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Oftentimes, it is difficult to find electrical conductivity and potential of hydrogen measurement 
sensors with PLC compatible interfaces at a low cost. The reason for this might be due to 
the fact that the companies producing industrial grade sensors for continuous measurement 
are extremely scarce and can therefore dictate the market value. Another reason may simply 
be because it is more expensive for the device manufacturers to make items to order instead 
of producing them in bulk. 
 
This thesis was conducted for Metropolia Urban Farm Lab, a separate co-learning space for 
experts, students and companies alike to find solutions for improving the well-being of hu-
mans on earth. The main goal of this thesis was to explore cost effective methods for meas-
uring, recording and monitoring the electrical conductivity and potential of hydrogen of the 
watering solution for hop plants. 
 
After conducting research through multiple avenues (both online and in the real world), it 
was deduced that not only were cost effective EC and pH measurements possible, but could 
also cost approximately half the price that a majority of companies are currently paying. By 
following the datasheets and specifications of the different devices (provided by their man-
ufacturers), simulation models that closely mimic how the devices would act in real life were 
created and the data they produced was analysed.  
 
MindSphere (an open, cloud-based IoT operating system created by Siemens) was used to 
record and graph the values detected by the cost effective measurement system. The IoT 
platform made it significantly easier to monitor the system from afar, since the platform can 
be accessed (by any authorised personnel) from anywhere in the world. 
 
Future areas of research and the impact of the findings of this project are also given in the 
conclusion of this thesis. 

Keywords Electrical conductivity, EC , pH, Raspberry Pi, cost effective, 
MindSphere, MindConnect, IoT 
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List of Abbreviations 

EC Electrical Conductivity. The ability of a substance to transmit electricity. 

PH Potential of Hydrogen. The measure of the acidity or alkalinity of a solution. 

PLC Programmable logic controller. An industrial computer control system that 

continuously monitors the state of input devices and makes decisions 

based upon a custom program to control the state of output devices. 

SI Système International. The international system of units used for scientific 

measurements. 

K Cell Constant. It is directly proportional to the distance separating the two 

conductive plates and inversely proportional to their surface area. 

PTFE Polytetrafluoroethylene. A synthetic fluoropolymer of tetrafluoroethylene. 

ADC Analogue to Digital Converter. A system that converts and analogue signal 

to a digital signal. 

VCC Voltage Common Collector. The voltage at the collector of a device and the 

power input of a device. 

VDD Voltage Drain Drain. The voltage at the drain of a device. 

GND Ground. The reference point in an electrical circuit from which voltages are 

measured, a common return path for electric current, or a direct physical 

connection to the Earth. 

Vout Voltage output. The output voltage of a device. 

GPIO General-Purpose Input/Output. An uncommitted digital signal pin on an in-

tegrated circuit whose behaviour is controllable by the user at run time.  

VREF Voltage Reference. A precision device designed to maintain an accurate, 

low noise, constant output voltage. 



 

 

AGND Analogue Ground. The path for analogue circuitry to return to the ground. 

DGND Digital Ground. The path for digital circuitry to return to the ground. 

DOUT Digital Output. A signal used to control items with only two states, on high 

and low.  

DIN Digital Input. A signal that allows devices to detect logic states. 

CLK Clock. A clock signal fluctuates between a high and a low state and is used 

as a metronome to coordinate the actions of digital circuits. 

CS Chip Select. A control line in digital electronics used to select one (or a set) 

of integrated circuits out of numerous connected to the same computer bus, 

usually utilizing the three-state logic. 

MISO Master In Slave Out. The Slave line for sending data to the master. 

MOSI Master Out Slave In. The Master line for sending data to the peripherals. 

URL Uniform Resource Locator. An address for a particular page on the World 

Wide Web. 

MQTT Message Queue Telemetry Transport. A messaging transport protocol, that 

uses the brokered publish/subscribe system. 

BNC Bayonet Neill–Concelman. A miniature quick connect/disconnect radio fre-

quency connector used for coaxial cables. 

SPI Serial Peripheral Interface. A synchronous serial data protocol used by mi-

crocontrollers for communicating with one or more peripheral devices 

quickly over short distances 

API Application Programming Interface. A set of functions and procedures al-

lowing the creation of applications that access the features or data of an 

operating system, application, or other service.
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1 Introduction 

Hops plants have a large variety of uses and benefits. They have medicinal compounds 

that can act as a mild sedative for the treatment of insomnia, they can be used to create 

“Hops pillows” which are helpful in inducing sleep, and are occasionally used in culinary 

dishes due to their unique and incomparable taste. An outdoor grown hop is also a key 

ingredient in the production of an undeniably aromatic, earthy and flavourful beer. Unfor-

tunately, this type of beer can only be brewed during hop harvest season: an unbelieva-

bly short season that occurs once a year. In a climate controlled cultivation process, 

hydroponic hop crops can be maneuvered in a way that they would be able to supply 

high-quality fresh crops throughout the year, after their successional planting. There 

have been numerous reports that with the use of controlled nutrition in hydroponics, not 

only can hops with higher concentrations of essential oils, aromatic compounds, beta 

acids, and flavonoids be produced, but also ones with larger and heavier cones (hop 

plant flowers) with a significantly higher overall yield [1]. 

HydroHumala is an indoor hydroponic hops plant farming solution for year round produc-

tion of fresh hops for breweries [2]. It is done in collaboration with Tornion Panimo’s 

brewery and Metropolia University of Applied Sciences (Urban farmlab) and is estimated 

to produce about 3000 litres of a new type of beer using 100% fresh hops. With such a 

significant investment on the line, it is extremely imperative that the conditions for the 

optimum growth of the plants are maintained. Keeping the electrical conductivity (EC) 

and the pH of the liquids used to water the plants at the perfect level for plant growth is 

a top priority. For this to transpire, continuous EC and pH measurements need to occur 

with the use of industrial grade equipment. This will not only guarantee that reliable 

measurement values are obtained, but also ensure that the sensors will not have to be 

replaced too frequently (simply due to water damage).  

Reliable industrial grade sensing circuits and equipment can all too often cost thousands 

of euros at a time. The aim of this thesis is to provide a cost effective method for meas-

uring, recording and analysing data from sensors in addition to creating an IoT platform 

for easy and convenient data visualisation. 
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2 Electrical Conductivity  

The electrical conductivity (EC) of a substance is the ability of a substance to transmit 

electricity. Its units are Siemens per meter [S/m] in SI and millimhos per centimeter 

[mmho/cm] in U.S. customary units. An electric current arises from the movement of 

electrically charged particles in response to forces that act on them from an electric field. 

For most solid materials, the current is produced by the movement of electrons and is 

called electronic conduction. In all conductors, semiconductors, and many insulated ma-

terials only electronic conduction exists, and the electrical conductivity is strongly de-

pendant on the number of electrons available to participate to the conduction process. 

Due to the high number of free electrons that can be stimulated in an empty and ready 

energy state, most metals are exceptionally good conductors of electricity. In fluids and 

ionic materials, a net motion of charged ions called “ionic conduction” can occur. Electri-

cal conductivity is defined as the ratio between the current density (J) and the electric 

field intensity (e) and it is the opposite of the resistivity (r) .[3.] The equation for electrical 

conductivity (1) is seen below. 

 𝐸. 𝐶 =
J

e
=

1

r
 (1) 

In fluids, electrical current is transported by the available ions. This means that the con-

ductivity of a fluid would increase as the concentration of ions in the substance increases. 

The data shown in Table 1 exemplifies this phenomenon. Ultra-pure water (which has 

no nutrients or minerals) has an EC value of about zero and would therefore be a very 

poor conductor of electricity. Sea water on the other hand (a liquid containing a large 

quantity of minerals) has an EC value of 5 and would therefore be a good electrical 

conductor.  

Table 1. The typical conductivity of different solutions [3]. 

Substance Electrical Conductivity (S/m) 

Ultra-pure water 5.5 · 10-6 

Drinking water 0.005 – 0.05 

Sea water 5 
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In the growth and production of Hops plants, electrical conductivity measurements can 

help determine the strength of hydroponic nutrient solutions. Formulas that are high in 

salts can impair the plants ability to absorb water, which would have a negative impact 

on plant growth. Unusually high EC values can also be an indication of cross contami-

nation from salt dense fertilisers and should always be monitored closely. 

Table 2. The salt tolerance of plants belonging to different water groups [4]. 

Water group Salt sensitivity  Optimum conductivity range (mS/m) 

A Highly salt sensitive 0–90 

B Mildly salt sensitive 90–270 

C Slightly salt sensitive 270–635 

D Salt tolerant 635–2365 

The sensitivity of plants to salt can differ substantially. In Table 2, the plants are orga-

nized in an estimated order of salt tolerance for each category, the least tolerant being 

described first. These plant and water groups are only a general guide, as soil texture 

and drainage could be overriding factors. [4.] 

Most plants can tolerate saline solutions between 150 – 350 mS/m. Hops plants how-

ever, have a salt sensitivity of “fair” [5]. These types of plants belong to water group B 

(making them only mildly salt sensitive) and thrive especially well when the solution used 

in watering the shrubs has a conductivity of between 90–270 mS/m [4]. Exposing the 

Hops to conditions outside this range may be catastrophic, so the best range of EC val-

ues to maintain to ensure that there will be a bountiful harvest would be ones that are far 

enough away from the hard limits (to allow room for sensor related measurement errors). 

In this case, keeping the saline solution between 150 - 250mS/m would be the best 

course of action. 

To keep the EC at the appropriate range, industrial grade sensing circuits with the ability 

to perform continuous measurements need to be utilized. This is done by connecting 

sensing electrodes (or a probe) designed for conductivity measurements to an EC meter.  
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Figure 1. A DFRobot analogue EC meter [12]. 

DFRobot, a world-leading robotics and open source hardware provider has a particularly 

good electrical conductivity meter in stock (shown in Figure 1). It is not only designed to 

provide a great user experience, but also unequivocal measurement precision [12]. It 

can be used to measure high conductivity values, supports a 3~5v wide voltage input 

and is compatible with 5V and 3.3V main control boards like Raspberry Pi’s [9]. The 

output signal is filtered by the hardware and has low jitter. The excitation source adopts 

an AC signal, which effectively reduces the polarization effect, improves the precision 

and prolongs the life of the electrodes. [12.] 

Table 3. Alvin Instrument EC electrode specifications [11]. 

Cell constant (K) Sensing Material Conductivity Range (mS/m) 

0.01 Stainless steel 0.001~2 

0.1 Stainless steel 0.01~20 

1.0 Platinum 0.1~200 

10 Platinum 1~2000 
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Unfortunately, DFRobot does not produce industrial grade probes or electrodes for con-

tinuous EC measurement; these devices need to come from another source. At only € 

40.93 apiece, Alvin Instrument has established itself as a company that produces both 

affordable and good quality sensing electrodes [11]. Their electrodes (shown in Figure 

2) are suitable for measuring a wide variety of fluids and liquids. The conductivity range 

of the electrodes chosen depend heavily on the cell constant: the higher the K value, the 

wider the conductivity range of the electrodes. 

 

Figure 2. Industrial grade two-pole type electrodes for continuous conductivity measurements 
with a platinum sensing material and a cell constant of 10 [11]. 

As previously mentioned, the EC of the watering solution needs to be around 150 and 

250mS/m at all possible times. By studying the information available on Table 3, it is 

abundantly clear that the only electrodes that are capable of measuring values in this 

range are the electrodes with a cell constant of 10. For this reason alone, the industrial 

grade two-pole type electrodes for continuous conductivity measurements (with a plati-

num sensing material and a cell constant of 10) will be used for this project. 
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3 Potential of Hydrogen  

The potential of hydrogen (pH) is the concentration of hydrogen in a solution. It is used 

to measure the alkalinity or acidity of a substance and is measured on a scale of 0 to 14 

(as shown on Figure 3). 

 

Figure 3. The pH of different commonly known solutions [13]. 

The potential of hydrogen greatly influences several biological and chemical processes. 

Overly low or high pH could cause nutrient deficiencies (or toxicities) and may facilitate 

disease development in plants. If the pH is too acidic, the conditions will be favourable 

for the “Fusarium pathogens” to survive. [8, 3.] Such species of pathogens can cause 

various diseases such as crown rot, head blight and scabs on cereal grains. In humans 

however, it can cause a broad spectrum of infections, including superficial, locally inva-

sive and disseminated infections. Superficial and localized versions of the disease occur 

mostly in immunocompetent patients while invasive and disseminated versions affect 

immunocompromised patients. [7.] If the pH is too alkaline, Fusarium diseases (due in 

part to immobilization of zinc) become supressed. Unfortunately in such a case, the con-

ditions then become favourable for a fungal disease called Verticillium wilt which can all 

too often kill the plant. [8, 3.] 

Hops thrive in a loamy, well-draining soil with a pH between 6.0 and 7.5 [6]. Introducing 

water solutions into the system that are not in the same range might serve to alter the 

pH of the soil, which will in turn lock up the soil and inhibit growth. That being the case, 
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it would be wise to keep both the soil and the watering solution at a slightly acidic pH 

(between 6.7 and 6.9).  Values in this range are a good distance away from the cut-off 

points and will make room for sensor related measurement errors. 

To keep the pH at the appropriate range, industrial grade sensing circuits with the ability 

to perform continuous measurements need to be utilized. This is done by connecting 

sensing electrodes (or a probe) designed for pH measurements to a pH meter.  

 

Figure 4. A DFRobot analogue pH meter [10]. 

Unlike what was done when selecting the appropriate devices for accurate EC measure-

ments, the pH meter and the indusial grade electrode can both be provided by one sup-

plier. DFRobot has a pH sensor meter kit that comes with an industrial grade pH elec-

trode (Figure 5), a pH meter (Figure 4), an analogue cable and a BNC connector [10].  
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Figure 5. A DFRobot pH electrode [10]. 

The pH electrode used in this project is seen in the figure above. It is built using a delicate 

glass membrane with a relatively low impedance. It is often utilized in a wide range of pH 

measurements due to its expeditious response and excellent thermal stability. It is ex-

tremely reliable, does not break down after being continuously submerged in water for a 

prolonged period of time and can eliminate a plethora of basic alkali errors. It also has a 

linear output voltage when subjected to solutions in the 0pH to 14pH range. Its reference 

system consists of an Ag/AgCl gel electrolyte salt bridge, which is known to have excep-

tional anti-pollution performance and have a relatively stable half-cell potential. Addition-

ally, it has a PTFE ring that cannot be obstructed easily and is therefore suitable for long-

term online detection.[10] With this many useful features, this electrode is fairly capable 

of measuring the pH of watering solutions and ensuring that they remain between 6.7 

and 6.9. 
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4 Data measurement 

4.1 Measurement circuit  

After identifying the sensors needed and the range of EC and pH values they are required 

to be able to measure, the next logical step is to create a basic layout of the overall circuit 

and connections.  

 

Figure 6. A basic layout of the circuit diagram and the component hierarchy. 

As seen in Figure 6, the circuit contains five major parts 

 A Raspberry Pi 3 (A microcontroller) 

 A MCP3008 (An ADC) 

 Two power isolation circuits 

 A pH sensor (comprising of a pH electrode and meter) 

 An EC sensor (comprising of an EC electrode and meter) 
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The EC and pH sensors are the first point of contact between the circuit and the outside 

world. After coming into contact with different solutions, they each produce a very specific 

voltage value that corresponds to the pH or EC value of the solution. The data is then 

sent to the meters, which amplifies and scales the values, dramatically increasing the 

differences between voltage values which were originally close together. 

Electrical power isolation is required in circuits containing sensors in order to guarantee 

that the circuit (as a whole) will function as intended. EC and pH sensors have been 

known to interfere with each other and measure incorrectly when they are connected to 

the same power source. To eliminate interference between the two sensors, it is neces-

sary to isolate the power sources and the signal produced by the sensors. A cost effec-

tive method of achieving power isolation is by making use of a device called an opto-

isolator. An opto-isolator is a device used to transfer electrical signals between two iso-

lated circuits by using light. Conventional opto-isolator circuits are designed on photo 

diode and phototransistor based networks. These circuits however, are not suitable for 

the direct isolation of analogue signals and are generally used for isolating digital signals. 

In order to isolate an analogue signal, a circuit resembling the one seen in Figure 7 is 

required. [23, 6.]  

 

Figure 7. A low cost opto-isolator circuit for isolation of a d.c. analogue signal [23, 6]. 

In Figure 7, R6 signifies a light dependent resistor (LDR), D1 denotes a light emitting 

diode (LED), Vi signifies the input analogue signal, Vz signifies a zero adjustment signal, 

A1 signifies a summing operational amplifier at the input and A2 signifies a gain adjust-

ment operational amplifier at the output. [23, 7.] 

 

Vz 
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When an analogue d.c. current is passed through a light emitting diode in the forward 

bias condition, the intensity of light emitted from the LED is linearly correlated with the 

d.c. current passing through it. When this light shines on a light dependent resistor that 

is linearly correlated to light intensity, the resistance of the LDR decreases with the in-

crease in light intensity. Hence the resistance of the LDR unit will decrease with an in-

crease in the d.c. current passing through LED. So for the series resistance R3, the d.c. 

current passing through the LED is given by the following equation (2): [23, 7.] 

 I =
 V𝑖+Vz−VLED 

R3
 (2) 

Now the light power PL emitted by LED is directly proportional to this current. Hence, [23, 

7] 

                                              P𝐿 α I 

       or  

 P𝐿  =
 K1(V𝑖+Vz−VLED)

R3
 (3) 

Where K1 is a proportionality constant. [23, 7] 

One end of the LDR is connected to the -V volts potential terminal of a stabilized d.c. 

source and the other to the virtual ground. Hence if Id is the current through the LDR in 

the dark condition and Ihp is the current in the lighted condition, then the resistance of the 

LDR is given by the following equation (4): [23, 7.] 

 𝑅𝐿𝐷𝑅  =
 V

(Iℎ𝑝 + I𝑑)
 (4) 

In a dark region, Ihp is zero and Id is very small; thus, the value of RLDR is very high in dark 

conditions. In a lit region, the incident power (Pinc) on the LDR’s surface is proportional 

to the power produced by the LDR (PL). [23, 7.] Hence,  

                                                 P𝑖𝑛𝑐  α P𝐿 
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           or  

 P𝑖𝑛𝑐  = K2P𝐿 (5) 

where K2 is the constant of proportionality. [23, 7] 

Current Ihp produced by incident photons in the LDR material is given by [23, 7] 

 Iℎ𝑝 =
ηqPinc

hv
 (6) 

where q is the electronic charge, η is the quantum efficiency, h is planck's constant and 

ν is the frequency of the light emitted by the LDR. [23, 7] 

Combining equations (3), (4), (5) and (6) we get, [23, 7] 

    R𝐿𝐷𝑅  =  
𝑉

I𝑑 + ηqKK1(V𝑖+Vz−VLED)

R3hv

 (7) 

Hence the output voltage (VO) of the LDR circuit is given by [23, 8] 

                                 𝑉𝑂  =
R5 V

R𝐿𝐷𝑅
  (8) 

                    or 

           V𝑂  =  R5 (
I𝑑 + ηqKK1(V𝑖+Vz−VLED)

R3hv
) (9) 

Thus the isolated output voltage is directly proportional to the input voltage (since all the 

other parameters in the above equation (9) are almost constants). [23, 8] 

Hence VO = Vi, when the following equation (10) is satisfied: [23, 8] 

 V𝑖 (
1

R5
−  

ηqK1K2

R3hv
) =  

ηqK1K2(Vz−VLED)

R3hv
+ I𝑑   (10) 



13 

 

 

This condition can be achieved by adjusting the zero adjustment voltage Vz and the gain 

adjustment feedback resistance R5 by trial and error. Once this occurs, an isolated output 

voltage (that mirrors the input voltage) can be produced by the circuit. [23, 8.]  

 

Figure 8. The opto-isolator circuit after zero and gain adjustments [23, 6]. 

Figure 8 shows the outcome of the zero and gain adjustments by trial and error. In order 

to make the input voltage directly proportional to the output, R2 had to be set to approx-

imately 42Ω, R5 had to be set to about 155Ω and all other resistors had to be set to 

250Ω. 

The output of both sensors (and consequently the output of the power isolation circuits) 

is analogue. This would be completely irrelevant if the measurement system used an 

Arduino as its microcontroller (since it has several analogue pins). Instead, this system 

makes use of a Raspberry Pi as its main controller and consequently has only GPIO pins 

(digital pin in and out). Thus to be able to make sense of the data from the sensors, an 

analogue to digital converter needs to act like a bridge between the sensors and the 

Raspberry Pi. For this specific undertaking, the MCP3008 was chosen. Its precision is 

similar to that of an Arduino Uno and can read analogue signals from up to 8 channels 

[14]. It is also extremely cheap and readily available (due to its various applications). This 

chip is a great option for projects like this, where simple analogue signals need to be 

read.   

 

 

Vz 

R
4

 =
2

5
0
Ω

 

R1=250

R2=42.0629Ω 

R3 =250Ω 

R5 =155.2Ω 

 



14 

 

 

Lastly, there is the Raspberry Pi. The microcontroller itself is quite atypical i.e. its cheap-

est version does not have a case and is a card sized electronic board (a bit smaller than 

those found in a PC or laptop). The quad-core Raspberry Pi 3 is quicker and more profi-

cient at its tasks than its immediate predecessor, the Raspberry Pi 2. The device’s CPU 

(the main processor) has an approximately 50 to 60 percent better performance in 32-

bit mode than the Pi 2 and is ten times quicker than the original single-core Raspberry 

Pi (based on a multi-threaded CPU benchmark in SysBench). Compared to the original 

Pi, real-world applications see a performance increase of about 2.5x (for single-threaded 

applications). The Pi 3 also supports wireless internet, with built-in Wi-Fi and Bluetooth. 

The latest board can also boot directly from a USB-attached hard drive or pen drive, 

supports booting from a network-attached file system and supports the use of PXE 

(which is useful for remotely updating a Pi and for sharing an operating system image 

between multiple machines). [15.] In this project, the Raspberry Pi’s primary use is to 

read the data from the MCP3008 (through its channels), convert it into EC and pH values 

and display the results to the users. The Raspberry Pi is also connected to two red LEDs 

that turn on when the pH and EC are in unacceptable ranges for proper plant growth. 
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4.1.1 Circuit diagram 

The pH electrode (shown on the top left side of Figure 9) is connected to the pH meter 

via BNC cable. Depending on the pH value of a specific substance, the meter will receive 

voltage values between 414.12mV and -414.12mV as an input from the electrode. The 

pH meter has four connection points in need of routing, each of which are extremely 

necessary to make the system work. After connecting the electrode to the meter, three 

connections are left to be made (VCC, Vout and GND). Voltage common collector (VCC 

for short) powers the meter and is connected via red cable to a 3.3V voltage source. The 

ground (GND) pin is connected via black cable to a ground pin on the Raspberry Pi. The 

output voltage (Vout) is connected to a power isolation circuit via brown cable. As men-

tioned in the previous section, the isolation circuit contains a summing amplifier, an LED, 

an LDR, and two inverting (gain) amplifiers. To mirror the circuit shown in Figure 8 in real 

life, LM386 is used in place of operational amplifier A1, NSL-32R3 is used in place of the 

LED and LDR and LM358 is used in place of inverting amplifiers A2. The isolation circuit 

for the pH meter is shown on the second half of the full sized breadboard (in Figure 9), 

after the dotted neon pink line. The output of this circuit is connected via brown cable to 

channel 1 of the MCP3008. 

The EC electrode (shown on the bottom left side of Figure 9) is connected to the EC 

meter via BNC cable. Depending on the electrical conductivity value of a specific sub-

stance, the meter will receive small voltage values close together in value as an input 

from the electrode. The EC meter (like its pH counterpart) has four connection points in 

need of routing, each of which are completely necessary to make the system work. After 

connecting the electrode to the meter, three connections are left to be made (VCC, Vout 

and GND). Voltage common collector (VCC for short) powers the meter and is connected 

via red cable to a 3.3V voltage source. The ground (GND) pin is connected via black 

cable to a ground pin on the Raspberry Pi. The output voltage (Vout) is connected to a 

power isolation circuit via brown cable. As mentioned in the previous section, the isola-

tion circuit contains a summing amplifier, an LED, an LDR, and two inverting (gain) am-

plifiers. To mirror the circuit shown in Figure 8 in real life, LM386 is used in place of 

operational amplifier A1, NSL-32R3 is used in place of LED D1 and LDR R6 and LM358 

is used in place of gain amplifier A2. The isolation circuit for the EC meter is on the first 

half of the full sized breadboard (in Figure 9), before the dotted neon pink line. The output 

of this circuit is connected via brown cable to channel 0 of the MCP3008. 
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Figure 9. A circuit diagram displaying all the components used in the project. 

The next step is to connect the MCP008 to the Raspberry Pi 3. The voltage drain drain 

(VDD for short) and the Voltage reference (VREF) of the ADC are connected via red 

cable to the 3V3 common voltage reference, while the ground (AGND and DGND) pins 

are connected via black cable to the common ground. The CLK pin of the MCP3008 is 

connected to the SCLK pin of the Raspberry Pi (via yellow cable) in order to synchronise 

their clock signals, the chip select (CS) pin of the MCP3008 is connected to the CE0 pin 

of the Raspberry Pi (via purple cable) to prepare the ADC for an SPI connection between 

the two devices, the data out (DOUT) pin of the MCP3008 is connected to the master in 

slave out (MISO) pin of the Raspberry Pi (via green cable) and is used by the Pi to receive 

data from the ADC. The data in (DIN) pin of the MCP3008 is connected to the master 

out slave in (MOSI) pin of the Raspberry Pi (via blue cable), and is used to receive data 

from the microcontroller. Finally, one red LED is connected to GPIO5 and the other to 

GPIO6. These two LED’s sole purpose is to serve as indicators that the EC and pH 

values of the solutions being read are in the acceptable ranges. If the pH is not within 

the correct limits, LED 2 (In Figure 9, on the far right of the breadboard) turns on and if 

the EC is not within the correct limits, LED 1 turns on. 
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4.1.2 Raspberry Pi 3 configuration 

The Raspberry Pi needs to be configured to turn on the warning lights (when the EC and 

pH values are in unacceptable ranges) and to accept values from the ADC, before con-

verting them to the required quantities. The section of code required to facilitate this 

process is shown in Listing 1. The first step in the configuration process is to set pin 29 

and 31 (of the Pi) as output pins. The initial values of these pins have to be set to low to 

prevent the LED’s from turning on without being explicitly prompted to do so.  

GPIO.setwarnings(False) # Ignore warning for now 

GPIO.setmode(GPIO.BOARD) # Use physical pin numbering 

GPIO.setup(29, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(31, GPIO.OUT, initial=GPIO.LOW)   

# Set pin 29 and 31 to be output pins and set their initial values to low 

(off) 

 

ec      = DFRobot_EC() 

ph      = DFRobot_PH() 

 

#ph.reset()  

 

ec.begin() 

ph.begin()  

 

# Open SPI bus 

spi = spidev.SpiDev() 

spi.open(0,0) 

spi.max_speed_hz=1000000 

  

# Function to read SPI data from MCP3008 chip 

# Channel must be an integer 0-7 

def ReadChannel(channel): 

  adc = spi.xfer2([1,(8+channel)<<4,0]) 

  data = ((adc[1]&3) << 8) + adc[2] 

  return data 

  

# Function to convert data to voltage level, 

# rounded to specified number of decimal places. 

def ConvertVolts(data,places): 

  volts = (data * 3.3) / float(1023) 

  volts = round(volts,places) 

return volts  

 

# Define sensor channels 

EC_channel = 0 

PH_channel  = 1 

  

# Define delay between readings 

delay = 5 

Listing 1. An excerpt from the SPI connection, function definition and GPIO pin setup section of 
the main the Raspberry Pi code [25]. The code in its entirety is shown in Appendix 1.  

The next step is to open an SPI bus to permit short distance communication between 

the microcontroller and the MCP3008. The data present in the 8 channels of the ADC 

can be acquired through this link and the reading process can be initiated by calling the 
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ReadChannel function. Afterwards, the channels as to which the sensors are connected 

to are defined (the EC meter is linked to channel 0 and the pH meter is linked to channel 

1) and a delay of 5 seconds is added so as not to overload the system.  

while True: 

 

 temperature = 25 

 # Read the EC sensor data 

   EC_level = ReadChannel(EC_channel) cur.execute(sql) 

 

   # Convert EC sensor data to voltage level 

   EC_volts = ConvertVolts(EC_level,2) 

   EC_millivolts = EC_volts * 1000 #Convert EC value from V to mV 

  

 #Convert voltage to EC with temperature compensation 

   EC_mS_per_centimeter = ec.readEC(EC_millivolts,temperature) 

   EC = EC_mS_per_centimeter * 100 

   

   # Read the PH sensor data 

   PH_level = ReadChannel(PH_channel) 

   

   # Convert PH sensor data to voltage level 

   PH_volts = ConvertVolts(PH_level,2) 

   PH_millivolts = PH_volts * 1000 

   

   #Convert voltage to PH with temperature compensation 

   PH = ph.readPH(PH_millivolts,temperature) 

   

  

   # Print out results 

   print ("--------------------------------------------") 

   print("EC:{}mS/m".format(EC)) 

   print("pH:{}".format(PH)) 

   

 

   if EC > 250 or EC < 150: 

         print("The EC is beyond acceptable limits!") 

         GPIO.output(29, GPIO.HIGH) # Turn on 

   

   else:   

         GPIO.output(29, GPIO.LOW) # Turn off 

  

   if PH > 6.9 or PH < 6.7: 

         print("The pH is beyond acceptable limits!") 

         GPIO.output(31, GPIO.HIGH) # Turn on led 

   

   else:   

         GPIO.output(31, GPIO.LOW) # Turn off led 

            

   # Wait before repeating loop 

   time.sleep(delay) 

Listing 2. An excerpt from the while loop of the main the Raspberry Pi code. The code in its 
entirety is shown in Appendix 1. 

A while loop (shown in Listing 2) is then subsequently initiated. At this point, the Read-

Channel function is called and the data in channel 0 (of the Raspberry Pi) is read by the 

system. The information in this channel comes from the ADC, whose output is a range 

of numbers between 0 and 1023 (a reading of 0 means the output is 0V and a reading 
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of 1023 means the output is 3.3V). This data is converted to voltage by the use of the 

previously defined ConvertVolts function and stored in the variable EC_volts. In its cur-

rent state, this value is incompatible with the readEC function of the DFRobot_EC.py file 

(Appendix 2). To amend this, the voltage value stored in EC_volts is converted to milli-

volts (by multiplying it by 1000) and saved in the variable EC_millivolts. The readEC 

function can then be called and used to convert the millivolt value to an EC value, while 

compensating for the ambient temperature. Since a majority of the measurements need 

to be done in a controlled setting (at room temperature), the value of temperature is set 

to 25. The unit of measurement chosen for EC in this project is millisiemens per meter 

(mS/m). The DFRobot_EC.py file (Appendix 2) converts values in millivolts to electrical 

conductivity values in millisiemens per centimeter (mS/cm) and stores them in the vari-

able EC_mS_per_centimeter. To convert the values from mS/cm to mS/m, the data in 

EC_mS_per_centimeter is multiplied by 100 and saved to the variable EC. The formula 

that the DFRobot_EC.py file uses to convert voltage values to EC values is given in the 

equation (11) below. 

                                 EC =
100 ⋅ EC meter Vout ⋅ Cell constant

820 ⋅200
                   (11) 

The ReadChannel function is then called upon once again to read the data in channel 1 

of the Raspberry Pi. This data is converted to voltage by the use of the ConvertVolts 

function and stored in the variable PH_volts. In this state, this value is incompatible with 

the readPH function of the DFRobot_PH.py file (Appendix 2). To fix this, the voltage 

value stored in PH_volts is converted to millivolts (by multiplying it by 1000) and saved 

in the variable PH_millivolts. The readPH function can then be called and used to convert 

the millivolt value to a pH value, while compensating for the ambient temperature [16]. 

The formula that the DFRobot_PH.py file uses to convert voltage values to pH values is 

given in the equation (12) below. 

  pH = ((
7−4

pH meter Vout(𝑝ℎ 7)−pH meter Vout(𝑝ℎ 4)
) ⋅ (pH meter Vout − pH meter Vout(𝑝ℎ 7))) ⋅ 7 (12) 

The next step in this process is to print out the values of EC and pH obtained to the 

screen, so that the users of the system can keep track the sensor data. If the value of 

electrical conductivity detected is above 250 or below 150, pin 29 is set to high and the 

LED attached to the pin turns on. Similarly, if the value of pH detected is above 6.9 or 

below 6.7, pin 31 is set to high and the LED attached to the pin turns on. 
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4.1.3 Sensor calibration 

Default values for EC and pH (that correspond to specific meter voltages) already exist 

in the system. However, if at any point the sensors become less accurate and need to 

be recalibrated it can be done with the sections of code specified in Listings 3 and 4. The 

code shown in Listing 3 is used for EC sensor calibration. For the entire process to begin, 

the EC electrode has to be placed in a buffer solution and the DFRobot_EC_Calibra-

tion.py file (shown in Appendix 3) has to be run on the Raspberry Pi device. Much like 

the code for the EC and pH measurements (shown in Appendix 1), this code makes use 

of the DFRobot_EC.py file.  

 

The Raspberry Pi connects to the MCP3008 by means of an SPI connection, reads the 

data in channel 0 using the ReadChannel function, converts the channel data to voltage 

level, then calls the calibration function in the DFRobot_EC.py file. The calibration func-

tion calculates a raw EC value using the same formula as specified in equation (11), but 

without multiplying the value with the cell constant.  

 

If the EC electrode is placed in a buffer solution with a conductivity value of 1.413mS/cm, 

then the raw EC value calculated will be between 0.9mS/cm and 1.9mS/cm. On the other 

hand, if the EC electrode is placed in a buffer solution with a conductivity value of 

12.88mS/cm, then the raw EC value calculated will be between 9mS/cm and 16.8mS/cm.  

This value is used to calculate the cell constant of the sensor and the result is saved in 

ecdata.txt. From this moment forward, every time the readEC function is called (whilst 

running the main code) the cell constant calculated in the calibration process will be used 

in determining the value of the electrical conductivity. If the cell constant value obtained 

is proven to be incorrect and the user wants to use the default value, this can be achieved 

by uncommenting the ec.reset() line in the main measurement code. This command will 

reset the value of the cell constant to its default value of 10. 
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while True: 

 

 temperature = 25 

  

 # Read the EC sensor data 

 EC_level = ReadChannel(EC_channel) 

 

 # Convert EC sensor data to voltage level 

 EC_volts = ConvertVolts(EC_level,2) 

 EC_millivolts = EC_volts * 1000 #Convert EC value from V to mV 

  

 print("CH0:{}mV".format(EC_millivolts)) 

  

 #Calibrate the calibration data 

 ec.calibration(EC_millivolts) 

 

 # Wait before repeating loop 

 time.sleep(1.0) 

Listing 3. An Excerpt from the EC sensor calibration code in the Raspberry Pi. 

The code shown in Listing 4 is used for pH sensor calibration. For the entire process to 

begin, the pH electrode has to be placed in a pH buffer solution and the DFRo-

bot_PH_Calibration.py file (shown in Appendix 3) has to be run on the Raspberry Pi 

device. Much like the code for the EC and pH measurements (shown in Appendix 1), this 

code makes use of the DFRobot_PH.py file.  

 

The Raspberry Pi connects to the MCP3008 by means of an SPI connection, reads the 

data in channel 0 using the ReadChannel function, converts the channel data to voltage 

level, then calls the calibration function in the DFRobot_PH.py file. A fully functional pH 

sensor from DFRobot will produce a voltage between 1322mV and 1678mV when the 

pH electrode is placed in a buffer solution with a pH value of 7. On the other hand, when 

the sensor is placed in a buffer solution with a pH value of 4, it will produce a voltage 

between 1854 mV and 2210mV. The value produced by the sensor at either of these two 

pH values will be saved to the file phdata.txt. From this moment forward, every time the 

readPH function is called (whilst running the main code) the voltage values recorded in 

the calibration process will be used in determining the value of the pH. The voltage value 

obtained while placing the pH electrode in the solution of pH 7 will be used instead of pH 

meter Vout(ph 7) and the voltage value obtained while placing the pH electrode in the so-

lution of pH 4 will be used instead of pH meter Vout(ph 4) in equation (12). If the voltage 

values obtained are proven to be incorrect and the user wants to use the default values, 

this can be achieved by uncommenting the ph.reset() line in the main measurement 

code. This command will reset the variable pH meter Vout(ph 7) to 1500mV and the varia-

ble pH meter Vout(ph 4)  to 2032.44mV. 
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while True: 

 

 temperature = 25 

  

 # Read the PH sensor data 

 PH_level = ReadChannel(PH_channel) 

 

 # Convert PH sensor data to voltage level 

 PH_volts = ConvertVolts(PH_level,2) 

 PH_millivolts = PH_volts * 1000 

  

 print("CH1:{}mV ".format(PH_millivolts)) 

  

 #Calibrate the calibration data 

 ph.calibration(PH_millivolts) 

 

 # Wait before repeating loop 

 time.sleep(1.0) 

Listing 4. An Excerpt from the pH sensor calibration code in the Raspberry Pi. 

The code shown in Listing 3 only allows calibration using buffer solutions with an EC of 

141.3mS/m or 1288mS/m; any other solutions will be ignored by the program. Similarly, 

the code shown in Listing 4 will only allow pH sensor calibration using buffer solutions 

with a pH of 7 or 4 and ignore all others. This is because these are the only calibration 

solutions offered by DFRobot. Since this company made the sensing meters and the 

buffer solutions, they know what voltages correspond to what EC and pH values and 

have posted this information on their website. This was the data that was used to create 

the DFRobot_EC.py and the DFRobot_PH.py files. If the need for calibrating the system 

using buffer solutions that are not previously mentioned arises, the user would have to 

alter the source codes of these two files to account for the new calibration solutions.  
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4.1.4 Circuit Simulation 

Proteus is a design software tool invented by Labcenter Electronics to design, draw, and 

simulate circuits in real time. It gives its users the ability to make two-dimensional and 

three-dimensional circuit designs. With the use of this software, different electrical and 

electronic circuits can be simulated on laptops or personal computers. It has large variety 

of components in its library. It has oscilloscopes and voltmeters (for measurement and 

analysis), probes for real time monitoring of the parameters of a circuit, voltage and cur-

rent sources, signal generators, analogue and digital Integrated circuits, resistors, semi-

conductor switches, microcontrollers and many more. [24.] 

In this project Proteus was used to simulate the operation of the overall circuit. A small 

snippet of the simulation is shown on Figure 10. The Raspberry Pi 3 device is repre-

sented by RPI3 (U1) and the warning lights (which are meant to turn on when the EC 

and pH values are outside the acceptable range) are represented by LED’s D1 and D2 

respectively. The MCP3008 is represented by U2, the output of the isolation circuit for 

the EC sensor is represented by OPTO-Isolator(EC) and finally the output of the isolation 

circuit for the pH sensor is represented by OPTO-Isolator(pH). Although Proteus allows 

its users to program Pi devices using flowchart blocks, RPI3 was programmed in python 

in order to mimic a real life scenario. Apart from the basic python libraries, Proteus only 

supports the smbus, pygame, wiringpi, RPi.GPIO, and spidev libraries. In order to use 

other libraries, they have to be downloaded and saved in a folder, then a link has to be 

established between Proteus and the file location using the sys.path.insert command.  

 

Figure 10. A snapshot of the circuit simulation on Proteus. 
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The voltages going to the MCP3008 from the power isolation circuits of the EC meter 

and the PH meter are shown by probes U2(CH0) and U2(CH1) respectively. The voltage 

from the EC sensor in the simulation above is 2.112V and the voltage from the pH sensor 

is 0V. 

 

Figure 11. The output of the simulation. 

Figure 11 shows the output of the simulation. When the output of the pH sensor is 0V, 

the pH value calculated by the program is approximately 15.245 and when the output of 

the EC sensor is 2.112V, the EC value calculated by the program is approximately 

1286.59mS/m. Both these values are outside the acceptable range for growing healthy 

Hops plants; the simulated Raspberry Pi device outputs warning messages to its users 

saying “The E.C is beyond the acceptable limits!” and “The pH is beyond the acceptable 

limits!”. RPI3 will make LED D1 turn on if the EC value calculated is outside the optimal 

range and make LED D2 turn on if the pH value calculated is outside the optimal range.  

In this case, both values are outside the suitable range and so both D1 and D2 turn on. 
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4.1.5 Results 

The data collected by comparing the components used in this thesis to devices produced 

by well-known manufacturers (in addition to the simulation outcomes) heavily supports 

the theory that under the right series of circumstances, inexpensive pH and EC meas-

urements are entirely possible. The biggest piece of evidence that supports the afore-

mentioned claim is the data presented in Table 4.  

Table 4. A table comparing the measurement circuit system used in this thesis to one created 
using AtlasScientificTM devices. 

Cost effective measurement system AtlasScientificTM 

Part type Accuracy  Price(€) Part type Accuracy  Price(€) 

DFRobot Meter 
Pro Kit ( pH elec-
trode + pH meter ) 

± 0.1pH 49.78 pH Kit (EZO™ 
pH Circuit + pH 
Probe + calibra-
tion solutions + 

pH storage solu-
tion + Electrically 
Isolated EZO™ 
Carrier Board) 

± 0.002pH 149.49 

DFRobot Analog 
Electrical Conduc-

tivity Sensor kit 
with K=10 (EC 

meter + EC labor-
atory probe+ 

buffer solution) 

± 5%  69.90 Conductivity Kit 
with K= 10 

(EZO™ Conduc-
tivity Circuit +  
Conductivity 

Probe + calibra-
tion solutions ) 

± 2% 217.74 

Opto-Isolators - 6 Basic EZO™ In-
line Voltage Isola-
tor 

- 23.69 

Raspberry Pi 3 
Official Starter Kit 

- 64.50 Raspberry Pi 3 
Official Starter Kit 

- 64.50 

Alvin instruments 
EC electrode  

± 5% 40.46 - - - 

MCP3008 ±0.1 1.52 - - - 

Total price 232.16 Total price 455.42 

Atlas Scientific is a well-known company that focuses on manufacturing laboratory and 

industrial grade sensing instrumentation for robots, appliances and industrial manage-

ment systems. Numerous Atlas Scientific sensors can be found within a comprehensive 

selection of merchandise and devices all around the globe. From mission-critical military 

applications to Arduino based university projects, their line of business serves to make 
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any device thinkable incredibly accurate. That being said, their products are more ex-

pensive than the ones made by DFRobot and Alvin Instruments. A measurement system 

constructed using AtlasScientificTM devices would cost nearly double the price of the cost 

effective measurement system. In the context of maintaining the EC and pH of the wa-

tering solution for Hops plants, the cheaper option of the two would work just as well as 

its more expensive counterpart. 

Table 5. The output voltages of the pH electrode and pH meter with respect to the pH of the 
substance being measured. 

pH pH electrode output voltage (V) pH meter output voltage (V) 

0.0 0.414120 2.74236 

1.0 0.354960 2.56488 

2.0 0.295800 2.38740 

3.0 0.236640 2.20992 

4.0 0.177480 2.03244 

5.0 0.118320 1.85496 

6.0 0.059160 1.67748 

6.6 0.035496 1.57099 

7.0 0.000000 1.50000 

8.0 -0.059160 1.32252 

9.0 -0.118320 1.14504 

10.0 -0.177480 0.96756 

11.0 -0.236640 0.79008 

12.0 -0.295800 0.61260 

13.0 -0.354960 0.43512 

14.0 -0.414120 0.25764 
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The DFRobot pH sensor is less accurate than its more high-priced equivalent (the accu-

racy of the DFRobot pH sensor is ± 0.1pH and the accuracy of the AtlasScientificTM pH 

sensor is ± 0.002pH). The results acquired by simulating the pH section of the circuit and 

interpreting the data produced are shown in Table 5. The data indicates that consecutive 

output voltages of the meter (corresponding to different pH values) differ by a very small 

value. However, this does not have a very significant effect on the perceived accuracy 

of the pH measurements. In the grand scheme of things, if the pH of the watering solution 

is 0.1pH greater or smaller than intended, it would not negatively impact the growth of 

Hops plants to an extreme degree. 

Table 6. The output voltages of the EC meter with respect to the EC of the substance being 
measured. 

Electrical Conductivity (mS/m) EC meter output voltage (V) 

0.0 0.000000 

100.0 0.164000 

141.3 0.231732 

150.0 0.246000 

200.0 0.328000 

250.0 0.410000 

270.0 0.442800 

1288.0 2.112320 

2000.0 3.280000 

The DFRobot electrical conductivity sensor is also less accurate than its more expensive 

alternative (the accuracy of the DFRobot electrical conductivity sensor is ± 0.5mS/m and 

the accuracy of the AtlasScientificTM electrical conductivity sensor is ± 0.2mS/m). The 

results obtained by simulating the EC subdivision of the circuit and interpreting the data 

produced are shown in Table 6. Each consecutive EC meter output voltage differs from 

the value that precedes it by a small amount, meaning that even a small measurement 

error would have a significant impact on what the Raspberry Pi perceives to be the EC 

value. This is the one of the downsides of the cost effective system; when trying to main-

tain the perfect EC for keeping plants alive it is better to be more accurate than less. 
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4.2 Mindsphere 

MindSphere is an open, cloud-based IoT OS created by Siemens. It facilitates data col-

lection in real time and provides its users access through most browsers. It also allows 

its users to establish secure links to the devices being monitored and perform predictive 

maintenance [18]. Of the numerous plans currently being offered by Siemens, Metropolia 

University of Applied Sciences has opted to acquire the MindAccess DevOps plan. This 

plan is specifically made for developers i.e. it permits the use of the pre-packaged appli-

cations readily available on MindSphere and allows applications built elsewhere to be 

added to the platform. 

 

Figure 12. An excerpt from MindSphere’s launchpad. 
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As seen in Figure 12, the MindAccess DevOps plan has nine key applications and fea-

tures. The Agent Diagnostic is an application that provides a user interface for creating 

agent monitors and gaining insights into already existing agent monitors (such as the 

MindConnect Nano). It is built on the diagnostic feature of the MindConnect API, allows 

the activation and deactivation of agents and allows the system’s admins to view their 

messages. The Asset Manager application lets its users simulate the complete structure 

of an industrial process by connecting assets and creating data models for how specific 

asset data is evaluated. The Fleet Manager application offers its users monitoring, man-

agement, visualization and alerts capabilities. The alerts allow the users of the applica-

tion to locate individual assets and their configuration details, monitor key metrics and 

create rules that will send alerts if they become triggered. [22.] 

The Container Registry application allows its users to fast-track development and 

streamline the storage and management of images. With the use of the aforementioned 

application, users can view a project and its details, create “Robot Accounts” (accounts 

intended to perform docker push / docker pull operations using a token), tag and push 

images to the Container Registry as well as allowing its users to view the log information 

of the operations performed in the application. The Developer Cockpit aids developers 

in configuring and managing their developed applications in MindSphere. The Usage 

Transparency Service collects numerous consumption metrics in order to allow its users 

to view the usage details of MindSphere applications for a specific time period, and to 

generate usage reports. The Upgrade feature gives MindSphere customers the oppor-

tunity to purchase upgrades and use them instantly on their MindAccess Plan account. 

With Settings, one can manage users and their permissions, add company specific in-

formation to the tenant (a representation of a real-world organization on MindSphere) 

and create subtenants (a certain limited resource of a tenant which represents a subpart 

of a real-world organization). [22.] 

Lastly, there is the MindConnect IoT Extension, an incorporation layer that supports var-

ious conventions and permits nearly any IoT-Ready gadget (from any seller) to connect 

to MindSphere. Furthermore, the MindConnect API facilitates the programming of con-

nectivity agents for a predetermined use. [22.] 
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Figure 13. An excerpt from MindSphere’s IoT extension. 

In this project, the IoT extension of MindSphere (MindConnect) was used to monitor and 

graph sensor data (the graphs are seen in Figure 13). The extension also had the added 

benefit of allowing real time data synchronization and measurement analysis via the Data 

Explorer.  

mqtt.Client.connected_flag=False #create flag in class 

client = mqtt.Client(clientId) 

client.username_pw_set(tenant + "/" + username, password) 

client.on_message = on_message 

client.on_publish = on_publish 

 

# connect the client to MindConnect IoT 

client.on_connect=on_connect  #bind call back function 

client.loop_start() 

client.connect(serverUrl) 

 

#create device (Raspberry Pi 3) 

publish("s/us", "100," + device_name + ",MCIoT_MQTTdevice", True) 

#set required connection interval to 10 minutes 

publish("s/us", "117,10") 

 

#Send Data via MQTT 

publish("s/us", "110,000000008b64f58a,RaspPi BCM2835,a02082") 

publish("s/us", "114,MCIoT_Restart") 

print("Device registered successfully!") 

 

client.subscribe("s/ds") 

sendMeasurements() 

Listing 5. The section of code in the Raspberry Pi that connects and sends the sensor values to 
the MindConnect IoT extension. 
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MindConnect is incapable of reading the data being inputted and outputted by the Rasp-

berry Pi without being explicitly prompted to do so. Short of using devices like the Master 

Brick 2.1 (by Tinkerforge), one of the only ways to relay the information on the Raspberry 

Pi to MindSphere is to do so with the use of an MQTT connection[17]. Message Queue 

Telemetry Transport (MQTT for short) is a messaging transport protocol, which uses the 

brokered publish/subscribe system. This configuration separates the publisher client 

(who sends a particular message) from the subscriber client (who receives it). The code 

written in Listing 5 shows how the MQTT client/server connection (between MindConnect 

and the Pi) was formed and utilised [21].  

Firstly, the Raspberry Pi 3 attempted to establish a secure link to the URL of the IoT 

platform using the connect acknowledge flag, mqtt.Client.connected_flag. This flag 

returns a code that tells the client (which is the Raspberry Pi 3 in this scenario) whether 

the connection attempt was successful or not. There are a  total of six return codes that 

the flag can return. If the flag returns a code with the value 0, then the connection is 

accepted by the MQTT broker (which is the MindConnect extension in this case). If the 

flag returns a code with the value 1, then the connection is refused due to an 

unacceptable protocol version. If the flag returns a code with the value 2, then the 

connection is refused due to a rejected identifier. If the flag returns a code with the value 

3, then the connection is refused due to the server being unavailable.If the flag returns a 

code with the value 4, then the connection is refused due to a bad username or 

password. Finally, If the flag returns a code with the value 5, then the connection is 

refused because the client trying to acess the broker is not authorized to do so. 

After a sucessful connection to the server is made, a Raspberry Pi 3 device is created 

on the platform using the publish("s/us", "100," + device_name + ",MCIoT_MQTTdevice", 

True) command. The name of the device on the platform is represented by the variable 

device_name and the type of device is represented by MCIoT_MQTTdevice. As seen in 

Figure 14, the name of the device chosen by user was Raspberry Pi 3 Sensor data. 
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Figure 14. An excerpt from MindSphere’s IoT extension showing all the registered devices. 

To increase the time interval between measurements, the publish("s/us", "117,10") 

command is used. In this command, 10 represents the amount of minutes the user wants 

the connection to remain open. Changing this number will change the amount of time 

the connection will stay open. The serial number, hardware model and revision of the 

device connecting to the platform can be set using the command publish("s/us", 

"110,000000008b64f58a,RaspPi BCM2835,a02082"). As seen in Figure 15, the serial 

number of the Raspberry Pi device was set to 000000008b64f58a, the model of the 

device was set to RaspPi BCM2835 and the revision of the device was set to a02082 

[20, 2]. 

 

Figure 15. An excerpt from MindSphere’s IoT extension. 

After initiating an automatic refresh of the IoT platform, the Raspberry Pi listened for built-

in commands and sent the EC and pH values obtained to the MindConnect child device 

using the sendMeasurements() command. 
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5 Conclusion 

Oftentimes, it is thought that the accurate measurement of sensor data using industrial 

grade equipment costs a significant amount (no matter what device manufacturer is cho-

sen). This line of thinking is prevalent due to the irrational thought amongst consumers 

that expensive items are better in quality than their cheaper counterparts [19]. This thesis 

however, proves that cost effective EC and pH measurements are possible if done in 

situations where the precision of the measurements is not a mitigating factor.  

Two groups in particular will be impacted the most by the findings of this thesis, individ-

uals with small at home gardens and small farmers with businesses that operate locally. 

They can use the information presented in this document as a guideline for creating an 

alternative system for data measurement that rivals the ones currently in the open market 

in quality, but made at a significantly lower price. Large companies often have long stand-

ing relationships with other big corporations and usually get the equipment they deem 

necessary at a much lower cost than the retail value. Due to this reason, they will be 

affected the least by the discoveries made in this thesis. 

A study investigating the significance of using inexpensive microcontrollers with readily 

available analogue input pins (e.g. ones in the Arduino family) in a system similar to the 

one presented in this thesis could be a great area of future research. Such embedded 

controllers would have the added benefit of saving the users of the measurement system 

some money, since there would be no need for an ADC in the circuit. Subsequently, the 

measurements may also slightly increase in accuracy because the power loss of the 

overall system would decrease. Another great field of study would be one that investi-

gates whether or not the circuit presented in this thesis is capable of measuring values 

from other sensors in addition to the ones present originally. Such a study would help 

consumers know if the system can perform multiple measurement tasks without unex-

pectedly giving out. 

In conclusion, the data obtained from this thesis proves that money is not an obstacle to 

creating a fairly accurate system for measuring sensor data. With enough time and effort, 

the current system can be used for a large variety of applications (both in the agricultural 

industry and beyond). 
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Appendix 1. The main Raspberry Pi code  
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Appendix 2. EC and pH meter Raspberry Pi codes  
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Appendix 3. The EC and pH calibration files 
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Appendix 4. How to connect a device to MindSphere(MindConnect) 

1. Sign in to MindSphere  
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2. Go to the Launchpad, and click on the MindConnect IoT extension. 
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3. The link will usually redirect the user to the device management section of MindCon-

nect 
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4. Switch over to the administration section of the MindConnect extension  
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5. Open the Accounts tab on the navigator and click on Users  
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6. Click on the Add user button 
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7. Add a new user to the MindConnect system by filling in all the required information. 

This new user has to be completely unassociated with the other MindSphere applica-

tions, otherwise the connection to the MindConnect Server will fail. After their account is 

created, they must only be able to login to the MindConnect IoT extension directly and 

must not be able to login through the Launchpad. 
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8. Scroll to the Global roles subheading and give the new user Devicemanagement User 

and admins roles, by clicking the checkboxes. Then click save 

 

 

9. At this point, the new user will get an email from MindSphere to activate their account 

and reset their password. 
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This will be the account used every time a connection to MindConnect is made from an 

outside source. Connection to the server itself (by MQTT) can be done in one of two 

ways, firstly by using an MQTT client application on a PC like MQTTBox or by using 

written down code (in any programming language).  

 

10. To connect via MQTTBox, open MQTTBox and click Create MQTT Client. Fill in the 

information listed below into the form for "MQTT CLIENT SETTINGS", then click save. 

Fields that are not listed can be left as default.  
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11. A connection to the MindConnect broker will then be established 
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12. To connect to MindConnect via some type of programming language, very specific 

code has to be written. The code shown below can be run on all devices that support 

python.  

 

 

TE

NA

NT 

TENANT 

EMAIL ADDRESS 

PASSWORD 
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13. To connect a Raspberry Pi to the IoT extension, a few steps must occur before run-

ning the code above. Firstly, the python packages in the Pi device need to be updated. 

This is done by running the code below on the terminal of the Raspberry Pi. 
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14. The python library paho-mqtt also needs to be installed by running the commands 

below on the terminal. 

 

 

 

 


