
Master's Thesis 

Master of Engineering - Big Data Analytics 

May 30, 2020 

 

  

Unsupervised Machine Learning Anomaly 

Detection for Multivariate Time-Series Data in 

Wind Turbine Converters 

 

 

 

Chuang Yu 

 



 

 

  

MASTER’S THESIS 

Arcada  

 

Degree Programme: Master of Engineering - Big Data Analytics 

 

Identification number:  

Author: Chuang Yu 

Title: Unsupervised Machine Learning Anomaly Detection for 

Multivariate Time-Series Data in Wind Turbine Converters  

 

Supervisor (Arcada): Leonardo Espinosa Leal 

 

Commissioned by: ABB Drives Oy 

 

Abstract:  

Because wind power is one the main clean energy sources, the demand for wind generated 

energy has been rapidly increasing all over the world. As wind turbine converter is one of 

the key components in wind turbine, it is critical to ensure the reliability of its operation 

without human monitoring in addition to cost efficiency. This thesis studies and 

experiments two unsupervised machine learning models to detect anomaly turbine 

converters: Hidden Markov Model and Hierarchical Density-Based Spatial Clustering of 

Applications with Noise (HDBSCAN) model. The aim is to compare the results from the 

two selected models and cross validate the results with existing models and visualized 

graphs for data analytics. With Hidden Markov Model, three distance computation methods 
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(PCM). The experiments show that PCM is the fastest but also produces the worst result, 

while Discrete Frechet is the slowest, and produces the similar result as DTW. HDBSCAN 

is very intuitive to use and relatively fast to produce the clusters, and it works exceptional 

good on certain data Analysis Group. The experiment results show that both models do not 

provide satisfactory result compared to the existing models. 
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1 INTRODUCTION 

This chapter describes the necessary definitions used in the master thesis, the aims of the 

research, the methodology of the research and the structure of the master thesis. 

1.1 Background 

In effort of global CO2 emission reduction, wind energy become one of the rapidly 

growing clean and sustainable energy sources due to the reliability and cost efficiency. In 

Europe along, Krohn et al. (2009) reported that the investment for wind energy will be up 

to 20 billion Euros by 2030, while the cost of wind energy will significantly decline. In 

Krohn’s report, approximately 75% of the wind energy cost came from the wind turbine 

equipment and installation. This aligns with Du’s (2016) study, which estimated the 

operations and maintenance related cost is around 25%-30% of the wind energy 

investment. 

According to Saeed (2008, p.14) wind turbine is a device that converts the wind’s kinetic 

energy into electrical energy. Figure 1 shows wind turbines in a wind park. A typical wind 

park or wind farm consists of several wind turbines, which are normally installed in an 

offshore or distant from population area. This makes the maintenance and supervision of 

the wind park challenging. 

 

 Figure 1. Wind turbines in a wind park (ABB commercia 2020) 

https://www07.abb.com/images/librariesprovider87/default-album/reliability-boost-for-aging-doubly-fed-wind-turbine-converters_363x195.jpg?sfvrsn=35d9ea13_1&CropWidth=425&CropHeight=228&Quality=High&CropX=0&CropY=0&Width=425&Height=228&Method=CropToFixedAreaCropToFixedAreaArguments&Key=f1f4ce86ad2d130a471f790240f4c8d6
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In Saeed (2008, p.14) study, he introduced how the wind turbine works. First, the wind 

energy turns three blades around a rotor. The rotor is connected to the main shaft, which 

spins a generator to create electricity.  

Due to the nature of wind power, a wind turbine converter that is capable of adjusting the 

generator frequency and voltage to the grid is required. Most importantly, the wind 

turbine converter plays an important role in helping create the perfect wind economy. 

ABB is one of the technical leaders to offer the state-of-the-art turbine converters to the 

market. In addition, ABB is a pioneer to provide the most sophisticated cloud services, 

which is available in the market, for turbine converter’s maintenance and supervision. 

In recent years, many researches in ABB have been conducted to aim improving the 

turbine converter maintenance cost efficiency and enhancing the reliability and 

maintainability of the turbine converters. This thesis is inspired by the latest researches 

and try to explore some new ideas. 

1.2 Motivation and Aim of the Study 

The thesis is motivated by the clean and sustainable energy development trend. It is easier 

and faster for the market to take the advantages of wind energy if the cost of wind energy 

can be reduced so that it is considerably cheaper than the overall cost of fossil fuel energy. 

One way to reduce the operation and maintenance cost of wind energy is to alert faults to 

the operators as earlier as possible. 

In the effort of further reducing the operations and maintenance related cost, the thesis 

researches on possible machine learning models to automatically detect anomalies of the 

wind turbine converter, which is the key component inside a wind turbine. 

The thesis experiments on two different unsupervised machine learning models based on 

the data collected from a wind park located in offshore area throughout the whole year 

2018. Because ABB only provides the turbine converters as the one of the components of 

the wind turbine, the collected data is only limited to the turbine converters in the wind 

park. Thus, the research mainly focuses on the anomaly detection of the turbine 

converters. This is important to the wind park operation and maintenance because turbine 
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converters are the key component in the wind turbine. Chapter 1.4.3 introduces wind 

turbine and turbine converters in details. 

The research questions of the thesis are: 

What are unsupervised machine learning models suitable for automatically detecting anomalies of wind 

turbine converters?  

What are the models’ performance and accuracy? 

The aim of the thesis is to answer the research questions and point out possible directions 

to future study or commercial applications. The conclusion is to present how the 

experimental models perform and if they are worth of continuing exploration. 

1.3 Data and Methods 

The data used in this research was collected from a wind park, which consists of 50 wind 

turbines. Each wind turbine equipped with an ABB wind turbine converter, which is the 

key component of the wind turbine. From each ABB wind turbine converter, the data was 

collected in one-minute interval throughout the whole year 2018. However, the amount 

of data does not distribute evenly for all wind turbine converters. Figure 2 shows the 

amount of data for each wind turbine converters. In order to achieve better accuracy, the 

wind turbine converters, which have significantly less data compared to the others, are 

excluded from the research, for example, wind turbine converter number 5 and 25. The 

missing data could be caused by different reasons, for instance, maintenance break, 

turbine converter’s faults or network communication error. 

 

Figure 2. Counts of wind turbine converters collected data 
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The collected data includes measurements of speed, current, voltage, power, torque, 

temperature and pressure from different parts of the device. These measurements are 

identified as parameters, which are predefined by manufacture. The parameters are 

identically configured for all wind turbine converters. For all wind turbine converters, 84 

parameters’ values were simultaneously collected via ethernet connection. The 

parameters are categorized into predefined parameter groups. Therefore, each collected 

data point is identified as the combination of wind turbine converter ID, parameter group 

index and parameter index. Figure 3 shows example data from wind turbine converter 

#13. 

 

Figure 3.Example data for wind turbine converter #13 

1.4 Definitions 

This chapter introduces key definitions and terminologies used in the thesis. 

1.4.1 Anomaly 

There are many definitions of anomaly. The one defined by Cook et al (2019) is the most 

relevant one to this thesis: “the measurable consequences of an unexpected change in 

state of a system which is outside of its local or global norm”. 

Typically, anomaly defines partners that do not follow normal or expected behavior in a 

system. Often it is also called exception or outlier. However, an anomaly is not necessarily 

a fault in the system, it could be caused by system running in different mode, which is 

completely normal.  
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1.4.2 Anomaly Detection 

Rana et al (2016) presents that anomaly can be detected with different techniques, for 

instance, statistics and machine learning. Anomaly detection works on different type of 

data, typically on time-series data, which can be either univariate or multivariate. This 

thesis focuses on anomaly detection with unsupervised machine learning techniques on 

multivariate time-series data. 

Anomaly detection is widely applied in different areas, for instance, cyber intrusion 

detection, stock price manipulation detection, faults detection and so on.  

1.4.3 Wind Turbine Convertor 

A wind turbine turns kinetic energy from the wind into electrical energy into the power 

grid. Figure 4 depicts a typical structure of the wind turbine along with the grid feed-in. 

 

Figure 4. Structure and components of the drive train and the grid feed-in of a wind turbine with a fully-rated converter 

(Fuchs 2014, p.275). 

The wind turbine is capable of operating in variant wind speed. The task of the converters 

is to convert the alternating current of the generator-side frequency to the grid-side stable 

frequency, therefore, the converter is also named as frequency converter. The frequency 

converter performs two functionalities. On generator side, the converter performs speed 

control and is operated with a variable frequency of the converter. On the power grid side, 

it allows the power to be fed into the grid and is operated with the stable grid frequency 

of 50 or 60 Hz (Fuchs 2014). 
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1.4.4 Machine Learning 

David B (2012) defines machine learning as the body of research related to automated 

large-scale data analysis, which includes many of the traditional areas of statistics. 

However, machine learning mainly focuses on mathematical models and prediction. 

There are two types of machine learning: supervised machine learning and unsupervised 

machine learning. Supervised machine learning analyses data which contains significant 

information, referred as labeled data, while the unsupervised machine learning analyses 

unlabeled data, which no difference between training and test data set. Typically, anomaly 

detection falls into unsupervised machine learning according to Shai (2014). 

1.5 Structure of the Thesis 

This thesis is structured as follow: Chapter 2 discusses the theoretical base of data 

analytics, its applications in the wind industry, and presents the concepts of machine 

learning and anomaly detection. Chapter 3 introduces the algorithms used for machine 

learning in this research, while Chapter 4 discusses and evaluates the results of the work. 

Finally, Chapter 5 concludes and sums up this thesis, and outlines the possible directions 

of future works. 

2 RELATED WORK 

Rana et al (2016) summarized a few machine learning techniques for time-series anomaly 

detection, including statistical, classification, clustering, knowledge based and so on. As 

introduced in Chapter 1.4.4, classification works on labeled data, thus it falls under the 

supervised machine learning. On the other hand, clustering is primarily unsupervised 

machine learning. In Rana’s report, a few examples of clustering models are introduced, 

such as DBSCAN, ROCK, SNN and K-Means. 

Cook et al (2019) present that Recurrent Neural Networks (RNN) and Long Short-Term 

Memory (LSTM) are proved to be effective for IoT data. Autoregressive Moving Average 

(ARMA) and Autoregressive Integrated Moving Average (ARIMA) are also commonly 

used to detect anomaly by predicting the trend in the future. Cook et al (2019) also point 

out that Principal Component Analysis (PCA) can be used to reduce the complexity of 
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multivariate time-series data. When detecting anomaly on multivariate time-series data, 

Multiple Kernel Anomaly Detection (MKAD) is often used as one of the clustering 

models. 

Both Rana et al (2016) and Cook et al (2019) summarize that the anomaly detection 

technique can highly depend on the data and system under the analysis. There is no silver 

bullet works for generic purpose, and it is common to apply ensemble models to detect 

the anomaly on time-series data. 

This thesis works with the un-labeled data; therefore, classification technique is not 

applicable, clustering approach is used. 

2.1 Definition 

Anomaly detection is one of the data analysis areas, which is widely applied to scientific 

and financial field. Anomaly detection for time-series data is one of the hot topics in 

machine learning research. In Wu’s (2016) research, the time-series data can be defined 

as 

 𝑆 = {𝑣𝑖(1), 𝑣𝑖(2), ⋯ , 𝑣𝑖(𝑡), ⋯ , 𝑣𝑖(𝑛)} (1) 

In which 𝑡 (𝑡 = 1,2, ⋯ , 𝑛) is defined as time, 𝑖 (𝑖 = 1,2, ⋯ , 𝑚) is defined as variable. 

𝑣𝑖(𝑡) is defined as the record of the variable 𝑖 on time 𝑡 . When 𝑚 = 1, 𝑆 is defined as 

univariate time-series. When 𝑚 > 1, 𝑆 is defined as multivariate time-series. 

2.2 Anomaly Detection with Density Based Cluster 

In previous study of the topic, Stikhin (2019) in his master thesis uses unsupervised 

machine learning model to detect anomaly in wind turbine converters. With his model, 

the result is very encouraging and positive. The topic of this thesis is inspired by Stikhin’s 

research. The same data set is used in this research as in Stikhin’s. 

Stikhin implements an algorithm includes dimensionality reduction with principal 

component analysis (PCA), density-based clustering and distance-based nearest neighbor 

analysis. 
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One month of collected data from selected wind turbine converters is processed before 

feed into the model. The data from all wind turbine converters is taken from the same 

parameters, and grouped into four categories, which are closely correlated to certain 

function of the device. These categories are separately analyzed with the same model. 

This ensures the anomaly detection in the device, because the fault can happen to some 

parts of the device, while the other parts work normally. The four categories are described 

in Chapter 3.2 in details. Then the data is normalized and optimized with PCA model. 

Two components are selected in order to create a 2-dimensional grid. A number of unique 

values, i.e., the number of converters with similar values, is calculated for every cell of 

the grid. If this number does not pass the defined threshold for a normal cluster, the cell 

and all its values are marked as suspected, while the other points are marked as normal. 

K-d tree is used to calculate the mean distance between the points in the normal clusters. 

If a point is too far away from the normal ones (according to a threshold), it is marked as 

outlier. In the end, for each converter, the percentage of outliers are calculated from all 

points. If the percentage is higher than the defined value, the converter is considered as 

behaving anomaly.  

The advantage of this model is that it is simple to implement and easy to understand, 

while the performance is considerably fast. However, the main drawback of the model is 

that it is not fully automated: a predefined threshold and a predefined percentage value 

are required in order to produce the result. In addition, the predefined threshold and 

percentage values may vary depending on the time, weather or even location of the wind 

park. One of the aims of this thesis is to experiment models which can be automated 

without any predefined value. 

2.3 Time Series Data Anomaly Detection with LSTM 

Standard Neural Network is proved to be effective to analyze unstructured data such as 

image, but also has the limitation of analyzing sequential data. To overcome the problem, 

Sherstinsky (2019) described that Recurrent Neural Network (RNN) and Long Short-

Term Memory (LSTM) algorithms have been used to analyze sequential data, such as 

time-series data.  
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Unlike the other neural networks, which all the inputs are independent from each other, 

in RNN, all the inputs are related to each other. LSTM is an improved version of RNN, 

in which the vanishing gradient problem of RNN is resolved. Therefore, with time-series 

data such as language, Yulius (2018) experimented that LSTM is working more effective. 

LSTM is a generic algorithm to analyze time-series data, which has been widely used in 

different fields. In Nguyen’s (2018) study, the LSTM model from anomaly detection of 

social network was used to detect earthquake. And Zhu (2019) demonstrated LSTM can 

be used to detect anomalies on prognostic and health data. 

2.4 Clustering Analysis Based on Dirichlet Process Gaussian 

Mixture Models 

In study made by Tan et al (2019), the authors proposed another way of clustering 

multivariable data: clustering analysis based on Dirichlet Process Gaussian Mixture 

Models (DP-GMM). The research concluded that the usage of DP has made the training 

procedure unsupervised without the need for knowing the number of clusters. The 

simulated calculation shows that the Non-stationary Discrete Convolution kernel has 

improved the ability of kernel PCA in accounting for the heterogeneity of multivariate 

data. 

In a GMM, an 𝑚-dimensional random variable 𝑥 follows a Gaussian mixture model with 

𝐽 components: 

𝑥 ~ 𝑁(𝜇𝑗, ∑𝑗) with probability 𝜋𝑗 

 

 s.t. 𝜋𝑗 > 0 ∀ 𝑗, ∑ 𝜋𝑗 = 1𝐽
𝐽=1   (2) 

 

where ~ denotes that the random variable on the left side follows the probability 

distribution on the right hand side. 𝜇𝑗, ∑𝑗 are the mean vector and the covariance matrix 

of the 𝑗-th Gaussian component, respectively. The mixture proportion 𝜋𝑗 is the probability 

of drawing from the 𝑗-th component. 
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In DP-GMMs, the sample 𝑥 is drawn from a GMM. The Gaussian components in this 

mixture have parameters, for example, 𝜇𝑗, ∑𝑗 and 𝜋𝑗. These parameters follow the 

distributions generated by the DP in a Bayesian way. Therefore, a Dirichlet mixture of 

Gaussian distributions can be written as: 

 

𝐺(∙) ~ 𝐷𝑃(𝛼, 𝐺0) 

𝜇𝑗, ∑𝑗  ~ 𝐺(∙)    𝑓𝑜𝑟 𝑗 = 1, … , 𝐽 

 𝜋 ~ 𝐷𝑖𝑟(
𝛼

𝐽
, … ,

𝛼

𝐽
) (3) 

where 𝜇𝑗 , ∑𝑗 are mean and covariance of the 𝑗-th component, 𝐽 is the number of 

components in this mixture, and 𝐷𝑃 and 𝐷𝑖𝑟 respectively stand for the Dirichlet Process 

and the Dirichlet Distribution. 

2.5 Clustering Multivariate Time Series Using Hidden Markov 

Models 

Hidden Markov Model is based on Markov chain, which models the state of a system 

with a time-series random variable. Gagniuc (2017) states that the Markov property 

suggests that the distribution for this variable depends only on the distribution of a 

previous state. In other words, if Markov chain property applies to a system, the system’s 

future states can be predicted by its current state. 

A Hidden Markov Model is a Markov chain for which the state is only partially 

observable. In other words, some of the states of the system are not observable, such as 

hidden to the observer. Therefore, the model is called Hidden Markov Model. 

Hidden Markov Model has been used to cluster multivariate time-series data in the past 

in many different fields, such as financial and health care. In Shima’s (2014) research, it 

was proved that Hidden Markov Model is a good model to cluster not only continues 

multivariate time-series data, but also categorical time-series data. The data is a set of 

𝑁 health trajectories 𝑇𝑖 corresponding to 𝑁 distinct individuals, where each trajectory is 

a matrix with 𝑑 columns. Each column is a time-series of length 𝑙𝑖 that takes values in 

either categorical or continuous variables. The 𝑑 time-series will be in general correlated, 

and the variables are referred as the “observables”. Although the assumption is that the 
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same 𝑑 measurements are taken for all individuals, the length of trajectories is not 

necessarily the same across individuals. Then, Shima (2014) defined a meaningful 

distance 𝐷(𝑇𝑖; 𝑇𝑗) between trajectory 𝑇𝑖 and trajectory 𝑇𝑗, and apply any clustering 

method that takes as input a distance matrix. Shima (2014) proposed to take advantage of 

Discrete Frechet distance to compute the distance between trajectories for continuous 

variables. 

3 RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter describes the method and algorithm used in the thesis. The thesis researched 

two approaches to identify the anomaly turbine converters. The goal is to compare the 

results and evaluate the advantages and disadvantages of the approaches, finally analyze 

the differences between the results of two approaches. 

The first approach is based on Hidden Markov Model. The open source library hmmlearn 

(2019) is used to implement the model. Then Discrete Frechet, Dynamic Time Warping 

(DTW) and Partial Curve Mapping (PCM) are used to calculate the distance between any 

two turbine converter datasets. The open source library similaritymeasures (2020) is 

used to calculate the distances. Then the distance matrix is used to cluster the turbines 

converters. Density-Based Spatial Clustering of Applications with Noise (dbscan) 

(2011) is selected to perform the clustering. 

The second approach is based on Hierarchical Density-Based Spatial Clustering of 

Applications with Noise (HDBSCAN), which is unsupervised machine learning 

clustering model. The HDBSCAN is implemented in open source library called hdbscan 

(2020). 

The details of the libraries used in the experiments are introduced in Chapter 3.4. 
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3.2 Data 

Theoretically every turbine converter data contains values from 84 parameters 

continuously collected every minute for a year. But as shown in Figure 2,  the data counts 

are quite different between turbines. There are many reasons for this, for example, some 

of the turbines may be in maintenance service for some period, some of the turbines may 

be out of service due to fault. Nevertheless, most of the turbine converters data is good 

enough for data analytic purpose, especially during April and May, therefore, in all 

models, the April data is used for training and May data is used for testing. The reason to 

focus on these months is that Stikhin (2019) experimented data in these two months. In 

order to compare the results with Stikhin’s, the research uses the same data. In addition, 

Stikhin had researched the raw data for the whole year, and concluded that these two 

months data is the most reliable and meaningful from data analytics perspective. 

The data can be summed up as follows: 

• Generator-side values from the inverter unit (INU): speed, current, torque, DC 

voltage, output frequency, voltage, power 

• Grid-side values from the insulated-gate bipolar transistor (IGBT) supply unit 

(ISU): line current, active and reactive power, converter current, negative 

sequence current 

• Generator-side diagnostic values: temperatures for the control board, inverter, 

insulated-gate bipolar transistor (IGBT), main circuit interface (INT) board, 

incoming unit (ICU), LCL filter, inductors and capacitors 

• Grid-side diagnostic values: temperatures for the converter, IGBTs, INT board, 

switching frequency, miniature circuit breaker (MCB) closing time counter, inlet 

and outlet cooling liquid temperatures and coolant pressures 

• Ambient temperatures as recorded by the sensors for both generator- and grid-side 

modules 

• Faults and warnings 

Every converter contains four generator-side modules and six grid-side modules, and the 

temperature values are collected from two sensors for each of the modules. 

The data is stored in a database in Microsoft Azure Databricks platform. The schema of 

the database is shown in Table 1. 
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Table 1. Schema of the turbine converter data in Databricks 

Name Data Type  

Timestamp timestamp 

Value double 

Par_name string 

Turbine string 

Par_group int 

Par_index int 

 

According to Stikhin (2019), in order to maintain focus on the most common fault of the 

turbine converters, the parameters are categorized to four Analysis Groups by 

functionality of the turbine converter. The four Analysis Groups are shown in Table 2. 

Table 2. Turbine converter data Analysis Groups 

Analysis Group Source converter side Selected parameters 

1 Generator 

Generator 

Grid 

Grid 

Inductor 1 temperature 

Inductor 2 temperature 

Active power P 

Reactive power Q 

2 Grid 

Grid 

Grid 

Grid 

Inlet cooling liquid temperature 

Outlet cooling liquid temperature 

Active power P 

Reactive power Q 

3 Grid Ambient temperature measured by the 

sensors at the upper parts of modules 1–6 
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Grid Ambient temperature measured by the 

sensors at the lower parts of modules 1–6 

Grid Active power P 

Grid Reactive power Q 

4 Grid 

Grid 

Grid 

Grid 

Grid 

Grid 

Grid 

Phase voltage U1 

Phase voltage V1 

Phase voltage W1 

Main voltage 1 positive sequence 

Main voltage 1 negative sequence 

Active power P 

Reactive power Q 

 

These Analysis Groups and converter parameters are selected by domain experts. The 

same model is applied to all four Analysis Groups. 

3.3 Methods 

3.3.1 Hidden Markov Model 

Hidden Markov Model is a proved effective model to detect anomaly with time-series 

data. As shown in Table 2, for each data Analysis Group, Hidden Markov Model is used 

to analyze multivariate time-series data. This thesis applied a method proposed by Shima 

(2014). The goal is to detect the anomaly turbine converters. In order to achieve the goal, 

the turbine converters need to be clustered, and to cluster the turbine converters, the 

distance between the Hidden Markov Model needs to be calculated, because the distance 

between each turbine converter’s original dataset is ill-defined. 

The following steps describe the algorithm: 
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1. Query Analysis Group 1 (as shown in Table 2) raw data from certain time interval, 

the raw data is not sorted and structured as per parameter value per row. The data 

contains timestamp, parameter group, parameter index and value. 

2. Transform the raw data to pandas dataframe, and combine the raw data to per 

turbine converter and sorted according to time stamp 

3. Train Hidden Markov Model with transformed data as input, which is multivariate 

time-series data. One Hidden Markov Model per turbine converter 

4. Test Hidden Markov Model with transformed data from another timeframe 

5. Calculate the emission probability distribution from each Hidden Markov Model, 

saved the models and the emission probability distribution for each turbine 

converter 

6. Calculate the distance matrix between every turbine converter’s emission 

probability distribution. The distance is calculated with one of the three different 

methods: Discrete Frechet, Dynamic Time Warping (DTW), and Partial Curve 

Mapping (PCM). 

7. Use DBSCAN cluster model with distance matrix, so that the model finds multiple 

clusters. 

8. Output all turbine converter’s clusters with the turbine converter’s index. 

9. Repeat Step 1 to Step 8 for rest of the Analysis Groups. 

3.3.2 HDBSCAN clustering library 

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) 

is a clustering algorithm extended from DBSCAN by converting it into a hierarchical 

clustering algorithm, and then extract the hierarchical clusters into flat and stable clusters. 

According to Brendan Bailey (2017), it has the advantages over other clustering algorithm 

such as performance, intuition and suitable for data of varying density. It was used in 

other ABB researches, and proved to be an effective clustering method on time-series 

data. For comparison and validation purpose, the thesis also used the algorithm to cluster 

the same data used in Hidden Markov Model. The comparison is analyzed in Chapter 4.2. 

The following steps describe the algorithm: 

1. Query Analysis Group 1 (as shown in Table 2) raw data from the same time 

interval as the Hidden Markov Model algorithm, the raw data is not sorted and 
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structured as per parameter value per row. The data contains timestamp, parameter 

group, parameter index and value. 

2. Transform the raw data to pandas dataframe, and combine the raw data to per 

turbine converter and sorted according to time stamp. 

3. Normalize the data between -1 and 1 

4. Transform the dataframe so that the row of the dataframe represents the turbine 

converters, and the column of the dataframe represents the normalized parameter 

value. The columns contain the concatenated sorted time-series data, e.g. column 

0 to n contains the parameter values of Inductor 1 temperature, column n+1 to 2n 

contains the parameter values of Inductor 2 temperature and so on. 

5. Use HDBSCAN cluster model with data processed in step 4, so that the model 

finds multiple clusters. 

6. Output all turbine converters clusters with the turbine converter’s index. 

7. Repeat Step 1 to Step 6 for rest of the Analysis Groups. 

 

The result dataframe of step 2 is the same as the dataframe of step 2 in Hidden Markov 

Model algorithm. 

3.4 Research Design 

The raw data is stored in Microsoft Azure data lake. The data analysis is done with 

Microsoft Azure Databricks (2020), which provides similar notebook features as Jupyter 

notebook. Microsoft Azure Databricks (2020) integrates python runtime libraries and 

Apache Spark. In addition, it provides services such as installing python libraries and 

access to file system. The data analysis of the thesis is written in python and executed in 

Microsoft Azure Databricks (2020). 

In order to keep focus on the research topic, the thesis used ready-made open source 

libraries instead of implementing own libraries. The python libraries are used in this thesis 

are list in Table 3. 
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Table 3. Python libraries used for data analysis 

Name Purpose Version 

hmmlearn (2019) Hidden Markov Model 0.2.3 

hdbscan (2020) HDBSCAN cluster model 0.8.26 

matplotlib (2019) plot graphs 3.0.3 

numpy (2019) mathematical computing 1.16.2 

pandas (2019) data analytics 0.24.2 

pyspark (2019) spark data query 2.4.4 

scipy (2019) required by hmmlearn 1.2.1 

similaritymeasures (2020) calculate distance between 

two Hidden Markov 

Models’ emission 

probability distribution 

0.4.2 

scikit-learn (2019) machine learning library 0.20.3 

 

One of the obstacles of the thesis is the performance of the Discrete Frechet distance 

calculation, the problem is solved by using multi-threads and splitting the calculation into 

multiple hosts. In addition, DTW and PCM are also studied to compare the performance 

and accuracy. 

The thesis also research on how the amount of data effects the performance and accuracy 

of different algorithms introduced in Chapter 3.3.1 and Chapter 3.3.2. The findings are 

described in Chapter 4.3. 

In addition to compare the results of two algorithms designed in this thesis, the results are 

also compared to the work done by Stinkhin (2019). The results presented by Stikhin are 

considerably accurate, because it uses mathematical computing on 2-dimension space to 

count the outliers. The details of Stinkhin’s work is described in Chapter 2.2. 
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4 RESULTS 

This chapter describes the results of the research, analyze and compare the results from 

different experiments. 

In order to validate the results, the data is visualized by using heat map with active power 

and reactive power as the axis. The graphs are shown in Appendix 1 for Analysis Group 

1, Appendix 2 for Analysis Group 2, Appendix 3 for Analysis Group 3, and Appendix 4 

for Analysis Group 4. 

4.1 Result of Hidden Markov Model 

This chapter describes the results of clusters with Hidden Markov Model, which 

algorithm is described in Chapter 3.3.1. 

The results are compared between different ways of calculating distance matrix, the 

methods used in this thesis are: Dynamic Time Warping (DTW), Discrete Frechet and 

Partial Curve Mapping (PCM). 

Discrete Frechet is suggested by Shima (2014). There are two reasons to use DTW and 

PCM as well. The first reason is to compare and cross validate the results from different 

distance matrix calculation. The second reason is that Discrete Frechet distance 

calculation is slow, the more data the slower the calculation, while DTW and PCM are 

much faster. The experiments are to compare the performance versus the accuracy in 

order to determine the best model from both accuracy and performance point of 

view.Table 4 shows the calculation time with random sample data: 

Table 4. Performance of different distance calculations 

 100 samples 1000 samples 10000 samples 

PCM 0,007257s 0,025864s 0,117573s 

Discrete Frechet 0,151545s 14,222789s 1419,680883s 

DTW 0,044014s 1,333476s 140,136014s 
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The calculation is done with Intel i7 2.7 GHz processor on windows 10 64-bits OS 

without multiple threads. Python version is 3.7. 

As the Table 4 shows, Discrete Frechet distance calculation is the slowest among the three 

methods. The calculation time increases exponentially when the input data amount 

increases. The average daily data is around 1440 samples per parameter per turbine 

converter. In Analysis Group 1, 4 parameters data are collected, which results 5760 

samples per day per turbine converter. The theoretical one-day data Discrete Frechet 

distance calculation time between any two turbine converters is roughly 6 minutes. The 

theoretical one-month data Discrete Frechet distance calculation time between any two 

turbine converters is roughly 90 hours. However, different turbine converters normally 

contain different number of samples due to variant reasons, such as network connectivity, 

power break or turbine converter maintenance. On the other hand, the Hidden Markov 

Model library requires the number of the data points is the same among all multivariate 

time-series data within any specific turbine converter. Therefore, the model always takes 

the minimum number of data points among all multivariate time-series data. This un-

intentionally reduces the distance matrix computing time. 

The experiment is also done by taking random samples from the raw data so that the 

number of data is reduced, but the result of this approach is not satisfactory. The reason 

could be the fact that Hidden Markov Model strongly depends on the order and samples 

of the time-series data in order to make accurate clustering. 

In order to compare and cross validate the result, this thesis chose the same date as in 

Stikhin’s (2019) research. There are 38 turbine converters contain valid data in the 

selected date. Therefore, the total calculation time for the Discrete Frechet distance matrix 

is around 6 days with the same computing power as used to calculate the result in Table 

4. 

4.1.1 Analysis Group 1 

Analysis Group 1 studies the correlation between two inductors’ temperature and active 

and reactive power as shown in Table 2. 

When using DTW to calculate the distance matrix, the cluster result is shown in Table 5. 
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Table 5. One-day Analysis Group 1 data clusters with Hidden Markov Model by using DTW 

 Cluster 1 Cluster 2 Cluster 3 

DTW TC02, TC06, TC07, TC08, TC09, TC10, 

TC13, TC14, TC17, TC18, TC20, TC22, 

TC23, TC24, TC26, TC27, TC31, TC33, 

TC35, TC36, TC37, TC38, TC39, TC41, 

TC43, TC44, TC45, TC47 

TC12, TC21, 

TC32, TC42, 

TC46 

TC03, 

TC28, 

TC29, 

TC30,  

 

When using Discrete Frechet to calculate the distance matrix, the cluster result is shown 

in Table 6. 

Table 6. One-day Analysis Group 1 data clusters with Hidden Markov Model by using Discrete Frechet 

 Cluster 1 Cluster 2 

Discrete 

Frechet 

TC02, TC03, TC06, TC07, TC08, TC10, TC12, TC13, 

TC14, TC17, TC18, TC21, TC22, TC23, TC24, TC27, 

TC28, TC29, TC30, TC31, TC32, TC33, TC35, TC36, 

TC37, TC38, TC41, TC43, TC45, TC46, TC47 

TC09, TC20, 

TC26, TC39, 

TC42, TC44 

 

When using PCM to calculate the distance matrix, the cluster result is shown in Table 7. 

Table 7. One-day Analysis Group 1 data clusters with Hidden Markov Model by using PCM 

 Cluster 1 Cluster 2 Cluster 3 Cluster4 Noise 

PCM TC02, TC10, TC14, TC18, 

TC21, TC22, TC24, TC27, 

TC28, TC29, TC30, TC32, 

TC33, TC39, TC43, TC44, 

TC45, TC46 

TC03, 

TC08, 

TC12, 

TC23, 

TC35, 

TC42, 

TC47 

TC06, 

TC26, 

TC31,  

TC07, 

TC09, 

TC17, 

TC37, 

TC41,  

TC13, 

TC20, 

TC36, 

TC38,  
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As shown in the tables, three results are completely different in both terms of number of 

clusters and turbine converters in clusters. The validation shows that the result with 

Discrete Frechet distance matrix is the most accurate among three calculations by 

referring to Appendix 1. For example, turbine converter #07, #10, #45 and #46 are clearly 

belong to the same cluster as shown in Figure 5. 

 

 

Figure 5. Example heat maps from same cluster. 

However, the visual presentation of the data is not 100% reliable, turbine converter #20 

and #44 belong to the same cluster in both Hidden Markov Model and Stikhin’s (2019) 

model, but visually they belong to the different clusters as shown in Figure 6. Therefore, 

the heat maps must be used together with other references for cross validation. 

 

Figure 6. Example heat maps from same cluster, but visually different. 

By comparing with Stikhin’s (2019) result, Hidden Markov Model does not give 

satisfactory result. As in Stikhin’s result, turbine converter #20 and #37 clearly belong to 
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the same cluster. However, these two turbine converters are in different clusters as shown 

in Table 6. The heat maps of turbine converter #20 and #37 are shown in Figure 7. 

 

Figure 7.Heat map of turbine converter #20 and #37. 

It is also worth to note that the distribution of the data points in the heat map does not 

matter, the color of the data points is more important on determining the cluster. 

4.1.2 Analysis Group 2 

Analysis Group 2 studies the correlation between inlet and outlet cooling liquid’s 

temperature and active and reactive power as shown in Table 2. 

When using DTW to calculate the distance matrix, the cluster result is shown in Table 8. 

Table 8. One-day Analysis Group 2 data clusters with Hidden Markov Model by using DTW 

 Cluster 1 Cluster 2 

DTW TC02, TC03, TC06, TC07, TC08, TC09, TC10, TC13, 

TC14, TC16, TC17, TC22, TC24, TC26, TC27, TC29, 

TC31, TC32, TC33, TC35, TC37, TC38, TC39, TC41, 

TC42, TC44, TC46, TC47 

TC18, TC20, 

TC21, TC23, 

TC28, TC30, 

TC43, TC45 

 

When using Discrete Frechet to calculate the distance matrix, the cluster result is shown 

in Table 9. 
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Table 9. One-day Analysis Group 2 data clusters with Hidden Markov Model by using Discrete Frechet 

 Cluster 1 Cluster 2 

Discrete 

Frechet 

TC02, TC03, TC06, TC07, TC08, TC09, TC10, TC13, TC14, 

TC16, TC17, TC18, TC20, TC21, TC22, TC23, TC24, TC27, 

TC28, TC29, TC31, TC33, TC35, TC37, TC38, TC39, TC40, 

TC41, TC42, TC45, TC46, TC47 

TC26, 

TC30, 

TC32, 

TC38. 

TC43, 

TC44 

 

When using PCM to calculate the distance matrix, the cluster result is shown in Table 10. 

Table 10. One-day Analysis Group 2 data clusters with Hidden Markov Model by using PCM 

 Cluster 1 Cluster 2 Cluster 3 Noise 

PCM TC22, 

TC47 

TC02, TC03, TC07, TC08, 

TC14, TC16, TC17, TC24, 

TC37, TC39, TC40, TC41, 

TC43, TC44, TC45, TC46 

TC06, TC09, 

TC21, TC20, 

TC26, TC27, 

TC28, TC29, 

TC30, TC31, 

TC32, TC35,  

TC10, 

TC13, 

TC18, 

TC20, 

TC23, 

TC33, 

TC38, TC42 

 

As shown in the tables, the three results are significantly different in both terms of number 

of clusters and turbine converters in clusters. The validation shows that the none of the 

results is satisfactory by referring to Appendix 2 and results from Stikhin’s (2019) 

research. 

4.1.3 Analysis Group 3 

Analysis Group 3 studies the correlation between 6 delta temperature of upper and lower 

part of the module and active and reactive power as shown in Table 2. 
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When using DTW to calculate the distance matrix, the cluster result is shown in Table 

11. 

Table 11. One-day Analysis Group 3 data clusters with Hidden Markov Model by using DTW 

 Cluster 1 Cluster 2 Cluster 3 

DTW TC02, TC03, TC08, TC09, TC13, TC14, 

TC16, TC18, TC17, TC21, TC22, TC23, 

TC24, TC26, TC27, TC28, TC30, TC31, 

TC32, TC33, TC35, TC37, TC38, TC40, 

TC41, TC43, TC44, TC47 

TC06, TC07, 

TC10, TC20 

TC12, TC17, 

TC29, TC36, 

TC42, TC45, 

TC46 

 

When using Discrete Frechet to calculate the distance matrix, the cluster result is shown 

in Table 12. 

Table 12. One-day Analysis Group 3 data clusters with Hidden Markov Model by using Discrete Frechet 

 Cluster 1 Cluster 2 Cluster 3 Noise 

Discrete 

Frechet 

TC02, 

TC14, 

TC29 

TC06, 

TC07, 

TC10, 

TC20 

TC03, TC08, TC09, TC12, TC13, TC16, 

TC17, TC18, TC21, TC22, TC23, TC24, 

TC26, TC28, TC30, TC31, TC32, TC33, 

TC36, TC37, TC38, TC40, TC41, TC42, 

TC43, TC44, TC45, TC46, TC47 

TC27 

 

When using PCM to calculate the distance matrix, the cluster result is shown in Table 13. 

Table 13. One-day Analysis Group 3 data clusters with Hidden Markov Model by using PCM 

 Cluster 1 Cluster 2 Noise 

PCM TC02, TC08, TC09, TC14, TC16, TC18, 

TC21, TC23, TC24, TC26, TC27, TC28, 

TC30, TC31, TC32, TC37, TC38, TC40, 

TC41, TC43, TC44, TC45, TC47 

TC03, 

TC06, 

TC12 

TC22, 

TC29, 

TC07, 

TC10, 

TC13, 

TC17, 

TC20, 



32 

 

TC33, 

TC36 

TC42, 

TC46 

 

As shown in the tables, DTW and Discrete Frechet give more closer clusters than previous 

two Analysis Groups: one of the three cluster overlaps completely, and one of the clusters 

overlaps significantly. While PCM gives quite different result from both DTW and 

Discrete Frechet. 

However, when validate the results by referring to Appendix 3 and results from Stikhin’s 

(2019) research, none of the methods provides satisfactory result. 

4.1.4 Analysis Group 4 

Analysis Group 4 studies the correlation between 5 voltages and active and reactive power 

as shown in Table 2. 

When using DTW to calculate the distance matrix, the cluster result is shown in Table 

14. 

Table 14. One-day Analysis Group 4 data clusters with Hidden Markov Model by using DTW 

 Cluster 1 Cluster 2 

DTW TC02, TC03, TC06, TC10, TC12, TC13, TC16, TC17, TC18, 

TC20, TC21, TC22, TC23, TC24, TC26, TC27, TC28, TC29, 

TC30, TC32, TC33, TC35, TC36, TC37, 

TC08, 

TC09, 

TC31 

 TC38, TC39, TC40, TC41, TC42, TC43, TC44, TC45, TC47  

 

When using Discrete Frechet to calculate the distance matrix, the cluster result is shown 

in Table 15. 
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Table 15. One-day Analysis Group 4 data clusters with Hidden Markov Model by using Discrete Frechet 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Discrete 

Frechet 

TC08, 

TC17, 

TC27, 

TC40 

TC41, 

TC42, 

TC43, 

TC44, 

TC45, 

TC47 

TC02, TC03, TC06, TC09, 

TC10, TC12, TC13, TC16, 

TC18, TC20, TC21, TC22, 

TC23, TC24, TC26, TC28, 

TC29 

TC30, TC31, 

TC32, TC33, 

TC35, TC36, 

TC37, TC38, 

TC39 

 

When using PCM to calculate the distance matrix, the cluster result is shown in Table 16. 

Table 16. One-day Analysis Group 4 data clusters with Hidden Markov Model by using PCM 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Noise 

PCM TC03, 

TC16, 

TC18, 

TC27, 

TC38 

TC12 

TC23, 

TC42, 

TC47 

TC39, 

TC40, 

TC43, 

TC44 

TC02, 

TC08, 

TC18, 

TC22, 

TC33, 

TC35, 

TC36, 

TC41, 

TC45 

TC24, 

TC26, 

TC28, 

TC29, 

TC32, 

TC37 

TC06, 

TC30 

TC10, 

TC13, 

TC17, 

TC20, 

TC21, 

TC31 

 

As shown in the tables, three results are completely different in both terms of number of 

clusters and turbine converters in clusters. When validate the results by referring to 

Appendix 3 and results from Stikhin’s (2019) research, none of the methods provides 

satisfactory result. 
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4.2 Result of HDBSCAN clustering model 

This chapter describes the results of HDBSCAN clustering model, which algorithm is 

described in Chapter 3.3.2. 

The results are compared with Hidden Markov Model results. 

4.2.1 Analysis Group 1 

The cluster result for one-day Group 1 data is shown in Table 17. 

Table 17. One-day Analysis Group 1 data clusters with HDBSCAN cluster model 

Cluster 1 Cluster 2 Noise 

TC08, TC09, TC12, TC13, TC14, TC18, 

TC20, TC21, TC22, TC23, TC24, TC26, 

TC27, TC28, TC29, TC30, TC31, TC32, 

TC33, TC35, TC37, TC38, TC40, TC41, 

TC42, TC43, TC44, TC47 

TC06, 

TC07, 

TC10 

TC02, TC03, 

TC17, TC45, TC46 

 

As shown in the table, HDBSCAN does not provide similarity with any of the results 

from Hidden Markov Model. While Stikhin’s (2019) research suggests that most of the 

turbine converters in the noise group should have been part of the cluster 2. Therefore, 

HDBSCAN does not provide satisfactory result for Analysis Group 1. 

4.2.2 Analysis Group 2 

The cluster result for one-day Analysis Group 2 data is shown in Table 18. 

Table 18. One-day Analysis Group 2 data clusters with HDBSCAN cluster model 

Cluster 1 Cluster 2 

TC02, TC06, TC07, TC10, TC45, TC46 TC03, TC08, TC09, TC13, TC14, 

TC16, TC17, TC18, TC20, TC21, 

TC22, TC23, TC24, TC26, TC27, 
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TC28, TC29, TC30, TC31, TC32, 

TC33, TC35, TC37, TC38, TC39, 

TC40, TC41, TC42, TC43, TC44, 

TC47 

 

As shown in the table, HDBSCAN does not provide similarity with any of the results 

from Hidden Markov Model. However, it gives a perfect match result with Stikhin’s 

(2019) research. Therefore, HDBSCAN provides a satisfactory result for Analysis Group 

2. 

4.2.3 Analysis Group 3 

The cluster result for one-day Analysis Group 3 data is shown in Table 19. 

Table 19. One-day Analysis Group 3 data clusters with HDBSCAN cluster model 

Cluster 1 Noise 

TC02, TC03, TC06, TC07, TC08, TC09, TC10, TC12, TC13, 

TC14, TC16, TC17, TC20, TC21, TC22, TC23, TC24, TC26, 

TC27, TC28, TC29, TC30, TC31, TC32, TC33, TC37, TC40, 

TC41, TC42, TC43, TC44, TC45, TC46, TC47 

TC18, TC36, 

TC38 

 

As shown in the table, HDBSCAN does not provide similarity with any of the results 

from Hidden Markov Model. Most importantly, the HDBSCAN model does not provide 

a clear cluster among all the data, therefore, HDBSCAN model does not provide a 

satisfactory result for Analysis Group 3. 

Analysis Group 3 and 4 are more difficult to validate visually because there are more data 

points in these Analysis Groups. As shown in Appendix 3 and Appendix 4, Analysis 

Group 3 contains 6 data points, and Analysis Group 4 contains 5 data points, while 

Analysis Group 1 and 2 contains only 2 data points. 
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4.2.4 Analysis Group 4 

The cluster result for one-day Analysis Group 4 data is shown in Table 20. 

Table 20. One-day Analysis Group 4 data clusters with HDBSCAN cluster model 

Cluster 1 Noise 

TC02, TC03, TC08, TC09, TC10, TC12, TC13, TC16, TC17, 

TC18, TC20, TC21, TC22, TC23, TC24, TC26, TC27, TC28, 

TC29, TC30, TC31, TC32, TC33, TC35, TC36, TC37, TC39, 

TC40, TC41, TC42, TC43, TC44, TC45, TC47 

TC06, TC17, 

TC38, TC42 

 

As shown in the table, HDBSCAN does not provide similarity with any of the results 

from Hidden Markov Model. Most importantly, the HDBSCAN model does not provide 

a clear cluster among all the data, therefore, HDBSCAN model does not provide a 

satisfactory result for Analysis Group 4. 

4.3 Effects of amount of data 

The comparison between Hidden Markov Model and HDBSCAN cluster model is also 

done for one-month data. To save the calculation time, in this research, the distance matrix 

is calculated by DTW only and for Analysis Group 2 only. 

The result of Hidden Markov Model is shown in Table 21. 

Table 21. One-month Analysis Group 2 data clusters with Hidden Markov Model by DTW 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Noise 

TC02, 

TC07, 

TC31, 

TC35, 

TC45, 

TC46 

TC03, TC06, TC08, TC11, 

TC13, TC14, TC16, TC17, 

TC20, TC23, TC28, TC29, 

TC30, TC32, TC33, TC43, 

TC44, TC47 

TC21, 

TC24, 

TC27,  

TC12, 

TC39, 

TC40 

TC09, 

TC10, 

TC15, 

TC18, 

TC26, 

TC37,TC

41, TC42 

TC22 
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The result of HDBSCAN model is shown in Table 22. 

Table 22. One-month Analysis Group 2 data clusters with HDBSCAN 

Cluster 1 Cluster 2 Noise 

TC02, TC06, TC07, TC10, TC45, 

TC46 

TC03, TC08, TC09, TC13, TC14, 

TC16, TC17, TC18, TC20, TC21, 

TC23, TC24, TC26, TC27, TC28, 

TC29, TC30, TC32, TC33, TC35, 

TC37, TC39, TC40, TC41, TC42, 

TC43, TC44, TC47 

TC22, 

TC31 

 

As can be seen that the amount of data does not affect to the clustering result between 

Hidden Markov Model and HDBSCAN cluster model. By cross validating the result 

provided by Stikhin (2019), the HDBSCAN gives a better result than Hidden Markov 

Model with one-month data. 

Compared with one-day results in Chapter 4.1.2 and Chapter 4.2.2, HDBSCAN model 

gives a quite similar clusters in one-month and one-day data. While Hidden Markov 

Model produces different clusters in both terms of number of clusters and turbine 

converters in each cluster. By cross validating the result in Stikhin’s (2019) research, 

HDBSCAN model’s result is more accurate. By examine the data, the selected day data 

aligns that in the selected month, meaning that anomaly group of turbine converters keep 

as anomaly through all month. Therefore, theoretically the clusters of one-day data should 

be the same as the clusters in on month data. 

5 CONCLUSION 

This chapter concludes the research and points out possible directions for future research. 
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5.1 Summary 

In this thesis, two unsupervised machine learning models are used to detect the anomaly 

in turbine converters: Hidden Markov Model and HDBSCAN model. Hidden Markov 

Model is a bit more complex than HDBSCAN. Both models’ input is the same data in 

order to compare and validate the results. In addition, the data visualization method and 

Stikhin’s (2019) results are used to cross validate the results. 

The data used as input of the models is categorized into 4 Analysis Groups, which are 

introduced in chapter 3.2. Each the Analysis Group represents a critical module of the 

turbine converter. By examining the parameter values belonging to the model one can 

provide reliable evaluation on the anomaly turbine converters. 

In Hidden Markov Model, three distance computation methods are used to compare and 

validate the results: Discrete Frechet, Dynamic Time Warping, and Partial Curve 

Mapping. One-month data is used to train the model, and one-day data is used to test the 

model. The model is applied to all 4 Analysis Groups with 3 different distance 

computation methods used for each of the Analysis Group. The results are described in 

chapter 4.1. One of the challenges of the research is the computation time of Discrete 

Frechet distance matrix. Experiments have been conducted with the effort of reducing the 

number of data, but the results are not satisfactory. In the end, the problem is solved with 

multi-threads and distribute the computation to different hosts. 

In HDBSCAN model, the same dataset is used to test as in Hidden Markov Model. 

However, HDBSCAN model has an additional step with the input data in order to achieve 

better results: input data is normalized between -1 and 1. The model is applied to all 4 

Analysis Groups. The results are described in chapter 4.2. 

One-month data is tested as well to evaluate the effects of amount of data feed to the 

models. Because of the distance computation time, one-month data is only applied to 

Analysis Group 2 with DTW as the distance computation method. But the result does not 

show any improvement compared to one-day data. 
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5.2 Discussion 

Conceptually, multivariate time-series data analysis is a challenging mathematical task 

for a few reasons. In practice, time-series data are finite observations within an infinite 

time domain, in other words, the observations are always incomplete. Due to the nature 

of the world, small part of the observations are always noises, which have negative impact 

on the analysis result. With multivariate time-series data, the analysis is even more 

challenging, because the correlation between the univariate time-series data are normally 

unknown. Despite the challenges, the development in the recent year’s research, 

especially in the machine learning field, also poses new opportunities. The research in 

this thesis is inspired by the latest scientific efforts and the experiments are aiming to 

explore new ideas on the topic. 

In summary, both Hidden Markov Model and HDBSCAN model have problem of 

providing reliable clustering result. In addition, Hidden Markov Model requires 

significant computing power and time depending on the distance calculation method. 

Among all three distance calculation methods used in the thesis, Discrete Frechet takes 

the longest time, and PCM takes the shortest. However, PCM provides relatively the 

worst result, while DTW and Discrete Frechet give the similar results. 

One assumption was made in Hidden Markov Model, the number of states is always set 

to 2, which is may not be the optimal value in certain situation. The reason to make such 

assumption is to assume that there is always a group of turbine converters which behave 

a bit differently from the rest of the turbine converters. On the other hand, the anomaly 

also depends on the defined threshold value. For instance, if the threshold represents the 

mathematical distance between turbine converters, when the threshold is large enough, 

all turbine converters are in the same cluster, and when the threshold is small enough, 

every turbine converter is in a separate cluster. According to Abou-Moustafa (2004) 

Hidden Markov Model is quite sensitive to its structural parameters, for example, the 

number of states and topology of the model. In practice, having a hard-coded number of 

states is not ideal for all situations. 

One of the reasons to experiment with HDBSCAN model is that this model provides a 

way to make a cluster prediction to the new input data, which is not usual in most of the 
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available cluster models. The experiment however shows that the prediction does not 

provide reliable enough result. 

Compared to Hidden Markov Model, HDBSCAN model provides better results especially 

for Analysis Group 2. The biggest difference compared to other Analysis Groups is that 

there is a clear gap between two clusters according to Stikhin’s (2019) research. While 

the other Analysis Groups, the gaps between clusters are small. In some cases, there is no 

obvious anomaly in the selected month or day. 

The experiment also shows that amount of data has no significant effects on the results 

for HDBSCAN model. On the other hand, Hidden Markov Model gives worse result when 

more data is used, but the time of calculation increases exponentially. From the raw data, 

some turbine converters behave differently in different days, which means they randomly 

change cluster within the month. Therefore, it is more challenging to cluster for longer 

period than shorter ones. 

In practice, the models can be applied on daily base to notify the service engineers about 

the anomaly turbine converters. The models can be triggered automatically during the 

night, and the raw input data which was collected from last 24 hours is input to the models. 

There can be multiple models running simultaneously in order to compare and validate 

the results, so that the system provides the most reliable results to the users. The results 

can be classified according to predefined confidence levels. For instance, the intersection 

of the results from different models can be the highest certainty because the confidence 

of the anomaly is the highest. The certainty decreases as the confidence gets lower. Then 

the service engineer can examine the anomaly turbine converters more closely to 

determine the real faulty turbine converters. 

The anomaly turbine converter provided by the models is not necessarily to be faulty, it 

can be normal behavior due to external condition changes. Or it could be totally new 

operational mode due to the change of configuration. The model only provides anomaly 

from mathematical perspective. It is still necessary to have a domain expert to examine 

the data and make the decision whether the turbine converter is in faulty state or not. 
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5.3 Future Work 

In addition to turbine parameter values, the event logs can also be collected from ABB 

turbine converters. The event logs normally contain structured warnings and alerts 

happening in turbine converters. This is one of the critical sources for domain experts to 

investigate the faults in turbine converters. By combining the event logs with the 

parameter values, the Hidden Markov Model could give better results than using 

parameter values alone. 

It is a known fact that the turbine converter operates differently in different seasons and 

in different weather conditions. Therefore, it is good to experiment with data from 

different day of the same month and the same day from different month, then compare 

the results to show that the external weather impacts on how the turbine converter works. 

It is also good idea to compare the turbine converters in different wind parks. This of 

course depends on the data availability. The purpose of the comparison is to examine the 

portability and flexibility of the models. The aim is to fit the same model to all wind parks 

without significant changes. 

The experiment results show that HDBSCAN model works much better with Analysis 

Group 2 than the other Analysis Groups. This suggests the possibility to use different 

machine learning models in different Analysis Groups. This may be even preferred 

approach, because the 4 turbine converter modules are rather working independently. In 

other word, one module’s fault does not affect on the other models. 

In addition, it is good to create an automatic workflow to use the models in real wind 

park. The anomaly detection models are the key component of the workflow, but other 

components of the workflow are necessary in order to provide a commercial service to 

the end users in practice, for instance, the data storage where the collected raw data are 

stored, a data platform where the models are executed, and a graphical user interface to 

configure and administrate the system. 

Last but not the least, research on how the models can be used from the history anomaly 

detection results. The thesis studies the models with the input data independent from each 

other, meaning the result of yesterday’s anomaly detection cannot be used in today’s 

anomaly detection. While in practice, the anomaly can happen gradually from day to day 
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operation. By examining the past results, it can bring meaningful insight about the result 

in hand now. The user can also influence the result by manually conform the abnormal 

behaving turbine converters, which make the semi-supervised machine learning model, 

but should bring a better result. 
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APPENDIX 1. HEAT MAP OF ANALYSIS GROUP 1 WITH ACTIVE 

POWER P AND REACTIVE POWER Q AS THE AXES 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

  



 

 

APPENDIX 2. HEAT MAP OF ANALYSIS GROUP 2, WITH ACTIVE 

POWER P AND REACTIVE POWER Q AS THE AXES 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

  



 

 

APPENDIX 3. HEAT MAP OF ANALYSIS GROUP 3, WITH ACTIVE 

POWER P AND REACTIVE POWER Q AS THE AXES 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 
  



 

 

APPENDIX 4. HEAT MAP OF ANALYSIS GROUP 4, WITH ACTIVE 

POWER P AND REACTIVE POWER Q AS THE AXES 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 


