPU edge for our experiment:

https://coral.ai/docs/dev-board/get-started/#6-run-a-model-using-the-tensorflow-lite-api

83

https://coral.ai/docs/dev-board/get-started/#6-run-a-model-using-the-tensorflow-lite-api

APPENDIX B
Python libraries used to conduct the experiments,

• Numpy (version 1.17.0): NumPy is the fundamental package for array computing

with Python and used in various computation operations.

• Pandas (version 0.25.0): It offer robust data structures for data analysis is and used

for data handling and manipulation.

• Scikit-Learn (version 0.20.3): Implements various standard machine learning and

model evaluation algorithms such as Support vector machines, ROC Curve, F1-

Score etc and more.

• Matplotlib (version 3.1.1): Is a plotting package used for visualization of data.

• Seaborn (version 0.8.1): Is a statistical data visualization tool used fordata visual-

ization.

• ONNX (version 1.2.0): ONNX is an open ecosystem for interoperable AI models,

it enables model interoperability and serialization of ML and deep learning models

in a standard format.

• AzureML (version 1.2.0): This module is python sdk for Azure Machine Learn-

ing services which enables data processing, data versioning, ML model training,

packetizing, deploying and monitoring ML models.

84

	Introduction
	Background
	Developments
	Origins
	Recent Developments

	Edge Computing

	Framework
	AI and Machine Learning at the edge
	Current Problem
	Solution
	Research Question
	Studies for addressing the research question
	Significance to the field

	Components and processes for edge AI ecosystem
	Limitations
	Aim of the project

	Research Theory and Methodology
	Towards a Research Methodology using Design Science
	Design Cycle
	Empirical Cycle

	Applied Machine Learning Methods

