jamk.fi

Event-driven Analysis of Cyber Kill
Chain

Jani Hallberg

Master’s thesis

May 2020

School of Technology

Master's Degree Programme in Information Technology
Cyber Security

Jyvaskylan ammattikorkeakoulu
JAMK University of Applied Sciences

Author(s) Type of publication Date
Hallberg, Jani Master’s thesis May 2020
Language of publication
English
Number of pages Permission for web
111 publication: x

Title of publication
Event-driven Analysis of Cyber Kill Chain

Degree programme
Master's Degree Programme in Information Technology, Cyber Security

Supervisor(s)
Saharinen, Karo
Kokkonen, Tero

Assigned by
JAMK University of Applied Sciences / JYVSECTEC

Abstract

The number of intrusions into organization IT environments has been increasing over the
years. Detecting intrusions remains a difficult task as the long average adversary dwell
times indicate. Organizations struggle with increasing complexity as they expand their IT
environments into cloud and deal with a growing number of endpoints due to loT.

This thesis introduces a kill chain based approach for detecting cyber intrusions. In this
approach, events are mapped into well-known adversary techniques and tactic categories.
After the event to adversary technique associations has been identified, data analysis
methods are applied to connect the events together to form the intrusion kill chain.

A proof of concept implementation was used to demonstrate the viability of the approach.
The implementation was constructed in a closed test environment using free and open
source tools. A simulated intrusion scenario was used to demonstrate the use of the
approach in action, as well as to produce an interactive visualization of the intrusion kill
chain.

The result of the implementation demonstrates that constructing an intrusion kill chain
based on event data is viable; however, certain conditions have to be taken into
consideration. The quality of the event data and accuracy of the event to technique
mapping affects the number of false positive adversary technique detections. Choosing the
right fields for connecting events together is crucial, as it impacts on coverage of the
resulting graph of the kill chain. A graph of a kill chain is not in itself hugely valuable
without a proper visualization that highlights anomalies, and which users can use to get
more details about the events.

Keywords/tags
Cyber kill chain, threat hunting, data analysis, graph analysis

Miscellaneous

jamk.fi

Tekija(t) Julkaisun laji Paivamaara
Hallberg, Jani Opinnaytetyo, ylempi AMK | Toukokuu 2020
Julkaisun kieli
Englanti
Sivumaara Verkkojulkaisulupa
111 mydnnetty: x
Tydn nimi

Tapahtumaldhtoinen Analyysi Cyber Kill Chain:sta

Tutkinto-ohjelma
Master's Degree Programme in Information Technology, Cyber Security

Tyon ohjaaja(t)
Karo Saharinen
Tero Kokkonen

Toimeksiantaja(t)
JAMK University of Applied Sciences / JYVSECTEC

Tiivistelma

Organisaatioiden IT ymparistoihin kohdistuneet tietomurrot ovat kasvaneet viime vuosina.
Tietomurtojen havaitseminen on edelleen haasteellista, kuten pitkat viiveet
tunkeutumisen ja havaitsemisen valilla osoittavat. Organisaatiot kamppailevat alati
kasvavan kompleksisuuden kanssa laajentaessaan palvelujaan pilveen ja paatelaitteiden
maardn kasvaessa loT:n myota.

Opinndytetyo esittelee kill chain —pohjaisen Iahestymistavan tietomurtojen
havaitsemiseen. Tassa lahestymistavassa ympariston tapahtumat liitetdan tunnettuihin
uhkatoimijoiden kdyttamiin tekniikoihin ja taktiikkaluokkiin. Kun uhkatoimijoiden
tekniikoihin liittyvat tapahtumat on tunnistettu, tapahtumat yhdistetaan toisiinsa data-
analyysi menetelmia kayttden, jolloin niistd muodostuu tietomurron tapahtumien kulkua
kuvaava kill chain.

Lahestymistavan toimivuus todennettiin esimerkkitoteutuksella. Toteutus suoritettiin
suljetussa testiymparistossa kayttden ilmaisia, avoimen lahdekoodin tyokaluja.
Ymparistdssa simuloitiin tietomurtoskenaario, jonka pohjalta luotiin kill chain —graafi seka
interaktiivinen visualisaatio.

Toteutuksen tulokset osoittavat, etta kill chain muodostaminen tapahtumadatasta on
mahdollista tietyt ehdot huomioon ottaen. Tapahtumadatan laatu seka tapahtuma-
tekniikka-liitosten tarkkuus vaikuttaa menetelman tuottamien vaarien havaintojen
maaraan. Tapahtumien yhdistamiseen kaytettavien kenttien oikea valinta on ratkaisevaa,
koska se vaikuttaa suoraan kill chain —graafin kattavuuteen. Graafi itsessdan ei ole erityisen
hyodyllinen ilman visualisaatiota, joka nostaa esiin poikkeamia ja jonka avulla kayttajat
voivat tarkastella yksittdisten tapahtumien tietoja.

Avainsanat
Cyber kill chain, threat hunting, data analysis, graph analysis

Muut tiedot

Contents

3 S 1013 o T [T 4 o T N 7
00 R - - T <=4 o 18 [T [USRI 7
1.2 GOal Of theSiS....iiieiieeieee e e 8
1.3 Structure of thesiscociiiiieiiereeee e 8

P2 (=TT =F- o oI [T - o N 9
2.1 Research problem ... 9
2.2 ReSearch qUESTION ...ttt e e e e e e 10
2.3 Research Methodc.cooiiiiiiiieiee e e 10

S I 1 =T o1 oY R PP 12
3.1 Threat hUNEING ..o e 12
3.1.1 Threat hunting ProCeSS... . e e e e e e e e 13
3.1.2 Measuring threat huNting.........coooviiiiiiiiiii e 16
3.2 Attack lifecycle frameworks ... 17
3.2.1 Lockheed Martin Intrusion Kill Chainccccccoviiiiniiiinieieeeeee, 17
3.2.2 Mandiant’s Attack Lifecycle Modelcccoooeeciiiiieieiiieiieeeee e, 18
3.2.3 MITRE ATT&CK .. eeiiieiieeeiteeeee ettt sttt st st e s s 19
I T 1 =T o] d T N g =T V2T PRSP 21

4 IMplementation........cccceeiiiiieniiiiiiiiiiii s raae s s s s esasessnenns 23
s Y olo | o 1 IO PPPPPPPR 23
B.2 TOOIS et 25
At R V£~ o Vo o FS USSP 25
B.2.2 HELK .ottt sttt sttt nee 26
B.2.3 PaNdas.....coociieiiiiieeieee e 29
A.2.4 NETWOIKX ...eiiiiiiieiieeeite ettt 29

.25 PlOtIY ureeeeiiii i e e e e aee e 29

4.3 TeSt ENVIFONMENT ..ccoiiiiiiiiiiiiciicc et 30
4.4 Testing and ObServationccccvviieeiii e 31
4.5 EXECUTION .eeeiiiiiiiiiiiieettee ettt e e e e e e s e e e e e 33
4.5.1 T1059 - Command-Line Interface........cccceeveeririienieineeneeeeneeene 33
4.5.2 T1064 — SCrIPTING c.eeeeeiieeeiieeeee ettt 35
4.5.3 T1086 — POWErShellccccuiiiiiiiiiiieieeeee e e 37
4.6 PerSISTENCE ..iiiiiiiiiiiiiiic e 40
4.6.1 T1053 —Scheduled Taskcccceeriiiiiiiiiiiieieeee e 41
4.6.2 T1060 - Registry Run Keys / Startup Folder.........cccceevveeeeieeeiieeecnreenee, 44
4.6.3 T1078 - Valid ACCOUNTS ...uuviiiiiiiiieeeiteeiee et s 48
4.7 Privilege ESCalation........cooiiciiie it 50
4.7.1 T1053 —Scheduled Taskccceviiiiiiiiiiiiiiieeee e 51
4.7.2 T1078 - Valid ACCOUNTSuviiiiiiieeiiieeite ettt s 51
4.7.3 TI1050 — NEW SEIVICE ..ccoruiriiiiiiiiieieiiiiee ettt 52
4.8 Defense EVASION ...ccccueiiiiiiiiiiiiiieeete ettt 54
4.8.1 T1107 - File Deletion......ccceeriiriieeeeeieenee e 55
4.8.2 TL1064 — SCIiPLiNG coveeieieieie e 56
4.8.3 T1027 - Obfuscated Files or Information........cccccoeevieriieniiiienieneene 57
4.9 Credential ACCESSoocvieriiiriiiieee e 58
4.9.1 T1003 - Credential DUMPING....ccceeiieieiiiiiiieeee e e 59
4.9.2 T1056 = INPUL Capture...ccceeiiiiieei it e e e eeeees 62
4.9.3 TI1110 = Brute FOrCe ...cooviiiiriiiieieiiii ittt 63
O I B Y [0l 0)Y =] oY AP 65
4.10.1 T1087 - ACCOUNT DISCOVEIY vuuueiiiieeieiiiiice e e e eeeeeettcee e e e e e e eeeaanee e e s e e eeeens 66
4.10.2 T1016 - System Network Configuration Discovery.........c.ccceecuvrreennnnn. 67
4.10.3 T1083 - File and Directory DiSCOVEIYuuuuriieeeeieciirrrrrereeeeeeiieinrreeeneeens 69

A.11 Lateral IMOVEIMENT coeee ettt ettt e et e e ettt e s e te e e s etaeseetaneseenanns 71

4.11.1 T1105 - ReMOLE File COPY.uurrrrirriiiiiiiiiiiirreeeeeeeeiecitrreereeeeeesnrnrrereeee e 71

4.11.2 T1076 - Remote Desktop Protocolccccveveeeevicciiiieeeee e, 72

4.11.3 T1077 — Windows Admin Shares........cccovveeeeeieeicciiiieieeeee e, 74

4,12 Command and CoNtrolccovvveieiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 76
4.12.1 T1105 - RemMOte File COPY..uiiiiiiiiiieiiiiiieeiniieeeeeriteeeesieee e ssivee e 76

4.12.2 T1071 - Standard Application Layer Protocol.......cccccecveeiiriiieeennnnnnnn. 76

4.12.3 T1043 - Commonly Used POrt......cccoocceiiiiieieee e, 78

R b & 1 - -1 T-1 Y23 1y 79
o7 N [oY fo T 1V o1 1 To Y o PRSP 79

5.2 INtrusSion SIMUIGLIONuueuuuuiiiiiiiiiiiiiiiriiiiiiieieieieiererarerersrsrsrerarararara.aa..————. 80

5.3 Data analySis PrOCESS ..ccccvveeeirciiiieeiiiteeeeeiteee e e sree e e esee e e s ssnaae e e e s saaeeeeenanees 80

[o T Yo 11T o T L3 85
7 Deliberation and futher researchccoiveeiiiiiieiiiiinieiiiiinn, 87
L] =] =T 1o =L 89

F3Y o] o =T e [T of 13ROt 94

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

Threat hUNtING I0OP .. uviiii e 13
Mandiant’s Attack Lifecycle Modeloocoveiiiniiiieiiiieeeceee e, 18
ATTE&CK enterprise MatriX.....cccuveeeeeeeieieiiieeeee e s e eescrrrreeeee e e e ssevenereeeeeeeennns 20
Graph diagram exampleseeeiiiiiei i e 21
LG =T o] 0 IR 87/ o 1SR 22
Directed and weighted graph.......ccccccveeeiiciiii e 23
HELK COMPONENTS .ouuiiieiiiiiiiiiiiiie ettt e e eretiies s e e e e reeaaae s s s e e e s eeesananans 26
TeSt @NVIFONMENT ... e e e 30
Logstash filter eXample ... 32
. Logstash filter verification.........ccccuveeieiiie i 33
T1059 - Process create @VeNnt ... iiiiiiieeiiieie e 34
T1059 Kibana verification.........ccccevieiiieniiesieeieeeeeeeee e 35
QI 0L Y ol T)] o S 36
B IO LS A Yol o1 o = 36
T1064 Kibana verification.........ccccevieiieriieseecieeeeeeeee e 37
T1086 — POWEIShEll oo 38
T1086 - POWEIShell 2......cooiiiiieieee e 39
T1086 - POWerShell 3.... oo 39
T1086 - POWErShell 4.......cooeiiiiiiieeeeeeee e 40
T1086 Kibana verification.........cccccevveiiieriieeenieeeeeeeee e 40
Scheduled task creation using schtasks.eXeccccceeeeiieccciiiiieeee e, 42
T1053 - Scheduled TaskK.......ccouieieriieeeeeee e 42
Scheduled task UPdateueeeeeiie i 42
T1053 - Scheduled Task 2.....c...ooieriiiieeeeee e 43
Scheduled task creation USING at.eXE.....cceeeiieecciiieeeee e 43
T1053 - Scheduled Task 3.....ccoooieiieieeeeee e 44
T1053 Kibana verification..........ccooiiiiiiiiniieceieceeeeee e 44
Create regiStrY FUN KBYuuuvieeiei ettt e e e e sentrere e e e e e e e saanrees 45
Windows run KeY eXECULIONeeiiiiiiiiiiieeeie et e e e 46

T1060 - Registry Run Keys / Startup Folderccceevuvevieiiieenieciecieeien, 46

Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.

T1060 Kibana verification.........ccccevveiieeriieseerieeeeeeeee e 47
T1060 - Registry Run Keys / Startup Folder 2........ccoeeeveeeeieeecireeecreeeeineens 47
T1060 Kibana verification 2..........ccoceiiieiiieiieeieeeeeeeee e 48
T1078 - Valid ACCOUNTSeeiiiiiiiiiieiiee ettt 49
T1078 - Valid ACCOUNTS 2.ttt 50
T1078 Kibana verification..........c.ceeiiiieiieinieeeieceeeee e 50
T1078 - Valid ACCOUNTS 3.t 52
T1078 Kibana verification 2.........cooviiiiiiieiieceieeeeeete e 52
Creating New Service With SC.EXEcccviiveieei e 53
T1050 - NEW SEIVICE ...ciiiitiiiiiiiiiieritee ettt 53
T1050 - NEW SEIVICE 2.coeiiiiieieiee ettt e e e e e 54
T1050 Kibana verification.........ccccevieiiieniiesieeieeeceeeee e 54
Deleting file with Remove-ltem cmdlet........cccoovvieiiniiiiiicee e 55
T1107 - File DelEtionc.ceeeiiiiiiiiieeiiieeeeeeceeee e 56
T1107 Kibana verification.........cceeeiieeiiieeieceieceeeeeee e 56
PowerShell EncodedCommandcoccueiiiiiiiiiiiiiieiiieeeeee e 57
T1027 - Obfuscated Files or INnformationcccoeeeecieiiiieenceeeeeeee 58
T1027 Kibana verification.........ccceiiiiiiiiiiiieciieceeeee e 58
SysmMoN IMAgELOAA FUIEuvveeeeei e e e 60
INnvoke-Mimikatz @XeCUTIONcceiriieiiieiieee e 60
T1003 - Credential DUMPING ...ovvviieeieiieciiieee e e e e e 61
INVOKE-MIMIKAtZ DLLSoeeieiiieiieeeeeeeeeee e 61
T1003 Kibana verification.........ccceeiiiiiieiiieciieccee e 62
TL1056 - INPUL CAPLUIE ...t e e e e et e e e e e e e eeennaans 63
T1056 Kibana verification..........ccccoiviiiiieieiieeiieee e 63
T1110 - Brute FOrCe..uiiiiiiiiiiiiiiiccitie i 64
T1110 - Brute FOICE 2.cciviiiiiiiiiiiieeii ittt 65
T1110 Kibana verification.........cccevieeiieeriieee e 65
LiSting USErs USING NEL.EXE ouvvuuiie e et eeeeetce e e e et e e e e e e e eaannaaas 66
T1087 - ACCOUNT DiSCOVEIY ...uvviirriiiiriiiiiiiiiiiriririiirerierriersrarerrrnrrrr—————.. 67
T1087 Kibana verification.........ccccevieeiieniieie e 67
Displaying network adapter information using ipconfig.exe.........c.c......... 68
T1016 - System Network Configuration DiSCOVErYeeeeevivviivreeeeeeerennnn. 69

Figure 64. T1016 Kibana verifiCation........ccccvvveeeeiiiiieiiiiieeeec e 69
Figure 65. Listing directory files with Get-ltem PowerShell cmdletcccocuveennnnee. 70
Figure 66. T1083 - File and Directory DiSCOVEIYovvvuviiiieieee et eevneeee e 70
Figure 67. T1083 Kibana verification.....ccccoccuviiiiiiiieeiiiiieee s 71
Figure 68. T1105 - RemMOote File COPY covviiieiiiiiiiee ettt e e e e e e 72
Figure 69. T1105 Kibana verification.....ccccoccuiiiiiiieiiiiieee e 72
Figure 70. T1076 - Remote Desktop Protocol......ccccccccuviiveeiiiiiicccieeeeee e, 73
Figure 71. T1076 Kibana verification.....ccccccuuiiiiiiieiiiiiieee i 74
Figure 72, EXECULING PSEXEC .uuuuiiiiiiiicicicicccrsccrs s e s s s e s e e s e s e s e 75
Figure 73. T1077 - Windows AdMin SNAresccccceeeccciiiieeee e e e ccvvveeee e 75
Figure 74. T1077 Kibana Verification.....cccccccuviiiiiiiee i 75
Figure 75. Executing PowerShell Invoke-WebRequest cmdlet........ccevveveieiiiiiinnnnnnn. 77
Figure 76. T1071 - Standard Application Layer Protocolccccecveeeiviiveeecnciieee e, 77
Figure 77. T1071 Kibana verification.......cccccuveeiiiiiiie e 77
Figure 78. T1043 - Commonly USed POrtcccovuiiieiiiiiieeceiiee e 78
Figure 79. T1043 Kibana verification.........cccuuveieiii et 79
Figure 80. Event connection eXample.......cccvveeeeeieiieicciirreeeee e nrreee e 79
Figure 81. Directed event Sraph.... e 80
Figure 82. Elasticsearch document eXample.........coooveeiiiieeeeeiieiccicreeeee e 81
Figure 83. Merged dataframe examplecceeeevieiieiiciiiieeeee e 82
Figure 84. Plotly graph visualizationcccvviiieeii i, 83
Figure 85. PIOtlY NOVEITEXT ...t e e e 84
Figure 86. Plotly figure Zoomedoooo e 84
Figure 87. IPYWIdZEtS fIltEIcoi e e e s e e 85
Tables

Table 1. Top 10 adversary groups by number of techniques........cccccceeveeeieicciiieenen.n. 24

Table 2. Top three techniques by tactic Category.....cccovvveeeeiiiiiiciiiieeeeeeee e, 24

1 Introduction

1.1 Background

Digitalization has been accelerating over the last few years at an increasing pace.
Increasing number of companies and agencies are starting to offer their services
primarily in a digital form. This evolution has enabled businesses to better serve their
customers and provided new level of convenience for consumers. It is however,

increased user’s reliance on digital systems both as an individual and society level.

The IT landscape itself is changing and growing more complex. Organizations used to
host all the internal and external services on their own premises. Today, most of
them are moving to cloud services for flexibility and scalability reasons, while
keeping some systems internal for security and compliance reasons (Shackleford
2017, 1-2). The number of endpoints is also growing due to rise of loT devices.
Organizations often do not manage or have control over these third party provided
services and devices that have connections to internal systems. This creates reliance
on external third-party vendors, which presents adversaries new opportunities for

breaching the organization (Aon 2019).

At the same time, defending against adversaries remains difficult for organizations.
According to FireEye’s M-Trends report, average dwell time in 2018 was 78 days
(FireEye 2019). One factor contributing to this is the complexity and noise of the
target environment (Storm, Battaglia, Kemmerer, Miller, Wampler, Whitley & Wolf
2017, 1). Another factor is that organizations don’t have the necessary resources
such as technology, talent or time to counter the threats (Cisco 2018). Meanwhile
the adversaries are getting more sophisticated on evading defenses and taking

advantage of legitimate services for remaining hidden (Cisco 2018).

Organizations have traditionally relied on reactive approach on countering cyber
security threats. This approach includes activities such as reacting to alerts from SIEM
system or responding to incidents reported by users. Over the last few years, a new
approach called threat hunting has emerged. Threat hunting is a more proactive and
human-driven approach compared to the traditional passive and reactive approach

(Lee & Lee 2018, 2).

The rise of advanced persistent threats (APT) presented by well-resourced and
trained adversaries requires more threat driven approach with a focus on adversary
behavior. Important aspect of this this threat driven approach is to be able to map
the adversary actions and behaviors into distinct stages of the cyber-attack lifecycle.
Lockheed Martin described this lifecycle as intrusion kill chain. (Hutchins, Cloppert &
Amin, 2010)

1.2 Goal of thesis

The goal of this thesis is to develop method for mapping the adversary techniques
into different stages of the cyber kill chain and to be able to connect them to form
complete cyber-attack lifecycle. The thesis focuses on identifying the techniques
used by adversaries by analyzing event data collected from endpoints and visualizing
the kill chain based on the processed data. End goal is to produce a model that can
be utilized in both small or large IT environments as well as part of training or cyber
security exercises organized by JYVSECTEC. JYVSECTEC is an independent security
research, development, and training center operating as part of JAMK University of
Applied Sciences’ Institute of Information Technology. The results of the thesis will
also be used as part of CYBERDI project, which is a joint project of JAMK and Police
University College to strengthen the competence to detect and investigate
cybercrime, as well as to become profiled as competent cybercrime research experts

(JYVSECTEC 2018).

1.3 Structure of thesis

The second chapter describes the research problem, question and method of the
thesis. The third chapter contains theoretical background of threat hunting, attack
lifecycle frameworks and graph theory that the thesis research bases on. The fourth
chapter discusses the implementation of the test environment, research material
collection and implementation of intervention. The fifth chapter includes data
analysis based on data collected from simulated intrusion scenario and visualization
of the resulting intrusion kill chain. The sixth chapter includes conclusions,
deliberation about overall process of the thesis and validity of the results, as well as

ideas for further research.

2 Research design

2.1 Research problem

Advanced persistent threats have evolved over the years to take advantage of
sophisticated evasion methods, such as fileless or living on the land techniques.
These techniques are hard to detect by traditional signature-based antivirus or
endpoint protection products since they leave very little artifacts on the target

machine or utilize legitimate system tools.

Modern operating systems capture vast amount of data about events happening on
the system, such as process creation, network activity and file access. While it is
possible for an adversary to avoid detection by security products, it is almost
impossible to avoid leaving any traces on these event records. The problem is how to
detect the malicious activity from normal user or system activity when a typical

system can generate hundreds of events per minute.

Individual events, such as running of scheduled task does not necessarily indicate a
malicious activity. Scheduling tasks is used frequently for legitimate administrative
tasks; however, it could also be used by an adversary for persistence or lateral
movement. Distinguishing a legitimate use from malicious use by looking at the
individual event is challenging. The individual techniques performed by adversary do
not; however occur a in vacuum but follow a sequence of events. By linking the
individual events together, a more accurate case for whether or not a set of events

constitutes malicious activity can be built. (Storm, et al. 2017, 12)

Mapping events further into different stages of the attack lifecycle and determining
the kill chain helps with determining the motives and goals of the adversary. The
information can also be used for finding weaknesses in defenses, prioritizing
resources and developing better detection methods. The main problem this thesis
focuses on is how to map the events into adversary techniques, attack lifecycle

stages and how to link the events together.

10

2.2 Research question

The main question this thesis aims to answer is:

e Isit possible to identify and link stages of cyber kill chain by collecting and analyzing
event data?

To answer this question, event data must first be collected from target systems for
analysis. Next, the individual techniques used by adversaries must be identified and
mapped to specific events. Finally, the events must be linked together using data

analysis methods to form the kill chain and visualize it for users.

2.3 Research method

The research method chosen for this thesis is design research. Design research is not
a separate research method itself, but a combination of the two main research
approaches: qualitative and quantitative. The main difference to traditional research
approach is that instead of just analyzing and presenting solution to a problem,
design research aims to eliminate the problem. Design research can be thought to

start where the traditional research ends. (Kananen 2015, 39-40)

Design research contains three distinct phases are repeated in a cycle: planning,
implementation and evaluation. The planning phase includes assessing necessity and
financial viability of the change process: gains from the change must outweigh the
costs. The implementation phase includes selecting an appropriate intervention,
material collection and evaluation methods, as well as the implementation of the
intervention. Intervention is a concrete action or actions which lead from an initial
state to the desired state. Verification of intervention results requires setting
measurable goals and metrics. Material collection produces the required information
needed in different phases of the research. It provides a base for evaluation of the
results. Material collection methods can include traditional qualitative or
guantitative methods. The evaluation phase is used to evaluate the impact of the
intervention based on the goals and metrics. It is also important to monitor the
intervention process itself to understand how the result was originated. (Kananen

2015, 50-58)

11

Several models for measuring the research results exist. The most common is the
before and after model where measurement is done before and after the
intervention. The difference of the measurements describes the magnitude of
change but does not indicate how much impact the intervention had on the result.
Before and after measurement can also be done with a control group. This model
gives more reliable results as the external influences can be eliminated when
comparing results of the two groups. The measurement can also be performed only
after the intervention. It is easier to implement than the before and after model;
however, it has weak reliability as there is no initial measurement to compare the

gained results to. (Kananen 2015, 61-63)

The evaluation of validity and reliability is an important part of any research. Validity
is used to evaluate that the research was done correctly and right aspects were
measured. Reliability means that the results are consistent so that if the research is
repeated, the results are the same. Validity and reliability methods depend on the

chosen research approach. (Kananen 2015, 111-112)

The reason design research was chosen as the research method for this thesis was
because of the goal of the thesis in general. The goal is not just to analyze the
problem but to develop, test and validate a solution that solves the problem and that

can be deployed in real environments, which is exactly the goal of design research.

According to Kananen (Kananen 2015, 76), qualitative research material collection
can be divided into secondary and primary methods. Primary material is collected
specially for the research purpose using observation, interview or polling methods.
Secondary material is composed of documents related to the research subject. The
MITRE ATT&CK knowledge base was used as a secondary material for the thesis. The
knowledge base contains information about adversary tactics and techniques that

can be used as a base for primary material collection.

Observation which is part of the qualitative research approach was chosen as a
primary material collection method. Observation can have many different forms,
such as technical observation, covert observation and participant observation.
Observation can be implemented in a structured or unstructured manner. In

structured observation, the variables on which to concentrate are defined in

12

advance, whereas unstructured observation is more free-form and requires more
documentation to understand the phenomenon. In order to meet the requirements
for scientific research, the observation period must be defined and the observations

documented into an observation diary. (Kananen 2015, 78-79)

Despite being subjective, the author of the thesis feels that the observation method
is appropriate since the results of change cannot be easily mathematically measured
by quantitative methods and other qualitative methods such as interviews or polls
would be difficult to arrange within desired timetable. The form of observation used
in the thesis can be described as participant observation since the researcher actively
participates in the collection process. The observation is to be implemented in a
structured manner because the observed variables can be derived from secondary
material. The author decided to measure the results using the only after intervention
measurement. The reason for this is that there is not really anything measurable

before implementing the intervention methods.

Once the material has been collected, it has to be analyzed. As the material is event
data in structured form, mathematical formulas can be used to analyze the data to

find the connection between events.

3 Theory

3.1 Threat hunting

According to SANS Institute (Lee & Lee 2018, 2), threat hunting is a focused and
iterative approach to searching out, identifying and understanding adversaries who
have entered the defender’s networks. A cyber security company Sqrrl that focuses
on threat hunting defines the term as human-driven, proactive and iterative search
through networks, endpoints, or datasets in order to detect malicious, suspicious, or
risky activities that have evaded detection by existing automated tools (Sqgrrl n.d., 4).
A few key points can be picket from these definitions. The first point is that threat
hunting focuses on adversaries who have already penetrated the organization and
have access to systems, rather than focusing on preventing the initial compromise.

The key is to detect the adversary behavior rather than prevent it. The second point

13

is that threat hunting is a human driven activity and cannot be fully automated.
Hunting requires familiarity with the environment, ability to detect small anomalies
and adaptation to adversary’s changing behavior. Only a human being can effectively
accomplish these. That said, automation is an important factor on enhancing the
scale, speed, accuracy and effectiveness of the hunting activity. The third point is
that hunting is not just one-time event but an iterative process. Results from a hunt

should be analyzed and used to improve the process and update the hypothesis.

The rise of threat hunting is largely due to a change in the threat landscape. APT
actors can defeat traditional security controls and use advanced techniques to avert
detection and maintain long-term operations against targets. Threat hunting tries to
combat these threats by taking an active approach. Instead of just responding to
alerts or indicators of compromise (I0Cs), threat hunting involves active searching for

threats to prevent or minimize damage. (Lee & Lee 2019, 2)

3.1.1 Threat hunting process

For threat hunting to be effective, it is important to have a formal process on how
the hunting takes place. A well-defined process makes hunting more repeatable and
produces measurable results. One example of threat hunting process illustrated in
Figure 1 is the hunting loop created by the Sqrrl company, which consists of four

stages that define an effective hunting approach (Sqrll 2018, 5).

CREATE
Hypotheses

INVESTIGATE

Via Tools &
Techniques

INFORM & ENRICH
Analytics

UNCOVER

New Patterns
& TTPs

Figure 1. Threat hunting loop (Sqrll 2018, 6)

14

Before starting the hunting process, it is useful to select one of the attack life cycle
frameworks that breaks down the phases of a cyber kill chain and the techniques
used by the adversaries. The framework can provide insight for each phase of the
hunting process, from hypothesis to analytics. The best known frameworks include
Lockheed Martin’s Cyber Kill Chain, Mandiant’s Attacker Lifecycle Model and MITRE
Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) framework. (Kerr

& Ewing 2018, 11)

Threat hunting starts with defining a hypothesis. Hypothesis is an idea or explanation
for something that is based on known facts but has not yet been proved (Cambridge
Dictionary 2019). In the context of threat hunting this basically means creating a
testable idea about what threats might be in the environment and how to go about
finding them. Two key components for generating a hypothesis are observations and
testability. Observations are indicators from which the hypothesis is derived. They
can originate from internal knowledge, such as understanding of the environment or
from previous experiences. Observations may also come from external sources, such
as news, reports or threat intelligence feeds. Hypothesis must be something that can
be tested. Testing the hypothesis requires having the right data, tools and techniques
that can simultaneously take advantage of information from the environment as well

as about likely adversaries. (Lee & Bianco 2019, 1)

Three common types of sources where hypothesis can be derived are intelligence,
situational awareness and domain expertise. Intelligence is usable knowledge
generated from information (Lee & Bianco 2019, 2). In the realm of cyber security,
this information consists mainly of IOCs and adversary tactics, techniques and
procedures (TTPs). There are many freely available threat feeds today that provide
information, such as IP-addresses, domain names, URLs or MD5 hashes of malware,
that can be used as I0Cs. While the I0Cs themselves may not be enough to generate
a hypothesis, investigating them can spark questions about the target, techniques
and sophistication of the adversary. It is also important to note to which part of the
kill chain, for example reconnaissance or command and control, the I0OCs are related
as it will impact the hypothesis. I0Cs can lead to quick discoveries; yet, instead of

only relying on them, threat hunters should use them as a starting point and try to

15

refine and contextualize the threat intelligence to stimulate a hypothesis. (Lee &

Bianco 2019, 3)

Situational awareness is the ability to detect changes and anomalies in the target
environment. Situational awareness requires visibility into and understanding of the
organization’s IT environment and the individual elements. Having situational
awareness enables threat hunters to focus on the most important assets of the
organization and to create hypotheses about the type of adversary activity that could
occur in their environments. One method for identifying most important assets is the
Crown Jewels Analysis (CJA). CJA is a process for identifying those cyber assets that
are most critical to the accomplishment of an organization’s mission (MITRE). This
kind of analysis can help to prioritize what kind of data is needed and where to
collect it. People, processes and business resources should also be considered when

building awareness. (Lee & Bianco 2019, 4-5)

The third source for hypothesis is domain expertise. The domain expertise is a
combination of skills, experience and background of the hunters. Threat hunters
often have prior experience on various areas of IT, such as networking, system
administration or data analysis, that should be leveraged on formation of the
hypothesis. In addition to domain expertise, previous hunting experiences and
engagements with adversaries can influence the hypothesis. While previous
experience is valuable, it can also lead to unwanted bias. The threat hunter should be
aware of biases and other bad analytic habits that might influence them to prejudge

a situation. (Lee & Bianco 2019, 6-7)

The second phase of threat hunting process is the investigation. In this phase, the
hunters look for evidence that could prove or disprove the hypothesis (Lee & Bianco
2019, 14). The key areas to focus on is the kind of data available for searching and
how to sort through it. Data is crucial for threat hunting to be successful. No amount
of skilled personnel or expensive tools can make up for the lack of data gathered
from the environment. Examples of such data are event logs of endpoints, flow
records, packet captures and memory dumps. An analyst should not only consider
the quantity of the data, but also that the right data is collected and focus on quality
of the data. Raw data should be parsed, normalized and enriched to provide

maximum value. Analysts should also have tools to search and visualize the data to

16

help them answer questions and pinpoint anomalies across large data sets. (Lee &

Lee 2019, 6)

The third phase is uncovering behavior patterns and adversary TTPs from the
collected data. This phase describes how the evidence can be reduced, grouped, and
analyzed to reach a conclusion (Lee & Bianco 2019, 14). Data analysis methods, such
as stack counting, clustering and grouping, can be used to discover patterns in the
data. Linked data analysis and visualization can link together individual events to

reconstruct complex attack paths. (Sqrll 2018, 6-7).

The last phase of the threat hunting loop is informing and enriching automated
analytics based on the results of the hunt. This reduces the amount of manual work
hunters have to do in the future and frees them to focus on developing new hunts.
Examples of how automation can be implemented include: creating searches that
run automatically, developing playbooks or providing feedback to a supervised

machine learning algorithm. (Sqrll 2018, 7)

The results of the hunt can also be used to reduce the volume of the collected data
by filtering out normal or irrelevant events and to improve active defenses by
updating IPS or SIEM rules. Another important aspect to remember is
documentation. Many of the findings and conclusions can be lost if not documented
during the hunting process. Good documentation supports future hunts and helps

training new members of the hunting team. (Kerr & Ewing 2018, 15-16)

3.1.2 Measuring threat hunting

Measuring threat hunting success is important for the hunting team in order to know
what aspects to improve and to show that hunting produces value for the
organization. Many types of metrics can be used to measure hunts. One simple
metric is whether the hypothesis was confirmed or not. The hypothesis has to be
sufficiently detailed so that the analysts running the hunt can prove or disprove it. If
the hypothesis is too vague, the hunt will not produce useful results. (Kerr & Ewing

2018, 18)

A commonly used metric to measure hunts is the number of findings. These findings

can be number, severity and dwell time of incidents, the number of compromised

17

hosts, discovered security vulnerabilities or new adversary TTPs discovered. The issue
with these metrics is that not every hunt is going to produce measurable findings.

(Kerr & Ewing 2018, 18-19)

Even if the hunting does not uncover any findings, it does not mean that the hunt
was a failure. Hunts usually produce other measurable benefits beside findings.
Hunting can uncover gaps in detection or defenses and produce new methods to fill
them. Insecure or insufficient security practices can be detected and corrected.
Hunting can identify new sources of data to collect. Hunts should also reduce the

number of false positive incidents over time. (Sqrrl n.d, 12)

3.2 Attack lifecycle frameworks

3.2.1 Lockheed Martin Intrusion Kill Chain

Kill chain is a systematic process to target and engage an adversary to create desired
effects (Hutchins, Cloppert & Amin 2010). This process is described as a “chain”
because any single deficiency will interrupt the entire process. Originating from the
military sector, Lockheed Martin has adopted the concept to information security as

the Intrusion Kill Chain. (lbid.)

The Lockheed Martin Intrusion Kill Chain includes seven phases: Reconnaissance,
Weaponization, Delivery, Exploitation, Installation, Command and Control (C2) and
Actions on Objectives. The reconnaissance phase includes an adversary searching,
identifying and selecting the intrusion target using e.g. public Internet sources. In the
weaponization phase, an adversary creates exploit payload, often by injecting some
sort of remote access Trojan into client application file, such as Microsoft Office
document or PDF. The Delivery is a phase where an adversary transmits the
exploitation payload to the target environment, using methods such as email
attachments or phishing websites. In the exploitation phase, the exploit payload
triggers the adversary’s code by exploiting an application or operating system
vulnerability or the user itself. The installation phase includes installation of a remote
access Trojan or backdoor for maintaining persistence. The command and control
phase includes the compromised host establishing connection to external control

server outside of the environment. Finally, in the actions and objectives phase, the

18

adversary takes action to archive their original objectives, such as stealing data or

moving laterally to more lucrative target. (Ibid.)

The intrusion kill chain provides a structure to analyze intrusions, extract indicators
and drive defensive courses of actions. Organizations can use it to align their
defensive capabilities to specific processes adversaries might undertake to target the
organization, as well as measure their performance and plan investment roadmaps
to rectify any capability gaps. This approach acts as essence of intelligence-driven
defense, where security decisions are based on understanding of the adversary.

(Ibid.)

3.2.2 Mandiant’s Attack Lifecycle Model

Cybersecurity company Mandiant have defined their own lifecycle model called the
Mandiant’s Attack Lifecycle Model. Mandiant’s model describes the different phases
of compromise more granularly than the Lockheed Martin Intrusion Kill Chain. The
model includes eight phases as illustrated in the Figure 2: Initial Reconnaissance,
Initial Compromise, Establish Foothold, Establish Foothold, Internal Reconnaissance,
Move Laterally, Maintain Presence and Complete Mission. (CYBER ATTACK LIFECYCLE
n.d.)

.) Internal
Initial Initial Establish Escalate Recon Complete
Recon Compromise Foothold Privileges Mission

Figure 2. Mandiant’s Attack Lifecycle Model (Mandiant 2013, 27)

In the initial reconnaissance phase, the adversary conducts research on target,
chooses target assets (e.g. systems, people and processes) and an attack
methodology. The initial compromise phase includes the adversary successfully

executing malicious code on the target systems. In the establish foothold phase, the

19

adversary establishes persistent control over the compromised systems. In the
escalate privileges phase, the adversary aims to gain greater access to the
compromised systems, for example by compromising an administrative user account.
The internal reconnaissance phase includes the adversary discovering information
about structure, systems or users in the target environment. In the move laterally
phase, the adversary uses the information gained in the reconnaissance phase to
expand their foothold by moving between systems in the compromised
environment. The maintain presence phase includes the adversary installing different
types of backdoors and remote connections to further solidify their foothold. In the
complete missions phase, the adversary completes their original, which could be to
steal intellectual property or cause service disruption. (CYBER ATTACK LIFECYCLE
n.d.)

3.2.3 MITRE ATT&CK

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) is a
globally-accessible knowledge base of adversary tactics and techniques based on
real-world observations (MITRE ATT&CK® n.d.). The ATT&CK is developed by MITRE
Corporation, a non-for-profit organization which provides engineering and technical
guidance for the United States federal government. Started in 2013, the project was

released to the publicin 2015 (Storm 2018).

The ATT&CK focuses on identifying adversary behaviors instead of typical indicators,
such as IP addresses, domain names or file hashes. Focusing on adversary tactics and
techniques allows development of analytics that better capture how adversaries
interact with systems during an operation. Another focus of the ATT&CK is
applicability to real environments. The techniques included in the framework should

be based on real observed incidents. (Storm 2018)

The ATT&CK knowledge base consists of adversarial techniques, which contain
breakdown and classification of offensively oriented actions that can be used against
particular platforms. The ATT&CK contain information on how a technique works, list
of the adversary groups that have utilized it, as well as detection and mitigation
methods. Techniques are further categorized into tactics, which describe an

adversary’s tactical objectives during operations, such as persist, discover targets or

20

move laterally. Some techniques are included in multiple tactic categories as they
can be used to accomplish multiple different objectives. In other words, techniques
describe how an adversary performs an action and tactics describes why they do it.

(Storm 2018)

The relationships between the tactics and techniques are visualized in the ATT&CK
matrices. The ATT&CK includes matrices for enterprise, PRE-ATT&CK, mobile and ICS.
Figure 3 illustrates the (partial) enterprise matrix. The enterprise matrix includes 12
tactics: initial access, execution, persistence, privilege escalation, defense evasion,
credential access, discovery, lateral movement, collection, command and control,
exfiltration and impact. The tactics and techniques covered in the thesis are

described in the Implementation section.

Credential Access Efiltration Impact

Initlal Access Privilage Escalation

2hitems 16 tems

¢ Maripulaton
B History
aITS Jobs Brute Force
Bypass User Account Control

d History

Compile After Delivery

Comoiled HTML File Password Policy Discavery Pass the Hash

Pass the Ticket

r Perigheral Device

Component Firmware.

Component Object Mode! Permission Groups Discovery Remota Desktop
Hifacking Protacal

Exfiltration Over
Physical Mednm

Fallback Channels

Craphical Uses Intertsce
Scheduled Transfor

Installutil

Hetwork sniffing
Password Fiter DLL

Scheduled Task

Saipting

vish service

Figure 3. ATT&CK enterprise matrix (partial)

Compared to other intrusion kill chain models, the MITRE ATT&CK provides the most
comprehensive set of intrusion phases and adversary behaviors. The ATT&CK
includes plenty of actionable information about different techniques, such as
detection and mitigation methods that can be used, for example, to perform
defensive gap analysis, red teaming or adversary emulation. MITRE also provides
additional open source tools based on the ATT&CK information, such as Cyber

Analytics Repository (CAR) and CALDERA adversary emulation framework.

21

3.3 Graph Theory

Graph theory is a subset of discrete mathematics that specializes on studying of
graphs. A graph consists of a set of vertices (often referred as nodes) connected by a
set of edges (often referred as links). In other words, a graph G is an ordered pair
consisting of a set V(G) of vertices and a set E(G), disjoint from V(G), of edges,
together with an incidence function G that associates with each edge of G an

unordered pair of vertices of G (Boundy & Murty 2008, 2).

Graphs are used to model relationships between objects and are usually represented
graphically, which helps to understand many of their properties. Each vertexin a
graph is indicated by a point, and each edge by a line joining the points. Relative
positions of the points (vertices) and lines (edges) usually have no significance. Figure

4 shows two example graph diagrams. (Boundy & Murty 2008, 2)

O

O
O O

Figure 4. Graph diagram examples

Y
Ry
O

The ends of an edge are said to be incident with the edge, and vice versa. Two
vertices incident with a common edge or two edges incident with a common vertex
are considered adjacent, and two distinct adjacent vertices are considered
neighbours. An edge with identical ends is called a loop, while an edge with distinct
ends is called a link. Two or more links with the same pair of ends are said to be
parallel edges. A graph with no loops or parallel edges is called a simple graph.

(Boundy & Murty 2008, 3-4)

Path is a simple graph with vertices arranged in a linear sequence in a way that two
vertices are adjacent if they are consecutive in the sequence and are nonadjacent

otherwise. Cycle is a simple graph whose vertices can be arranged in a cyclic

22

sequence, for example three or more vertices arranged in a cyclic sequence in such a
way that two vertices are adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise. Degree of a vertex is the number of edges incident to it.

(Boundy & Murty 2008, 4) Figure 5 illustrates examples of different graph types.

5 I ogo

Loop Farallel edges Fath Cycle

Figure 5. Graph types

Directed graph is a type of graph where the edges have assigned orientations.
Formally, a directed graph D is an ordered pair (V (D),A(D)) consisting of aset V:=V
(D) of vertices and a set A := A(D), disjoint from V (D), of arcs, together with an
incidence function D that associates with each arc of D an ordered pair of (not
necessarily distinct) vertices of D (Boundy & Murty 2008, 31). If ais an arc and
PD(a)=(u,v), then a is said to join u to v. The vertex u is said to be tail of a, and the
vertex v its head. The vertex u is also said to dominate vertex v. Vertices which
dominate a particular vertex are considered be its in-neighbors and those that are

dominated by the vertex its outneighbours. (Boundy & Murty 2008, 31)

All concepts of a regular graph apply to directed graphs as well, such as the degree of
vertex. Two concepts specific to directed graphs are indegree and outdegree.
Indegree of a vertex v is the number of arcs with head v and outdegree is the number

of arcs with tail v. (Boundy & Murty 2008, 32)

Weighted graph is a type of graph where vertices or edges have numeric weights
associated with them. These weights could represent, for example a cost, distance or
capacity. Weighted graphs are used in longest or shortest path calculations. (Boundy

& Murty 2008, 50) Figure 6 illustrates examples of directed and weighted graphs.

23

30 O 20 O

Directed graph Weighted graph

Figure 6. Directed and weighted graph

4 Implementation

4.1 Scope

The implementation of the research starts with the definition of scope. Scope
definition means narrowing down the subject into most relevant items. In the
context of the thesis, this means selecting platforms, event sources, tactics and
techniques to concentrate on. Defining the scope is necessary for preventing the

thesis from expanding too large.

The author used Microsoft Windows as the operating system platform for the
implementation and Windows Event Log and System Monitor (Sysmon) as event
sources on the operating system. These selections are based on the requirements of
thesis assigner. As previously mentioned, the information about adversary tactics are
sourced from MITRE ATT&CK knowledge base. From the ATT&CK Enterprise Matrix
12 tactic categories, eight were chosen for the implementation: execution,
persistence, privilege escalation, defense evasion, credential access, discovery,
lateral movement and command and control. These tactics were chosen based on
the number of known techniques they contain and the requirements from the thesis

assigner.

Since the number of different techniques is too large to fully cover in this thesis,
three techniques from the previously mentioned tactic categories were selected
based on popularity among adversary groups. In addition to their website, MITRE
offers the ATT&CK content in Structured Threat Information Expression (STIX) format

from their Trusted Automated Exchange of Intelligence Information (TAXII) server.

24

STIX is a language and serialization format used to exchange cyber threat intelligence
(CT1) in a consistent and machine-readable manner (Jordan, Piazza & Wunder 2017).
TAXIl is an application layer protocol used to exchange CTl over HTTPS by defining an

API that aligns with common sharing models (Davidson, Jordan & Wunder 2017).

Python libraries developed by MITRE were used to fetch STIX 2 objects from their
TAXII server and Pandas library used to group, sort and count the technique objects
to get the top three by tactic category. The first step is to get the top 10 adversary
groups with most techniques. The script developed to accomplish this is displayed in

Appendix 1. Table 1 illustrates output of the script.

Table 1. Top 10 adversary groups by number of techniques

Group Techniques
APT32 55
Lazarus Group 54
APT28 48
APT3 43
OilRig 41
Dragonfly 2.0 41
Threat Group-3390 39
Patchwork 34
menuPass 32
BRONZE BUTLER 31

The second step is to get the top most used techniques the groups for each tactic
category. The script developed to accomplish this is displayed in in Appendix 2. Table

2 illustrates output of the script.

Table 2. Top three techniques by tactic category

Tactic Technique Count
command-and-control Remote File Copy 10
Standard Application Layer Protocol 7
Commonly Used Port 5
credential-access Credential Dumping 10
Input Capture 6
Brute Force 4
defense-evasion File Deletion 10
Scripting 9
Obfuscated Files or Information 8
discovery Account Discovery 7
System Network Configuration Discovery 7

execution

lateral-movement

persistence

privilege-escalation

4.2 Tools

File and Directory Discovery
Command-Line Interface
Scripting

PowerShell

Remote File Copy

Remote Desktop Protocol
Windows Admin Shares
Scheduled Task

Registry Run Keys / Startup Folder
Valid Accounts

Scheduled Task

Valid Accounts

New Service

I =
o U VU O

AN OO N NOOO WO

25

The implementation of the thesis required tools for collecting events from endpoints,

processing and analyzing them. The tools were selected based on how well the

features supported the objectives of the thesis and how popular they were among

the threat hunting community. A requirement from the thesis assigner was that the

tools should be free and/or open-source.

4.2.1 Sysmon

System Monitor (Sysmon) is a Windows system service and device driver that
monitors and logs system activity to a Windows Event Log. It is part of Windows

Sysinternals collection of tools created by Mark Russinovich (Sysmon 2019). Once

installed, Sysmon provides detailed information on many common system activities

including:

e Process creation and termination

e File creation

o Network activity

e Registry modification
e Driver loading

e DLL loading

Sysmon enables granular filtering and tagging of events the user is interested in

collecting. (Sysmon 2019)

26

Sysmon in widely used in the security and threat hunting communities for its ability
to generate information about events that Windows Event Log does not capture.
There are many ready-made Sysmon configuration files available for security
monitoring. The one chose for the base configuration of the implementation was the
SwiftOnSecurity configuration, which is one of the most popular Sysmon
configurations among security community. It aims to capture the most important

events without generating an excess amount of data.

4.2.2 HELK

The Hunting ELK (HELK) is an open source threat hunting platform created by
Roberto Rodriguez. HELK provides advanced analytics capabilities, such as structured
streaming, graph analytics and machine learning of which hunters can take
advantage. It is composed of several existing open-source components integrated
into ELK stack. HELK is distributed in Docker containers, which makes it easy to

deploy and scale. (Rodriguez 2018a). Figure 7 illustrates the HELK components.

Y
. beats

B =
S

WEF SERVER .

E

WEF SERVER ' /!

-/

‘ kibana

m» elasticsearch i
- < ‘
GraphFrames

Figure 7. HELK components (Rodriguez 2018a)

HELK currently supports data collection from Windows endpoints using Winlogbeat,
which streams Windows Event Logs to Kafka. Kafka is a distributed publish-subscribe
messaging system used for building real-time data pipelines and streaming apps.

Data consumers can subscribe to Kafka topics to receive data. (Rodriguez 2018)

The core of the HELK platform is the ELK stack, which consists of Elasticsearch,
Logstash and Kibana. Elasticsearch is a distributed search and analytics engine for all

types of data, structured or unstructured. It can scale horizontally for resiliency and

27

allows parallel processing across distributed nodes. Elasticsearch allows running of
complex queries against data and uses aggregations to generate summaries.
Elasticsearch is the central repository where ingested data is stored in HELK.
Elasticsearch is well suited for log data storage because of its ability to ingest various
types of data, speed and scalability and its powerful query language. Analytics tools
in the HELK platform use Elasticsearch REST API to access the data. (What is

Elasticsearch? n.d.)

Logstash is a data collection engine with real-time, pluggable pipelining capabilities.
Logstash can receive data from many different sources, parse, normalize and enrich
it, and send the processed data to some other destination for storage or additional
processing. The event processing pipeline consists of three stages: inputs, filters and
outputs. The input stage handles getting the data into Logstash from different
sources, for example files on disk or through protocols such as Syslog. The filter stage
filters, parses, normalizes and enriches the data. Finally, the output stage will handle
sending the data to a particular destination, for example a database. Logstash ships
with a wide range of different plugins for each of the three stages. HELK uses
Logstash for its flexible event processing pipeline and native integration with
message queues and Elasticsearch. HELK Logstash receives data from Kafka topics,
processes it and sends to Elasticsearch. HELK also includes configuration for parsing

Windows Event Logs, Sysmon and PowerShell logs. (Logstash Introduction n.d.)

Kibana is an analytics and visualization platform designed to work with Elasticsearch.
Kibana can be used to view, search and visualize data stored in Elasticsearch.
Kibana’s Discovery view provides an easy to use interface for exploring data,
executing search queries and filtering the results. Query results can be filtered by
field values for specified timeframe and saved for later use. The visualize view
enables creation of visualizations, such as line, bar or pie charts based on data.
Visualizations can be combined into dashboards on the dashboard view. HELK
includes ready-made saved searches, visualizations and dashboards for threat

hunting. (Introduction n.d.)

In addition to ELK stack, HELK includes advanced analytics capabilities via Apache
Spark and GraphFrames. Apache Spark is a fast and general-purpose cluster

computing system that provides high-level APIs in Java, Scala, Python and R

28

languages. Spark is based on a resilient distributed dataset (RDD), a collection of
elements partitioned across the nodes of the cluster. This architecture enables
parallel processing of data and fault-tolerance. Spark supports a rich set of higher-
level tools including Spark SQL for SQL and structured data processing, MLlib for
machine learning, GraphX for graph processing, and Spark Streaming. (Spark

Overview n.d.)

HELK includes ES-Hadoop library for Spark to be able access data stored on
Elasticsearch. Elasticsearch-Hadoop (ES-Hadoop) is a stand-alone, self-contained,
small library that allows Hadoop jobs to interact with Elasticsearch. It can be
described as a connector that allows data to flow bi-directionally so that applications
can leverage the Elasticsearch engine capabilities transparently. ES-Hadoop acts as a
passive component, allowing Hadoop jobs to use it as a library and interact with it
through APIs. ES-Hadoop support Spark, Spark Streaming, SparkSQL and MapReduce
based libraries such as Hive, Storm, Pig and Cascading. (Elasticsearch for Apache

Hadoop n.d.)

GraphFrames is a package for Spark, which provides DataFrame-based Graphs. It
aims to extend the functionality of existing Spark graph analytics component GraphX
by taking advantage of Spark DataFrames. The extended functionality includes motif
finding, DataFrame-based serialization, and highly expressive graph queries.
Graphframes provides high-level APIs in Scala, Java, and Python, that make it easy to
search for patterns within graphs and find important vertices. HELK enables users to
run queries using GraphFrames to find connections between event data stored in

Elasticsearch. (GraphFrames Overview n.d.)

HELK also includes JupyterLab for running Spark and GraphFrame queries through
Spark Python API. JupyterlLab is a web-based interactive development environment
for Jupyter notebooks, code, and data. Jupyter Notebook is an open-source web
application that allows users to create and share documents that contain live code,
equations, visualizations and narrative text. Jupyter Notebook can run code
interactively and display the output inside the document. JupyterlLab provides a
flexible web-interface, which can be arranged into supporting many types of
workflows. JupyterLab features include consoles for running code, terminals for

system shells and support for multiple file formats. (Jupyter n.d.)

29

HELK was chosen as the threat hunting platform for the implementation, because it
includes all the essential components for data collection, processing and visualization

in a single integrated and easy to install package.

4.2.3 Pandas

Pandas is a Python package that provides fast, flexible, and expressive data
structures designed to make working with data both easy and intuitive. It aims to be
the fundamental high-level building block for practical, real world data analysis in
Python. Pandas can handle many types of data, such as tabular, ordered and
unordered, arbitrary matrix or any other statistical data. It also enables easy
reshaping, slicing, and aggregation of data. Pandas is built on top of a powerful

scientific computing library NumPy. (Package overview n.d.)

Pandas provides two primary data structures: series and dataframe. Series is a 1-
dimensional labeled homogeneously-typed array. Dataframe is a 2-dimensional
tabular, column-oriented data structure with both a column and a row index. Panda’s
dataframe was used to store and manipulate event data from Elasticsearch. (Package

overview n.d.)

4.2.4 NetworkX

NetworkX is a Python package for creation, manipulation, and study of the structure,
dynamics, and functions of complex networks (NetworkX n.d.). NetworkX features
data structures for graphs, directed graphs and multigraphs. It supports many
standard graph algorithms, network structures and analysis measures. NetworkX
allows graph nodes to be represented as any object (e.g. text, image) and associating
arbitrary data on graph edges (e.g. weights or other attributes). NetworkX was used

for generating the kill chain graph from event data. (NetworkX n.d.)

4.2.5 Plotly

Plotly.py is an interactive, open source Python plotting library supporting over 40
unique chart types covering a wide range of statistical, financial, geographic,
scientific, and 3-dimensional data visualization use-cases. Plotly.py is built on top of

Plotly JavaScript library (plotly.js), enabling creation of interactive web-based

30

visualizations. Plotly visualizations can be displayed in Jupyter notebooks, saved as
standalone HTML files, exported as image files or served through Python web
application by using Dash. Plotly was used for visualizing graphs inside Jupyter Lab.

(Getting Started with Plotly in Python n.d.)

4.3 Test Environment

In order to observe event data generated by different adversary techniques, a simple
test environment was set up. The environment was built on top of JYVSECTEC
virtualized private cloud, and it consists of workstation and server segments with a
router in the middle. The workstation segment includes two Windows 7 and two
Windows 10 workstations. The server segment includes Windows Server 2012 R2
server that acts as Active Directory Domain Controller and CentQOS 7 Linux server that

hosts the HELK platform. The test environment is illustrated in the Figure 8.

Server
o o
dc.example.com helk.example.com
Windows Server 2012 R2 CentOS 7
172.16.100.10 172.16.100.50
Workstation

/RN /7RSS /RN /RN

ws-wl10-1 ws-w10-2 ws-w7-1 ws-w7-2
Windows 10 Windows 10 Windows 7 Windows 7
172.16.10.10 172.16.10.20 172.16.10.30 172.16.10.40

Figure 8. Test environment

The workstations and the domain controller are part of the actual test environment
where the techniques were observed. Event data collected from these endpoints was

sent to HELK server for parsing, normalization and analysis.

31

Few preparation tasks needed to be done before the actual testing and observation
phase. The first step was to install the latest updates for the operating systems. The

next step was to install latest version of Sysmon (10.2) with the SwiftOnSecurity base

configuration on workstations and domain controller. Winlogbeat was also installed
on the endpoints for shipping the Windows Event Logs to HELK server. Winlogbeat
configuration included in HELK was used which monitors event logs from standard
Application, Security and System channels, as well as Sysmon, Powershell and WMI-
activity channels. The configuration sends event logs to Kafka winlogbeat-topic on

the HELK server. The complete configuration is listed in Appendix 5.

4.4 Testing and Observation

The testing and observation part of the implementation includes identifying the data
sources for each selected technique, testing the techniques on the environment,
observing the generated events and developing rules to map the relevant events to

right techniques and tactic categories.

Identification of the data sources consists of recognizing the events related to the
specific technique. This could include event types, such as failed login or specific
fields inside an event, such as process start event with a specific process name. The
MITRE ATT&CK knowledge base lists data sources and detection methods for most of
the techniques as well as links to security reports that go into detail on how APT
groups have utilized the technique. Appendix 4 contains a matrix of technique and
tactic categories with the related Windows Event Log IDs observed during the

testing.

After the data sources associated with a technique are identified, the next step is to
test the execution of the technique, observe the generated events and record each
observation into the observation diary. A simple spreadsheet for the observation
diary was used, where each line represents an observed technique and columns the
observed items. For each technique, the observation time, tactic category, technique
ID, technique name, operating system, description of steps to execute the technique
and list of relevant generated events were recorded. The observation diary is

displayed in Appendix 3.

https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/SwiftOnSecurity/sysmon-config

32

Based on the observed events, rules were developed to match specific types of
events or their content and enrich the events with information about the technique.
This process can be implemented on the endpoint where the events are generated
using, for example Sysmons ability to tag events, or on the HELK server using the
Logstash data enrichment capabilities. Logstash was chosen because of its rich data
matching capabilities and ability to enrich data from external sources. Another
advantage of using this approach is that Logstash processes all the events collected

from the environment, not just what Sysmon produces.

Winlogbeat, which streams events to Logstash will automatically parse them into
structured format that can be easily consumed by Logstash. The HELK Logstash
includes rules for further parsing and normalizing the events into a form that is easy
to filter and aggregate. These make it easier to create Logstash filters that match

events based on the content.

For enriching the event data with information about the techniques, the MITRE
Python libraries were again used to fetch technique information from their servers,
which then was uploaded into Elasticsearch. This made it possible to use Logstash
Elasticsearch-filter to find a specific technique document from Elasticsearch based on
technique ID and then to add certain fields from that technique document to the

events itself.

Figure 9 contains an example of Logstash filter to match events and enrich then with

information about a technique.

1 filter {

2

3 if [process name] == "cmd.exe" or [process parent name] == "cmd.exe" {
4

5 elasticsearch {

6 hosts == ["helk-elasticsearch:9208"]

7 index == "mitre-attack-*"

8 query == "technique id:T1859"

9 fields == { "tactic" == "mitre tactic"

18 "technigque" => "mitre technique"

11 "technique id" == "mitre technique id"
12 }

13 1

14 }

15 }

16

Figure 9. Logstash filter example

33

In row 3 is the condition to match the events to the filter, in this case the
process_name or the process_parent_name fields must match to “cmd.exe”. If the
event matches the condition, the Elasticsearch filter (rows 5-13) is executed.
Elasticsearch filter looks for documents from the Elasticsearch (row 6) mitre-attack
index (row 7). If the document matches the query (row 8) that specifies technique ID,
the fields (tactic, technique, technique_id) from that document are added to the
event. Similar filters were created for each observed technique. Each filter was
placed in a separate file on /root/HELK/docker/helk-logstash/pipeline folder where

Logstash reads its pipeline configuration.

Kibana was used to verify that the right information was added to the events, as seen

in Figure 10.

t mitre_tactic execution

t mitre_technique Command-Line Interface
t mitre_technique_id T1859

Figure 10. Logstash filter verification

4.5 Execution

Execution is a tactic where the adversary is trying to run malicious code on the
systems to which he has gained access. This is often paired with techniques from
other tactic categories to achieve broader goals, such as network discovery or

exfiltration of data. (Execution n.d.)

4.5.1 T1059 - Command-Line Interface

Command-line interface (CLI) is a way to interact with computer systems by issuing
commands using lines of text either locally or via a remote session. It is a common
feature across many operating systems, including Windows and Unix-type operating

systems such as Linux and macOS. Adversaries often use command-line interface to

34

execute built-in commands in operating systems and launch external software.

(Command-Line Interface n.d.)

The main command interpreter for Windows is the Cmd.exe. Windows PowerShell
also provides command line interface, which is covered separately in the technique
T1086. According to MITRE ATT&CK, data sources for command-line interface are
process and process command-line parameter monitoring. Both data sources can be
captured using Sysmon. According to the documentation, Sysmon “logs process
creation with full command line for both current and parent processes” (Sysmon

2019).

The technique was tested on workstation ws-w10-1 by opening the cmd.exe and
executing command “netstat —a —n”, which can be used to list open network
connections. Resulting events were recorded to the observation diary. Running the

test resulted in Sysmon Event ID 1 (Process Create), as illustrated in Figure 11:

Process Create:

RuleMName:

UtcTime: 2019-08-08 12:26:11.316

ProcessGuid: {5e14dffd-14e3-5d4c-0000-0010b304330a}
Processld: 6796

Image: C:\Windows\System32\NETSTAT.EXE

FileVersion: 10.0.17763.1 (WinBuild.160101.0800)

Description: TCP/IP Netstat Command

Product: Microsoft® Windows® Operating System
Company: Microsoft Corporation

OriginalFileNare: netstat.exe

CommandLine: netstat -a -n

CurrentDirectory: T\

User: WS-W10-1\Administrator

LogenGuid: {5e14dffd-3aea-5d30-0000-00200a060600}
Logonld: 0xG060A

TerminalSessionld: 1

IntegrityLevel: High

Hashes: MD5=9244576DDD10643BCEABEG3ECI6050E6,5HA256=
0372044B501FEFAET333A50624379DBFCTEAECCBEAGESEETD58F2583700C2287
ParentProcessGuid: {5e14dfbd-1dfd-5d34-0000-0010e20f3601}
ParentProcessld: 6840

Parentlmage: C:\Windows\System32\cmd.exe
ParentCommandLine: "C\Windows\system32\cond.exe”

Log Name: Microsoft-Windows-Sysmon/Qperational

Source: Sysmon Logged: 8/8/2019 3:26:11 PM

Event ID: 1 Task Category: Process Create (rule: ProcessCreate)
Level: Information Keywords:

User: SYSTEM Computer: ws-w10-1.example.com

Figure 11. T1059 - Process create event

As can be seen in the Figure 11, Sysmon records both the parent process
(Parentlmage) and the actual process (Image) as well as command-line parameters
for both. To match this technique in Logstash, filter as seen in Appendix 6 was

created that matches when the process_name or the parent_process_name is

35

“cmd.exe”. This filter matches processes that are started from Cmd.exe or when
Cmd.exe is started by another process. Figure 12 verifies that technique information

was added to the event after the test was re-run:

beat_hostname process_parent_name process_command_line mitre_technique_id mitre_tactic
mitre_technique

ws-wi18-1 cmd.exe netstat -a -n T1859 Command-Line Interf execution
ace

Figure 12. T1059 Kibana verification

4.5.2 T1064 — Scripting

Scripting is a way to automate the execution of tasks in a programmatic way. Many
command-line interpreters, such as Windows Cmd and PowerShell support execution
of scripts at run-time. In addition to execution other processes, scripting languages
can often interact with operating system APlIs directly. Common scripting languages
used in Windows platform are batch files, PowerShell and VBScript. Windows also
has Windows Script Host (WSH) engine which provides environment for running
scripts in a variety of languages. WSH scripts can be executed in command-line mode

using cscript.exe or in GUI mode using wscrip.exe (Scripting n.d.)

Adversaries prefer scripting for speeding up operations and ability to bypass process
monitoring mechanisms by interacting through the operating system APlIs.
Adversaries can download scripts from the Internet and execute them without
creating files on the system. Scripts can also be hidden inside other files, such as
Office documents or PDF files, which execute the script when a user opens the file.
Scripting is heavily utilized by popular offensive frameworks such as Metasploit and

PowerSploit. (Scripting n.d.)

MITRE ATT&CK lists process, file and command-line parameter monitor as data
sources for detecting scripting. The technique was tested by first creating a simple
batch file “test.bat” which simply prints a text to console and executes it by using the
Windows Run dialog. This generated the Sysmon Process Create event shown in

Figure 13:

Process Create:

RuleMame:

UtcTime: 2019-08-10 08:20:54.145

ProcessGuid: {3e14dfod-Te66-5d4e-0000-001021c5170b}
Processld: 4048

Image: C\Windows\System32tcmd.exe

FileVersion: 10.0.17763.1 (WinBuild.160101.0800)

Description: Windows Command Processor

Product: Microseft® Windows® Operating System

Company: Microsoft Corperation

OriginalFileName: Cmd.Exe

CommandLine: C\Windows\system32\.cmd.exe /c ""C:\test.bat" "
CurrentDirectory: C:\

User: WS-W10- 1\ Administrator

LogenGuid: {5e14dféd-3aea-5d30-0000-00200a060600}

Logeonld: 0xB060A

TerminalSessionld: 1

IntegrityLevel: High

Hashes: MD5=0D088F5BCFABFD8GFBA163647CDB0CAB, SHA256=
S023FBAAEDA4ATDA4SACATTABTBSBBEA2BE413F19ADABFAIT15465ADGGEDSCD
ParentProcessGuid: {5e14dfbd-3aeb-5d30-0000-0010ce300600}
ParentProcessld: 1696

Parentlmage: C\Windows\explorer.exe

ParentCommandLine: C\Windows'\Explorer. EXE

Log Mame: Micreseft-Windows-Sysmon/Operational

Source! Sysmon Legged: 8/10/2019 11:20:54 AM

Event ID: 1 Task Category: Process Create (rule: ProcessCreate)
Level: Information Keywords:

User: SYSTEM Computer: ws-w10-1.example.com

Figure 13. T1064 — Scripting

A similar VBScript file “test.vbs” was also created and executed using cscript.exe.

Figure 14 displays the resulting event.

Process Create:

RuleMame:

UtcTime: 2013-08-10 08:35:16.370

ProcessGuid: {5e14df6d-81cd-5d4e-0000-0010326f1a0b}
Process|d: 2780

Image: C:\Windows\System32\cscript.exe

FileVersion: 5.812.10240.16384

Description: Microsoft ® Console Based Script Host

Product: Microsoft ® Windows Script Host

Company: Microsoft Corporation

OriginalFileMame: cscript.exe

CommandLline: cscript testvbs

CurrentDirectory: C

User: W5-W10-T\Administrator

LogonGuid: {5e14dfed- 3aea-5d30-0000-00200a060600}
Logonld: 0xG0604

TerminalSessionld: 1

IntegrityLevel: High

Hashes: MD3=A45586B3A5A291516CD10EF4FD3EETH8, 5HA256=
59D3CDCTD31FA34C6B27B8B04EA17992955466EB25022B7BD64880AB35DFOBBC
ParentProcessGuid: {5e14dfod-1dfd-5d34-0000-0010e20f8601}
ParentProcessld: 6340

Parentimage: C:AWindows\System32\cmd.exe
ParentCommandLine: "C:\Windows\systemn32\cmd.exe"

Log Name: Microsoft-Windows-5Sysmon/Operational

Source: Sysmon Logged: 8/10/2019 11:35:16 AM

Event ID: 1 Task Category: Process Create (rule: ProcessCreate)
Level: Information Keywords:

User: SYSTEM Computer: ws-w10-1.example.com

Figure 14. T1064 - Scripting 2

37

In order to match scripting related events, Logstash filter was created (Appendix 7)
that matches when WHS engine is executed using the cscript.exe or wscript.exe. The
same filter also matches when the process_command_line includes filename
extension used with common scripting languages. Figure 15 verifies that the

technique information was added to the events after the test was re-run:

beat_hostname process_parent_name mitre_technigue_id mitre_technique
process_command_line mitre_tactic
ws-wig-1 cmd . exe cscript test.wbs T1864 Scripting defense-svasi
on, execution
ws-wig-1 explorer.exe c:\windows\system32\cmd.exe /c Tlac4 Scripting defense-evasi
"ci\test.bat on, execution

Figure 15. T1064 Kibana verification

4.5.3 T1086 — PowerShell

PowerShell is an interactive command-line interface and scripting language built on
.NET. It helps system administrators to automate common operating system
management tasks and provides the command-line for executing other processes.
PowerShell has been included in Windows since Windows 7 and the latest version,
PowerShell Core is a fully open-source and cross-platform implementation.

(PowerShell n.d. a)

Most of the tasks in PowerShell are executed using cmdlets, which are simple, single-
function command-line tools built into the shell. Unlike most text-based shells,
PowerShell accepts and returns objects, which can be piped from one cmdlet to
another. PowerShell providers allow interaction with data stores such as registry and
certificate stores as easily as accessing the file system. (Getting Started with

Windows PowerShell n.d.)

PowerShell has become a popular tool among adversary groups because of its
versatility and wide range of capabilities to automate, hide and obscure activities.
PowerShell scripts can be hidden into other files, used to run executables from the
Internet and even embedded into other applications for execution without the
powershell.exe interpreter. PowerShell based offensive testing tools include Empire,

PowerSploit and PSAttack. (PowerShell n.d. b)

38

There are multiple ways to capture PowerShell activity, including DLL monitoring,

process monitoring, registry monitoring, file monitoring and logging (PowerShell n.d.
b). The implementation concentrates on PowerShell logging, because it includes the
most amount of information and catches instances where PowerShell is run without

executing the powershell.exe.

PowerShell has support for three types of logging: module logging, script block
logging, and transcription. These events are written to the Windows Event Log under
the path: Microsoft-windows-PowerShell/Operational. Module logging (Event ID
4103) records pipeline execution details as PowerShell executes, including variable
initialization and command invocations. It also records the output of the executed
commands. Script block logging (Event ID 4104) records blocks of code as they are
executed by the PowerShell engine, capturing the full context of the executed code,
including scripts and commands. Script block logging will also de-obfuscated code
obfuscated by PowerShell EncodedCommand argument or commonly used XOR and
Base64 encodings. Transaction logging creates a unique record of every PowerShell
session including all input and output. Transactions are not written to Windows
Event Log but into text files that are broken out by user and session. (Dunwoody

2016)

For testing the technique, both module and script block logging were enabled on all
hosts through Active Directory Group Policy. These event types record all the

relevant PowerShell activity and can be easily consumed through the event log.

The technique was first tested by creating “test.ps1” script that simply executes the
“get-process” cmdlet. The script was executed using the PowerShell interpreter,

which generated the event shown in Figure 16.

Creating Scriptblock text (1 of 1):
get-process

ScriptBlock ID: beSadchd-55f3-4d5a-a889-8755cd6792e0
Path: C\test.psl

Log Mame: Microsoft-Windows-PowerShell/Operational

Source: PowerShell (Microsoft-Wind Logged: 17.5.2019 12:58:40

Event ID: 4104 Task Categery: Execute a Remote Command
Level: Verbose Keywords: None

User: WS-W7-1\Administrator Computer: W5-W7-1.example.com

Figure 16. T1086 — PowerShell

39

CommandInvocation(Get-Process): "Get-Process”

Context:
Sewverity = Informational
Host Name = ConsoleHost
Host Version = 5.1.14409.1018
Host ID = 955a9d5f-778d-422d-a265-al b57d5c9eR2
Host Application = C:\Windows\System32\WindowsP owerShellwl.0\powershell.exe
Engine Version = 5.1.14409.1018
Runspace ID = f3bfddac-78d0-4729-bc04-f417ddd2d4e5
PipelineID = 8
Command Mame = Get-Process
Command Type = Cmdlet
Script Name = Citest.psl
Command Path =
Sequence Number = 22
User = W5-W7-1\Adrministrator
Connected User =
Shell ID = Microsoft.PowerShell

Log Mame: Microsoft-Windows-PowerShell/Operational

Source: PowerShell (Microsoft-Wind Logged: 17.8.2019 12:58:40
Event ID: 4103 Task Category: Executing Pipeline
Level: Information Keywords: MNone

User WS-W7-1\Administrator Computer: W5-W7-1.example.com

Figure 17. T1086 - PowerShell 2

Figure 16 displays a script block logging event which states that script “test.ps1” was
executed and it contains “get-process” statement. Figure 17 displays a module
logging event that list more information about the “get-process” command

execution. Multiple other module and script block events were also generated.

It was tested if the PowerShell logging would capture executing script from within
another application. For this purpose, existing C#/.NET application developed by
Keith Babinec (Babinec 2014) was used. Executing the binary
“PowerShellExecutionSample.exe” generated the events displayed in Figure 18 and

Figure 19:

Creating Scriptblock text (1 of 1):
param(Sparaml) Sd = get-date; 55 = 'test string value'; 5d; 55, Sparaml; get-service

ScriptBlock ID: e5db2b44-eae3-4d89-8650-9a20a7 eeechc

Path:
Log Mame: Microsoft-Windows-PowerShell/Operational
Source: PowerShell (Microsoft-Wind Logged: 17.8.2019 13:52:22
Event ID: 4104 Task Category: Execute a Remote Command
Level: Verbose Keywords: Mone
User: WS-W7-1\Administrator Computer: W5-W7-1.example.com

Figure 18. T1086 - PowerShell 3

40

Commandlnvocation(Get-Service): "Get-Service”

Context:
Severity = Informational
Host Mame = Default Host
Host Version = 5.1.14409.1018
HostID = e2438c1 b-85f8-48ec-87a0-8630f23ec93
Host Application = PowerShellExecutionSample.exe
Engine Version = 51144091018
Runspace ID = 71684a74-cecl-490c-bcb2-27998d7 efd0d
PipelineID =1
Command Mame = Get-Service
Command Type = Cmdlet
Script Mame =
Command Path =
Sequence Number = 22
User = W5-W7-1\Administrator
Connected User =
Shell ID = Microsoft.PowerShell

Log Mame: Microsoft-Windows-PowerShell/Operational

Source: PowerShell (Microsoft-Wind Logged: 17.8.2019 13:52:22
Event IT: 4103 Task Category: Executing Pipeline
Level: Information Keywords: Mone

User: WS-WT-1'Administrator Computer: W5-W7-1.example.com

Figure 19. T1086 - PowerShell 4

Script block event in Figure 18 displays the content of the embedded script and
module logging event in Figure 19 correctly displays that the “get-service” command

was executed from the “PowerShellExecutionSample.exe” binary.

To match these events, Logstash filter as seen in Appendix 8 was created that
matches events with ids of the module and script block logs. Figure 20 verifies that

technique information was added to the events after the test was re-run:

event.code powershell.command.type powershell.command.name powershell.scriptblock.text mitre_technique_id mitre_technique mitre_tactic

4,183 Cmdlet Get-Process - T1@86 PowerShell execution

4,184 - - get-process T1@86 PowersShell execution

Figure 20. T1086 Kibana verification

4.6 Persistence

Persistence is a tactic where the adversary aims to maintain their foothold on
systems where they have gained access. An adversary might lose access to the

systems due to operating system restarts, credential changes, connection blocking or

41

removal of files or tools. The techniques in this category include any access, action,
or configuration changes that let the adversary maintain their foothold on systems,
such as replacing or hijacking legitimate code or adding startup code. (Persistence

n.d.)

4.6.1 T1053 —Scheduled Task

Task scheduling is an operating system function that lets users create tasks that are
run periodically or executed once on a specific time. They are often used to
automate routine tasks and system maintenance. Adversaries can use scheduled
tasks for various tactics, including execution, persistence and privilege escalation. For
persistence, adversaries can create scheduled tasks that download and execute
malicious code to regain foothold even if the malicious process is interrupted or code

removed.

Windows has a built-in component called Task Scheduler for performing automated
tasks on a chosen computer. It executes tasks based on a trigger that can be based
on features such as specific time or schedule, user logging in, system boot, or specific
event happening on the system. The action that the task executes can be showing a
message, sending email, executing command or firing a COM handle. Task Scheduler
can be managed through graphical user interface taskschd.msc or command-line

tools schtasks.exe and at.exe. (Task Scheduler n.d. a)

Data sources for monitoring scheduled tasks include file monitoring, process
monitoring and event logs (Task Scheduler n.d. b). Windows can generate event log
records when a scheduled task is created (ID 4698), deleted (ID 4699), enabled (ID
4700), disabled (ID 4701) or updated (ID 4702). These events are written into

Windows Security log.

In order to enable logging of task scheduler activity events on the test environment,
Audit Other Object Access Events audit policy had to enable the for all hosts through
Active Directory Group Policy. The technique was then tested by first creating a

simple scheduled task using the “schtasks.exe” as shown in Figure 21:

42

“AdministratorXschtasks Acreate /tn test ssc MINUTE -tr C:stest.bat

BUCCESS: The scheduled task "test" has successfully heen created.

Figure 21. Scheduled task creation using schtasks.exe

The task is named “test” and executes C:\test.bat file every minute. The task creation

generates Event ID 4698 as illustrated in Figure 22:

A scheduled task was created.

Subject:
Security ID: W3-W7-1\Administrator
Account Mame: Administrator
Account Domain: W5-W7-1
Logon ID: 0x368el
Task Information:
Task Mame: ‘test
Task Content: <%xml version="1.0" encoding="UTF-16"7=

<Task version="1.2" xmlns="http://schemas.microsoft.com/windows/2004,/02/mit/task">
<RegistrationInfo>
<Date>2019-08-20T13:13:04 < /Date>
= Author> Administrators /Author>
< /Registrationinfo>
<Triggers=>
<TimeTrigger>
<Repetition>
<Interval>PT1M=/Interval>
=5StepAtDurationEnd>false</5topAtDurationEnd>
</Repetition>
<StartBoundary>2019-08-20T13:13:00< /StartBoundary>
<Enabled>true</Enabled>
</TimeTrigger>

= /Triggers>
Log Name: Security
Source: Microsoft Windows security Logged: 20.8.2019 13:13:04
Event ID: 4598 Task Category: Other Object Access Events
Level: Information Keywords: Audit Success
User: M/ Computer: W5-W7-1.example.com

Figure 22. T1053 - Scheduled Task

The event contains information such as the task name, triggers and actions. Event ID

4702 (Figure 24) is generated when the task is changed:

CisUzerssAdministratorischtaszks Achange ~tn test str cmd.exe
Pleaze enter the run as password for WE-U7-1“Administrator: oo

SUCCESS:= The parameters of scheduled task "test" have been changed.

Figure 23. Scheduled task update

43

A scheduled task was updated.

Subject:
Security ID: W5-WT7-1\Administrator
Account Name: Administrator
Account Domain: W5-W7-1
Legon ID: 0x368el
Task Informatien:
Task Name: “test
Task New Content: <%l versicn="1.0" encoding="UTF-16"7>

<Task version="1.2" xmlns="http://schemas.microsoft.com/wind ows/2004/02/mit/task" >
<RegistrationInfo»
<Date>»2019-08-20T13:13:04 < /Date>
<Author> Administrator< /Author>
< /RegistrationInfo>
<Triggers>
<TimeTrigger>
<Repetition>
<Interval> PT1M</Interval=
<StopAtDurationEnd>false</StopAtDurationEnd>
</Repetition>
<StartBoundary> 2019-08-20T13:13:00 < /StartBoundary >
<Enabled>true</Enabled>
</TimeTrigger>

</Triggers>
Log Mame: Security
Source: Microseft Windows security Logged: 20.8.2019 13:36:36
Event ID: 4702 Task Category: Other Object Access Events
Level: Information Keywords: Audit Success
User: MN/A Computer: W5-W7-1.example.com

Figure 24. T1053 - Scheduled Task 2

Task creation was also tested using the “at.exe” (Figure 25), which is used to

schedule a task to be run on a specific time.

CzslUzerssAdministratorat 14:84 cmd.exe

Added a new Jjobh with jobh ID =1

Figure 25. Scheduled task creation using at.exe

The task created (ID 4698) event was again generated as seen in Figure 26:

44

A scheduled task was created.

Subject:
Security I WE-WT-1\Administrator
Account Name: Administrator
Account Domain: WS-W7-1
Logon ID: 0:368e1
Task Information:
Task Mame: WAL
Task Content: <Hml version="1.0" encoding="UTF-16"7>

<Task version="1.0" xmlns="http://schemas.microsoft.com/windows/2004,/02/mit/task" >
<RegistratienInfo />

<Triggers>
<TimeTrigger>
<StartBoundary> 2019-08-20T14:04:00 < /StartBoundary»
</TimeTrigger>
</Triggers»
Leg Mame: Security
Source: Microsoft Windows security Logged: 20.,8.2019 14:03:16
Event ID: 4698 Task Category: Other Object Access Events
Level: Information Keywords: Audit Success
User: N/& Computer: W5-WT7-1.example.com

Figure 26. T1053 - Scheduled Task 3

To match the scheduled task creation and update events, a Logstash filter was
created (Appendix 9) that matches the event IDs 4698 and 4702. Figure 27 verifies

that the technique information was added to the events.

event_id scheduled_task_name mitre_technique_id mitre_technique
mitre_tactic

4, 698 \at1 T1853 Scheduled Task execution, persistence, privilege-escalat
ion

4,782 - T1853 Scheduled Task execution, persistence, privilege-escalat
ion

4,698 \test T1853 Scheduled Task execution, persistence, privilege-escalat
ion

Figure 27. T1053 Kibana verification

4.6.2 T1060 - Registry Run Keys / Startup Folder

Windows registry includes specific keys called Run and RunOnce, which cause
programs to run each time that a user logs on. The difference between Run and
RunOnce is that Run is executed every time a user logs on whereas RunOnce key is
removed after execution. The value for the keys is a command line that gets
executed and it is possible to register multiple programs under any particular key.

(Run and RunOnce Registry Keys n.d)

45

While the registry run keys are often used by legitimate software, they are also used
by adversaries for establishing persistency on a system. Another common
persistence technique the adversaries use is Windows startup folders. Windows

startup folder contains shortcuts to an application that starts when the system boots.

Detecting the use of these techniques requires monitoring changes to the relevant
registry keys and monitoring file system changes on the startup folder locations. The
paths from registry run keys are:

e HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

e HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

e HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

e HKEY_LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
e HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

Changes to registry keys can be monitored using Sysmon and the configuration used

in the implementation includes a rule that matches the key paths:
<TargetObject condition="contains">CurrentVersion\Run</TargetObject>

To test run keys, a registry value as seen in Figure 28 was created:

add HEKCU\SOFTWA rosoft\Windows\CurrentVersion\Run /v Test /t REG_SZ /d

The operation completed ssfully.

Figure 28. Create registry run key

Here, a string type value “Test” is created for the Run key under the
HKEY_CURRENT_USER hierarchy. It contains value “C:\test.bat” which instructs
Windows to run the script next time the user logs on. This can be verified from the

Sysmon Process create event generated after logging on as seen in Figure 29.

46

Process Create:

RuleMarme:

UtcTime: 2019-08-21 10:54:26.592

ProcessGuid: {3e14df6d-22e2-5d5d-0000-0010a6cc3210}
Processld: 4392

Image: CAWindows\System32\cmd. exe

FileVersion: 10.0.17763.1 (WinBuild.160101.0800)

Description: Windows Cormmand Processor

Product: Microsoft® Windows ® Operating System

Company: Microsoft Corporation

OriginalFileMame: Cmd.Exe

CommandLline: Ch\Windows\systern32\cmd.exe /c " Chtest.bat" *
CurrentDirectory: C\Windows\systern32\,

User: WS-W10-1\Administrator

LogonGuid: {5e14dféd-22d2-5d5d-0000-0020e0762d10}

Legenld: 0x102D76ED

TerminalSessionld: 2

IntegrityLevel: High

Hashes: MD3=0D088F5BCFABFOBEFBA163647CDB0CAR, SHA256=
G023FBAAEDALATDAASACATTASIBSBBEA128E413F10A0ABFAIT15465ADGEEDSCD
ParentProcessGuid: {5e14dfod-22d4-5d5d-0000-001036e62d10}
ParentProcessld: 5752

Parentimage: C\Windows\explorer.exe

ParentCommandLine: C\Windows\Explorer.EXE

Log Mame: Microsoft-Windows-Sysmon/Qperational

Source: Sysmon Logged: 8/21/2019 1:54:26 PM

Event [D: 1 Task Category: Process Create (rule: ProcessCreate)
Level: Information Keywords:

User SYSTEM Computer: ws-w10-1.example.com

Figure 29. Windows run key execution

Creation of the registry value generated the Sysmon event illustrated in Figure 30.

Registry value set:

RuleMame:

EventType: SetValue

UtcTime: 2019-08-21 10:39:51.271

ProcessGuid: {5e14dfed-1f77-5d5d-0000-00108f132a10}

Processld: 4168

Image: C\Windows\system32\reg.exe

TargetObject: HKU\S-1-5-21-2501462004- 10007283 12-4241894386- 500N Software\Microsoft\Windows
“CurrentVersion\Run'\ Test

Details: C:\test.bat]

Log Mame: Microsoft-Windows-Sysmon/Operational

Source: Sysmon Logged: 8/21/2019 1:39:51 PM

Event ID: 13 Task Categery: Registry value set (rule: RegistryEvent)
Level: Information Keywords:

User: SYSTEM Computer: ws-wl0-1.example.com

Figure 30. T1060 - Registry Run Keys / Startup Folder

The figure above shows that Sysmon records type of change, target key, value and
process that requested the change. To catch events where registry run key is set, a
Logstash filter was created (Appendix 10) that matches events with event ID 13

(Registry value set) and registry path that contains “CurrentVersion\Run”. Figure 31

47

verifies that the technique information was added to the event.

event_id registry_key value mitre_technique_id mitre_technique mitre_tactic
registry_key_path

13 HKU\S-1-5-21-2501462004-1080728312-42418943 C:\test.bat Tle6a Registry Run persisten
86-560 tware\Microsoft\Windows\Currentve Keys / Start ce
rsiont \Test up Folder

Figure 31. T1060 Kibana verification

Windows startup folders are located under individual user’s profiles
(C:\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup) and under ProgramData for all users
(C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp). Sysmon
configuration used in the implementation includes a rule that captures file creation

events on these folders:
<TargetFilename condition="contains">\Startup\</TargetFilename>

To test the rule, a shortcut pointing to the “C:\test.bat” file on the startup folder for
all users was created. The shortcut creation generated Sysmon file created event ID

11 as illustrated in Figure 32:

File created:

RuleMame:

UtcTime: 2018-08-21 12:47:06.459

ProcessGuid: {5e14dfd-22d4-5d5d-0000-001056e62d10}

Processld: 5752

Image: C:\Windows\Explerer.EXE

TargetFilename: C\ProgramData'\Microsoft\Windows'\Start Menu\Programs\StartUp'test.bat.Ink
CreationUtcTime: 2019-08-21 12:46:50.727

Log Mame: Microsoft-Windows-Sysmon/Operational

Source: Sysmen Logged: 872172019 3:47:06 PM

Event I1D: 1 Task Category: File created (rule: FileCreate)
Level: Information Keywords:

User: SYSTEM Computer: ws-w10-1.example.com

Figure 32. T1060 - Registry Run Keys / Startup Folder 2

An entry previous Logstash filter was added to matches the events with event ID 11
(File created) and the file name containing “\startup”. Figure 33 verifies that the

technique information was added to the event.

48

event_id mitre_technique_id mitre_tactic
file_name mitre_technique

11 c:\programdata\microsoft\windows\start menu\programs Registry Run Keys [T1eca persisten
\startup\test.bat.lnk Startup Folder ce

Figure 33. T1060 Kibana verification 2

4.6.3 T1078 - Valid Accounts

User accounts in Windows can be divided into three categories: default, local and
domain accounts. Default accounts include built-in accounts such as Administrator
and Guest, which are created automatically and cannot be removed. Local accounts
are local to the system they are created whereas domain accounts are managed by
Active Directory Domain Services and are shared across systems that are part of the
domain. Accounts can also be categorized into user, administrator and service
accounts. User accounts are used by normal users and often have low privileges.
Administrator accounts are used by system administrators and have high privileges.
Service accounts are created for system services to allow them to access local and
network resources. Adversaries may use user accounts for persistency by creating

new accounts that they can use in case access to others is lost. (Valid Accounts n.d.)

The main method for monitoring user account related activity in Windows is the
security audit logs. The user account management events are particularly relevant
for the persistence tactic. These events indicate for example if a user account was
created, changed or deleted. The implementation concentrated on event ID 4720 (A
user account was created), which is generated every time a new user object is

created.

To test this technique, Audit User Account Management audit policy had to be
enabled for all hosts through Active Directory Group Policy. A local user account was
then created on one of the workstations, which generated the event ID 4720 as seen

in Figure 34:

Subject:
Security |D:
Account Mame:
Account Demain:
Logon ID:

Mew Account:
Security [D:
Account Mame:
Account Demain:

Attributes:
Display MName:

Home Directory:
Home Drive:
Script Path:
Profile Path:

User Workstations:
Password Last Set:
Account Expires:

Log Name: Security
Source:

Event ID: 4720

Lewvel: Information
User: N/A

A user account was created.

SAM Account Name:

User Principal Mame:

Primary Group ID: 513

W5-WI10-T\Administrator
Administrator

WS-W10-1

Ox102D76ED

WS-WI10-T\test
test
WS5-W10-1

test
<value not set>

<value not set>
<value not set>
<value not set=
<value not set>
<value not set=
“nevers

<nevers

Microsoft Windows security Logged:
Task Category:

Keywords:
Computer:

Figure 34. T1078 - Valid Accounts

8/23/2019 1:12:52 PM
User Account Management
Audit Success

ws-w10-1.example.com

The event includes base information (security id, account name and domain) about

the created account as well as included attributes. The subject field also has

information about the user that performed the action. A similar event was created

when added domain user was added on the Active Directory Domain Controller as

seen in Figure 35:

49

50

A user account was created,
Subject:

Security [D: EXAMPLE\Administrator

Account Name: Administrator

Account Demain: EXAMPLE

Logon ID: (x18B505
Mew Account:

Security [D: EXAMPLE\test

Account MName: test

Account Demain: EXAMPLE
Attributes:

SAM Account Mame: test

Display Mame: test

User Principal Name: test@exarmple.com

Home Directory:

Home Drive:

Script Path:

Profile Path:

User Workstations: =

Password Last Set: <never>

Account Expires: <never>

Primary Group [D: 513
Log Mame: Security
Source: Microsoft Windows security Logged: 23.8.201913:24:44
Event ID: 4720 Task Category: User Account Management
Level: Information Keywords: Audit Success
User: N/A Computer: dec.example.com

Figure 35. T1078 - Valid Accounts 2

To catch these events, Logstash filter was added (Appendix 11) that matches the
events with ID 4720. Figure 36 verifies that the technique information was added to

the event.

beat_hostname event_id wuser_target_name user_target_domain mitre_technique_id mitre_technique
mitre_tactic

dc 4,728 test example T1878 Valid Account defense-ev , persi
s stence, privilege-esca
lation, initial-access

ws-wig-1 4,728 test ws-wig-1 T1878 Valid Account defense-evasion, persi
s stence, privilege-esca
lation, initial-access

Figure 36. T1078 Kibana verification

4.7 Privilege Escalation

Privilege escalation tactic consists of techniques that adversaries use to gain higher-
level permissions on a system or network. Adversaries often gain initial access to
systems through normal unprivileged user accounts. However, many of the

techniques later in the kill chain require privileged account to be executed, thus the

51

adversary needs a way to escalate their privileges. Common ways to accomplish
privilege escalation is to take advantage of system weaknesses, misconfiguration or

vulnerabilities. (Privilege Escalation n.d.)

4.7.1 T1053 —Scheduled Task

Windows task scheduler can be used for privilege escalation by taking advantage of
vulnerabilities in the operating system (Goodin 2019). The scheduled task technique

was covered in detail in section 4.6.1.

4.7.2 T1078 - Valid Accounts

Adversaries can accomplish privilege escalation using existing unprivileged user or
service accounts. User account privilege escalation is captured by several Windows
audit events. The implementation concentrated on event ID 4672 (Special privileges
assigned to a new logon), which is generated when a new logon session has sensitive
privileges assigned to it. This event is an indicator that a user account has escalated

privileges.

Before testing the technique, the Audit Special Logon policy had to be turned on,
which enables logging of 4672 event. The testing was conducted by logging into a
workstation using the previously created test user and running Notepad software
using administrator privileges. The following event was generates as a result as seen

in Figure 37:

52

Special privileges assigned to new logon.
Subject:
Security 1D EXAMPLEVAdministrator
Account Name: Administrator
Account Domain: EXAMPLE
Logon ID: Ox12AT73ETF
Privileges: SeSecurityPrivilege
SeTakeOwnershipPrivilege
SeLoadDriverPrivilege
SeBackupPrivilege
SeRestorePrivilege
SeDebugPrivilege
SeSystemEnvironmentPrivilege
SelmpersonatePrivilege
SeDelegateSessionUserlmpersonatePrivilege
Log Mame: Security
Source: Microsoft Windows security Logged: 25/08/2019 12.58.02
Event ID: 4672 Task Category: Special Logon
Level: Information Keywords: Audit Success
User: N/A Computer: ws-w10-1.example.com

Figure 37. T1078 - Valid Accounts 3

The event shows that specific sensitive privileges were assigned to a new logon with
user account administrator. To capture these events, entry to previously created
Logstash filter was added (Appendix 11), matching events with ID 4672 and where
the user account is not SYSTEM. The reason for excluding SYSTEM is that logon
events with this account happens frequently during normal system operations.

Figure 38 verifies the technique information was added to the event.

beat_hostname event_id user_name mitre_technique_id mitre_technique
mitre_tactic

ws-wig-1 4,672 administr T1678 Valid Account defense-evasion, persistence, privilege-escal
ator 5 ation, initial-access

Figure 38. T1078 Kibana verification 2

4.7.3 T1050 — New Service

Services in Windows are applications that run in the system background without user
interaction. Many of the core operating system features, such as event logging, file
serving and printing are run as services. Services are often started automatically

when the operating system boots. (Services n.d.)

53

Services can be executed using LocalSystem account, which enables an adversary
with administrator account to escalate privileges to SYSTEM level. The event ID 7045
(A new service was installed in the system) is generated in all modern Windows
versions when a new service is created. There is also event ID 4697 (A service was
installed in the system), which is generated in newer versions of Windows (Windows

10 and Server 2016).

To test the technique, Audit Security System Extension policy was first turned on,

which enables logging of event ID 4697. Then a new service with the “sc.exe” tool

was created as illustrated in Figure 39:

Figure 39. Creating new service with sc.exe

This generated both event ID 7045 and 4697 as seen in Figure 40 and Figure 41:

A service was installed in the system.

Service Mame: TestService
Service File Name: C:/test.bat
Service Type: user mode service
Service Start Type: demand start
Service Account: LocalSystem

Log Mame: System

Source: Service Control Manager Logged: 26/08/2019 19.26.29
Event ID: 7045 Task Category: MNone

Level: Information Keywords: Classic

User: EXAMPLEVAdministrator Computer: ws-w10-1.example.com

Figure 40. T1050 - New Service

54

A service was installed in the system.

Subject:
Security ID: EXAMPLEVAdministrator
Account Name: Administrator
Account Domain: EXAMPLE
Legon ID: (111ABBAT
Service Information:
Service Mame: TestService
Service File Name: C:/test.bat
Service Type: 0x10
Service Start Type: 3
Service Account: LocalSystem
Leg Mame: Security
Source: Microsoft Windows security Logged: 26/08/2019 19.26.29
Event ID: 4697 Task Category: Security Systemn Extension
Level: Informaticn Keywords: Audit Success
Uzer MN/A Computer: ws-w10-1.example.com

Figure 41. T1050 - New Service 2

To capture these events, Logstash filter was created (Appendix 12) matching events
with ID 7045 or 4697 and where the service account is LocalSystem. Figure 42 verifies

the technique information was added to the event.

event_id service_account_name mitre_technique_id mitre_technigque
mitre_tactic

4,697 LocalSystem T18s58 New Service persistence, privilege-escal
ation

7,845 localsystem T1858 New Service persistence, privilege-escal
atiaon

Figure 42. T1050 Kibana verification

4.8 Defense Evasion

Adversaries utilize defense evasion techniques to avoid being detected. Defense
evasion has become more important to adversaries, as the detection and defense
technologies have become more sophisticated and their adoption increased.
According to security company Red Canary (Beye & Nickels 2019), the defense
evasion related threats have become the most commonly seen MITRE ATT&CK tactic
among their customers. Common techniques in this tactic category include
uninstalling/disabling security software, removing evidence and

obfuscating/encrypting data. (Defense Evasion n.d.)

55

4.8.1 T1107 - File Deletion

Adversaries often create files and download tools or malware to target systems for
execution. These files can cause detection by security defenses or leave clues to
investigators. To prevent this, adversaries may delete the files over the course of an
intrusion or at the end as part of the post-intrusion cleanup process. (File Deletion

n.d.)

Operating systems have built-in tools for deleting files, such as the DEL function in
Windows cmd.exe or Remove-ltem cmdled in PowerShell. There are also many
external tools which can be used to delete files. One such tool known to be used by

adversary groups is the Windows Sysinternals SDelete. (File Deletion n.d.)

Windows can produce several file system auditing related events, including ID 4660
(An object was deleted) which logs file deletion. Unfortunately, these events are
generated only if auditing settings are enabled on a file. Adversaries are unlikely to
include these settings in their files. Another approach is to monitor command-line
functions related to file deletion. The Windows cmd.exe DEL command is an internal
function that can not be monitored using normal methods; hence it was decided to
concentrate on the PowerShell Remove-Item cmdlet. Remove-Item cmdlet is used to
delete one or more items, which can consist of various types, such as files, folders,

registry keys or variables.

The use of Remove-ltem cmdlet was tested by removing one of the test scripts

created earlier (Figure 43).

3 = Remove-Item C:\test.bat

Figure 43. Deleting file with Remove-Item cmdlet

The PowerShell module logging event as seen in Figure 44 was generated as a result.

Commandlnvocation(Remove-Item): "Remove-ltem”
ParameterBinding(Remove-ltem): name="Path"; value="C:\test.bat"

Context:
Severity = Informaticnal
Host Mame = ConsoleHost
Host Version = 5.1.14409.1018
Host ID = 955a0d5f-778d-422d-a265-a1 b57d5c9eB2
Host Application = CA\Windows!\System32\WindowsPowerShellwl 0\ powershell.exe
Engine Version = 51.14409.1018
Runspace ID = fébfddac-78d0-4729-bc04-f417ddd2dde5
Pipeline ID = 28
Command Name = Remaove-Item
Command Type = Crmdlet
Script Name =
Command Path =
Sequence Number = 48
User = W5S-W7-1\Administrator
Connected User =
Shell ID = Microsoft.PowerShell

Log Name: Microsoft-Windows-Powershell/Operational

Source: PowerShell (Microsoft-Wind Logged: 31.8.2019 12:51:52
Event ID: 4103 Task Category: Executing Pipeline
Level: Information Keywords: MNone

User: WS-WT7-1\Administrator Computer: WS-W7-1.example.com

Figure 44. T1107 - File Deletion

56

A Logstash filter was created (Appendix 13) that matches events with ID 4103 and

where the command name is “Remove-ltem”. Figure 45 verifies the technique

information was added to the event.

event.code powershell.command.type powershell.command.name mitre_technique

4,183 Cmdlet Remove-Item File Deletion

Figure 45. T1107 Kibana verification

4.8.2 T1064 —Scripting

mitre_technique_id
mitre_tactic

T1187 defense-evasi
on

In addition to execution, adversaries may use scripting for defense evasion. The

ability to embed scripts into other files and the fact that scripting is often used for

legitimate task make them harder to detect by security software. Scripts can also be

executed without creating any files on the system. Scripting was covered in detail on

section 4.5.2.

57

4.8.3 T1027 - Obfuscated Files or Information

Another defense evasion technique adversaries commonly utilize is obfuscating their
files. Obfuscation can prevent signature-based security software from detecting the
execution and make post-incident investigation harder. Common obfuscation
techniques include encoding, compressing and encryption. Command-line interfaces
have many built-in features that can be used for obfuscation information, such as
environment variables, aliases and ability to receive commands from standard input

stream. (Obfuscated Files or Information n.d.)

Detecting obfuscation can be challenging using traditional string matching
techniques, since the obfuscated data does not usually contain predictable patterns.
One way to detect obfuscation is to look for suspicious escape characters, e.g. '"'A'"
and """ included in commands (Obfuscated Files or Information n.d.). Another
approach is to use statistical methods to analyze entropy and frequency of

characters to detect anomalies (Bohannon & Holmes 2017).

PowerShell can interpret commands encoded using the base64-encoding. This is
done by inputting the base64-encoded string to “—~EncodedCommand” option. This
was tested by encoding “Get-Process” into base64-string and executing it with the

EncodedCommand option as illustrated in Figure 46:

C:xUserssAdministratorXpovershell.exe —EncodedCommand ZwB1l1AHQALQBwAHIAbwBjAGUAC

NPM{K> WS (K> Id PFrocessMame
1788 chrome
2176 chrome
2476 chrome

Figure 46. PowerShell EncodedCommand

PowerShell module logging records the options used with execution as well as de-

obfuscated commands as seen in Figure 47.

58

CommandInvecation(Get-Process): "Get-Process”

Context:

Severity = Informational

Host Name = ConsoleHost

Host Version = 51.14409.1018

Host ID = 95b35875-1424-47 c7-84b6-edc7761f3e03

Host Application = powershell.exe -EncodedCommand
ZwBIAHQALQBwAHLABWBJAGUACwWBZAA==

Engine Version = 5.1.14409.1018

Runspace ID = 9180d299-2fce-49bc-abdb-937f01c5266e

PipelineID = 1

Command Mame = Get-Process

Command Type = Cmadlet

Script Mame =

Command Path =

Sequence Number = 16

User = W5-W7-1\Administrator

Connected User =

Shell ID = Microsoft.PowerShell

Log Name: Microsoft-Windows-PowerShell/Operational

Source: PowerShell (Microsoft-Wind Logged: 1.9.201919:51:11

Event ID: 4103 Task Category: Executing Pipeline
Level: Information Keywords: Mone

User: WS-W7-1\Administrator Computer: WS5-W7-1.example.com

Figure 47. T1027 - Obfuscated Files or Information

Logstash filter was created (Appendix 14) matching events with ID 4103 and where
the command line includes the EncodedCommand option. Figure 48 verifies the

technique information was added to the event.

event.code mitre_technique_id mitre_tactic
powershell.host.application mitre_technique

o
(=]
)

4,183 powershell.exe -EncodedCommand ZwBlAHOALOBwWAHIAbWE Obfuscated Files or Info defense-eva
JAGUACWBZAA== rmation sion

Figure 48. T1027 Kibana verification

4.9 Credential Access

Credential access tactic category consists of techniques that adversaries use to steal
credentials, such as account names and passwords. Stealing legitimate credentials
can give an adversary access to systems, make them harder to detect, and provide
the opportunity to create more accounts to help achieve their goals. (Credential

Access n.d.)

59

4.9.1 T1003 - Credential Dumping

Credential dumping is a technique where an adversary tries to obtain credentials
from a system or software. Credentials can be accessed from system databases or

directly from memory, usually in some form of hash.

Windows stores credentials in several databases and processes. Security Account
Manager (SAM) is a database that stores user accounts and security descriptors for
users on the local computer (Security Account Manager (SAM) n.d.). Passwords are
stored in SAM as LM or NTML hashes. When a user logs on, the credentials are
stored in Local Security Authority Subsystem Service (LSASS) process, which is part of
Local Security Authority (LSA) subsystem. LSA maintains information about all
aspects of local security in a system and Its components run in the context of the

Lsass.exe process (Security Subsystem Architecture n.d.)

Many tools exist for accessing credential data stored in SAM or LSASS, but the
implementation focuses on one the most widely used called Mimikatz. Mimikatz is a
Windows tool developed by Benjamin Delpy to learn more about Windows
credentials. It can be used to extract plaintext passwords, hashes, pin codes and
Kerberos tickets directly from memory. While Mimikatz binary can be directly
executed on a target system, more sophisticated methods exist that allow executing
Mimikatz from memory or remotely. An example of this is the Invoke-Mimikatz
PowerShell script that can reflectively load the Mimikatz DLL included in the script
into memory without creating any files on the system. It can also run Mimikatz on

remote systems using PowerShell remoting. (Metcalf 2018)

One approach on detecting Mimikatz is to look for specific Windows DLL modules it
loads when executed. This approach is effective since it is not dependent on which
process loads the code or whether Mimikatz is executed from disk or memory.
Roberto Rodriguez has written blog post (2017) where he was able to drill down the
DLLs that Mimikatz loads into following five:

e C:\Windows\System32\WinSCard.dll

o C:\Windows\System32\cryptdlil.dll

e C:\Windows\System32\hid.dll

e C:\Windows\System32\samlib.dll
o C:\Windows\System32\vaultcli.dll

60

Sysmon event ID 7 (image loaded) records DDL modules loaded into a processes. This
event is not enabled by default on the SwiftOnSecurity Sysmon configuration, so a
new rule (Figure 49) was added to the configuration to log DDL modules loaded by

powershell.exe process.

<ImagelLoad onmatch="include">
«Image condition="end with">powershell.exe</Image>
</ Imageload>

Figure 49. Sysmon Imageload rule

To test Mimikatz, the Invoke-Mimikatz PowerShell script was first uploaded to an
external server. The .NET WebClient-class DownloadString method was then used to

download the script into memory and execute it as seen in Figure 50:

wnload. com/temp/Invoke-Mimikatz.psl'); Invoke-Mimikatz -
built on Nov 10 2016 15:31:14
our™
Benjam DELPY "gentilk
http log. gentilkiv
th 20 modu
rshell) # sekurlsa::logonpa:

] 00000000 : 0003 68el)
ive from 1

3024025802-2638713141-500

Credenti

B8
64aladdffc

3512a3f7
133Taddaabdaladdffc

Figure 50. Invoke-Mimikatz execution

Figure 50 displays how Mimikatz can dump hashes as well as plaintext passwords
from LSASS process. Executing Mimikatz results in multiple Sysmon Image loaded

events, one of which can be seen in Figure 51.

61

Image loaded:

RuleMame:

UtcTime: 2019-03-15 09:04:54. 426

ProcessGuid: {74488148-cf55-5d57-0000-0010c094230F}

Processld: 2112

Image: CA\Windows\System32\WindowsP owerShellwl 0\ powershell exe
Imageloaded: C:\Windows\Systern32\wvaultcli.dll

FileVersion: 6.1.7600.16385 (win7_rtm 090713-1255)

Description: Credential Vault Client Library

Product: Microsoft® Windows® Operating System

Company: Microsoft Corporation

OriginalFileName: vaultcli.dil

Hashes: MD5=44B9 66177651 F3F53C87B665D58 D174, SHAZ56=
3FC426115FFR75708809DB28DT1970B82B52502A4BIA00EDD273BR0E3BTTADSCE
Signed: true

Signature: Microsoft Windows

SignatureStatus: Valid

Log Name: Microsoft-Windows-Sysmon/Operational

Source: Sysmon Logged: 15.9.2019 12:04:54

Event ID: 7 Task Category: Image loaded (rule: Imageload)
Level: Information Keywords:

User: SYSTEM Computer: W5-W7-1.example.com

Figure 51. T1003 - Credential Dumping

Figure 52 shows all the DLL modules loaded by Invoke-Mimikatz:

event_id process_name module_loaded

7 powershell.exe c:\windows\system32\ncrypt.dll

7 powershell.exe c:\windows\system32\vaultcli.dll
7 powershell.exe c:\windows\system32\cryptdll.dll
7 powershell.exe c:\windows\system32\netapi32.dll
7 powershell.exe c:\windows\system32\netutils.dll
7 powershell exe c\windows\system32\wkscli.dll

7 powershell.exe ¢:\windows\system32\logoneli.dll
7 powershell.exe c:\windows\system32\samlib.d1ll

7 powershell.exe c:\windows\system32\hid.d11

7 powershell.exe c\windows\system32\winscard.dll
7 powershell.exe c:\windows\system32\api-ms-win-core-synch-11-2-8.d11

Figure 52. Invoke-Mimikatz DLLs

To capture events related to DLL modules loaded by Mimikatz, Logstash filter was
created (Appendix 15) that matches the events with ID 7 and where the loaded
module is one of the five DLLs listed earlier. Figure 53 verifies the technique

information was added to the event.

62

event_id process_name mitre_technique_id mitre_technique
module_loaded mitre_tactic
7 powershell.exe c:\windows\system32\vaultcli.d T1883 Credential Dumpin credential-acces
11 g
7 powershell.exe c:windows\system32\samlib.d1l Ti1ee3 Credential Dumpin credential-acces
g
7 powershell.exe c:\windows\system32\hid.d11 T1ee3 Credential Dumpin credential-acces
g
7 powershell.exe c:\windows\system32\winscard.d T18@3 Credential Dumpin credential-acces
11 g
7 powershell.exe c:\windows\system32\cryptdll.d Tiee3 Credential Dumpin credential-acces
11 o

Figure 53. T1003 Kibana verification

4.9.2 T1056 — Input Capture

Input capture is a technique where an adversary captures user’s input to obtain
credentials or other sensitive information. Keylogging is the most widely used input
capture method, where the adversary installs a software that records user’s
keystrokes and sends them back to the adversary. Other common methods include
presenting fake credential prompts to user, injecting code to login pages or wrapping

the Windows default credential provider. (Input Capture n.d.)

The technique was tested by using the credential provider method. Tyler Wrightson
has created an example custom credential provider that could be utilized. The
custom credential provider works by capturing credentials when a user logs in,
writing credentials to a file and passing them on to the Windows default credential

provider. (Wrightson 2012)

Windows stores credential provider definitions in registry location:
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\CredentialProvi
ders. Creation of new credential provider can be detected by monitoring Sysmon
registry modification events. Figure 54 shows a Sysmon event that was generated

when the custom credential provider was registered.

63

Registry object added or deleted:

RuleMame:

EventType: CreateKey

UtcTime: 2019-09-18 16:51:12.312

ProcessGuid: {74488148-607f-5d82-0000-0010294b0a00}

Processld: 2872

Image: C:\Windows\regedit.exe

TargetObject: HKLM\SOFTWARE\Microsoft\Windows\ CurrentVersion\Authentication' Credential Providers
\{ACFC407B-266C-4085-8DAE-F3E276336E4B}

Log Name: Microsoft-Windows-Sysmon/Operational

Source: Sysmon Legged: 18.9.2019 19:51:12

Event ID: 12 Task Category: Registry object added or deleted (rule: RegistryEvent)
Level: Information Keywords:

Usen: SYSTEM Computer: W5-W7-1.example.com

Figure 54. T1056 - Input Capture

To capture these events, Logstash filter was created (Appendix 16) that matches
events with ID 12 and where the registry target path is the credential provider path.

Figure 55 verifies the technique information was added to the event.

event_id event_type mitre_technique_id mitre_technique mitre_tactic
registry_key_path

12 reatekey HKLM\SOFTWARE\Microsoft\Windows\ Version\Authent T1656 Input Capture collectio
ication\Credential Providers'{A 7 6L n, creden
F3E276336E4B} tial-acce

55

Figure 55. T1056 Kibana verification

49.3 T1110 - Brute Force

Brute force is a credential access technique where an adversary attempts to access
user accounts without knowledge of the password. The adversary may attempt
logins with a list of commonly used passwords. This method usually leads to
numerous failed logins, which can trigger alarms or account lockouts. A more
sophisticated strategy, called password spraying uses a single password or a small list
of passwords against many different accounts to avoid triggering account lockouts or

alarms. (Brute Force n.d.)

If the adversary has obtained password hashes, they can use existing techniques to

systematically guess the passwords or use pre-computed rainbow table to crack

64

hashes. The adversary can do the cracking outside of the target environment to avoid

detection. (Brute Force n.d.)

Brute force attempts can be detected by monitoring operating system authentication
logs for an unusually high number of failed logins. Windows logs several
authentication failure related events, but it was decided to focus on two common
events: 4625 and 4771. The event ID 4625 (An account failed to log on) is generated
on a local computer when a log on fails. The event ID 4771 (Kerberos pre-
authentication failed) is generated on a domain controller when Kerberos Key
Distribution Center fails to issue Ticket Granting Ticket (TGT). This event occurs when

a user fails to authenticate using domain credentials.

This technique was tested using two methods. The first test was to try logging into
one of the workstations with an incorrect password. This generated the following

event on the workstation as illustrated in Figure 56:

An account failed to log on.

Failure Information:
Failure Reazon:
Status:

Sub Status:
Log Name: Security
Source:
Event ID: 4625
Level: Information
User: MNSA

Microsoft Windows security Logged:

Subject:
Security 1D: SYSTEM
Account Name: W5-W10-15
Account Domain: EXAMPLE
Legon ID: 3E7

Legon Type: 2

Account Fer Which Logon Failed:
Security 1D MULL SID
Account Mame: test
Account Domain: EXAMPLE

Unknown user name or bad password.
(CO00D0GD
0 COO0006A

28/00/2019 14.56.10
Task Category: Logen
Keywords: Audit Failure

Computer: ws-w10-1.example.com

Figure 56. T1110 - Brute Force

The event ID 4625 is not generated for all authentication methods, such as

connecting through LDAP. To demonstrate this, authentication was also tested to

network share with incorrect credentials. This did not generate events on the

65

workstation, but generated Kerberos pre-authentication failed event in the domain

controller as shown in Figure 57:

Kerberos pre-authentication failed. ~

Account Information:
Security 1D: EXAMPLE\test
Account Name: test

Service Information:

Service Name: krbtgt/EXAMPLE
Metwork Information:
Client Address: affff:172.16.10.10
Client Port: 58065
Additional Information:
Ticket Options: Oned0370010
Failure Code: 0x18
Pre-Authentication Type: 2 -
Log Mame: Security
Source: Microsoft Windows security Logged: 28.9.2019 15:26:47
Event ID: 477 Task Category: Kerberos Authentication Service
Level: Information Keywords: Audit Failure
Usern M/A Computer: dc.example.com

Figure 57. T1110 - Brute Force 2

To capture these events, Logstash filter was created (Appendix 17) that matches the
events with ID 4625 and events with ID 4771 and failure code 0x18 (invalid

password). Figure 58 verifies the technique information was added to the event.

beat_hostname event_id user_name mitre_technique_id mitre_technique mitre_tactic
event_status

ws-w18-1 4 625 test This is either due to a bad usernames o T1118 Brute Force credentia
r authentication information l-access

dc 4,771 test Bx18 T1118 Brute Force credentia
l-access

Figure 58. T1110 Kibana verification

4.10 Discovery

Discovery is a phase of the kill chain where the adversary is gathering information
about the networks, systems, services, applications and users of the target
environment. The adversary can then use the information to further their objective,

such as access specific credentials or move laterally to new system. Native operating

66

system tools provide the functionality to accomplish most of the discovery

techniques.

4.10.1 T1087 - Account Discovery

Account discovery techniques involve the adversary attempting to discover user
accounts of the target system or accounts of the domain environment. Windows
includes net.exe native tool that can be used to list local users (net user) and groups
(net localgroup). Another tool called Dsquery can be used to query Active Directory
for users and groups information. Dsquery is included in the Remote Server
Administration Tools bundle. PowerShell includes Get-LocalUser, Get-AdUser, Get-

LocalGroup and Get-AdGroup cmdlets that list local and domain users.

The execution of the tools mentioned above can be detected by monitoring the
specific process command-line arguments. Figure 59 shows an example of listing

users using net.exe tool and Figure 60 the resulting Sysmon ProcessCreate event.

C:\Users\test>net user

» \\WS-W18-1

Administrator DefaultAcc
test WDAGUTil
The command completed successfully.

Figure 59. Listing users using net.exe

67

Process Create:

RuleName:

UtcTime: 2019-10-02 16:47:28.459

ProcessGuid: {5e14dffd-d4a0-5d94-0000-00104ae4a 700}
Processld: 1492

Image: CAWindows\System32\netl.exe

FileVersion: 10.0.17763.1 (WinBuild.160101.0800)

Description: Net Command

Product: Microsoft® Windows® Operating System
Company: Microsoft Corporation

OriginalFileName: netl.exe

CommandLine: C\Windows\system32inet! user
CurrentDirectony: C:\Users\test\

User: EXAMPLE\test

LogonGuid: {3e14df6d-7613-5d93-0000-0020aa10600}
Logonld: (xGETAA

TerminalSessionld: 1

IntegrityLevel: Medium

Hashes: MD3=63DD4323677E62ATIABATA0ADBI21EA2 SHA256
=C687157FD58EAAS1T37CDABTDOGC30953A31F03F5356BIFSASCO04FAABADABFS
ParentProcessGuid: {5e14df6d-d4a0-5d94-0000-0010c2e2a700}
ParentProcessld: 1000

Parentlmage: C:\Windows\System32\net.exe
ParentCommandLine: net user

Log Mame: Micresoft-Windows-Sysmon/Operational

Source: Sysmon Logged: 02/10/2019 19.47.28

Event ID: 1 Task Category: Process Create (rule: ProcessCreate)
Level: Information Keywords:

User: SYSTEM Computer: ws-w10-1.example.com

Figure 60. T1087 - Account Discovery

To capture events generated by net and dsquery tools, Logstash filter was created
(Appendix 18) that matches ProcessCreate events with the specific command line
arguments used to list users or groups. Figure 61 verifies the technique information

was added to the event.

mitre_technique_id mitre_technique mitre_tactic
process_parent_command_line process_command_line
c:\windows'\system32icmd.ex dsquery group domainroot -name # T1887 Account Discovery discovery
e
c:\windows\system32\cmd.ex dsquery user domainroot -name * T1aa7 Account Discovery discovery
e
c:iwindowshsystem32\cmd. ex net localgroup T1887 Account Discovery discovery
e
ct\windows\system32icmd. ex net user T1887 Account Discovery discovery
e

Figure 61. T1087 Kibana verification

4.10.2 T1016 - System Network Configuration Discovery

System Network Configuration Discovery is a technique where the adversary looks
for details about the network configuration of the target system. Many native

Windows tools exist for querying information about the network configuration, such

68

as ipconfig for IP, DNS and network adapter information, arp for displaying the ARP-
table content and route for displaying the routing table. PowerShell has cmdlets that
display similar information, such as Get-NetAdapter, Get-NetIPAddress and Get-

NetRoute. (System Network Configuration Discovery n.d.)

As with the previous technique, the tools used in this technique can be detected by
monitoring the specific process command-line arguments. Figure 62 shows an
example of displaying TCP/IP and DNS configuration for all network adapters. Figure
63 displays the resulting Sysmon ProcessCreate event.

>ipconfig /=

Windows IP Configuration

.1688. 1

: Enabled

Figure 62. Displaying network adapter information using ipconfig.exe

Process Create:

RuleMame:

UtcTime: 2019-10-05 10:06:49.853

ProcessGuid: {5e14df6d-6b39-5d98-0000-0010206ff001}
Processid: 5496

Image: C\Windows\Syster32\ipconfig.exe
FileVersion: 10.0.17763.1 (WinBuild.160101.0800)
Description: IP Configuration Utility

Product: Microsoft® Windows® Operating System
Company: Microsoft Corperation

OriginalFileName: ipconfig.exe

CommandLine: ipcenfig /all

CurrentDirectory: C:\Usershtest!,

User: EXAMPLE\test

LogonGuid: {5e14dfd-7613-5d93-0000-0020aae10600}
Logonld: Ox6E1AA

TerminalSessionld: 1

IntegrityLevel: Medium

ParentProcessld: 64
Parentlmage: C:\Windows\System32\cmd.exe

Hashes: MD5=3D33188ECD39ECFEEAZENS996891CT6E, SHAZ56
=C5DBEDDD1193CTADCATEIOCD1TBECTAFGATECA06DDE4DCT64BBISICT1ISF1AATO
ParentProcessGuid: {3e14dfGd-768e-5d93-0000-0010d1d30d00}

ParentCommandLine: "C\Windows\system32\crmd.exe"

Log Name: Microsoft-Windows-Sysmen/Operational

Source: Sysmon Legged: 05/10/2019 13.06.49

Event ID: 1 Task Category: Process Create (rule: ProcessCreate)
Level: Information Keywords:

Usen SYSTEM Computer: ws-w10-1.example.com

Figure 63. T1016 - System Network Configuration Discovery

69

To capture events generated by ipconfig, route and arp tools Logstash filter was

created (Appendix 19) that matches ProcessCreate events with the command line of

the tools. Figure 64 verifies the technique information was added to the event.

process_parent_command_line process_command_line

c:\windows'system32\cmd.ex arp -a
e

c:\windows\system32\cmd.ex route print

c:\windows\system32\cmd.ex ipconfig /all

Figure 64. T1016 Kibana verification

mitre_technique_id

Ti816

T1816

4.10.3 T1083 - File and Directory Discovery

mitre_technique

System MNetwo
very

System Netwo
very

System MNetwo

very

rk Configuration Disco

rk Configuration Disco

rk Configuration Disco

mitre_tactic

discovery

discovery

discovery

File and Directory Discovery tactic category involves the adversary searching files or

directories from local system or network share. The goal is usually to access sensitive

information or to conduct reconnaissance. Adversaries can utilize native Windows

Cmd tools, for example dir or tree to enumerate the filesystem. PowerShell has the

Get-Item and Get-Childltem that can be used to browse and search the filesystem.

70

Some adversaries have also written custom tools that use the Windows API to gather

file and directory information. (File and Directory Discovery n.d.)

Because the Windows Cmd native functions or use of Windows API cannot be easily
monitored, the implementation focuses on the PowerShell file and directory listing
cmdlets Get-ltem and Get-Childltem. The execution of these cmdlets can be detected
by monitoring PowerShell module logging. To test this, Get-ltem cmdlet was

executed (Figure 65) and the resulting module logging event observed (Figure 66).

‘> Get-Item *

Directory: C:Y\

Figure 65. Listing directory files with Get-ltem PowerShell cmdlet

Commandlnvocation{Get-Item): "Get-Item”
ParameterBinding(Get-Itemn): name="Path"; value="*"

Context:
Severity = Informational
Haost Mame = ConseleHost
Host Version = 5.1.14409.1018
Host ID = b9523787 - c64b-45f1-8b15-6e2a475664d
Host Application = CA\Windows\System32\WindowsP ower5hellwl.0\powershell.exe
Engine Version = 5.1.14409.1018
Runspace ID = 22ea3590-al da-43b3-afde-64eaci4blceld
PipelineID = 25
Command Name = Get-Item
Command Type = Cmadlet
Script Name =
Command Path =
Sequence Mumber = 46
User = W5-W7-1\Administrator
Connected User =
Shell ID = Microsoft.PowerShell

Log Mame: Microseft-Windows-PowerShell/Operational

Source: PowerShell (Microsoft-Wind Logged: 6.10.2019 14:02:39
Event ID: 4103 Task Categony: Executing Pipeline
Level: Information Keywords: Mone

User: WS5-W7-1\Administrator Computer: W5-W7-1.example.com

Figure 66. T1083 - File and Directory Discovery

To match the events generated by execution of the Get-Item or Get-Childltem

modues, Logstash filter was created (Appendix 20) that matches events with ID 4103

71

and where the command name is either of the module names. Figure 67 verifies the

technique information was added to the event.

event.code powershell.command.type powershell.command.name powershell.param.value mitre_technique_id mitre_tactic mitre_technique

4. 1a3 cmdlet Get-ChildItem * T1883 discovery File and Dire
ctory Discove

4. 1a3 cmdlet Get-Item * T1883 discovery File and Dire
ctory Discove

Figure 67. T1083 Kibana verification

4.11 Lateral Movement

An initial system that the adversary gains access to in the target environment is often
not the ultimate system they are targeting. Reaching the ultimate target requires
moving through multiple systems, a process that is called lateral movement. Lateral
movement tactic category consists of techniques that enable the adversary to access
and control remote systems over the network. Adversaries can take advantage of
native remote access tools or install third party tools to accomplish lateral

movement. (Lateral Movement n.d.)

4.11.1 T1105 - Remote File Copy

Adversaries may copy files, such as tools or malware from one host to another over
the course of an operation. These files can be then used for remote execution to
support lateral movement. Remote file copy can be accomplished using network

shares (SMB) or file transfer protocols like FTP or SFTP. (Remote File Copy n.d.)

Remote file copy can be detected by monitoring file creation and access to network
shares on servers and workstations. Analyzing network traffic can also reveal unusual
data flows between hosts or uncommon protocols being used. The implementation
focuses on remote file copy over network shares, since it is more commonly used in

Windows environment. (Remote File Copy n.d.)

Windows file share access is recorded in event ID 5140 (A network share object was

accessed). To enable logging of this event, Audit File Share audit policy was turned on

72

in the environment. A network share was also created on the domain controller.

Figure 68 displays an event that was generated when the share was accessed.

A network share object was accessed.

Subject:
Security ID: EXAMPLE\WS-W10-25
Account Name: W5-W10-28
Account Domain: EXAMPLE
Logon ID: 0x55C307F
Metwork Information:
Object Type: File
Source Address: 172.16.10.20
Source Port: 35196
Share Information:
Share Mame: WhShare
Share Path: VINC\Share
Access Request Information:
Access Mask: e
Accesses ReadData (or ListDirectory)
Log Mame: Security
Source: Microsoft Windows security Logged: 10.10.2019 1&:46:13
Event ID: 5140 Task Category: File Share
Level: Information Keywords: Audit Success
User: M/A Computer: de.example.com

Figure 68. T1105 - Remote File Copy

To capture these events, Logstash filter was created (Appendix 21) that matches
events with ID 5140 and where the share is not one of the Windows internal

management shares. Figure 69 verifies the technique information was added to the

event.
event_id host_name share_name mitre_technique_id mitre_technique
mitre_tactic
5,148 dc.example.co *\share T1185 Remote File Copy command-and-control, lateral-moveme

m nt

Figure 69. T1105 Kibana verification

4.11.2 T1076 - Remote Desktop Protocol

Remote desktop is an operating system feature that allows users to log into a system
over a network and interact with the graphical user interface of the system remotely.
The best known remote desktop solution is the Windows built-in remote desktop

implementation called Remote Desktop Services (RDS); however, many third party

73

remote desktop tools also exist for various operating system platforms. (Remote

Desktop Protocol n.d.)

Adversaries with valid credentials can use remote desktop connections to easily
move laterally between systems. Remote desktop connections can be detected by
monitoring Windows Event Logs. Successful authentication using remote desktop
connection is recorded in the event ID 2624 (An account was successfully logged on).
The logon type 10 (Remotelnteractive) indicates that the user logged in using remote
desktop connection. Figure 70 displays event that was generated when

authentication was made to one of the workstations using remote desktop

connection.

An account was successfully logged on.

Subject:
Security ID: SYSTEM
Account Mame: W5-W7-25
Account Domain: EXAMPLE
Legon ID: 0:3ed

Logon Type: 10

Mew Logen:
Security ID: WS5-W7-2\Administrator
Account Name: Administrator
Account Domain: W5-W7-2
Legon ID: (h2b5236b9
Logon GUID: {00000000-0000-0000-0000-000000000000}

Process Information:
Process ID: (Oxe50
Process Mame: CAWindows\System32\winlogon,exe

Metwork Information:
Workstation MName: W5-W7-2
Source Network Address: 172.16.10.30
Source Port: 18357

Log Mame: Security

Source: Microsoft Windows security Logged: 12.10.2019 14:05:51

EventID: 4624 Task Category: Logen

Level: Information Keywords: Audit Success

User: /A Computer: W5-W7-2.example.com

Figure 70. T1076 - Remote Desktop Protocol

To capture these events, Logstash filter was created (Appendix 22) that matches
events with ID 4624 and where the logon type is 10. Figure 71 verifies the technique

information was added to the event.

74

event_id user_name logon_type mitre_technigque_id
mitre_technique mitre_tactic
4,624 administrato 18 T18786 Remote Desktop Protoc lateral-moveme
r ol nt

Figure 71. T1076 Kibana verification

4.11.3 T1077 — Windows Admin Shares

Windows has several hidden network shares that are used for administrative
purposes. Common administrative shares include disk volumes (e.g. CS), IPCS for
inter process communication, ADMINS for remote administration, SYSVOL and
NETLOGON for Windows domain administration. Because these shares are hidden,
they are not visible in Windows Explorer. They can, however, be listed on command
line using the “net use” command. Accessing admin shares requires administrative
access on the system. (How to remove administrative shares in Windows Server 2008

n.d.)

Adversaries may use these shares to access remote systems over network. Some
remote administration tools, such as PsExec, also use admin shares to function.
PsExec is a tool included in the Windows Sysinternal suite which can be used to

execute programs on remote systems.

The use of this technique can be detected by monitoring the event ID 5140 (A
network share object was accessed) and looking specifically for share names that
match the common admin share names. This was verified by executing ipconfig
remotely using PsExec as seen in Figure 72. Figure 73 displays one of the ID 5140

events generated by PsExec transferring files to the remote system.

75

16.10.28 ipconfig

S - WM. internals.com

Windows IP Configuration

Ethernet adapter Ethernet:

IPv4
Subnet M
Default

ipconfig

Figure 72. Executing PsExec

A network share object was accessed.

Subject:
Security |D: EXAMPLE\WS-W10-15
Account Name: W5-W10-15
Account Demain: EXAMPLE
Legon ID: Ox25E0E218
Metwork Information:
Object Type: File
Source Address: 172.16.10.10
Source Port: 59595

Share Information:

Share Name: WAADMING
Share Path: VNG Windows
Access Request Information:
Access Mask: Ox1
Accesses: ReadData (or ListDirectory)
Log Name: Security
Source: Microsoft Windows security Logged: 13/10/2019 20.21.22
Event ID: 5140 Task Category: File Share
Level: Information Keywords: Audit Failure
User: N/A Computer: ws-w10-2.example.com

Figure 73. T1077 - Windows Admin Shares

To capture admin share related events, Logstash filter was created (Appendix 23)
that matches events with ID 5140 and where the share name is one of the well-

known admin shares. Figure 74 verifies the technique information was added to the

event.
event_id host_name share_name mitre_technique_id mitre_technigue mitre_tactic
5,148 ws-w18-2.example.com Virhadming T1877 Windows Admin Shares lateral-movement

Figure 74. T1077 Kibana verification

76

4.12 Command and Control

Command and control (C&C) is a tactic category where the adversary remotely
controls systems they have compromised in the target environment. The servers
used to control compromised machines usually reside outside of the victim network,
on the Internet. Adversaries use various methods to hide their communication.
Common network protocols, such as HTTP and DNS are often used for
communication to mimic normal network traffic occurring in the environment. Data
obfuscation and encryption techniques also make it harder to detect and analyze

command and control traffic. (Command and Control n.d.)

4.12.1 T1105 - Remote File Copy

Adversaries may copy files from command and control servers to bring tools to the
target environment (Remote File Copy n.d.). Remote file copy technique was covered

in detail in section 4.11.1.

4.12.2 T1071 - Standard Application Layer Protocol

Adversaries may use standard application layer protocols that are used in every IT
environment to blend their command and control traffic within normal network
communications. Common application layer protocols used for command and

control include HTTP/HTTPS, SMTP, DNS and SMB.

Command and control traffic can be detected by monitoring for unusual traffic flows
based on NetFlow data or by looking at packet capture data for unexpected protocol
behaviors or known control traffic signatures. Monitoring for unusual process
network connections from client systems can also be effective in revealing C&C

communication.

To test this technique, Sysmon ability to log TCP/UDP network connections initiated
by processes was utilized. C&C traffic was simulated by executing HTTP GET request
to an external webserver using PowerShell Invoke-WebRequest cmdlet as illustrated

in Figure 75. Figure 76 displays the resulting Sysmon event.

160.122

ding, chunked], [Content-Type, text/!

ight:
nnerTex

i innerTex
{1 nner HTML:

Figure 75. Executing PowerShell Invoke-WebRequest cmdlet

Metwork connection detected:

RuleMame:

UteTime: 2019-10-17 10:28:33.307

ProcessGuid: {74488148-c795-5d99-0000-001051688a08
Processld: 1792

Image: C\Windows\5ystem32\WindowsPowerShellwl.0\powershell.exe
User: W5-W7-1\Administrator

Protocol: tcp

Initiated: true

Sourcelslpvb: false

Sourcelp: 17216.10.30

SourceHostname: W5-W7-1.example.com

SourcePort: 22002

SourcePortMame:

DestinationlsIpvd: false

Destinationlp: 217.28.160.122

DestinationHostname:

DestinationPort: 80

DestinationPortName: http

Log Name: Microsoft-Windows-Sysmen/Qperational

Source: Sysmon Logged: 1710.2019 13:32:27

EventID: 3 Task Category: Metwork connection detected (rul
Level: Information Keywords:

User: SYSTEM Computer: W5-W7-1.example.com

Figure 76. T1071 - Standard Application Layer Protocol

To match network connections with standard application layer protocols, Logstash

filter was created (Appendix 24) that matches events with ID 3 and where the

protocol is one of the four commonly used C&C protocols: HTTP, HTTPS, DNS and

SMTP. The filter only matches external (public) destination IP addresses. Figure 77

verifies the technique information was added to the event.

event_id dst_ip_addr dst_ip_public dst_port dst_port_name mitre_technique_id

mitre_technigue

8.16 true 80 http T1671
er Protocol

Figure 77. T1071 Kibana verification

Standard Application Lay

mitre_tactic

command-and-
ontrol

77

78

4.12.3 T1043 - Commonly Used Port

In addition to standard protocols, adversaries often use common TCP/UDP ports for

communication to bypass firewalls or IDS/IPS systems. Commonly used ports include
TCP 80 (HTTP), TCP 443 (HTTPS), TCP 25 (SMTP) and TCP/UDP 53 (DNS). Adversaries

may use standard protocols with the ports or use completely different protocols.

(Commonly Used Port n.d.)

The same detection methods can be utilized for this technique as the T071.
Advanced firewalls and IDS systems can also detect if the port number does not

match the application layer protocol.

This technique was tested by simulating C&C traffic, this time by creating SSH
connection to external server and monitoring the generated Sysmon network

connection events as demonstrated in Figure 78.

MNetwork connection detected:

RuleMame:

UtcTime: 2019-10-20 10:23:46.664
ProcessGuid: {5e14df6d-362c-5dac-0000-0010bf48d008}
Processid: 4832

Image: C:\Program Files\PuTTY\putty.exe
User: EXAMPLE\test

Protocol: tep

Initiated: true

Sourcelslpvé: false

Sourcelp: 172.16.10.10

SourceHostname: ws-w10-1.example.com
SourcePort: 63471

SourcePortName:

Destinationlslpvé: false

Destinationlp: 217.28.160.122
DestinationHostname:

DestinationPort: 22

DestinationPortMame: ssh

Log Name: Microsoft-Windows-5Sysmon/Operational

Source: Sysmon Logged: 20/10/2019 13.25.58

Event ID: 3 Task Category: Metwork connection detected (rul
Level Information Keywords:

Usen: SYSTEM Computer: ws-w10-1.example.com

Figure 78. T1043 - Commonly Used Port

To capture events related to this technique, Logstash filter was created (Appendix
25) that matches events with ID 3 and where the destination port is either 22 (SSH),
123 (NTP) or 110 (POP3). Figure 79 verifies the technique information was added to

the event.

79

event_id dst_ip_addr dst_ip_public dst_port dst_port_name mitre_technique_id mitre_technique
mitre_tactic
3 217.28.168.1 true 22 ssh T1843 Commonly Used command-and-con
22 Port trol

Figure 79. T1043 Kibana verification

5 Data analysis

5.1 Introduction

The goal of the data analysis part of the thesis was to use the rules defined in the
testing part to enrich events generated by a simulated intrusion kill chain, and apply

data analysis to the event data in order to link phases of the intrusion together.

Graph theory was a natural choice for analyzing connections between the events. As
explained in the Graph Theory chapter, a graph consists of vertices (nodes) and
edges (links) that connect the vertices together. Looking at the event data, the
events form vertices of a graph; however, determining the edges is a more complex
issue. Each event consists of fields which contain information about the event, for
example an event id or a computer name. Some of the fields contain information
that identifies the entity that generated the event (e.g. username) or the host where
it was generated (e.g. hostname or computer name). By looking at common values of
these fields across the whole dataset, the otherwise unrelated events can be linked
together. For example, an authentication event on one host might not seem related
to a process execution event on another host; however, the events can be connected

if both of them have the same username as illustrated in Figure 80.

[host1 | Administrator __{ pto |
An account was successfully Process Create
logged on.

Figure 80. Event connection example

80

In order to form a coherent chain of intrusion phases, the events should be ordered
to match the order in which they were executed during the intrusion. Directed graph
where the edges have direction can be used to represent the order of events.
Direction of an edge can be determined by comparing connected vertex (event)

timestamps and setting the direction from an older to a newer event as illustrated in

Figure 81.
N N
| T1078 | » T1064 | » T1071 |
_ _ _
1.'-Ei$35 1.'-'2!1-56 1?'2!15-6

Figure 81. Directed event graph

5.2 Intrusion simulation

To generate data for the analysis, a simulated intrusion scenario including most
phases of a typical intrusion kill chain was executed in the test environment. The

simulation included the following steps:

1. The user executes malicious exploit.vbs script on the workstation ws-w10-1 that
opens Meterpreter session for the adversary. (Execution: T1064 — Scripting)

2. The adversary uses the Meterpreter getsystem command to elevate privileges.
(Privilege Escalation: T1050 — New Service)

3. The adversary uses the Meterpreter migrate command to migrate to another
process. (Defence Evasion: T1055 — Process Injection)

4. The adversary uses PowerShell to execute in-memory Mimikatz to dump credentials
from the operating system. (Credential Access: T1003 — Credential Dumping)

5. The adversary executes commands to discover information about the networks and
users of the environment. (Discovery: T1087 — Account Discovery, T1016 — System
Network Configuration Discover, T1087 — Account Discovery)

6. The adversary use PowerShell to download PSExec tool. (Execution: T1086 —
PowerShell)

7. The adversary uses PSExec to move laterally to the domain controller. (Lateral
Movement: T1077 — Windows Admin Shares)

8. The adversary deletes PSExec on the workstation ws-w10-1 to hide his tracks.
(Defence Evasion: T1107 — File Deletion)

5.3 Data analysis process

A separate CentOS Linux host was set up for the data analysis purpose. The host

included Jupyter Lab for illustration and visualization purposes, as well as libraries for

81

fetching the data from Elasticsearch, parsing the data and conducting the analysis

and visualization. Complete code for the data analysis can be seen in Appendix 26.

The data analysis process begins with fetching the data from Elasticsearch using the
Python Elasticsearch Client. For performance reasons, the dataset was limited to only
include events from the relevant time range and which are associated with a MITRE
technique. Figure 82 shows an example of a partial document fetched from

Elasticsearch.

{u'f@timestamp’: u'2828-82-17T17:15:59.5287",
u'fiversion’: u'l",
'_id': u'39f332feB570136207892719576df46272582a78",
u'activity id': u'{dc4f85a5-dc46-e8ee-dedd-52dcabdcdsBl}’,
u'agent': {u'ephemeral_id': u'@462f@6f-4d58-432d-9e7d-2c91be6c7hE5",
u'hostname': u'ws-wle-1",
u'id': u'7ec@8dl8-9@5c-46f2-bc8f-7c241792cefR’,
u'type': u'winlogbeat’,
u'version': u'7.2.8'},
u'beat_hostname': u'ws-wl@-1',
u'beat wversion': u'7.2.8",
u'ecs': {u'version': u'l.@8.8'},
u'event': {u'action’: u'Executing Pipeline’,
u'code": 4183,
u'created’: u'2828-82-17T17:16:88.3437",
u'kind': u'event'},
u'event_id': 4183,
u'fingerprint_powershell param value _mm3': [954397288],
u'host_name’: u'ws-wl@-1.example.com®,
u'level': u'information’,
u'leg': {u'level': u'information'},
u'log_ingest_timestamp': u'2820-82-17T17:15:59.528Z",
u'log_name': u'Microsoft-windows-PowerShell/Operational’,
u'meta_powershell param walue_has_non_ascii': False,
u'meta_user_name_is_machine': u'false’,
u'mitre_tactic': [u'execution'],
u'mitre_technique': u'PowerShell’,
u'mitre_technique_id': u'T1@86",

Figure 82. Elasticsearch document example

Json_normalize function from pandas package was used to transform the JSON data
from Elasticsearch into a flat table dataframe. Some field names and values were also

normalized.

The next step was to create edges for the graph. The method selected for this step
was to merge pandas dataframe with itself on the column that will connect events
together. The user_name column was used in this particular case. The merge
operation results a dataframe with events that have the same user_name field value.

In addition to the user_name field, the dataframe includes id, mitre_technique_id,

82

timestamp and computer_name fields for both connected events, witha xand _y

prefix. Figure 83 displays an example row from the dataframe.

id x e mitre_technique_id x timestamp_x _ winlog.computer_name_x idy mitre_technique_id_y timestamp_y winlog.

39f3321e8570136207892719876 04627258278 administrator TL086 2020-02-17T17:15:59.528Z ws-wl0-1 I 1136207892719876 446 TL086 2020-02-17T17:15:59528Z ws-wl

Figure 83. Merged dataframe example

One issue with the resulting dataframe is that it includes unnecessary rows. Each
event has a connection to itself and there are also two connections between distinct
events, one for each direction. Removing the self-connections can be accomplished
by filtering all rows where id_x and id_y have the same value. Filtering out the
duplicate connections between distinct events was a more challenging issue. The
way to solve the issue was to filter out the rows where timestamp_x is greater than
timestamp_y or where both are equal. This left only a single connection between
each of the connected event. The final filter applied was to remove connections with

the same mitre_technique_id.

After the nodes and edges have been defined, the graph itself can be formed using
the NetworkX package. This process starts with creating a Graph object by using the
from_pandas_edgelist function which creates a graph from pandas dataframe. The
arguments given to the function specified that the graph should be directed graph
and which fields indicate the source and target nodes. To limit the size of the graph,
the NetworkX DiGraph dag_longest_path function was used to find the longest path,
which represents the longest chain of connected events. The function returns a list of
nodes, which were used to create a new directed graph that only included the

longest path.

The final part of the data analysis process was visualizing the results. The goal of the
visualization was to give the user a view of the different techniques detected from
the event data to aid determining if the activity is malicious or not. Another goal was
to have an interactive visualization that would update based on the applied filters.
Plotly Python library was chosen for the visualization because of its interactive nature

and support for Jupyter Lab.

83

To make the different tactic categories and hosts stand out, different symbols for the
tactics and colors for the hosts were assigned. Plotly figures consist of one or more
traces that contain the data used to display content of the figure. Two traces are
required to draw a graph, one that for the nodes and one for the edges. Traces
contain dictionary of properties, such as x and y coordinates and symbol and color
for each data point. The y coordinate of each node was set to a static value so that all
the nodes would be placed on the same line horizontally. The x coordinates were
based on timestamps of the events. One interactive feature of Plotly is the ability to
display information about the data points by hovering over them. A hover text was
defined that displays id, event id, event action, timestamp, computer name, MITRE

technique id and MITRE tactic category field for each node of the graph.

Plotly figure is created by defining a Figure object that includes data traces and
layout configuration. Figure is displayed by calling the show method, as illustrated in

the Figure 84.

Intrusion Kill Chain Visualization + -

*+ *
T1AR64 T1078 T

=

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Figure 84. Plotly graph visualization

The figure displays each node of the graph in a timeline. Each node represents an
event that has a MITRE adversary technique associated with it. The Nodes are
labeled by technique id. Additional information about events can be seen by

hovering over a node as seen in Figure 85.

84

ID: c3430a42p405918Tc28afb4 151985 Tec81ceTab1
Event ID: 4104

Event Action: Execute a Remote Command
Timestamp: 2020-02-17T17:00:36.1832

Ti0s6 T108 Computer: ws-w10-1.example com

Mitre Techinque: PowerShell
Mitre Tactic: [execution’]

Figure 85. Plotly hovertext

As can be seen in Figure 84, there is a cluster of nodes between timestamps 15:00
and 18:00. By zooming in, a multiple different MITRE techniques (PowerShell, New
Service, Windows Admin Shares...) executed across multiple tactic categories
(Execution, Persistence, Lateral-Movement) can be seen on both ws-w10-1 (red) and
dc (blue) hosts as illustrated in Figure 86. These events represent the actions from

the intrusion simulation.

Intrusion Kill Chain Visualization

*

——es + b3 o onn o 4 o ——
TTUHERE T1078 Tl TI0 Twsarr‘mm 088 ! T1086

T1086 TIo71 TI050)
T1086
T083 Tiosa Tio7! Tio8s Tr078

17:00 17:02 17:04 17:06 17:08 17210 17:12 17:14 17:16 17:18
Feb 17,2020

Figure 86. Plotly figure zoomed

The figure in its current form is static in a way that the user has no control over the
data that is displayed. For example, the username that connects events together is
hardcoded in the source code. Ipywidgets is a collection of interactive HTML widgets,
which can be used to change input in JupyterLab. The widgets make it possible for
users to change the data values and have the figure automatically update to reflect

the change.

A form was created using ipywidgets that included a select box for selecting
username and checkboxes to filter which MITRE tactics should be included in the
figure. Change of values in these widgets triggers function that reruns the data

manipulation, graph and figure generation steps described previously with the

85

selected values. Figure 87 shows an example where the system user is selected and

only execution tactic category techniques are included.

User | system ~ | [@ execution [persistence [privilege-escalation [l defence-evasion credential-access [T discovery [T lateral-movement [T collection [comman d-and-control

Intrusion Kill Chain Visualization + -

T 1050

Figure 87. Ipywidgets filter

6 Conclusions

The fight between adversaries and defenders is an arms race where adversaries are
constantly developing new techniques to evade defenses and stay hidden, while
defenders struggle with lack of visibility and growing complexity of IT environments.
Finding traces of adversary activity from a vast amount of event data is difficult,
however, not impossible if right approach is used. The behavior driven approach
helps the defenders identify which events are indicators of a certain adversary
behavior and map the events to the techniques and tactics. The events can be
further correlated together to form a chain of events, which is a strong indicator of

compromise compared to inspecting events in isolation.

Building a system for detecting intrusions does not require huge amount of resources
or buying expensive security solutions. The MITRE ATT&CK knowledge base provides
an easy starting point with a plethora of actionable information that security teams
can use to measure their current defenses and develop new methods of detecting
adversary behavior. The free and open-source software ecosystem has also evolved
rapidly over the last few years. Tools such as the ELK or HELK stack provide a
platform which competes with many commercial SIEM solutions in terms of features
and ease of use. The data analysis tools have also advanced so that there is no longer
need for massive compute resources or professional data analysts to get value out of

them.

The research question that the thesis aimed to answer was whether it is possible to
identify and link the stages of cyber kill chain by collecting and analyzing event data.

The implementation and data analysis sections demonstrate that this is indeed

86

possible. However, some requirements have to be taken into consideration in order
to get reliable results. The first requirement is to have knowledge on how the
adversary techniques work and how they can be detected. This information is well
documented in knowledge bases such as the MITRE ATT&CK. An issue that often
arises is how to distinguish legitimate behavior from the adversary behavior, since
many of the adversary techniques resemble normal every day activity happening in
every IT environment. Solving this issue requires not only knowing which events a
certain technique generates, but the context it occurs. For example, use of PsExec
remote management tool may be common in one organization for administrative
purposes but raise alarm in other. Another example could be that user login events
are common during the daytime but a login event during the night could be
considered suspicious. The reliability of adversary technique detection can be
increased if an organization adjusts their detection rules according to the context of

their IT environment instead of relying on static predefined rules.

The main challenge with connecting events and the associated techniques together is
determining which field or fields to use as the connection. Events rarely contain
fields which explicitly map an event to another. Instead, we have to rely on common
fields across different types of events, such as usernames or IP addresses. Problem is
that two events containing the same username may or may not be connected
depending on the event types and the context that they occur. Another problem is
that all events may not contain these common fields, which can lead to gaps in
detection coverage. The most reliable approach to connecting events would be to
use multiple fields for the connections and filter the events based on context, such as

specific time range in which the events occur.

The overall conclusion from the implementation was that while the concept of
identifying cyber kill chain seemed straightforward, implementing a solution which
produces real benefits can be challenging. The open source tools provide a great
starting point; however, building an easy to operate and reliable solution requires

skills and knowledge of the environment to which the solution is deployed.

87

7 Deliberation and futher research

The research approach chosen for the thesis makes the reliability evaluation of the
results difficult. As mentioned in chapter 2.3, the research was conducted using
observation method. An issue from the reliability standpoint is that the observation
was only done by the researcher, which produces subjective results. The researcher
will base the observations on their own perspective and experience, which may not
correspond to objective truth. The researcher will always interpret the world from
his or her own frame of reference (Kananen 2015b, 339). Having outside individuals
use the system developed during the implementation in a more realistic scenario,
such as cyber exercise and surveying them afterwards would have produced more
objective results that could be compared to the author’s own observations. The
complications causing the implementation to take longer than expected and
schedules of upcoming cyber exercises did not, however, make conducting such a
survey feasible. Implementing the system in an exercise environment, creating the
survey and analyzing the results would have delayed the completion of the thesis

significantly.

The data analysis part of the thesis turned out to be more complicated than
expected. The main issue was related to the heterogeneous nature of the event data.
Even though the event data was collected from a single platform (Windows), many
event types still contain a different set of fields. This caused some adversary
techniques not to be included in the chain of events when the event did not include
the user_name field, even though the event was part of the simulated intrusion kill
chain. The author’s lack of experience with data analysis methods and tools also

slowed down the process.

The thesis produced a proof of concept implementation on how an intrusion kill
chain could be detected and visualized. More research and development is required
to make the implementation suitable for use in real environments. Identifying and
mapping the events to techniques can be expanded by adding more data points and
making the rules more granular. This would improve accuracy and reduce the
number of false positives. The data analysis part of the thesis used only a single field

for connecting the events together; however, the ability to connect the events

88

through multiple fields would make the connections between the events stronger,
e.g. two events connected through username versus both username and IP address.
Using multiple connected field would also help with cases where all events do not
contain the same set of fields. For example, an event might not contain a username
field but includes a source IP field which connects it to other events. Another
interesting further research topic would be to test if different graph types, such as
weighted graph, could be used to improve the accuracy of the results. It would also
be interesting to compare the length of the event chains against historical data in

order to detect anomalies.

Visualization of the intrusion kill chain is important in order to detect patterns or
anomalies and to be able to drill down into details. The visualization used in the
thesis displays a simple graph with basic interactivity features, which could be
improved in many ways. Scaling of the graph could be improved so that the
individual events can be better distinguished when many events exist within a small
time frame. A better ability to filter and focus on specific parts of the graph would
also help users to get a better understanding of the chain of events. Enhancing
interactivity of the graph in general, such as highlighting interesting nodes and edges
or attaching more information to them would be an interesting further development

topic.

The author feels that the thesis reached the goal of producing a model and a proof of
concept implementation for detecting and mapping adversary techniques into cyber
kill chain. The thesis provides a good starting point for further research into the topic

as well as for more practical implementations.

89

References

Aon. 2019. 2019 Cyber Security Risk Report. Accessed 2 June 2019. Retrieved from
https://www.aon.com/getmedia/51bff3db-20ea-46dd-a9aa-1773cfe089ce/Cyber-
Security-Risk-Report-2019.pdf.aspx

Babinec, K. 2014. Executing PowerShell scripts from C#. Accessed 17 August 2019.
Retrieved from https://blogs.msdn.microsoft.com/kebab/2014/04/28/executing-
powershell-scripts-from-c/

Beyer B. Nickels K., 2019. ATT&CK™ Your CTI with Lessons Learned from Four Years in
the Trenches. Accessed 27 August 2019. Retrieved from
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-
1548090281.pdf

Bohannon D. & Holmes L. 2017. Revoke-Obfuscation: PowerShell Obfuscation
Detection Using Science. Accessed 1 September 2019. Retrieved from
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-

report.pdf
Boundy J.A. & Murty U.S.R. 2008. Graph Theory. Springer Publishing.

Brute Force. N.d. Accessed 28 September 2019. Retreived from
https://attack.mitre.org/techniques/T1110/

Cambridge Dictionary. 2019. Meaning of hypothesis in English. Accessed 2 July 2019.
Retrieved from https://dictionary.cambridge.org/dictionary/english/hypothesis

Cisco. 2018. Cisco 2018 Annual Cybersecurity Report. Accessed 7 June 2019.
Retrieved from https://www.cisco.com/c/dam/m/hu hu/campaigns/security-
hub/pdf/acr-2018.pdf

Command and Control. N.d. Accessed 14 October 2019. Retrieved from
https://attack.mitre.org/tactics/TA0011/

Command-Line Interface. N.d. Accessed 8 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1059/

Commonly Used Port. N.d. Accessed 20 October 2019.
https://attack.mitre.org/techniques/T1043/

Credential Access. N.d. Accessed 6 September 2019. Retreived from
https://attack.mitre.org/tactics/TA0006/

CYBER ATTACK LIFECYCLE. N.d. Accessed 21 March 2020. Retreived from
https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-
attack-lifecycle/

Davidson, M., Jordan, B. & Wunder, J. 2017. TAXII™ Version 2.0. Accessed 28
September 2019. Retrieved from
https://docs.google.com/document/d/1Jv9ICiUNZrOnwUXtenB1QcnBLO35RnjQclLsa

1mGSkl/pub

https://www.aon.com/getmedia/51bff3db-20ea-46dd-a9aa-1773cfe089ce/Cyber-Security-Risk-Report-2019.pdf.aspx
https://www.aon.com/getmedia/51bff3db-20ea-46dd-a9aa-1773cfe089ce/Cyber-Security-Risk-Report-2019.pdf.aspx
https://blogs.msdn.microsoft.com/kebab/2014/04/28/executing-powershell-scripts-from-c/
https://blogs.msdn.microsoft.com/kebab/2014/04/28/executing-powershell-scripts-from-c/
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1548090281.pdf
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1548090281.pdf
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-report.pdf
https://attack.mitre.org/techniques/T1110/
https://dictionary.cambridge.org/dictionary/english/hypothesis
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/tactics/TA0006/
https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-attack-lifecycle/
https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-attack-lifecycle/
https://docs.google.com/document/d/1Jv9ICjUNZrOnwUXtenB1QcnBLO35RnjQcJLsa1mGSkI/pub
https://docs.google.com/document/d/1Jv9ICjUNZrOnwUXtenB1QcnBLO35RnjQcJLsa1mGSkI/pub

90

Defense Evation. N.d. Accessed 27 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0005/

Dunwoody, M. 2016. Greater Visibility Through PowerShell Logging. Accessed 16
August 2019. Retrieved from https://www.fireeye.com/blog/threat-
research/2016/02/greater visibilityt.html

Elasticsearch for Apache Hadoop. N.d. Accessed 1 August 2019. Retrieved from
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/reference.html

Execution. N.d. Accessed 8 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0002/

File and Directory Discovery. N.d. Accessed 5 October 2019. Retreived from
https://attack.mitre.org/techniques/T1083/

File Deletion. N.d. Accessed 27 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1107/

FireEye. 2019. M-TRENDS 2019. Accessed 2 June 2019. Retrieved from
https://content.fireeye.com/m-trends

Getting Started with Plotly in Python. N.d. Accessed 6 April 2020. Retrieved from
https://plotly.com/python/getting-started/

Getting Started with Windows PowerShell. N.d. Accessed 10 August 2019. Retrieved
from https://docs.microsoft.com/en-us/powershell/scripting/getting-
started/getting-started-with-windows-powershell?view=powershell-6

Goodin D. 2019. Serial publisher of Windows 0-days drops exploits for 2 more
unfixed flaws. Accessed 24 August 2019. Retrieved from
https://arstechnica.com/information-technology/2019/05/serial-publisher-of-
windows-0days-drops-exploits-for-3-more-unfixed-flaws/

GraphFrames Overview. N.d. Accessed 2 August 2019. Retrieved from
http://graphframes.github.io/graphframes/docs/ site/index.html

How to remove administrative shares in Windows Server 2008. 29.10.2012. Accessed
13 October 2019. Retrieved from https://support.microsoft.com/en-
us/help/954422/how-to-remove-administrative-shares-in-windows-server-2008

Hutchins, E., Cloppert, M. & Amin, R. 2010. Intelligence-Driven Computer Network
Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains.
Lockheed Martin.

Input Capture. N.d. Accessed 16 September 2019. Retreived from
https://attack.mitre.org/techniques/T1056/

Introduction. N.d. Accessed 1 August 2019. Retrieved from
https://www.elastic.co/guide/en/kibana/current/introduction.html

Jordan, B., Piazza, R. & Wunder, J. 2017. STIX™ Version 2.0. Part 1: STIX Core
Concepts. Accessed 28 July 2019. Retrieved from http://docs.oasis-
open.org/cti/stix/v2.0/cs01/partl-stix-core/stix-v2.0-csO1l-part1-stix-core.html

Jupyter. N.d. Accessed 2 August 2019. Retrieved from https://jupyter.org/index.html

https://attack.mitre.org/tactics/TA0005/
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/reference.html
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1107/
https://content.fireeye.com/m-trends
https://plotly.com/python/getting-started/
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://arstechnica.com/information-technology/2019/05/serial-publisher-of-windows-0days-drops-exploits-for-3-more-unfixed-flaws/
https://arstechnica.com/information-technology/2019/05/serial-publisher-of-windows-0days-drops-exploits-for-3-more-unfixed-flaws/
http://graphframes.github.io/graphframes/docs/_site/index.html
https://support.microsoft.com/en-us/help/954422/how-to-remove-administrative-shares-in-windows-server-2008
https://support.microsoft.com/en-us/help/954422/how-to-remove-administrative-shares-in-windows-server-2008
https://attack.mitre.org/techniques/T1056/
https://www.elastic.co/guide/en/kibana/current/introduction.html
http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
https://jupyter.org/index.html

91

JYVSECTEC. 2018. CYBERDI. Accessed 9 June 2019. Retrieved from
https://jyvsectec.fi/2018/10/cyberdi/

Kananen, J. 2015a. Kehittamistutkimuksen kirjoittamisen kdaytannonopas. Jyvaskyla:
Publications of JAMK University of Applied Sciences.

Kananen, J. 2015b. Opinnaytetyon kirjoittajan opas. Jyvaskyla: Publications of JAMK
University of Applied Sciences.

Kerr, D. & Ewing, P. 2018. The Endgame Guide to Threat Hunting. Annapolis:
CyberEdge Group, LLC.

Logstash Introduction. N.d. Accessed 31 July 2019. Retrieved from
https://www.elastic.co/guide/en/logstash/current/introduction.html

Lateral Movement. N.d. Accessed 6 October 2019. Retrieved from
https://attack.mitre.org/tactics/TA0008/

Lee, R. & Lee, R. 2019. Generating Hypotheses for Successful Threat Hunting. SANS
Institute Reading Room.

Lee, R. & Lee, R. 2018. SANS 2018 Threat Hunting Survey Results. SANS Institute
Reading Room.

Lee, R. & Lee, R. 2019. The Who, What, Where, When, Why and How of Effective
Threat Hunting. SANS Institute Reading Room.

Mandiant. 2013. APT1: Exposing One of China’s Cyber Espionage Units. Accessed 21
March 2020. Retreived from https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/mandiant-aptl-report.pdf

Metcalf, S. 2018. Unofficial Guide to Mimikatz & Command Reference. Accessed 8
September 2019. Retreived from https://adsecurity.org/?page id=1821

MITRE ATT&CK®. N.d. Accessed 23 March 2020. Retrieved from
https://attack.mitre.org/

MITRE. Crown Jewels Analysis. Accessed 6 September 2019. Retrieved from
https://www.mitre.org/publications/systems-engineering-guide/enterprise-
engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis

NetworkX. N.d. Accessed 5 April 2020. Retrieved from https://networkx.github.io/

Obfuscated Files or Information. N.d. Accessed 1 September 2019. Retrieved from
https://attack.mitre.org/techniques/T1027/

Package overview. N.d. Accessed 5 April 2019. Retrieved from
https://pandas.pydata.org/docs/getting started/overview.html

Persistence. N.d. Accessed 17 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0003/

PowerShell. N.d. a. Accessed 10 August 2019. Retrieved from
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-
6

https://jyvsectec.fi/2018/10/cyberdi/
https://www.elastic.co/guide/en/logstash/current/introduction.html
https://attack.mitre.org/tactics/TA0008/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://adsecurity.org/?page_id=1821
https://attack.mitre.org/
https://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
https://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
https://networkx.github.io/
https://attack.mitre.org/techniques/T1027/
https://pandas.pydata.org/docs/getting_started/overview.html
https://attack.mitre.org/tactics/TA0003/
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-6

92

PowerShell. N.d. b. Accessed 10 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1086/

Privilege Escalation. N.d. Accessed 23 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0004/

Remote Desktop Protocol. N.d. Accessed 11 October 2019. Retreived from
https://attack.mitre.org/techniques/T1076/

Remote File Copy. N.d. Accessed 8 October 2019. Retreived from
https://attack.mitre.org/techniques/T1105/

Rodriguez, R. 2017. Chronicles of a Threat Hunter: Hunting for In-Memory Mimikatz
with Sysmon and ELK - Part | (Event ID 7). Accessed 12 September 2019. Retreived
from https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-
hunting-for.html

Rodriguez, R. 2018a. Welcome to HELK! : Enabling Advanced Analytics Capabilities.
Accessed 31 September 2019. Retrieved from
https://cyberwardog.blogspot.com/2018/04/welcome-to-helk-enabling-
advanced 9.html

Rodriguez, R. 2018b. Categorizing and Enriching Security Events in an ELK with the
Help of Sysmon and ATT&CK. Accessed 5 August 2019. Retrieved from
https://cyberwardog.blogspot.com/2018/07/categorizing-and-enriching-

security.html

Run and RunOnce Registry Keys. N.d. Accessed 20 August 2019. Retrieved from
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-

registry-keys

Security Account Manager (SAM). N.d. Accessed 7 September 2019. Retreived from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
server-2003/cc756748(v=ws.10)

Security Subsystem Architecture. N.d. Accessed 8 September 2019. Retreived from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-
server/cc961760(v=technet.10)

Services. N.d. Accessed 25 August 2019. Retrieved from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
server-2008-R2-and-2008/cc772408(v=ws.11)

Shackleford, D. 2017. Cloud Security: Defense in Detail if Not in Depth. SANS Institute
Reading Room. 1-2.

Scripting. N.d. Accessed 9 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1064/

Storm, B. 2018. ATT&CK 101. Accessed 23 April 2020. Retrieved from
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
blog/attck-101

Storm, B., Battaglia, J., Kemmerer, M., Miller, D., Wampler, C., Whitley, S. & Wolf, D.
2017. Finding Cyber Threats with ATT&CK-Based Analytics. MITRE Corporation.

https://attack.mitre.org/techniques/T1086/
https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/techniques/T1076/
https://attack.mitre.org/techniques/T1105/
https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-hunting-for.html
https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-hunting-for.html
https://cyberwardog.blogspot.com/2018/04/welcome-to-helk-enabling-advanced_9.html
https://cyberwardog.blogspot.com/2018/04/welcome-to-helk-enabling-advanced_9.html
https://cyberwardog.blogspot.com/2018/07/categorizing-and-enriching-security.html
https://cyberwardog.blogspot.com/2018/07/categorizing-and-enriching-security.html
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc756748(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc756748(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc961760(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc961760(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc772408(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc772408(v=ws.11)
https://attack.mitre.org/techniques/T1064/
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/attck-101
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/attck-101

93

Sqrll. N.d. Hunt Evil: Your Practical Guide to Threat Hunting.
Sqrrll. 2018. A Framework for Cyber Threat Hunting.

Sysmon. 2019. Accessed 30 September 2019. Retrieved from
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

System Network Configuration Discovery. N.d. Accessed 4 October 2019. Retreived
from https://attack.mitre.org/technigues/T1016/

Task Scheduler. N.d. a. Accessed 18 August 2019. Retrieved from
https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-

page

Task Scheduler. N.d. b. Accessed 19 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1053/

Valid Accounts. N.d. Accessed 22 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1078/

What is Elasticsearch?. N.d. Accessed 31 September 2019. Retrieved from
https://www.elastic.co/what-is/elasticsearch

Wrightson, D. 2012. CAPTURING WINDOWS 7 CREDENTIALS AT LOGON USING
CUSTOM CREDENTIAL PROVIDER. Accessed 18 September 2019. Retreived from
https://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-
using-custom-credential-provider/

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://attack.mitre.org/techniques/T1016/
https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1078/
https://www.elastic.co/what-is/elasticsearch
https://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-using-custom-credential-provider/
https://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-using-custom-credential-provider/

Appendices

Appendix 1. top_10_groups_by_techniques.py

#!/usr/bin/env python3

from attackcti import attack_client
from stix2 import TAXIICollectionSource, Filter, CompositeDataSource
from taxii2client.v20 import Collection

from pandas import *
from pandas.io.json import json_normalize

lift = attack_client()

ATTCK_STIX_COLLECTIONS = "https://cti-taxii.mitre.org/stix/collections/"
ENTERPRISE_ATTCK = "95ecc380-afe9-11e4-9b6c-751b66dd541e"

ENTERPRISE_COLLECTION = Collection(ATTCK_STIX_COLLECTIONS + ENTERPRISE_ATTCK + "/")
TC_ENTERPRISE_SOURCE = TAXIICollectionSource(ENTERPRISE_COLLECTION)

pandas.set_option('display.max_rows', 200)

techniques = {
‘group': [],
'techniques': []

}

filter_relationship_objects = [
Filter('type', '=', 'relationship'),
Filter('relationship_type', '=', 'uses'),

]
all_relationships = TC_ENTERPRISE_SOURCE.query(filter_relationship_objects)

filter_technique_objects = [
Filter('type', '=', 'attack-pattern’),
Filter('x_mitre_platforms', '=', 'Windows'),

]
all_techniques = TC_ENTERPRISE_SOURCE.query(filter_technique_objects)

filter_group_objects = [

Filter('type', '=', 'intrusion-set'),

]
all_group_objects = TC_ENTERPRISE_SOURCE.query(filter_group_objects)
for group in all_group_objects:

group_techniques =[]
group_relationships = list(filter(lambda x: x.source_ref == group.id, all_relationships))

for relationship in group_relationships:
group_techniques.extend(list(filter(lambda x: x.id == relationship.target_ref, all_techniques)))

94

group_techniques = lift.translate_stix_objects(group_techniques)

techniques['group'].append(group.name)
techniques['techniques'].append(len(group_techniques))

techniques = pandas.DataFrame(techniques)
techniques = techniques.sort_values('techniques',ascending=False).head(10)
print(techniques)

95

Appendix 2. top_3_techniques_by_tactic.py

#!/usr/bin/env python3

from attackcti import attack_client
from stix2 import TAXIICollectionSource, Filter, CompositeDataSource
from taxii2client.v20 import Collection

from pandas import *
from pandas import json_normalize

lift = attack_client()

ATTCK_STIX_COLLECTIONS = "https://cti-taxii.mitre.org/stix/collections/"
ENTERPRISE_ATTCK = "95ecc380-afe9-11e4-9b6c-751b66dd541e"

ENTERPRISE_COLLECTION = Collection(ATTCK_STIX_COLLECTIONS + ENTERPRISE_ATTCK + "/")
TC_ENTERPRISE_SOURCE = TAXIICollectionSource(ENTERPRISE_COLLECTION)

pandas.set_option('display.max_rows', 200)

techniques =]

groups = ['APT32,
'Lazarus Group',
'APT28',
'APT3',
'0ilRig,
'Dragonfly 2.0,
'Threat Group-3390',
'Patchwork’,
'menuPass’,
'BRONZE BUTLER'

]

tactics = ['discovery’,
'lateral-movement’,
'execution’,
'persistence’,
'defense-evasion’,
‘command-and-control’,
'privilege-escalation’,
‘credential-access'

filter_relationship_objects = [

Filter('type', '=', 'relationship'),

Filter('relationship_type', '=', 'uses')

]
all_relationships = TC_ENTERPRISE_SOURCE.query(filter_relationship_objects)

filter_technique_objects = [
Filter('type', '=', 'attack-pattern’),
Filter('x_mitre_platforms', '=', 'Windows')

]

96

97

all_techniques = TC_ENTERPRISE_SOURCE.query(filter_technique_objects)

filter_group_objects = [

Filter('type', '=', 'intrusion-set'),

]

all_group_objects = TC_ENTERPRISE_SOURCE.query(filter_group_objects)

def filter_tactics(technique):
new_tactics =[]
for tactic in technique['tactic']:
if tactic in tactics:
new_tactics.append(tactic)
technique['tactic'] = new_tactics
return technique['tactic']

for group in groups:
group_object = list(filter(lambda x: x.name == group, all_group_objects))[0]

group_techniques =[]
group_relationships = list(filter(lambda x: x.source_ref == group_object.id, all_relationships))

for relationship in group_relationships:
group_techniques.extend(list(filter(lambda x: x.id == relationship.target_ref, all_techniques)))

group_techniques = lift.translate_stix_objects(group_techniques)
group_techniques = list(filter(filter_tactics, group_techniques))
techniques.extend(group_techniques)

techniques = json_normalize(techniques)

s = techniques.apply(lambda x: pandas.Series(x['tactic']),axis=1).stack().reset_index(level=1,
drop=True)

s.name = 'tactic'

techniques = techniques.drop('tactic', axis=1).join(s).reset_index(drop=True)

techniques = techniques.reindex(['tactic','technique’,'technique_id'], axis=1)

techniques =
techniques.groupby(['tactic','technique'])['technique'].count().to_frame(name="technique_count')
g = techniques['technique_count'].groupby(level=0, group_keys=False)

techniques = g.apply(lambda x:
x.sort_values(ascending=False).head(3)).to_frame(name="technique_count')

print(techniques)

98

Observation diary

Appendix 3.

CEZET 6TOZ0T 0T UoIDauuod yiomlapN i€ dllusang 1504 210Wal 01 UOI23UU0d HSS CmQO OT SMOPUIAA| [QJIUOD PUY pUBWIWIOD uod pasn >_CDEEDU EF0TL
TEIET 6T0Z'0T LT UBIIBULDI JIOMIBN 1 O] IUBAT TLT°09T°82°LTZ//:d1Y 19n- 153nbaygam-ax0oAu| :31003x3 £ SMOPUI| [011UGD PUY PUBWILLOTY |0301014 J3Ae uoneanddy piepueis TLOTL
TZ:0Z 6T0T°0T'ET| Passade sem 323lqo aieys Jom3au v (OFTS Q1 UaAT B1yuoadi 0Z'0T 9T ZLT\\ 3%3°#993x35d 131MI3x3 OT SMOPUIA| |013U0D Uy pUBWILICD S3UBLS UILIPY SMOPUIA LI0TL
90:+T1 6T0C0T'CT uo mem.o_ >__jmmme03m SEM JUNO2DE UY [+Zo9t dl JU=aA] U2 Y SMOPUIAN mr_”_.mc_mj Ewu.m..mm @]0W=1 e 0] 102UU0D £ sMmopu JUSW2A0N |ei=1ET |o20104d Qoﬁ._mm_n_ Ijow=y Q/0TL
Ot:8T 6T0Z0T 0T pass300e sEM 103(00 S1BYS YJOMIBU W IOFTS d] 1USAT 1BYS JIOMISU 55300y 0T smopul, 1USWSA0WN |e42187 Adoo 314 s10Wwmy SOTTL
Z0:4T 6T0Z°0T'9 SuIE807 3INPoIAl :E0TY Al 1WaA3 + WaH-129 131N33x3 Aiznoasig Kianoasig Aoz pue aji4 £80TL
90T 6T0T 0TS UOI1E312 5532014 :T 4] 1uan3 e/ Hiyuoodi :a1naaxg HKiznoosig| Asnoosig uoneindyuo) ylomianN wWalsAs 9TOTL
LTI 6TO0T 0T T UOI1E312 5522044 :T @] 1uan3 435N 18U 121n2ax3 Aianoasig Auanoosiqg unoday £80TL
9Z:ST 6T0T 68T pa|le} uoleduIYINE-2.d SOIBGISY [TLLY I UBA3 s|eruspa.
1021100U] YLM 3IBYS ¥J0M13U B 0] Bulldsuuwod dwany
OC+T 6TOT 68T uo mo_ 01 pajle} JUNOIJE UY (GZOt dl 1U=an3 S|ellu=pald 10a102Ul Yiim ul mo_ DHHQEWH_.Q 55300Y |ellu=pald 22404 21n1g OTTTIL
TG6T 6T0Z6°8T| (312|9p pue 21e310 Lalgo) Wan3hnsiday [7T Al uanl J3pinoad |BIIUSP3ID WOISND E 1315183 553207 [BllUIpaLD ainided indup QcoTL
CO:ZT 6T0T'6°CT papeo| agew| i Al11uan3 Spaddwing- ZieyIWIN-3%0AU] £, TS Z1ENIMIN-3HOA 55300 [EIIUBPAID Buldwng [eluapald £00TL
ulfdwal/zzT'091'82 L12//:d1y,)Bunspeojumogr (1ua1gamIeN
palqo-maN) x31 :33m23x3
TS6T 6TOZ'6'T SuIE807 2INPoIA :E0TY A 1UaA3 ==yyZ@MaYNOYIamaqyIHYMEDTYDHYIEMZ UDISEAT 30U3J3Q UoIBWIOJU] J0 53]14 PS1EIENIG0 £Z0TL
pUBWIWO)papoIUI- 3xXa°||aysiamod :31nax3
TSI 6T0T 8 TE Suid807 3InpoIAl :E0TY Al a3 18G°'1581\1D WaL-SA0WSY 131N33X3 UDISEAT BIUBYSQ uona|=ada 314 £0TTL
B8C:7T 6T0T 8 57| uoBo) mau 01 paudisse sadapaud [eads [zzob @1 1UaA3 safdapiaud Jolensiulwpe uoniejeas3 s8a|1augd S1UNO20Y pIjeA B/0TL
yum uoneaijdde ue uni pue sasn paBepaudun ue yum ul o
SEET 6I0E 8 EC P21E3UD SEM JUNDIIE JBSN Y (0ZLY A1 U2l L1581, 185N 318340 | 7H TT0T 42/35 smopu
fTET 6TOE 8 EF P21e340 SEM JUNOIIE JBSN W I0ZLY Al IUaA3 L1581, 185N 218310 0T smopul, 2oUIlsIsIad S1UNO22Y PIEA 20TL
{FCTEIOZ R TE 31e3103|14 ITT A1 1UaA3 1ap|o} dnuels\swelsold\nuam
HeIs\sMopUIM\OsoIaINY E1eguelS0old\ ;D 01 1NJLIOYS 318310
0 €T 6T0Z'8'TE (135 anjea) 1wanzhnsiday (€T aluang ,180°1531\:0,, pf Z§ 934 1/158L Af uny\uois 0T smopu 30U31sISIad 13p|o4 dnuels J shay uny Ansisay 090TL
J3AUBLIND\SMOPUIMYOSOIIN\B18MBOS\HISN LNTHEND ATNHH
ppe axa 8a1 :31n2ax3
T0:4T 6102802 P1e340 SB/M HSBY PRINPRUYDS V 1860Y 011U IXPUWD FO:HT 18 121N03%3
LEET 6T0T 80T paiepdn sem yse1 pAINPaYIs W IZ0LY d] 1U9AT X" pwid 41/ 1531 cf\wmcgu__. S}SB1YIS 121N2ax3
VI:ET 6T0T'8°0T PE1E3.0 SEM §SEY PIINP3YDS ¥ 1B60T 01 1UBAT 1BG°3583\:0 43/ ILNNIW 95/ 1533 U3/ 318310/ SH5EIYIS 131MIaX3 sauslsUad ASEL PRINPaYIS £50TL
00:ET 6TO0T 88T mc_mmon_ INPOoW ‘E0TY dl Iuan3g qu.wgnfwu.c_ l12ysiamod MC_mj 1l 21N29Xa pue __.—mn_.u.mwu.: @1eD4] uonnIex3y lI2Ysiamod Q80TL
SETT 602 80T UDI1e342 5537044 T Q1 1uWaA3| ,5qa1sal\:D @x=2'1duasa, Bulsn 21ndaxa pue 3|1} ,sga1sal, 21ea4D
0Z:TT 6T0Z"8°0T U0I1E313 5530044 1T 1 1UaA3 IGBUEERE] Bunduas FO0TL
smopuia Suisn 1eqrsat\id,, 21N23%3 pue 3|l ,1eq-1sal, 31831D
Ot CT GTOE'E'8 UOI1e312 5530014 T dl 1uan3 LU-B-1B1519U, 21n2aX3 uonnaIsx3 S2EUS1U] 2UM-pUBLIlWICD 6C0TL
ETTTINGITIYETTS) GUETENECIETTETS) sdayg uonmaxg Kio8aje)onpep al anbiuyray

99

Technique, tactic & event ID matrix

Appendix 4.

£4al

uod pasn Ajuowwod

£4al

|o20104d J2AeT uoniealjddy piepuels

orTs ai

S3IBYS UIWPY SAMOPUIA

roor al

0201014 dolysaq a10Wway

orTIeal

orisai

Adog 3|14 =10Wway

E0Tr al

Aanoasig Aolaaag pue 314

Tai

A13A00510 UOILEINSIIUOD) HIOMISN Wa1sAS

Tai

Aizn0251Q IUN0IDY

TLLv “GE8t Al

32404 21rug

Zr al

aumdes indup

Ld

Suidwng |eluapaln

E0Tr al

UDILEWIOU] 1O 53|14 P1EISNLG0

€0Tr al

uonalaq =14

{69 ‘St02 Al

MBS MBI

cLoradl

OEivadl

S1UNOJ3Y PIEA,

ITET Al

Japjod dnpels /sAay uny Aulsisay

0L “BROT Al

0L “BROE Al

3sEL pPIINPaYIs

0T ‘€0TE Al

l13ysiamod

E0Tr al

Tai

Funduos

Tai

2IBJ31U] SUIM-PUBLULIOD

|0JIUOD) PUB PUBLULUOD

1UBLUSAO|A] [B121ET

Manoasig

55320y |RIIUAPAID

UoISEAT 32U3430

uoIle|e3s3 ada|inlld

30U31515iad

UoINI3%3

100

Appendix 5. Winlogbeat configuration

Winlogbeat 6, 7, and 8 are currently supported!
You can download the latest stable version of winlogbeat here:
https://www.elastic.co/downloads/beats/winlogbeat

For simplicity/brevity we have only included only the enabled options necessary for sending
windows logs to HELK.

Please visit the Elastic documentation for the complete details of each option and full reference
config:

https://www.elastic.co/guide/en/beats/winlogbeat/current/winlogbeat-reference-yml.html

Winlogbeat specific options = ===
winlogbeat.event_logs:
- name: Application
ignore_older: 30m
- name: Security
ignore_older: 30m
- name: System
ignore_older: 30m
- name: Microsoft-windows-sysmon/operational
ignore_older: 30m
- name: Microsoft-windows-PowerShell/Operational
ignore_older: 30m
event_id: 4103, 4104
- name: Windows PowerShell
event_id: 400,600
ignore_older: 30m
- name: Microsoft-Windows-WM I-Activity/Operational
event_id: 5857,5858,5859,5860,5861

Kafka output
output.kafka:
initial brokers for reading cluster metadata
Place your HELK IP(s) here (keep the port).
If you only have one Kafka instance (default for HELK) then remove the 2nd IP that has port 9093
hosts: ["<HELK-1P>:9092","<HELK-IP>:9093"]
topic: "winlogbeat"
HEHEH A HELK Optimizing Latency #HHHHHEHEHEH-HEH -
max_retries: 2

max_message_bytes: 1000000

Appendix 6. Technique T1059 Logstash filter

filter {
if [process_name] == "cmd.exe" or [process_parent_name] == "cmd.exe" {
elasticsearch {

hosts => ["helk-elasticsearch:9200"]
index => "mitre-attack-*"

101

query => "technique_id:T1059"

sort =>"modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" =>"mitre_technique"
"technique_id" =>"mitre_technique_id"

}

Appendix 7. Technique T1064 Logstash filter

filter {

if [process_name] in ["cscript.exe","wscript.exe"] or [process_command_line] =~
"\.(bat|cmd|hta|jse|psl|sct|vbs]|vbe|wsf)" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1064"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 8. Technique T1086 Logstash filter

filter {
if [event_id] in [4103,4104] {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1086"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 9. Technique T1053 Logstash filter

filter {

if [event_id] in [4698,4702] {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1053"

sort =>"modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 10. Technique T1060 Logstash filter

filter {

if [event_id] == 13 and [registry_key_path] =~ "\\CurrentVersion\\Run" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1060"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}
}
}

if [event_id] == 11 and [file_name] =~ "\\startup" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1060"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 11. Technique T1078 Logstash filter

filter {

if [event_id] == 4720 {

102

103

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1078"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}
}
}
if [event_id] == 4672 and [user_name] !="system' {
elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1078"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 12. Technique T1050 Logstash filter

filter {

if [event_id] == 4697 and [service_account_name] == 'LocalSystem' {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1050"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}
}
}
if [event_id] == 7045 and [service_account_name] == 'localsystem' {
elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1050"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

104

Appendix 13. Technique T1107 Logstash filter

filter {

if [powershell][command][name] == 'Remove-Item' and [event_id] == 4103 {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1107"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 14. Technique T1027 Logstash filter

filter {

if [powershell][host][application] =~ "\-[Ee*]{1,2}[NnCcOoDdEeMmAa”]+ [A-Za-z0-9+/=]{5,}" and
[event_id] == 4103 {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1027"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 15. Technique T1003 Logstash filter

filter {

if [event_id] == 7 and [module_loaded] =~ "(WinSCard | cryptdll| hid | samlib | vaultcli)\.dll" {

elasticsearch {
hosts => ["helk-elasticsearch:9200"]
index => "mitre-attack-*"
query => "technique_id:T1003"
sort => "modified:desc"
fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"

105

"technique_id" => "mitre_technique_id"

}

Appendix 16. Technique T1056 Logstash filter

filter {

if [event_id] == 12 and [event_type] == "CreateKey" and [registry_key_path] =~
"\\Authentication\\Credential Providers" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1056"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 17. Techinque T1110 Logstash filter

filter {

if [event_id] == 4625 or ([event_id] == 4771 and [event_status] == "0x18") {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1110"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 18. Technique T1087 Logstash filter

filter {

if [event_id] == 1 and [process_command_line] =~
"(net\s+user) | (net\s+localgroup) | (dsquery\s+user) | (dsquery\s+group)" {

106

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1087"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 19. Technique T1016 Logstash filter

filter {
if [event_id] == 1 and [process_command_line] =~ "ipconfig|route|arp" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1016"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 20. Technique T1083 Logstash filter

filter {

if [event_id] == 4103 and [powershell][command][name] in ['Get-ltem','Get-Childltem'] {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1083"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 21. Technique T1105 Logstash filter

filter {
if [event_id] == 5140 and [share_name] !~ "ipc\$|sysvol" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1105"

sort =>"modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" =>"mitre_technique_id"

}

Appendix 22. Technique T1076 Logstash filter

filter {
if [event_id] == 4624 and [logon_type] =="10" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1076"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 23. Technique T1077 Logstash filter

filter {
if [event_id] == 5140 and [share_name] =~ "c\S|ipc\$|admin\$" {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1077"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

107

108

Appendix 24. Technique T1071 Logstash filter

filter {
if [event_id] == 3 and [dst_port_name] in ["http","https","dns","smtp"] and [dst_ip_public] {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1071"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 25. Technique T1043 Logstash filter

filter {
if [event_id] == 3 and [dst_port] in [22,123,110] {

elasticsearch {

hosts => ["helk-elasticsearch:9200"]

index => "mitre-attack-*"

query => "technique_id:T1043"

sort => "modified:desc"

fields => { "tactic" => "mitre_tactic"
"technique" => "mitre_technique"
"technique_id" => "mitre_technique_id"

}

Appendix 26. Data analysis code

Import packages

from elasticsearch import Elasticsearch, helpers
from pandas import json_normalize

import networkx as nx

import ipywidgets as widgets

from IPython.display import display

import plotly.graph_objects as go

Fetch data from Elasticsearch

es = Elasticsearch(['http://172.16.100.50:9200'],timeout=600)

match_all = {
"size": 10000,
"query": {
"bool": {
"must": [
{
"exists": {
"field": "mitre_technique_id"
}
2
{
"range": {
"@timestamp": {

"format": "strict_date_optional_time",

"gte": "2020-02-16T22:00:00.000Z",
"lte": "2020-02-17T22:00:00.000Z"
}
}
}
1,
"filter": [
{
"match_all": {}
}
1,
"should": [],
"must_not": [
{
"match_phrase": {
"meta_user_name_is_machine": {

"query": "true"

res = helpers.scan(
client = es,
scroll ="2m’,
query = match_all,
index = "logs-endpoint*")

doc_count=0
docs =[]

for docin res:
data = doc['_source']
data['_id'] = doc['_id']
docs.append(doc['_source'])
print("DOC COUNT: %s" % len(docs))

Craete pandas dataframe and normalize fields

df = json_normalize(docs)

109

110

df.rename(columns={'_id": 'id', '@timestamp': 'timestamp'},inplace=True)
df['user_name'] = df['user_name'].str.lower()

Function to generate the graph and visualization
def create_graph(df, filters):

Define id and edge columns

column_ID ="id'

column_edge = 'user_name'

columns = ['mitre_technique_id', 'timestamp', 'winlog.computer_name']

Filter dataset based on values of the ipywidgets form

user_cond = df['user_name'] == filters['user_select']

tactics = [k for k,v in filters.items() if (v == True and k !="user_select')]
tactic_cond = df['mitre_tactic'].apply(lambda x: list(set(x) & set(tactics)))
df_filtered = df[user_cond & tactic_cond]

Remove duplicates and merge dataset to itself

data_to_merge = df_filtered[[column_ID, column_edge,
*columns]].dropna(subset=[column_edge]).drop_duplicates()

data_to_merge = data_to_merge.merge(data_to_merge[[column_ID, column_edge, *columns]],
on=column_edge)

Get remove self connections

df_merged =
data_to_merge[~(data_to_merge[column_ID+"_x"]==data_to_merge[column_ID+"_y"])].reset_index(
drop=True)

Remove bidirectional connection
df_merged.drop(df_merged.loc[(df_merged["timestamp_x"]>df_merged["timestamp_y"]) |
(df_merged["timestamp_x"]==df _merged["timestamp_y"])].index.tolist(), inplace=True)

Remove connections with same technique id

df_merged.drop(df_merged.loc[df_merged["mitre_technique_id_x"]==df_merged["mitre_technique_
id_y"]].index.tolist(), inplace=True)
df_merged.reset_index().drop(columns=['index'])

Create NetworkX directed Graph object and add node attributes (fields)

G = nx.from_pandas_edgelist(df=df_merged, source=column_ID+"_x", target=column_ID+"_y",
edge_attr=True, create_using=nx.DiGraph)

nx.set_node_attributes(G, df_filtered.set_index('id').to_dict('index'))

Find the lognest path
longestPath = nx.algorithms.dag.dag_longest_path(G)

Create new Graph object with only the nodes from the longest path
graph=nx.DiGraph()
nx.add_path(graph,longestPath)

Set node and edge attributes to the new Graph
nx.set_node_attributes(graph,{n: d for n,d in G.nodes(data=True)})
nx.set_edge_attributes(graph, {(e[0],e[1]): e[2] for e in G.edges(data=True)})
(Re)Create graph and visualization when for the ipywidgets controls are changes
def controlls(**filters):
create_graph(df, filters)

Create ipywidgets form to filter the visualization

111

defaut_user = 'administrator’
users = df['user_name'].dropna().unique()

tactics = ['execution’, 'persistence’, 'privilege-escalation’, 'defence-evasion’, 'credential-access’,
'discovery', 'lateral-movement’, 'collection’, ‘command-and-control']

w = {}

w['user_select'] = widgets.Dropdown(
options=tuple(users),
value=defaut_user,
description='User’,
disabled=False,
layout={ 'margin': "Opx 10px Opx Opx"}
)

for tin tactics:
w[t] = widgets.Checkbox(
value=True,
description=t,
disabled=False,
indent=False,
layout={ 'width': 'max-content’, 'margin': "0Opx 10px Opx Opx"}
)

wi = widgets.HBox(tuple(w.values()))
display(wi)
widgets.interactive_output(controlls, w)

