

Event-driven Analysis of Cyber Kill

Chain

Jani Hallberg

Master’s thesis
May 2020
School of Technology
Master's Degree Programme in Information Technology
Cyber Security

Description

Author(s)

Hallberg, Jani
Type of publication

Master’s thesis
Date

May 2020

Language of publication
English

Number of pages

111
Permission for web

publication: x

Title of publication

Event-driven Analysis of Cyber Kill Chain

Degree programme
Master's Degree Programme in Information Technology, Cyber Security

Supervisor(s)

Saharinen, Karo
Kokkonen, Tero

Assigned by

JAMK University of Applied Sciences / JYVSECTEC

Abstract

The number of intrusions into organization IT environments has been increasing over the
years. Detecting intrusions remains a difficult task as the long average adversary dwell
times indicate. Organizations struggle with increasing complexity as they expand their IT
environments into cloud and deal with a growing number of endpoints due to IoT.

This thesis introduces a kill chain based approach for detecting cyber intrusions. In this
approach, events are mapped into well-known adversary techniques and tactic categories.
After the event to adversary technique associations has been identified, data analysis
methods are applied to connect the events together to form the intrusion kill chain.

A proof of concept implementation was used to demonstrate the viability of the approach.
The implementation was constructed in a closed test environment using free and open
source tools. A simulated intrusion scenario was used to demonstrate the use of the
approach in action, as well as to produce an interactive visualization of the intrusion kill
chain.

The result of the implementation demonstrates that constructing an intrusion kill chain
based on event data is viable; however, certain conditions have to be taken into
consideration. The quality of the event data and accuracy of the event to technique
mapping affects the number of false positive adversary technique detections. Choosing the
right fields for connecting events together is crucial, as it impacts on coverage of the
resulting graph of the kill chain. A graph of a kill chain is not in itself hugely valuable
without a proper visualization that highlights anomalies, and which users can use to get
more details about the events.

Keywords/tags
Cyber kill chain, threat hunting, data analysis, graph analysis

Miscellaneous

Kuvailulehti

Tekijä(t)

Hallberg, Jani
Julkaisun laji

Opinnäytetyö, ylempi AMK
Päivämäärä

Toukokuu 2020

Julkaisun kieli

Englanti

Sivumäärä

111
Verkkojulkaisulupa
myönnetty: x

Työn nimi

Tapahtumalähtöinen Analyysi Cyber Kill Chain:sta

Tutkinto-ohjelma
Master's Degree Programme in Information Technology, Cyber Security

Työn ohjaaja(t)

Karo Saharinen
Tero Kokkonen

Toimeksiantaja(t)

JAMK University of Applied Sciences / JYVSECTEC

Tiivistelmä

Organisaatioiden IT ympäristöihin kohdistuneet tietomurrot ovat kasvaneet viime vuosina.
Tietomurtojen havaitseminen on edelleen haasteellista, kuten pitkät viiveet
tunkeutumisen ja havaitsemisen välillä osoittavat. Organisaatiot kamppailevat alati
kasvavan kompleksisuuden kanssa laajentaessaan palvelujaan pilveen ja päätelaitteiden
määrän kasvaessa IoT:n myötä.

Opinnäytetyö esittelee kill chain –pohjaisen lähestymistavan tietomurtojen
havaitsemiseen. Tässä lähestymistavassa ympäristön tapahtumat liitetään tunnettuihin
uhkatoimijoiden käyttämiin tekniikoihin ja taktiikkaluokkiin. Kun uhkatoimijoiden
tekniikoihin liittyvät tapahtumat on tunnistettu, tapahtumat yhdistetään toisiinsa data-
analyysi menetelmiä käyttäen, jolloin niistä muodostuu tietomurron tapahtumien kulkua
kuvaava kill chain.

Lähestymistavan toimivuus todennettiin esimerkkitoteutuksella. Toteutus suoritettiin
suljetussa testiympäristössä käyttäen ilmaisia, avoimen lähdekoodin työkaluja.
Ympäristössä simuloitiin tietomurtoskenaario, jonka pohjalta luotiin kill chain –graafi sekä
interaktiivinen visualisaatio.

Toteutuksen tulokset osoittavat, että kill chain muodostaminen tapahtumadatasta on
mahdollista tietyt ehdot huomioon ottaen. Tapahtumadatan laatu sekä tapahtuma-
tekniikka-liitosten tarkkuus vaikuttaa menetelmän tuottamien väärien havaintojen
määrään. Tapahtumien yhdistämiseen käytettävien kenttien oikea valinta on ratkaisevaa,
koska se vaikuttaa suoraan kill chain –graafin kattavuuteen. Graafi itsessään ei ole erityisen
hyödyllinen ilman visualisaatiota, joka nostaa esiin poikkeamia ja jonka avulla käyttäjät
voivat tarkastella yksittäisten tapahtumien tietoja.

Avainsanat
Cyber kill chain, threat hunting, data analysis, graph analysis

Muut tiedot

1

Contents

1 Introduction ... 7

1.1 Background .. 7

1.2 Goal of thesis ... 8

1.3 Structure of thesis ... 8

2 Research design .. 9

2.1 Research problem ... 9

2.2 Research question ... 10

2.3 Research method .. 10

3 Theory .. 12

3.1 Threat hunting ... 12

3.1.1 Threat hunting process ... 13

3.1.2 Measuring threat hunting... 16

3.2 Attack lifecycle frameworks .. 17

3.2.1 Lockheed Martin Intrusion Kill Chain ... 17

3.2.2 Mandiant’s Attack Lifecycle Model .. 18

3.2.3 MITRE ATT&CK .. 19

3.3 Graph Theory ... 21

4 Implementation .. 23

4.1 Scope ... 23

4.2 Tools .. 25

4.2.1 Sysmon .. 25

4.2.2 HELK .. 26

4.2.3 Pandas ... 29

4.2.4 NetworkX .. 29

4.2.5 Plotly ... 29

2

4.3 Test Environment .. 30

4.4 Testing and Observation ... 31

4.5 Execution ... 33

4.5.1 T1059 - Command-Line Interface ... 33

4.5.2 T1064 – Scripting .. 35

4.5.3 T1086 – PowerShell .. 37

4.6 Persistence .. 40

4.6.1 T1053 – Scheduled Task ... 41

4.6.2 T1060 - Registry Run Keys / Startup Folder .. 44

4.6.3 T1078 - Valid Accounts ... 48

4.7 Privilege Escalation .. 50

4.7.1 T1053 – Scheduled Task ... 51

4.7.2 T1078 - Valid Accounts ... 51

4.7.3 T1050 – New Service .. 52

4.8 Defense Evasion .. 54

4.8.1 T1107 - File Deletion ... 55

4.8.2 T1064 – Scripting .. 56

4.8.3 T1027 - Obfuscated Files or Information .. 57

4.9 Credential Access .. 58

4.9.1 T1003 - Credential Dumping ... 59

4.9.2 T1056 – Input Capture .. 62

4.9.3 T1110 – Brute Force ... 63

4.10 Discovery ... 65

4.10.1 T1087 - Account Discovery ... 66

4.10.2 T1016 - System Network Configuration Discovery 67

4.10.3 T1083 - File and Directory Discovery .. 69

4.11 Lateral Movement ... 71

3

4.11.1 T1105 - Remote File Copy ... 71

4.11.2 T1076 - Remote Desktop Protocol ... 72

4.11.3 T1077 – Windows Admin Shares .. 74

4.12 Command and Control .. 76

4.12.1 T1105 - Remote File Copy ... 76

4.12.2 T1071 - Standard Application Layer Protocol 76

4.12.3 T1043 - Commonly Used Port ... 78

5 Data analysis .. 79

5.1 Introduction ... 79

5.2 Intrusion simulation .. 80

5.3 Data analysis process .. 80

6 Conclusions .. 85

7 Deliberation and futher research .. 87

References ... 89

Appendices .. 94

4

Figures

Figure 1. Threat hunting loop ... 13

Figure 2. Mandiant’s Attack Lifecycle Model .. 18

Figure 3. ATT&CK enterprise matrix ... 20

Figure 4. Graph diagram examples .. 21

Figure 5. Graph types ... 22

Figure 6. Directed and weighted graph .. 23

Figure 7. HELK components ... 26

Figure 8. Test environment .. 30

Figure 9. Logstash filter example ... 32

Figure 10. Logstash filter verification ... 33

Figure 11. T1059 - Process create event .. 34

Figure 12. T1059 Kibana verification .. 35

Figure 13. T1064 – Scripting ... 36

Figure 14. T1064 - Scripting 2 ... 36

Figure 15. T1064 Kibana verification .. 37

Figure 16. T1086 – PowerShell ... 38

Figure 17. T1086 - PowerShell 2 ... 39

Figure 18. T1086 - PowerShell 3 ... 39

Figure 19. T1086 - PowerShell 4 ... 40

Figure 20. T1086 Kibana verification .. 40

Figure 21. Scheduled task creation using schtasks.exe ... 42

Figure 22. T1053 - Scheduled Task ... 42

Figure 23. Scheduled task update .. 42

Figure 24. T1053 - Scheduled Task 2 .. 43

Figure 25. Scheduled task creation using at.exe .. 43

Figure 26. T1053 - Scheduled Task 3 .. 44

Figure 27. T1053 Kibana verification .. 44

Figure 28. Create registry run key .. 45

Figure 29. Windows run key execution .. 46

Figure 30. T1060 - Registry Run Keys / Startup Folder .. 46

5

Figure 31. T1060 Kibana verification .. 47

Figure 32. T1060 - Registry Run Keys / Startup Folder 2.. 47

Figure 33. T1060 Kibana verification 2 ... 48

Figure 34. T1078 - Valid Accounts .. 49

Figure 35. T1078 - Valid Accounts 2 ... 50

Figure 36. T1078 Kibana verification .. 50

Figure 37. T1078 - Valid Accounts 3 ... 52

Figure 38. T1078 Kibana verification 2 ... 52

Figure 39. Creating new service with sc.exe .. 53

Figure 40. T1050 - New Service .. 53

Figure 41. T1050 - New Service 2 ... 54

Figure 42. T1050 Kibana verification .. 54

Figure 43. Deleting file with Remove-Item cmdlet .. 55

Figure 44. T1107 - File Deletion ... 56

Figure 45. T1107 Kibana verification .. 56

Figure 46. PowerShell EncodedCommand ... 57

Figure 47. T1027 - Obfuscated Files or Information .. 58

Figure 48. T1027 Kibana verification .. 58

Figure 49. Sysmon ImageLoad rule .. 60

Figure 50. Invoke-Mimikatz execution ... 60

Figure 51. T1003 - Credential Dumping ... 61

Figure 52. Invoke-Mimikatz DLLs ... 61

Figure 53. T1003 Kibana verification .. 62

Figure 54. T1056 - Input Capture ... 63

Figure 55. T1056 Kibana verification .. 63

Figure 56. T1110 - Brute Force ... 64

Figure 57. T1110 - Brute Force 2 .. 65

Figure 58. T1110 Kibana verification .. 65

Figure 59. Listing users using net.exe .. 66

Figure 60. T1087 - Account Discovery .. 67

Figure 61. T1087 Kibana verification .. 67

Figure 62. Displaying network adapter information using ipconfig.exe 68

Figure 63. T1016 - System Network Configuration Discovery 69

6

Figure 64. T1016 Kibana verification .. 69

Figure 65. Listing directory files with Get-Item PowerShell cmdlet 70

Figure 66. T1083 - File and Directory Discovery .. 70

Figure 67. T1083 Kibana verification .. 71

Figure 68. T1105 - Remote File Copy ... 72

Figure 69. T1105 Kibana verification .. 72

Figure 70. T1076 - Remote Desktop Protocol .. 73

Figure 71. T1076 Kibana verification .. 74

Figure 72. Executing PsExec ... 75

Figure 73. T1077 - Windows Admin Shares ... 75

Figure 74. T1077 Kibana verification .. 75

Figure 75. Executing PowerShell Invoke-WebRequest cmdlet 77

Figure 76. T1071 - Standard Application Layer Protocol ... 77

Figure 77. T1071 Kibana verification .. 77

Figure 78. T1043 - Commonly Used Port ... 78

Figure 79. T1043 Kibana verification .. 79

Figure 80. Event connection example .. 79

Figure 81. Directed event graph ... 80

Figure 82. Elasticsearch document example .. 81

Figure 83. Merged dataframe example ... 82

Figure 84. Plotly graph visualization .. 83

Figure 85. Plotly hovertext ... 84

Figure 86. Plotly figure zoomed ... 84

Figure 87. Ipywidgets filter ... 85

Tables

Table 1. Top 10 adversary groups by number of techniques....................................... 24

Table 2. Top three techniques by tactic category .. 24

7

1 Introduction

1.1 Background

Digitalization has been accelerating over the last few years at an increasing pace.

Increasing number of companies and agencies are starting to offer their services

primarily in a digital form. This evolution has enabled businesses to better serve their

customers and provided new level of convenience for consumers. It is however,

increased user’s reliance on digital systems both as an individual and society level.

The IT landscape itself is changing and growing more complex. Organizations used to

host all the internal and external services on their own premises. Today, most of

them are moving to cloud services for flexibility and scalability reasons, while

keeping some systems internal for security and compliance reasons (Shackleford

2017, 1-2). The number of endpoints is also growing due to rise of IoT devices.

Organizations often do not manage or have control over these third party provided

services and devices that have connections to internal systems. This creates reliance

on external third-party vendors, which presents adversaries new opportunities for

breaching the organization (Aon 2019).

At the same time, defending against adversaries remains difficult for organizations.

According to FireEye’s M-Trends report, average dwell time in 2018 was 78 days

(FireEye 2019). One factor contributing to this is the complexity and noise of the

target environment (Storm, Battaglia, Kemmerer, Miller, Wampler, Whitley & Wolf

2017, 1). Another factor is that organizations don’t have the necessary resources

such as technology, talent or time to counter the threats (Cisco 2018). Meanwhile

the adversaries are getting more sophisticated on evading defenses and taking

advantage of legitimate services for remaining hidden (Cisco 2018).

Organizations have traditionally relied on reactive approach on countering cyber

security threats. This approach includes activities such as reacting to alerts from SIEM

system or responding to incidents reported by users. Over the last few years, a new

approach called threat hunting has emerged. Threat hunting is a more proactive and

human-driven approach compared to the traditional passive and reactive approach

(Lee & Lee 2018, 2).

8

The rise of advanced persistent threats (APT) presented by well-resourced and

trained adversaries requires more threat driven approach with a focus on adversary

behavior. Important aspect of this this threat driven approach is to be able to map

the adversary actions and behaviors into distinct stages of the cyber-attack lifecycle.

Lockheed Martin described this lifecycle as intrusion kill chain. (Hutchins, Cloppert &

Amin, 2010)

1.2 Goal of thesis

The goal of this thesis is to develop method for mapping the adversary techniques

into different stages of the cyber kill chain and to be able to connect them to form

complete cyber-attack lifecycle. The thesis focuses on identifying the techniques

used by adversaries by analyzing event data collected from endpoints and visualizing

the kill chain based on the processed data. End goal is to produce a model that can

be utilized in both small or large IT environments as well as part of training or cyber

security exercises organized by JYVSECTEC. JYVSECTEC is an independent security

research, development, and training center operating as part of JAMK University of

Applied Sciences’ Institute of Information Technology. The results of the thesis will

also be used as part of CYBERDI project, which is a joint project of JAMK and Police

University College to strengthen the competence to detect and investigate

cybercrime, as well as to become profiled as competent cybercrime research experts

(JYVSECTEC 2018).

1.3 Structure of thesis

The second chapter describes the research problem, question and method of the

thesis. The third chapter contains theoretical background of threat hunting, attack

lifecycle frameworks and graph theory that the thesis research bases on. The fourth

chapter discusses the implementation of the test environment, research material

collection and implementation of intervention. The fifth chapter includes data

analysis based on data collected from simulated intrusion scenario and visualization

of the resulting intrusion kill chain. The sixth chapter includes conclusions,

deliberation about overall process of the thesis and validity of the results, as well as

ideas for further research.

9

2 Research design

2.1 Research problem

Advanced persistent threats have evolved over the years to take advantage of

sophisticated evasion methods, such as fileless or living on the land techniques.

These techniques are hard to detect by traditional signature-based antivirus or

endpoint protection products since they leave very little artifacts on the target

machine or utilize legitimate system tools.

Modern operating systems capture vast amount of data about events happening on

the system, such as process creation, network activity and file access. While it is

possible for an adversary to avoid detection by security products, it is almost

impossible to avoid leaving any traces on these event records. The problem is how to

detect the malicious activity from normal user or system activity when a typical

system can generate hundreds of events per minute.

Individual events, such as running of scheduled task does not necessarily indicate a

malicious activity. Scheduling tasks is used frequently for legitimate administrative

tasks; however, it could also be used by an adversary for persistence or lateral

movement. Distinguishing a legitimate use from malicious use by looking at the

individual event is challenging. The individual techniques performed by adversary do

not; however occur a in vacuum but follow a sequence of events. By linking the

individual events together, a more accurate case for whether or not a set of events

constitutes malicious activity can be built. (Storm, et al. 2017, 12)

Mapping events further into different stages of the attack lifecycle and determining

the kill chain helps with determining the motives and goals of the adversary. The

information can also be used for finding weaknesses in defenses, prioritizing

resources and developing better detection methods. The main problem this thesis

focuses on is how to map the events into adversary techniques, attack lifecycle

stages and how to link the events together.

10

2.2 Research question

The main question this thesis aims to answer is:

 Is it possible to identify and link stages of cyber kill chain by collecting and analyzing
event data?

To answer this question, event data must first be collected from target systems for

analysis. Next, the individual techniques used by adversaries must be identified and

mapped to specific events. Finally, the events must be linked together using data

analysis methods to form the kill chain and visualize it for users.

2.3 Research method

The research method chosen for this thesis is design research. Design research is not

a separate research method itself, but a combination of the two main research

approaches: qualitative and quantitative. The main difference to traditional research

approach is that instead of just analyzing and presenting solution to a problem,

design research aims to eliminate the problem. Design research can be thought to

start where the traditional research ends. (Kananen 2015, 39-40)

Design research contains three distinct phases are repeated in a cycle: planning,

implementation and evaluation. The planning phase includes assessing necessity and

financial viability of the change process: gains from the change must outweigh the

costs. The implementation phase includes selecting an appropriate intervention,

material collection and evaluation methods, as well as the implementation of the

intervention. Intervention is a concrete action or actions which lead from an initial

state to the desired state. Verification of intervention results requires setting

measurable goals and metrics. Material collection produces the required information

needed in different phases of the research. It provides a base for evaluation of the

results. Material collection methods can include traditional qualitative or

quantitative methods. The evaluation phase is used to evaluate the impact of the

intervention based on the goals and metrics. It is also important to monitor the

intervention process itself to understand how the result was originated. (Kananen

2015, 50-58)

11

Several models for measuring the research results exist. The most common is the

before and after model where measurement is done before and after the

intervention. The difference of the measurements describes the magnitude of

change but does not indicate how much impact the intervention had on the result.

Before and after measurement can also be done with a control group. This model

gives more reliable results as the external influences can be eliminated when

comparing results of the two groups. The measurement can also be performed only

after the intervention. It is easier to implement than the before and after model;

however, it has weak reliability as there is no initial measurement to compare the

gained results to. (Kananen 2015, 61-63)

The evaluation of validity and reliability is an important part of any research. Validity

is used to evaluate that the research was done correctly and right aspects were

measured. Reliability means that the results are consistent so that if the research is

repeated, the results are the same. Validity and reliability methods depend on the

chosen research approach. (Kananen 2015, 111-112)

The reason design research was chosen as the research method for this thesis was

because of the goal of the thesis in general. The goal is not just to analyze the

problem but to develop, test and validate a solution that solves the problem and that

can be deployed in real environments, which is exactly the goal of design research.

According to Kananen (Kananen 2015, 76), qualitative research material collection

can be divided into secondary and primary methods. Primary material is collected

specially for the research purpose using observation, interview or polling methods.

Secondary material is composed of documents related to the research subject. The

MITRE ATT&CK knowledge base was used as a secondary material for the thesis. The

knowledge base contains information about adversary tactics and techniques that

can be used as a base for primary material collection.

Observation which is part of the qualitative research approach was chosen as a

primary material collection method. Observation can have many different forms,

such as technical observation, covert observation and participant observation.

Observation can be implemented in a structured or unstructured manner. In

structured observation, the variables on which to concentrate are defined in

12

advance, whereas unstructured observation is more free-form and requires more

documentation to understand the phenomenon. In order to meet the requirements

for scientific research, the observation period must be defined and the observations

documented into an observation diary. (Kananen 2015, 78-79)

Despite being subjective, the author of the thesis feels that the observation method

is appropriate since the results of change cannot be easily mathematically measured

by quantitative methods and other qualitative methods such as interviews or polls

would be difficult to arrange within desired timetable. The form of observation used

in the thesis can be described as participant observation since the researcher actively

participates in the collection process. The observation is to be implemented in a

structured manner because the observed variables can be derived from secondary

material. The author decided to measure the results using the only after intervention

measurement. The reason for this is that there is not really anything measurable

before implementing the intervention methods.

Once the material has been collected, it has to be analyzed. As the material is event

data in structured form, mathematical formulas can be used to analyze the data to

find the connection between events.

3 Theory

3.1 Threat hunting

According to SANS Institute (Lee & Lee 2018, 2), threat hunting is a focused and

iterative approach to searching out, identifying and understanding adversaries who

have entered the defender’s networks. A cyber security company Sqrrl that focuses

on threat hunting defines the term as human-driven, proactive and iterative search

through networks, endpoints, or datasets in order to detect malicious, suspicious, or

risky activities that have evaded detection by existing automated tools (Sqrrl n.d., 4).

A few key points can be picket from these definitions. The first point is that threat

hunting focuses on adversaries who have already penetrated the organization and

have access to systems, rather than focusing on preventing the initial compromise.

The key is to detect the adversary behavior rather than prevent it. The second point

13

is that threat hunting is a human driven activity and cannot be fully automated.

Hunting requires familiarity with the environment, ability to detect small anomalies

and adaptation to adversary’s changing behavior. Only a human being can effectively

accomplish these. That said, automation is an important factor on enhancing the

scale, speed, accuracy and effectiveness of the hunting activity. The third point is

that hunting is not just one-time event but an iterative process. Results from a hunt

should be analyzed and used to improve the process and update the hypothesis.

The rise of threat hunting is largely due to a change in the threat landscape. APT

actors can defeat traditional security controls and use advanced techniques to avert

detection and maintain long-term operations against targets. Threat hunting tries to

combat these threats by taking an active approach. Instead of just responding to

alerts or indicators of compromise (IOCs), threat hunting involves active searching for

threats to prevent or minimize damage. (Lee & Lee 2019, 2)

3.1.1 Threat hunting process

For threat hunting to be effective, it is important to have a formal process on how

the hunting takes place. A well-defined process makes hunting more repeatable and

produces measurable results. One example of threat hunting process illustrated in

Figure 1 is the hunting loop created by the Sqrrl company, which consists of four

stages that define an effective hunting approach (Sqrll 2018, 5).

Figure 1. Threat hunting loop (Sqrll 2018, 6)

14

Before starting the hunting process, it is useful to select one of the attack life cycle

frameworks that breaks down the phases of a cyber kill chain and the techniques

used by the adversaries. The framework can provide insight for each phase of the

hunting process, from hypothesis to analytics. The best known frameworks include

Lockheed Martin’s Cyber Kill Chain, Mandiant’s Attacker Lifecycle Model and MITRE

Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) framework. (Kerr

& Ewing 2018, 11)

Threat hunting starts with defining a hypothesis. Hypothesis is an idea or explanation

for something that is based on known facts but has not yet been proved (Cambridge

Dictionary 2019). In the context of threat hunting this basically means creating a

testable idea about what threats might be in the environment and how to go about

finding them. Two key components for generating a hypothesis are observations and

testability. Observations are indicators from which the hypothesis is derived. They

can originate from internal knowledge, such as understanding of the environment or

from previous experiences. Observations may also come from external sources, such

as news, reports or threat intelligence feeds. Hypothesis must be something that can

be tested. Testing the hypothesis requires having the right data, tools and techniques

that can simultaneously take advantage of information from the environment as well

as about likely adversaries. (Lee & Bianco 2019, 1)

Three common types of sources where hypothesis can be derived are intelligence,

situational awareness and domain expertise. Intelligence is usable knowledge

generated from information (Lee & Bianco 2019, 2). In the realm of cyber security,

this information consists mainly of IOCs and adversary tactics, techniques and

procedures (TTPs). There are many freely available threat feeds today that provide

information, such as IP-addresses, domain names, URLs or MD5 hashes of malware,

that can be used as IOCs. While the IOCs themselves may not be enough to generate

a hypothesis, investigating them can spark questions about the target, techniques

and sophistication of the adversary. It is also important to note to which part of the

kill chain, for example reconnaissance or command and control, the IOCs are related

as it will impact the hypothesis. IOCs can lead to quick discoveries; yet, instead of

only relying on them, threat hunters should use them as a starting point and try to

15

refine and contextualize the threat intelligence to stimulate a hypothesis. (Lee &

Bianco 2019, 3)

Situational awareness is the ability to detect changes and anomalies in the target

environment. Situational awareness requires visibility into and understanding of the

organization’s IT environment and the individual elements. Having situational

awareness enables threat hunters to focus on the most important assets of the

organization and to create hypotheses about the type of adversary activity that could

occur in their environments. One method for identifying most important assets is the

Crown Jewels Analysis (CJA). CJA is a process for identifying those cyber assets that

are most critical to the accomplishment of an organization’s mission (MITRE). This

kind of analysis can help to prioritize what kind of data is needed and where to

collect it. People, processes and business resources should also be considered when

building awareness. (Lee & Bianco 2019, 4-5)

The third source for hypothesis is domain expertise. The domain expertise is a

combination of skills, experience and background of the hunters. Threat hunters

often have prior experience on various areas of IT, such as networking, system

administration or data analysis, that should be leveraged on formation of the

hypothesis. In addition to domain expertise, previous hunting experiences and

engagements with adversaries can influence the hypothesis. While previous

experience is valuable, it can also lead to unwanted bias. The threat hunter should be

aware of biases and other bad analytic habits that might influence them to prejudge

a situation. (Lee & Bianco 2019, 6-7)

The second phase of threat hunting process is the investigation. In this phase, the

hunters look for evidence that could prove or disprove the hypothesis (Lee & Bianco

2019, 14). The key areas to focus on is the kind of data available for searching and

how to sort through it. Data is crucial for threat hunting to be successful. No amount

of skilled personnel or expensive tools can make up for the lack of data gathered

from the environment. Examples of such data are event logs of endpoints, flow

records, packet captures and memory dumps. An analyst should not only consider

the quantity of the data, but also that the right data is collected and focus on quality

of the data. Raw data should be parsed, normalized and enriched to provide

maximum value. Analysts should also have tools to search and visualize the data to

16

help them answer questions and pinpoint anomalies across large data sets. (Lee &

Lee 2019, 6)

The third phase is uncovering behavior patterns and adversary TTPs from the

collected data. This phase describes how the evidence can be reduced, grouped, and

analyzed to reach a conclusion (Lee & Bianco 2019, 14). Data analysis methods, such

as stack counting, clustering and grouping, can be used to discover patterns in the

data. Linked data analysis and visualization can link together individual events to

reconstruct complex attack paths. (Sqrll 2018, 6-7).

The last phase of the threat hunting loop is informing and enriching automated

analytics based on the results of the hunt. This reduces the amount of manual work

hunters have to do in the future and frees them to focus on developing new hunts.

Examples of how automation can be implemented include: creating searches that

run automatically, developing playbooks or providing feedback to a supervised

machine learning algorithm. (Sqrll 2018, 7)

The results of the hunt can also be used to reduce the volume of the collected data

by filtering out normal or irrelevant events and to improve active defenses by

updating IPS or SIEM rules. Another important aspect to remember is

documentation. Many of the findings and conclusions can be lost if not documented

during the hunting process. Good documentation supports future hunts and helps

training new members of the hunting team. (Kerr & Ewing 2018, 15-16)

3.1.2 Measuring threat hunting

Measuring threat hunting success is important for the hunting team in order to know

what aspects to improve and to show that hunting produces value for the

organization. Many types of metrics can be used to measure hunts. One simple

metric is whether the hypothesis was confirmed or not. The hypothesis has to be

sufficiently detailed so that the analysts running the hunt can prove or disprove it. If

the hypothesis is too vague, the hunt will not produce useful results. (Kerr & Ewing

2018, 18)

A commonly used metric to measure hunts is the number of findings. These findings

can be number, severity and dwell time of incidents, the number of compromised

17

hosts, discovered security vulnerabilities or new adversary TTPs discovered. The issue

with these metrics is that not every hunt is going to produce measurable findings.

(Kerr & Ewing 2018, 18-19)

Even if the hunting does not uncover any findings, it does not mean that the hunt

was a failure. Hunts usually produce other measurable benefits beside findings.

Hunting can uncover gaps in detection or defenses and produce new methods to fill

them. Insecure or insufficient security practices can be detected and corrected.

Hunting can identify new sources of data to collect. Hunts should also reduce the

number of false positive incidents over time. (Sqrrl n.d, 12)

3.2 Attack lifecycle frameworks

3.2.1 Lockheed Martin Intrusion Kill Chain

Kill chain is a systematic process to target and engage an adversary to create desired

effects (Hutchins, Cloppert & Amin 2010). This process is described as a “chain”

because any single deficiency will interrupt the entire process. Originating from the

military sector, Lockheed Martin has adopted the concept to information security as

the Intrusion Kill Chain. (Ibid.)

The Lockheed Martin Intrusion Kill Chain includes seven phases: Reconnaissance,

Weaponization, Delivery, Exploitation, Installation, Command and Control (C2) and

Actions on Objectives. The reconnaissance phase includes an adversary searching,

identifying and selecting the intrusion target using e.g. public Internet sources. In the

weaponization phase, an adversary creates exploit payload, often by injecting some

sort of remote access Trojan into client application file, such as Microsoft Office

document or PDF. The Delivery is a phase where an adversary transmits the

exploitation payload to the target environment, using methods such as email

attachments or phishing websites. In the exploitation phase, the exploit payload

triggers the adversary’s code by exploiting an application or operating system

vulnerability or the user itself. The installation phase includes installation of a remote

access Trojan or backdoor for maintaining persistence. The command and control

phase includes the compromised host establishing connection to external control

server outside of the environment. Finally, in the actions and objectives phase, the

18

adversary takes action to archive their original objectives, such as stealing data or

moving laterally to more lucrative target. (Ibid.)

The intrusion kill chain provides a structure to analyze intrusions, extract indicators

and drive defensive courses of actions. Organizations can use it to align their

defensive capabilities to specific processes adversaries might undertake to target the

organization, as well as measure their performance and plan investment roadmaps

to rectify any capability gaps. This approach acts as essence of intelligence-driven

defense, where security decisions are based on understanding of the adversary.

(Ibid.)

3.2.2 Mandiant’s Attack Lifecycle Model

Cybersecurity company Mandiant have defined their own lifecycle model called the

Mandiant’s Attack Lifecycle Model. Mandiant’s model describes the different phases

of compromise more granularly than the Lockheed Martin Intrusion Kill Chain. The

model includes eight phases as illustrated in the Figure 2: Initial Reconnaissance,

Initial Compromise, Establish Foothold, Establish Foothold, Internal Reconnaissance,

Move Laterally, Maintain Presence and Complete Mission. (CYBER ATTACK LIFECYCLE

n.d.)

Figure 2. Mandiant’s Attack Lifecycle Model (Mandiant 2013, 27)

In the initial reconnaissance phase, the adversary conducts research on target,

chooses target assets (e.g. systems, people and processes) and an attack

methodology. The initial compromise phase includes the adversary successfully

executing malicious code on the target systems. In the establish foothold phase, the

19

adversary establishes persistent control over the compromised systems. In the

escalate privileges phase, the adversary aims to gain greater access to the

compromised systems, for example by compromising an administrative user account.

The internal reconnaissance phase includes the adversary discovering information

about structure, systems or users in the target environment. In the move laterally

phase, the adversary uses the information gained in the reconnaissance phase to

expand their foothold by moving between systems in the compromised

environment. The maintain presence phase includes the adversary installing different

types of backdoors and remote connections to further solidify their foothold. In the

complete missions phase, the adversary completes their original, which could be to

steal intellectual property or cause service disruption. (CYBER ATTACK LIFECYCLE

n.d.)

3.2.3 MITRE ATT&CK

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) is a

globally-accessible knowledge base of adversary tactics and techniques based on

real-world observations (MITRE ATT&CK® n.d.). The ATT&CK is developed by MITRE

Corporation, a non-for-profit organization which provides engineering and technical

guidance for the United States federal government. Started in 2013, the project was

released to the public in 2015 (Storm 2018).

The ATT&CK focuses on identifying adversary behaviors instead of typical indicators,

such as IP addresses, domain names or file hashes. Focusing on adversary tactics and

techniques allows development of analytics that better capture how adversaries

interact with systems during an operation. Another focus of the ATT&CK is

applicability to real environments. The techniques included in the framework should

be based on real observed incidents. (Storm 2018)

The ATT&CK knowledge base consists of adversarial techniques, which contain

breakdown and classification of offensively oriented actions that can be used against

particular platforms. The ATT&CK contain information on how a technique works, list

of the adversary groups that have utilized it, as well as detection and mitigation

methods. Techniques are further categorized into tactics, which describe an

adversary’s tactical objectives during operations, such as persist, discover targets or

20

move laterally. Some techniques are included in multiple tactic categories as they

can be used to accomplish multiple different objectives. In other words, techniques

describe how an adversary performs an action and tactics describes why they do it.

(Storm 2018)

The relationships between the tactics and techniques are visualized in the ATT&CK

matrices. The ATT&CK includes matrices for enterprise, PRE-ATT&CK, mobile and ICS.

Figure 3 illustrates the (partial) enterprise matrix. The enterprise matrix includes 12

tactics: initial access, execution, persistence, privilege escalation, defense evasion,

credential access, discovery, lateral movement, collection, command and control,

exfiltration and impact. The tactics and techniques covered in the thesis are

described in the Implementation section.

Figure 3. ATT&CK enterprise matrix (partial)

Compared to other intrusion kill chain models, the MITRE ATT&CK provides the most

comprehensive set of intrusion phases and adversary behaviors. The ATT&CK

includes plenty of actionable information about different techniques, such as

detection and mitigation methods that can be used, for example, to perform

defensive gap analysis, red teaming or adversary emulation. MITRE also provides

additional open source tools based on the ATT&CK information, such as Cyber

Analytics Repository (CAR) and CALDERA adversary emulation framework.

21

3.3 Graph Theory

Graph theory is a subset of discrete mathematics that specializes on studying of

graphs. A graph consists of a set of vertices (often referred as nodes) connected by a

set of edges (often referred as links). In other words, a graph G is an ordered pair

consisting of a set V(G) of vertices and a set E(G), disjoint from V(G), of edges,

together with an incidence function ψG that associates with each edge of G an

unordered pair of vertices of G (Boundy & Murty 2008, 2).

Graphs are used to model relationships between objects and are usually represented

graphically, which helps to understand many of their properties. Each vertex in a

graph is indicated by a point, and each edge by a line joining the points. Relative

positions of the points (vertices) and lines (edges) usually have no significance. Figure

4 shows two example graph diagrams. (Boundy & Murty 2008, 2)

Figure 4. Graph diagram examples

The ends of an edge are said to be incident with the edge, and vice versa. Two

vertices incident with a common edge or two edges incident with a common vertex

are considered adjacent, and two distinct adjacent vertices are considered

neighbours. An edge with identical ends is called a loop, while an edge with distinct

ends is called a link. Two or more links with the same pair of ends are said to be

parallel edges. A graph with no loops or parallel edges is called a simple graph.

(Boundy & Murty 2008, 3-4)

Path is a simple graph with vertices arranged in a linear sequence in a way that two

vertices are adjacent if they are consecutive in the sequence and are nonadjacent

otherwise. Cycle is a simple graph whose vertices can be arranged in a cyclic

22

sequence, for example three or more vertices arranged in a cyclic sequence in such a

way that two vertices are adjacent if they are consecutive in the sequence, and are

nonadjacent otherwise. Degree of a vertex is the number of edges incident to it.

(Boundy & Murty 2008, 4) Figure 5 illustrates examples of different graph types.

Figure 5. Graph types

Directed graph is a type of graph where the edges have assigned orientations.

Formally, a directed graph D is an ordered pair (V (D),A(D)) consisting of a set V := V

(D) of vertices and a set A := A(D), disjoint from V (D), of arcs, together with an

incidence function ψD that associates with each arc of D an ordered pair of (not

necessarily distinct) vertices of D (Boundy & Murty 2008, 31). If a is an arc and

ψD(a)=(u,v), then a is said to join u to v. The vertex u is said to be tail of a, and the

vertex v its head. The vertex u is also said to dominate vertex v. Vertices which

dominate a particular vertex are considered be its in-neighbors and those that are

dominated by the vertex its outneighbours. (Boundy & Murty 2008, 31)

All concepts of a regular graph apply to directed graphs as well, such as the degree of

vertex. Two concepts specific to directed graphs are indegree and outdegree.

Indegree of a vertex v is the number of arcs with head v and outdegree is the number

of arcs with tail v. (Boundy & Murty 2008, 32)

Weighted graph is a type of graph where vertices or edges have numeric weights

associated with them. These weights could represent, for example a cost, distance or

capacity. Weighted graphs are used in longest or shortest path calculations. (Boundy

& Murty 2008, 50) Figure 6 illustrates examples of directed and weighted graphs.

23

Figure 6. Directed and weighted graph

4 Implementation

4.1 Scope

The implementation of the research starts with the definition of scope. Scope

definition means narrowing down the subject into most relevant items. In the

context of the thesis, this means selecting platforms, event sources, tactics and

techniques to concentrate on. Defining the scope is necessary for preventing the

thesis from expanding too large.

The author used Microsoft Windows as the operating system platform for the

implementation and Windows Event Log and System Monitor (Sysmon) as event

sources on the operating system. These selections are based on the requirements of

thesis assigner. As previously mentioned, the information about adversary tactics are

sourced from MITRE ATT&CK knowledge base. From the ATT&CK Enterprise Matrix

12 tactic categories, eight were chosen for the implementation: execution,

persistence, privilege escalation, defense evasion, credential access, discovery,

lateral movement and command and control. These tactics were chosen based on

the number of known techniques they contain and the requirements from the thesis

assigner.

Since the number of different techniques is too large to fully cover in this thesis,

three techniques from the previously mentioned tactic categories were selected

based on popularity among adversary groups. In addition to their website, MITRE

offers the ATT&CK content in Structured Threat Information Expression (STIX) format

from their Trusted Automated Exchange of Intelligence Information (TAXII) server.

24

STIX is a language and serialization format used to exchange cyber threat intelligence

(CTI) in a consistent and machine-readable manner (Jordan, Piazza & Wunder 2017).

TAXII is an application layer protocol used to exchange CTI over HTTPS by defining an

API that aligns with common sharing models (Davidson, Jordan & Wunder 2017).

Python libraries developed by MITRE were used to fetch STIX 2 objects from their

TAXII server and Pandas library used to group, sort and count the technique objects

to get the top three by tactic category. The first step is to get the top 10 adversary

groups with most techniques. The script developed to accomplish this is displayed in

Appendix 1. Table 1 illustrates output of the script.

Table 1. Top 10 adversary groups by number of techniques

Group Techniques

APT32 55

Lazarus Group 54

APT28 48

APT3 43

OilRig 41

Dragonfly 2.0 41

Threat Group-3390 39

Patchwork 34

menuPass 32

BRONZE BUTLER 31

The second step is to get the top most used techniques the groups for each tactic

category. The script developed to accomplish this is displayed in in Appendix 2. Table

2 illustrates output of the script.

Table 2. Top three techniques by tactic category

Tactic Technique Count

command-and-control Remote File Copy 10

 Standard Application Layer Protocol 7

 Commonly Used Port 5

credential-access Credential Dumping 10

 Input Capture 6

 Brute Force 4

defense-evasion File Deletion 10

 Scripting 9

 Obfuscated Files or Information 8

discovery Account Discovery 7

 System Network Configuration Discovery 7

25

 File and Directory Discovery 7

execution Command-Line Interface 10

 Scripting 9

 PowerShell 9

lateral-movement Remote File Copy 10

 Remote Desktop Protocol 6

 Windows Admin Shares 3

persistence Scheduled Task 8

 Registry Run Keys / Startup Folder 7

 Valid Accounts 7

privilege-escalation Scheduled Task 8

 Valid Accounts 7

 New Service 4

4.2 Tools

The implementation of the thesis required tools for collecting events from endpoints,

processing and analyzing them. The tools were selected based on how well the

features supported the objectives of the thesis and how popular they were among

the threat hunting community. A requirement from the thesis assigner was that the

tools should be free and/or open-source.

4.2.1 Sysmon

System Monitor (Sysmon) is a Windows system service and device driver that

monitors and logs system activity to a Windows Event Log. It is part of Windows

Sysinternals collection of tools created by Mark Russinovich (Sysmon 2019). Once

installed, Sysmon provides detailed information on many common system activities

including:

 Process creation and termination

 File creation

 Network activity

 Registry modification

 Driver loading

 DLL loading

Sysmon enables granular filtering and tagging of events the user is interested in

collecting. (Sysmon 2019)

26

Sysmon in widely used in the security and threat hunting communities for its ability

to generate information about events that Windows Event Log does not capture.

There are many ready-made Sysmon configuration files available for security

monitoring. The one chose for the base configuration of the implementation was the

SwiftOnSecurity configuration, which is one of the most popular Sysmon

configurations among security community. It aims to capture the most important

events without generating an excess amount of data.

4.2.2 HELK

The Hunting ELK (HELK) is an open source threat hunting platform created by

Roberto Rodriguez. HELK provides advanced analytics capabilities, such as structured

streaming, graph analytics and machine learning of which hunters can take

advantage. It is composed of several existing open-source components integrated

into ELK stack. HELK is distributed in Docker containers, which makes it easy to

deploy and scale. (Rodriguez 2018a). Figure 7 illustrates the HELK components.

Figure 7. HELK components (Rodriguez 2018a)

HELK currently supports data collection from Windows endpoints using Winlogbeat,

which streams Windows Event Logs to Kafka. Kafka is a distributed publish-subscribe

messaging system used for building real-time data pipelines and streaming apps.

Data consumers can subscribe to Kafka topics to receive data. (Rodriguez 2018)

The core of the HELK platform is the ELK stack, which consists of Elasticsearch,

Logstash and Kibana. Elasticsearch is a distributed search and analytics engine for all

types of data, structured or unstructured. It can scale horizontally for resiliency and

27

allows parallel processing across distributed nodes. Elasticsearch allows running of

complex queries against data and uses aggregations to generate summaries.

Elasticsearch is the central repository where ingested data is stored in HELK.

Elasticsearch is well suited for log data storage because of its ability to ingest various

types of data, speed and scalability and its powerful query language. Analytics tools

in the HELK platform use Elasticsearch REST API to access the data. (What is

Elasticsearch? n.d.)

Logstash is a data collection engine with real-time, pluggable pipelining capabilities.

Logstash can receive data from many different sources, parse, normalize and enrich

it, and send the processed data to some other destination for storage or additional

processing. The event processing pipeline consists of three stages: inputs, filters and

outputs. The input stage handles getting the data into Logstash from different

sources, for example files on disk or through protocols such as Syslog. The filter stage

filters, parses, normalizes and enriches the data. Finally, the output stage will handle

sending the data to a particular destination, for example a database. Logstash ships

with a wide range of different plugins for each of the three stages. HELK uses

Logstash for its flexible event processing pipeline and native integration with

message queues and Elasticsearch. HELK Logstash receives data from Kafka topics,

processes it and sends to Elasticsearch. HELK also includes configuration for parsing

Windows Event Logs, Sysmon and PowerShell logs. (Logstash Introduction n.d.)

Kibana is an analytics and visualization platform designed to work with Elasticsearch.

Kibana can be used to view, search and visualize data stored in Elasticsearch.

Kibana’s Discovery view provides an easy to use interface for exploring data,

executing search queries and filtering the results. Query results can be filtered by

field values for specified timeframe and saved for later use. The visualize view

enables creation of visualizations, such as line, bar or pie charts based on data.

Visualizations can be combined into dashboards on the dashboard view. HELK

includes ready-made saved searches, visualizations and dashboards for threat

hunting. (Introduction n.d.)

In addition to ELK stack, HELK includes advanced analytics capabilities via Apache

Spark and GraphFrames. Apache Spark is a fast and general-purpose cluster

computing system that provides high-level APIs in Java, Scala, Python and R

28

languages. Spark is based on a resilient distributed dataset (RDD), a collection of

elements partitioned across the nodes of the cluster. This architecture enables

parallel processing of data and fault-tolerance. Spark supports a rich set of higher-

level tools including Spark SQL for SQL and structured data processing, MLlib for

machine learning, GraphX for graph processing, and Spark Streaming. (Spark

Overview n.d.)

HELK includes ES-Hadoop library for Spark to be able access data stored on

Elasticsearch. Elasticsearch-Hadoop (ES-Hadoop) is a stand-alone, self-contained,

small library that allows Hadoop jobs to interact with Elasticsearch. It can be

described as a connector that allows data to flow bi-directionally so that applications

can leverage the Elasticsearch engine capabilities transparently. ES-Hadoop acts as a

passive component, allowing Hadoop jobs to use it as a library and interact with it

through APIs. ES-Hadoop support Spark, Spark Streaming, SparkSQL and MapReduce

based libraries such as Hive, Storm, Pig and Cascading. (Elasticsearch for Apache

Hadoop n.d.)

GraphFrames is a package for Spark, which provides DataFrame-based Graphs. It

aims to extend the functionality of existing Spark graph analytics component GraphX

by taking advantage of Spark DataFrames. The extended functionality includes motif

finding, DataFrame-based serialization, and highly expressive graph queries.

Graphframes provides high-level APIs in Scala, Java, and Python, that make it easy to

search for patterns within graphs and find important vertices. HELK enables users to

run queries using GraphFrames to find connections between event data stored in

Elasticsearch. (GraphFrames Overview n.d.)

HELK also includes JupyterLab for running Spark and GraphFrame queries through

Spark Python API. JupyterLab is a web-based interactive development environment

for Jupyter notebooks, code, and data. Jupyter Notebook is an open-source web

application that allows users to create and share documents that contain live code,

equations, visualizations and narrative text. Jupyter Notebook can run code

interactively and display the output inside the document. JupyterLab provides a

flexible web-interface, which can be arranged into supporting many types of

workflows. JupyterLab features include consoles for running code, terminals for

system shells and support for multiple file formats. (Jupyter n.d.)

29

HELK was chosen as the threat hunting platform for the implementation, because it

includes all the essential components for data collection, processing and visualization

in a single integrated and easy to install package.

4.2.3 Pandas

Pandas is a Python package that provides fast, flexible, and expressive data

structures designed to make working with data both easy and intuitive. It aims to be

the fundamental high-level building block for practical, real world data analysis in

Python. Pandas can handle many types of data, such as tabular, ordered and

unordered, arbitrary matrix or any other statistical data. It also enables easy

reshaping, slicing, and aggregation of data. Pandas is built on top of a powerful

scientific computing library NumPy. (Package overview n.d.)

Pandas provides two primary data structures: series and dataframe. Series is a 1-

dimensional labeled homogeneously-typed array. Dataframe is a 2-dimensional

tabular, column-oriented data structure with both a column and a row index. Panda’s

dataframe was used to store and manipulate event data from Elasticsearch. (Package

overview n.d.)

4.2.4 NetworkX

NetworkX is a Python package for creation, manipulation, and study of the structure,

dynamics, and functions of complex networks (NetworkX n.d.). NetworkX features

data structures for graphs, directed graphs and multigraphs. It supports many

standard graph algorithms, network structures and analysis measures. NetworkX

allows graph nodes to be represented as any object (e.g. text, image) and associating

arbitrary data on graph edges (e.g. weights or other attributes). NetworkX was used

for generating the kill chain graph from event data. (NetworkX n.d.)

4.2.5 Plotly

Plotly.py is an interactive, open source Python plotting library supporting over 40

unique chart types covering a wide range of statistical, financial, geographic,

scientific, and 3-dimensional data visualization use-cases. Plotly.py is built on top of

Plotly JavaScript library (plotly.js), enabling creation of interactive web-based

30

visualizations. Plotly visualizations can be displayed in Jupyter notebooks, saved as

standalone HTML files, exported as image files or served through Python web

application by using Dash. Plotly was used for visualizing graphs inside Jupyter Lab.

(Getting Started with Plotly in Python n.d.)

4.3 Test Environment

In order to observe event data generated by different adversary techniques, a simple

test environment was set up. The environment was built on top of JYVSECTEC

virtualized private cloud, and it consists of workstation and server segments with a

router in the middle. The workstation segment includes two Windows 7 and two

Windows 10 workstations. The server segment includes Windows Server 2012 R2

server that acts as Active Directory Domain Controller and CentOS 7 Linux server that

hosts the HELK platform. The test environment is illustrated in the Figure 8.

dc.example.com
Windows Server 2012 R2

172.16.100.10

ws-w10-1
Windows 10
172.16.10.10

helk.example.com
CentOS 7

172.16.100.50

ws-w10-2
Windows 10
172.16.10.20

ws-w7-1
Windows 7

172.16.10.30

ws-w7-2
Windows 7

172.16.10.40

Server

Workstation

Figure 8. Test environment

The workstations and the domain controller are part of the actual test environment

where the techniques were observed. Event data collected from these endpoints was

sent to HELK server for parsing, normalization and analysis.

31

Few preparation tasks needed to be done before the actual testing and observation

phase. The first step was to install the latest updates for the operating systems. The

next step was to install latest version of Sysmon (10.2) with the SwiftOnSecurity base

configuration on workstations and domain controller. Winlogbeat was also installed

on the endpoints for shipping the Windows Event Logs to HELK server. Winlogbeat

configuration included in HELK was used which monitors event logs from standard

Application, Security and System channels, as well as Sysmon, Powershell and WMI-

activity channels. The configuration sends event logs to Kafka winlogbeat-topic on

the HELK server. The complete configuration is listed in Appendix 5.

4.4 Testing and Observation

The testing and observation part of the implementation includes identifying the data

sources for each selected technique, testing the techniques on the environment,

observing the generated events and developing rules to map the relevant events to

right techniques and tactic categories.

Identification of the data sources consists of recognizing the events related to the

specific technique. This could include event types, such as failed login or specific

fields inside an event, such as process start event with a specific process name. The

MITRE ATT&CK knowledge base lists data sources and detection methods for most of

the techniques as well as links to security reports that go into detail on how APT

groups have utilized the technique. Appendix 4 contains a matrix of technique and

tactic categories with the related Windows Event Log IDs observed during the

testing.

After the data sources associated with a technique are identified, the next step is to

test the execution of the technique, observe the generated events and record each

observation into the observation diary. A simple spreadsheet for the observation

diary was used, where each line represents an observed technique and columns the

observed items. For each technique, the observation time, tactic category, technique

ID, technique name, operating system, description of steps to execute the technique

and list of relevant generated events were recorded. The observation diary is

displayed in Appendix 3.

https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/SwiftOnSecurity/sysmon-config

32

Based on the observed events, rules were developed to match specific types of

events or their content and enrich the events with information about the technique.

This process can be implemented on the endpoint where the events are generated

using, for example Sysmons ability to tag events, or on the HELK server using the

Logstash data enrichment capabilities. Logstash was chosen because of its rich data

matching capabilities and ability to enrich data from external sources. Another

advantage of using this approach is that Logstash processes all the events collected

from the environment, not just what Sysmon produces.

Winlogbeat, which streams events to Logstash will automatically parse them into

structured format that can be easily consumed by Logstash. The HELK Logstash

includes rules for further parsing and normalizing the events into a form that is easy

to filter and aggregate. These make it easier to create Logstash filters that match

events based on the content.

For enriching the event data with information about the techniques, the MITRE

Python libraries were again used to fetch technique information from their servers,

which then was uploaded into Elasticsearch. This made it possible to use Logstash

Elasticsearch-filter to find a specific technique document from Elasticsearch based on

technique ID and then to add certain fields from that technique document to the

events itself.

Figure 9 contains an example of Logstash filter to match events and enrich then with

information about a technique.

Figure 9. Logstash filter example

33

In row 3 is the condition to match the events to the filter, in this case the

process_name or the process_parent_name fields must match to “cmd.exe”. If the

event matches the condition, the Elasticsearch filter (rows 5-13) is executed.

Elasticsearch filter looks for documents from the Elasticsearch (row 6) mitre-attack

index (row 7). If the document matches the query (row 8) that specifies technique ID,

the fields (tactic, technique, technique_id) from that document are added to the

event. Similar filters were created for each observed technique. Each filter was

placed in a separate file on /root/HELK/docker/helk-logstash/pipeline folder where

Logstash reads its pipeline configuration.

Kibana was used to verify that the right information was added to the events, as seen

in Figure 10.

Figure 10. Logstash filter verification

4.5 Execution

Execution is a tactic where the adversary is trying to run malicious code on the

systems to which he has gained access. This is often paired with techniques from

other tactic categories to achieve broader goals, such as network discovery or

exfiltration of data. (Execution n.d.)

4.5.1 T1059 - Command-Line Interface

Command-line interface (CLI) is a way to interact with computer systems by issuing

commands using lines of text either locally or via a remote session. It is a common

feature across many operating systems, including Windows and Unix-type operating

systems such as Linux and macOS. Adversaries often use command-line interface to

34

execute built-in commands in operating systems and launch external software.

(Command-Line Interface n.d.)

The main command interpreter for Windows is the Cmd.exe. Windows PowerShell

also provides command line interface, which is covered separately in the technique

T1086. According to MITRE ATT&CK, data sources for command-line interface are

process and process command-line parameter monitoring. Both data sources can be

captured using Sysmon. According to the documentation, Sysmon “logs process

creation with full command line for both current and parent processes” (Sysmon

2019).

The technique was tested on workstation ws-w10-1 by opening the cmd.exe and

executing command “netstat –a –n”, which can be used to list open network

connections. Resulting events were recorded to the observation diary. Running the

test resulted in Sysmon Event ID 1 (Process Create), as illustrated in Figure 11:

Figure 11. T1059 - Process create event

As can be seen in the Figure 11, Sysmon records both the parent process

(ParentImage) and the actual process (Image) as well as command-line parameters

for both. To match this technique in Logstash, filter as seen in Appendix 6 was

created that matches when the process_name or the parent_process_name is

35

“cmd.exe”. This filter matches processes that are started from Cmd.exe or when

Cmd.exe is started by another process. Figure 12 verifies that technique information

was added to the event after the test was re-run:

Figure 12. T1059 Kibana verification

4.5.2 T1064 – Scripting

Scripting is a way to automate the execution of tasks in a programmatic way. Many

command-line interpreters, such as Windows Cmd and PowerShell support execution

of scripts at run-time. In addition to execution other processes, scripting languages

can often interact with operating system APIs directly. Common scripting languages

used in Windows platform are batch files, PowerShell and VBScript. Windows also

has Windows Script Host (WSH) engine which provides environment for running

scripts in a variety of languages. WSH scripts can be executed in command-line mode

using cscript.exe or in GUI mode using wscrip.exe (Scripting n.d.)

Adversaries prefer scripting for speeding up operations and ability to bypass process

monitoring mechanisms by interacting through the operating system APIs.

Adversaries can download scripts from the Internet and execute them without

creating files on the system. Scripts can also be hidden inside other files, such as

Office documents or PDF files, which execute the script when a user opens the file.

Scripting is heavily utilized by popular offensive frameworks such as Metasploit and

PowerSploit. (Scripting n.d.)

MITRE ATT&CK lists process, file and command-line parameter monitor as data

sources for detecting scripting. The technique was tested by first creating a simple

batch file “test.bat” which simply prints a text to console and executes it by using the

Windows Run dialog. This generated the Sysmon Process Create event shown in

Figure 13:

36

Figure 13. T1064 – Scripting

A similar VBScript file “test.vbs” was also created and executed using cscript.exe.

Figure 14 displays the resulting event.

Figure 14. T1064 - Scripting 2

37

In order to match scripting related events, Logstash filter was created (Appendix 7)

that matches when WHS engine is executed using the cscript.exe or wscript.exe. The

same filter also matches when the process_command_line includes filename

extension used with common scripting languages. Figure 15 verifies that the

technique information was added to the events after the test was re-run:

Figure 15. T1064 Kibana verification

4.5.3 T1086 – PowerShell

PowerShell is an interactive command-line interface and scripting language built on

.NET. It helps system administrators to automate common operating system

management tasks and provides the command-line for executing other processes.

PowerShell has been included in Windows since Windows 7 and the latest version,

PowerShell Core is a fully open-source and cross-platform implementation.

(PowerShell n.d. a)

Most of the tasks in PowerShell are executed using cmdlets, which are simple, single-

function command-line tools built into the shell. Unlike most text-based shells,

PowerShell accepts and returns objects, which can be piped from one cmdlet to

another. PowerShell providers allow interaction with data stores such as registry and

certificate stores as easily as accessing the file system. (Getting Started with

Windows PowerShell n.d.)

PowerShell has become a popular tool among adversary groups because of its

versatility and wide range of capabilities to automate, hide and obscure activities.

PowerShell scripts can be hidden into other files, used to run executables from the

Internet and even embedded into other applications for execution without the

powershell.exe interpreter. PowerShell based offensive testing tools include Empire,

PowerSploit and PSAttack. (PowerShell n.d. b)

38

There are multiple ways to capture PowerShell activity, including DLL monitoring,

process monitoring, registry monitoring, file monitoring and logging (PowerShell n.d.

b). The implementation concentrates on PowerShell logging, because it includes the

most amount of information and catches instances where PowerShell is run without

executing the powershell.exe.

PowerShell has support for three types of logging: module logging, script block

logging, and transcription. These events are written to the Windows Event Log under

the path: Microsoft-windows-PowerShell/Operational. Module logging (Event ID

4103) records pipeline execution details as PowerShell executes, including variable

initialization and command invocations. It also records the output of the executed

commands. Script block logging (Event ID 4104) records blocks of code as they are

executed by the PowerShell engine, capturing the full context of the executed code,

including scripts and commands. Script block logging will also de-obfuscated code

obfuscated by PowerShell EncodedCommand argument or commonly used XOR and

Base64 encodings. Transaction logging creates a unique record of every PowerShell

session including all input and output. Transactions are not written to Windows

Event Log but into text files that are broken out by user and session. (Dunwoody

2016)

For testing the technique, both module and script block logging were enabled on all

hosts through Active Directory Group Policy. These event types record all the

relevant PowerShell activity and can be easily consumed through the event log.

The technique was first tested by creating “test.ps1” script that simply executes the

“get-process” cmdlet. The script was executed using the PowerShell interpreter,

which generated the event shown in Figure 16.

Figure 16. T1086 – PowerShell

39

Figure 17. T1086 - PowerShell 2

Figure 16 displays a script block logging event which states that script ”test.ps1” was

executed and it contains “get-process” statement. Figure 17 displays a module

logging event that list more information about the “get-process” command

execution. Multiple other module and script block events were also generated.

It was tested if the PowerShell logging would capture executing script from within

another application. For this purpose, existing C#/.NET application developed by

Keith Babinec (Babinec 2014) was used. Executing the binary

“PowerShellExecutionSample.exe” generated the events displayed in Figure 18 and

Figure 19:

Figure 18. T1086 - PowerShell 3

40

Figure 19. T1086 - PowerShell 4

Script block event in Figure 18 displays the content of the embedded script and

module logging event in Figure 19 correctly displays that the “get-service” command

was executed from the “PowerShellExecutionSample.exe” binary.

To match these events, Logstash filter as seen in Appendix 8 was created that

matches events with ids of the module and script block logs. Figure 20 verifies that

technique information was added to the events after the test was re-run:

Figure 20. T1086 Kibana verification

4.6 Persistence

Persistence is a tactic where the adversary aims to maintain their foothold on

systems where they have gained access. An adversary might lose access to the

systems due to operating system restarts, credential changes, connection blocking or

41

removal of files or tools. The techniques in this category include any access, action,

or configuration changes that let the adversary maintain their foothold on systems,

such as replacing or hijacking legitimate code or adding startup code. (Persistence

n.d.)

4.6.1 T1053 – Scheduled Task

Task scheduling is an operating system function that lets users create tasks that are

run periodically or executed once on a specific time. They are often used to

automate routine tasks and system maintenance. Adversaries can use scheduled

tasks for various tactics, including execution, persistence and privilege escalation. For

persistence, adversaries can create scheduled tasks that download and execute

malicious code to regain foothold even if the malicious process is interrupted or code

removed.

Windows has a built-in component called Task Scheduler for performing automated

tasks on a chosen computer. It executes tasks based on a trigger that can be based

on features such as specific time or schedule, user logging in, system boot, or specific

event happening on the system. The action that the task executes can be showing a

message, sending email, executing command or firing a COM handle. Task Scheduler

can be managed through graphical user interface taskschd.msc or command-line

tools schtasks.exe and at.exe. (Task Scheduler n.d. a)

Data sources for monitoring scheduled tasks include file monitoring, process

monitoring and event logs (Task Scheduler n.d. b). Windows can generate event log

records when a scheduled task is created (ID 4698), deleted (ID 4699), enabled (ID

4700), disabled (ID 4701) or updated (ID 4702). These events are written into

Windows Security log.

In order to enable logging of task scheduler activity events on the test environment,

Audit Other Object Access Events audit policy had to enable the for all hosts through

Active Directory Group Policy. The technique was then tested by first creating a

simple scheduled task using the “schtasks.exe” as shown in Figure 21:

42

Figure 21. Scheduled task creation using schtasks.exe

The task is named “test” and executes C:\test.bat file every minute. The task creation

generates Event ID 4698 as illustrated in Figure 22:

Figure 22. T1053 - Scheduled Task

The event contains information such as the task name, triggers and actions. Event ID

4702 (Figure 24) is generated when the task is changed:

Figure 23. Scheduled task update

43

Figure 24. T1053 - Scheduled Task 2

Task creation was also tested using the “at.exe” (Figure 25), which is used to

schedule a task to be run on a specific time.

Figure 25. Scheduled task creation using at.exe

The task created (ID 4698) event was again generated as seen in Figure 26:

44

Figure 26. T1053 - Scheduled Task 3

To match the scheduled task creation and update events, a Logstash filter was

created (Appendix 9) that matches the event IDs 4698 and 4702. Figure 27 verifies

that the technique information was added to the events.

Figure 27. T1053 Kibana verification

4.6.2 T1060 - Registry Run Keys / Startup Folder

Windows registry includes specific keys called Run and RunOnce, which cause

programs to run each time that a user logs on. The difference between Run and

RunOnce is that Run is executed every time a user logs on whereas RunOnce key is

removed after execution. The value for the keys is a command line that gets

executed and it is possible to register multiple programs under any particular key.

(Run and RunOnce Registry Keys n.d)

45

While the registry run keys are often used by legitimate software, they are also used

by adversaries for establishing persistency on a system. Another common

persistence technique the adversaries use is Windows startup folders. Windows

startup folder contains shortcuts to an application that starts when the system boots.

Detecting the use of these techniques requires monitoring changes to the relevant

registry keys and monitoring file system changes on the startup folder locations. The

paths from registry run keys are:

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

Changes to registry keys can be monitored using Sysmon and the configuration used

in the implementation includes a rule that matches the key paths:

<TargetObject condition="contains">CurrentVersion\Run</TargetObject>

To test run keys, a registry value as seen in Figure 28 was created:

Figure 28. Create registry run key

Here, a string type value “Test” is created for the Run key under the

HKEY_CURRENT_USER hierarchy. It contains value “C:\test.bat” which instructs

Windows to run the script next time the user logs on. This can be verified from the

Sysmon Process create event generated after logging on as seen in Figure 29.

46

Figure 29. Windows run key execution

Creation of the registry value generated the Sysmon event illustrated in Figure 30.

Figure 30. T1060 - Registry Run Keys / Startup Folder

The figure above shows that Sysmon records type of change, target key, value and

process that requested the change. To catch events where registry run key is set, a

Logstash filter was created (Appendix 10) that matches events with event ID 13

(Registry value set) and registry path that contains “CurrentVersion\Run”. Figure 31

47

verifies that the technique information was added to the event.

Figure 31. T1060 Kibana verification

Windows startup folders are located under individual user’s profiles

(C:\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup) and under ProgramData for all users

(C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp). Sysmon

configuration used in the implementation includes a rule that captures file creation

events on these folders:

<TargetFilename condition="contains">\Startup\</TargetFilename>

To test the rule, a shortcut pointing to the “C:\test.bat” file on the startup folder for

all users was created. The shortcut creation generated Sysmon file created event ID

11 as illustrated in Figure 32:

Figure 32. T1060 - Registry Run Keys / Startup Folder 2

An entry previous Logstash filter was added to matches the events with event ID 11

(File created) and the file name containing “\startup”. Figure 33 verifies that the

technique information was added to the event.

48

Figure 33. T1060 Kibana verification 2

4.6.3 T1078 - Valid Accounts

User accounts in Windows can be divided into three categories: default, local and

domain accounts. Default accounts include built-in accounts such as Administrator

and Guest, which are created automatically and cannot be removed. Local accounts

are local to the system they are created whereas domain accounts are managed by

Active Directory Domain Services and are shared across systems that are part of the

domain. Accounts can also be categorized into user, administrator and service

accounts. User accounts are used by normal users and often have low privileges.

Administrator accounts are used by system administrators and have high privileges.

Service accounts are created for system services to allow them to access local and

network resources. Adversaries may use user accounts for persistency by creating

new accounts that they can use in case access to others is lost. (Valid Accounts n.d.)

The main method for monitoring user account related activity in Windows is the

security audit logs. The user account management events are particularly relevant

for the persistence tactic. These events indicate for example if a user account was

created, changed or deleted. The implementation concentrated on event ID 4720 (A

user account was created), which is generated every time a new user object is

created.

To test this technique, Audit User Account Management audit policy had to be

enabled for all hosts through Active Directory Group Policy. A local user account was

then created on one of the workstations, which generated the event ID 4720 as seen

in Figure 34:

49

Figure 34. T1078 - Valid Accounts

The event includes base information (security id, account name and domain) about

the created account as well as included attributes. The subject field also has

information about the user that performed the action. A similar event was created

when added domain user was added on the Active Directory Domain Controller as

seen in Figure 35:

50

Figure 35. T1078 - Valid Accounts 2

To catch these events, Logstash filter was added (Appendix 11) that matches the

events with ID 4720. Figure 36 verifies that the technique information was added to

the event.

Figure 36. T1078 Kibana verification

4.7 Privilege Escalation

Privilege escalation tactic consists of techniques that adversaries use to gain higher-

level permissions on a system or network. Adversaries often gain initial access to

systems through normal unprivileged user accounts. However, many of the

techniques later in the kill chain require privileged account to be executed, thus the

51

adversary needs a way to escalate their privileges. Common ways to accomplish

privilege escalation is to take advantage of system weaknesses, misconfiguration or

vulnerabilities. (Privilege Escalation n.d.)

4.7.1 T1053 – Scheduled Task

Windows task scheduler can be used for privilege escalation by taking advantage of

vulnerabilities in the operating system (Goodin 2019). The scheduled task technique

was covered in detail in section 4.6.1.

4.7.2 T1078 - Valid Accounts

Adversaries can accomplish privilege escalation using existing unprivileged user or

service accounts. User account privilege escalation is captured by several Windows

audit events. The implementation concentrated on event ID 4672 (Special privileges

assigned to a new logon), which is generated when a new logon session has sensitive

privileges assigned to it. This event is an indicator that a user account has escalated

privileges.

Before testing the technique, the Audit Special Logon policy had to be turned on,

which enables logging of 4672 event. The testing was conducted by logging into a

workstation using the previously created test user and running Notepad software

using administrator privileges. The following event was generates as a result as seen

in Figure 37:

52

Figure 37. T1078 - Valid Accounts 3

The event shows that specific sensitive privileges were assigned to a new logon with

user account administrator. To capture these events, entry to previously created

Logstash filter was added (Appendix 11), matching events with ID 4672 and where

the user account is not SYSTEM. The reason for excluding SYSTEM is that logon

events with this account happens frequently during normal system operations.

Figure 38 verifies the technique information was added to the event.

Figure 38. T1078 Kibana verification 2

4.7.3 T1050 – New Service

Services in Windows are applications that run in the system background without user

interaction. Many of the core operating system features, such as event logging, file

serving and printing are run as services. Services are often started automatically

when the operating system boots. (Services n.d.)

53

Services can be executed using LocalSystem account, which enables an adversary

with administrator account to escalate privileges to SYSTEM level. The event ID 7045

(A new service was installed in the system) is generated in all modern Windows

versions when a new service is created. There is also event ID 4697 (A service was

installed in the system), which is generated in newer versions of Windows (Windows

10 and Server 2016).

To test the technique, Audit Security System Extension policy was first turned on,

which enables logging of event ID 4697. Then a new service with the “sc.exe” tool

was created as illustrated in Figure 39:

Figure 39. Creating new service with sc.exe

This generated both event ID 7045 and 4697 as seen in Figure 40 and Figure 41:

Figure 40. T1050 - New Service

54

Figure 41. T1050 - New Service 2

To capture these events, Logstash filter was created (Appendix 12) matching events

with ID 7045 or 4697 and where the service account is LocalSystem. Figure 42 verifies

the technique information was added to the event.

Figure 42. T1050 Kibana verification

4.8 Defense Evasion

Adversaries utilize defense evasion techniques to avoid being detected. Defense

evasion has become more important to adversaries, as the detection and defense

technologies have become more sophisticated and their adoption increased.

According to security company Red Canary (Beye & Nickels 2019), the defense

evasion related threats have become the most commonly seen MITRE ATT&CK tactic

among their customers. Common techniques in this tactic category include

uninstalling/disabling security software, removing evidence and

obfuscating/encrypting data. (Defense Evasion n.d.)

55

4.8.1 T1107 - File Deletion

Adversaries often create files and download tools or malware to target systems for

execution. These files can cause detection by security defenses or leave clues to

investigators. To prevent this, adversaries may delete the files over the course of an

intrusion or at the end as part of the post-intrusion cleanup process. (File Deletion

n.d.)

Operating systems have built-in tools for deleting files, such as the DEL function in

Windows cmd.exe or Remove-Item cmdled in PowerShell. There are also many

external tools which can be used to delete files. One such tool known to be used by

adversary groups is the Windows Sysinternals SDelete. (File Deletion n.d.)

Windows can produce several file system auditing related events, including ID 4660

(An object was deleted) which logs file deletion. Unfortunately, these events are

generated only if auditing settings are enabled on a file. Adversaries are unlikely to

include these settings in their files. Another approach is to monitor command-line

functions related to file deletion. The Windows cmd.exe DEL command is an internal

function that can not be monitored using normal methods; hence it was decided to

concentrate on the PowerShell Remove-Item cmdlet. Remove-Item cmdlet is used to

delete one or more items, which can consist of various types, such as files, folders,

registry keys or variables.

The use of Remove-Item cmdlet was tested by removing one of the test scripts

created earlier (Figure 43).

Figure 43. Deleting file with Remove-Item cmdlet

The PowerShell module logging event as seen in Figure 44 was generated as a result.

56

Figure 44. T1107 - File Deletion

A Logstash filter was created (Appendix 13) that matches events with ID 4103 and

where the command name is “Remove-Item”. Figure 45 verifies the technique

information was added to the event.

Figure 45. T1107 Kibana verification

4.8.2 T1064 – Scripting

In addition to execution, adversaries may use scripting for defense evasion. The

ability to embed scripts into other files and the fact that scripting is often used for

legitimate task make them harder to detect by security software. Scripts can also be

executed without creating any files on the system. Scripting was covered in detail on

section 4.5.2.

57

4.8.3 T1027 - Obfuscated Files or Information

Another defense evasion technique adversaries commonly utilize is obfuscating their

files. Obfuscation can prevent signature-based security software from detecting the

execution and make post-incident investigation harder. Common obfuscation

techniques include encoding, compressing and encryption. Command-line interfaces

have many built-in features that can be used for obfuscation information, such as

environment variables, aliases and ability to receive commands from standard input

stream. (Obfuscated Files or Information n.d.)

Detecting obfuscation can be challenging using traditional string matching

techniques, since the obfuscated data does not usually contain predictable patterns.

One way to detect obfuscation is to look for suspicious escape characters, e.g. '''^'''

and '''"''' included in commands (Obfuscated Files or Information n.d.). Another

approach is to use statistical methods to analyze entropy and frequency of

characters to detect anomalies (Bohannon & Holmes 2017).

PowerShell can interpret commands encoded using the base64-encoding. This is

done by inputting the base64-encoded string to “–EncodedCommand” option. This

was tested by encoding “Get-Process” into base64-string and executing it with the

EncodedCommand option as illustrated in Figure 46:

Figure 46. PowerShell EncodedCommand

PowerShell module logging records the options used with execution as well as de-

obfuscated commands as seen in Figure 47.

58

Figure 47. T1027 - Obfuscated Files or Information

Logstash filter was created (Appendix 14) matching events with ID 4103 and where

the command line includes the EncodedCommand option. Figure 48 verifies the

technique information was added to the event.

Figure 48. T1027 Kibana verification

4.9 Credential Access

Credential access tactic category consists of techniques that adversaries use to steal

credentials, such as account names and passwords. Stealing legitimate credentials

can give an adversary access to systems, make them harder to detect, and provide

the opportunity to create more accounts to help achieve their goals. (Credential

Access n.d.)

59

4.9.1 T1003 - Credential Dumping

Credential dumping is a technique where an adversary tries to obtain credentials

from a system or software. Credentials can be accessed from system databases or

directly from memory, usually in some form of hash.

Windows stores credentials in several databases and processes. Security Account

Manager (SAM) is a database that stores user accounts and security descriptors for

users on the local computer (Security Account Manager (SAM) n.d.). Passwords are

stored in SAM as LM or NTML hashes. When a user logs on, the credentials are

stored in Local Security Authority Subsystem Service (LSASS) process, which is part of

Local Security Authority (LSA) subsystem. LSA maintains information about all

aspects of local security in a system and Its components run in the context of the

Lsass.exe process (Security Subsystem Architecture n.d.)

Many tools exist for accessing credential data stored in SAM or LSASS, but the

implementation focuses on one the most widely used called Mimikatz. Mimikatz is a

Windows tool developed by Benjamin Delpy to learn more about Windows

credentials. It can be used to extract plaintext passwords, hashes, pin codes and

Kerberos tickets directly from memory. While Mimikatz binary can be directly

executed on a target system, more sophisticated methods exist that allow executing

Mimikatz from memory or remotely. An example of this is the Invoke-Mimikatz

PowerShell script that can reflectively load the Mimikatz DLL included in the script

into memory without creating any files on the system. It can also run Mimikatz on

remote systems using PowerShell remoting. (Metcalf 2018)

One approach on detecting Mimikatz is to look for specific Windows DLL modules it

loads when executed. This approach is effective since it is not dependent on which

process loads the code or whether Mimikatz is executed from disk or memory.

Roberto Rodriguez has written blog post (2017) where he was able to drill down the

DLLs that Mimikatz loads into following five:

 C:\Windows\System32\WinSCard.dll

 C:\Windows\System32\cryptdll.dll

 C:\Windows\System32\hid.dll

 C:\Windows\System32\samlib.dll

 C:\Windows\System32\vaultcli.dll

60

Sysmon event ID 7 (image loaded) records DDL modules loaded into a processes. This

event is not enabled by default on the SwiftOnSecurity Sysmon configuration, so a

new rule (Figure 49) was added to the configuration to log DDL modules loaded by

powershell.exe process.

Figure 49. Sysmon ImageLoad rule

To test Mimikatz, the Invoke-Mimikatz PowerShell script was first uploaded to an

external server. The .NET WebClient-class DownloadString method was then used to

download the script into memory and execute it as seen in Figure 50:

Figure 50. Invoke-Mimikatz execution

Figure 50 displays how Mimikatz can dump hashes as well as plaintext passwords

from LSASS process. Executing Mimikatz results in multiple Sysmon Image loaded

events, one of which can be seen in Figure 51.

61

Figure 51. T1003 - Credential Dumping

Figure 52 shows all the DLL modules loaded by Invoke-Mimikatz:

Figure 52. Invoke-Mimikatz DLLs

To capture events related to DLL modules loaded by Mimikatz, Logstash filter was

created (Appendix 15) that matches the events with ID 7 and where the loaded

module is one of the five DLLs listed earlier. Figure 53 verifies the technique

information was added to the event.

62

Figure 53. T1003 Kibana verification

4.9.2 T1056 – Input Capture

Input capture is a technique where an adversary captures user’s input to obtain

credentials or other sensitive information. Keylogging is the most widely used input

capture method, where the adversary installs a software that records user’s

keystrokes and sends them back to the adversary. Other common methods include

presenting fake credential prompts to user, injecting code to login pages or wrapping

the Windows default credential provider. (Input Capture n.d.)

The technique was tested by using the credential provider method. Tyler Wrightson

has created an example custom credential provider that could be utilized. The

custom credential provider works by capturing credentials when a user logs in,

writing credentials to a file and passing them on to the Windows default credential

provider. (Wrightson 2012)

Windows stores credential provider definitions in registry location:

HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\CredentialProvi

ders. Creation of new credential provider can be detected by monitoring Sysmon

registry modification events. Figure 54 shows a Sysmon event that was generated

when the custom credential provider was registered.

63

Figure 54. T1056 - Input Capture

To capture these events, Logstash filter was created (Appendix 16) that matches

events with ID 12 and where the registry target path is the credential provider path.

Figure 55 verifies the technique information was added to the event.

Figure 55. T1056 Kibana verification

4.9.3 T1110 – Brute Force

Brute force is a credential access technique where an adversary attempts to access

user accounts without knowledge of the password. The adversary may attempt

logins with a list of commonly used passwords. This method usually leads to

numerous failed logins, which can trigger alarms or account lockouts. A more

sophisticated strategy, called password spraying uses a single password or a small list

of passwords against many different accounts to avoid triggering account lockouts or

alarms. (Brute Force n.d.)

If the adversary has obtained password hashes, they can use existing techniques to

systematically guess the passwords or use pre-computed rainbow table to crack

64

hashes. The adversary can do the cracking outside of the target environment to avoid

detection. (Brute Force n.d.)

Brute force attempts can be detected by monitoring operating system authentication

logs for an unusually high number of failed logins. Windows logs several

authentication failure related events, but it was decided to focus on two common

events: 4625 and 4771. The event ID 4625 (An account failed to log on) is generated

on a local computer when a log on fails. The event ID 4771 (Kerberos pre-

authentication failed) is generated on a domain controller when Kerberos Key

Distribution Center fails to issue Ticket Granting Ticket (TGT). This event occurs when

a user fails to authenticate using domain credentials.

This technique was tested using two methods. The first test was to try logging into

one of the workstations with an incorrect password. This generated the following

event on the workstation as illustrated in Figure 56:

Figure 56. T1110 - Brute Force

The event ID 4625 is not generated for all authentication methods, such as

connecting through LDAP. To demonstrate this, authentication was also tested to

network share with incorrect credentials. This did not generate events on the

65

workstation, but generated Kerberos pre-authentication failed event in the domain

controller as shown in Figure 57:

Figure 57. T1110 - Brute Force 2

To capture these events, Logstash filter was created (Appendix 17) that matches the

events with ID 4625 and events with ID 4771 and failure code 0x18 (invalid

password). Figure 58 verifies the technique information was added to the event.

Figure 58. T1110 Kibana verification

4.10 Discovery

Discovery is a phase of the kill chain where the adversary is gathering information

about the networks, systems, services, applications and users of the target

environment. The adversary can then use the information to further their objective,

such as access specific credentials or move laterally to new system. Native operating

66

system tools provide the functionality to accomplish most of the discovery

techniques.

4.10.1 T1087 - Account Discovery

Account discovery techniques involve the adversary attempting to discover user

accounts of the target system or accounts of the domain environment. Windows

includes net.exe native tool that can be used to list local users (net user) and groups

(net localgroup). Another tool called Dsquery can be used to query Active Directory

for users and groups information. Dsquery is included in the Remote Server

Administration Tools bundle. PowerShell includes Get-LocalUser, Get-AdUser, Get-

LocalGroup and Get-AdGroup cmdlets that list local and domain users.

The execution of the tools mentioned above can be detected by monitoring the

specific process command-line arguments. Figure 59 shows an example of listing

users using net.exe tool and Figure 60 the resulting Sysmon ProcessCreate event.

Figure 59. Listing users using net.exe

67

Figure 60. T1087 - Account Discovery

To capture events generated by net and dsquery tools, Logstash filter was created

(Appendix 18) that matches ProcessCreate events with the specific command line

arguments used to list users or groups. Figure 61 verifies the technique information

was added to the event.

Figure 61. T1087 Kibana verification

4.10.2 T1016 - System Network Configuration Discovery

System Network Configuration Discovery is a technique where the adversary looks

for details about the network configuration of the target system. Many native

Windows tools exist for querying information about the network configuration, such

68

as ipconfig for IP, DNS and network adapter information, arp for displaying the ARP-

table content and route for displaying the routing table. PowerShell has cmdlets that

display similar information, such as Get-NetAdapter, Get-NetIPAddress and Get-

NetRoute. (System Network Configuration Discovery n.d.)

As with the previous technique, the tools used in this technique can be detected by

monitoring the specific process command-line arguments. Figure 62 shows an

example of displaying TCP/IP and DNS configuration for all network adapters. Figure

63 displays the resulting Sysmon ProcessCreate event.

Figure 62. Displaying network adapter information using ipconfig.exe

69

Figure 63. T1016 - System Network Configuration Discovery

To capture events generated by ipconfig, route and arp tools Logstash filter was

created (Appendix 19) that matches ProcessCreate events with the command line of

the tools. Figure 64 verifies the technique information was added to the event.

Figure 64. T1016 Kibana verification

4.10.3 T1083 - File and Directory Discovery

File and Directory Discovery tactic category involves the adversary searching files or

directories from local system or network share. The goal is usually to access sensitive

information or to conduct reconnaissance. Adversaries can utilize native Windows

Cmd tools, for example dir or tree to enumerate the filesystem. PowerShell has the

Get-Item and Get-ChildItem that can be used to browse and search the filesystem.

70

Some adversaries have also written custom tools that use the Windows API to gather

file and directory information. (File and Directory Discovery n.d.)

Because the Windows Cmd native functions or use of Windows API cannot be easily

monitored, the implementation focuses on the PowerShell file and directory listing

cmdlets Get-Item and Get-ChildItem. The execution of these cmdlets can be detected

by monitoring PowerShell module logging. To test this, Get-Item cmdlet was

executed (Figure 65) and the resulting module logging event observed (Figure 66).

Figure 65. Listing directory files with Get-Item PowerShell cmdlet

Figure 66. T1083 - File and Directory Discovery

To match the events generated by execution of the Get-Item or Get-ChildItem

modues, Logstash filter was created (Appendix 20) that matches events with ID 4103

71

and where the command name is either of the module names. Figure 67 verifies the

technique information was added to the event.

Figure 67. T1083 Kibana verification

4.11 Lateral Movement

An initial system that the adversary gains access to in the target environment is often

not the ultimate system they are targeting. Reaching the ultimate target requires

moving through multiple systems, a process that is called lateral movement. Lateral

movement tactic category consists of techniques that enable the adversary to access

and control remote systems over the network. Adversaries can take advantage of

native remote access tools or install third party tools to accomplish lateral

movement. (Lateral Movement n.d.)

4.11.1 T1105 - Remote File Copy

Adversaries may copy files, such as tools or malware from one host to another over

the course of an operation. These files can be then used for remote execution to

support lateral movement. Remote file copy can be accomplished using network

shares (SMB) or file transfer protocols like FTP or SFTP. (Remote File Copy n.d.)

Remote file copy can be detected by monitoring file creation and access to network

shares on servers and workstations. Analyzing network traffic can also reveal unusual

data flows between hosts or uncommon protocols being used. The implementation

focuses on remote file copy over network shares, since it is more commonly used in

Windows environment. (Remote File Copy n.d.)

Windows file share access is recorded in event ID 5140 (A network share object was

accessed). To enable logging of this event, Audit File Share audit policy was turned on

72

in the environment. A network share was also created on the domain controller.

Figure 68 displays an event that was generated when the share was accessed.

Figure 68. T1105 - Remote File Copy

To capture these events, Logstash filter was created (Appendix 21) that matches

events with ID 5140 and where the share is not one of the Windows internal

management shares. Figure 69 verifies the technique information was added to the

event.

Figure 69. T1105 Kibana verification

4.11.2 T1076 - Remote Desktop Protocol

Remote desktop is an operating system feature that allows users to log into a system

over a network and interact with the graphical user interface of the system remotely.

The best known remote desktop solution is the Windows built-in remote desktop

implementation called Remote Desktop Services (RDS); however, many third party

73

remote desktop tools also exist for various operating system platforms. (Remote

Desktop Protocol n.d.)

Adversaries with valid credentials can use remote desktop connections to easily

move laterally between systems. Remote desktop connections can be detected by

monitoring Windows Event Logs. Successful authentication using remote desktop

connection is recorded in the event ID 2624 (An account was successfully logged on).

The logon type 10 (RemoteInteractive) indicates that the user logged in using remote

desktop connection. Figure 70 displays event that was generated when

authentication was made to one of the workstations using remote desktop

connection.

Figure 70. T1076 - Remote Desktop Protocol

To capture these events, Logstash filter was created (Appendix 22) that matches

events with ID 4624 and where the logon type is 10. Figure 71 verifies the technique

information was added to the event.

74

Figure 71. T1076 Kibana verification

4.11.3 T1077 – Windows Admin Shares

Windows has several hidden network shares that are used for administrative

purposes. Common administrative shares include disk volumes (e.g. C$), IPC$ for

inter process communication, ADMIN$ for remote administration, SYSVOL and

NETLOGON for Windows domain administration. Because these shares are hidden,

they are not visible in Windows Explorer. They can, however, be listed on command

line using the “net use” command. Accessing admin shares requires administrative

access on the system. (How to remove administrative shares in Windows Server 2008

n.d.)

Adversaries may use these shares to access remote systems over network. Some

remote administration tools, such as PsExec, also use admin shares to function.

PsExec is a tool included in the Windows Sysinternal suite which can be used to

execute programs on remote systems.

The use of this technique can be detected by monitoring the event ID 5140 (A

network share object was accessed) and looking specifically for share names that

match the common admin share names. This was verified by executing ipconfig

remotely using PsExec as seen in Figure 72. Figure 73 displays one of the ID 5140

events generated by PsExec transferring files to the remote system.

75

Figure 72. Executing PsExec

Figure 73. T1077 - Windows Admin Shares

To capture admin share related events, Logstash filter was created (Appendix 23)

that matches events with ID 5140 and where the share name is one of the well-

known admin shares. Figure 74 verifies the technique information was added to the

event.

Figure 74. T1077 Kibana verification

76

4.12 Command and Control

Command and control (C&C) is a tactic category where the adversary remotely

controls systems they have compromised in the target environment. The servers

used to control compromised machines usually reside outside of the victim network,

on the Internet. Adversaries use various methods to hide their communication.

Common network protocols, such as HTTP and DNS are often used for

communication to mimic normal network traffic occurring in the environment. Data

obfuscation and encryption techniques also make it harder to detect and analyze

command and control traffic. (Command and Control n.d.)

4.12.1 T1105 - Remote File Copy

Adversaries may copy files from command and control servers to bring tools to the

target environment (Remote File Copy n.d.). Remote file copy technique was covered

in detail in section 4.11.1.

4.12.2 T1071 - Standard Application Layer Protocol

Adversaries may use standard application layer protocols that are used in every IT

environment to blend their command and control traffic within normal network

communications. Common application layer protocols used for command and

control include HTTP/HTTPS, SMTP, DNS and SMB.

Command and control traffic can be detected by monitoring for unusual traffic flows

based on NetFlow data or by looking at packet capture data for unexpected protocol

behaviors or known control traffic signatures. Monitoring for unusual process

network connections from client systems can also be effective in revealing C&C

communication.

To test this technique, Sysmon ability to log TCP/UDP network connections initiated

by processes was utilized. C&C traffic was simulated by executing HTTP GET request

to an external webserver using PowerShell Invoke-WebRequest cmdlet as illustrated

in Figure 75. Figure 76 displays the resulting Sysmon event.

77

Figure 75. Executing PowerShell Invoke-WebRequest cmdlet

Figure 76. T1071 - Standard Application Layer Protocol

To match network connections with standard application layer protocols, Logstash

filter was created (Appendix 24) that matches events with ID 3 and where the

protocol is one of the four commonly used C&C protocols: HTTP, HTTPS, DNS and

SMTP. The filter only matches external (public) destination IP addresses. Figure 77

verifies the technique information was added to the event.

Figure 77. T1071 Kibana verification

78

4.12.3 T1043 - Commonly Used Port

In addition to standard protocols, adversaries often use common TCP/UDP ports for

communication to bypass firewalls or IDS/IPS systems. Commonly used ports include

TCP 80 (HTTP), TCP 443 (HTTPS), TCP 25 (SMTP) and TCP/UDP 53 (DNS). Adversaries

may use standard protocols with the ports or use completely different protocols.

(Commonly Used Port n.d.)

The same detection methods can be utilized for this technique as the T071.

Advanced firewalls and IDS systems can also detect if the port number does not

match the application layer protocol.

This technique was tested by simulating C&C traffic, this time by creating SSH

connection to external server and monitoring the generated Sysmon network

connection events as demonstrated in Figure 78.

Figure 78. T1043 - Commonly Used Port

To capture events related to this technique, Logstash filter was created (Appendix

25) that matches events with ID 3 and where the destination port is either 22 (SSH),

123 (NTP) or 110 (POP3). Figure 79 verifies the technique information was added to

the event.

79

Figure 79. T1043 Kibana verification

5 Data analysis

5.1 Introduction

The goal of the data analysis part of the thesis was to use the rules defined in the

testing part to enrich events generated by a simulated intrusion kill chain, and apply

data analysis to the event data in order to link phases of the intrusion together.

Graph theory was a natural choice for analyzing connections between the events. As

explained in the Graph Theory chapter, a graph consists of vertices (nodes) and

edges (links) that connect the vertices together. Looking at the event data, the

events form vertices of a graph; however, determining the edges is a more complex

issue. Each event consists of fields which contain information about the event, for

example an event id or a computer name. Some of the fields contain information

that identifies the entity that generated the event (e.g. username) or the host where

it was generated (e.g. hostname or computer name). By looking at common values of

these fields across the whole dataset, the otherwise unrelated events can be linked

together. For example, an authentication event on one host might not seem related

to a process execution event on another host; however, the events can be connected

if both of them have the same username as illustrated in Figure 80.

Figure 80. Event connection example

80

In order to form a coherent chain of intrusion phases, the events should be ordered

to match the order in which they were executed during the intrusion. Directed graph

where the edges have direction can be used to represent the order of events.

Direction of an edge can be determined by comparing connected vertex (event)

timestamps and setting the direction from an older to a newer event as illustrated in

Figure 81.

Figure 81. Directed event graph

5.2 Intrusion simulation

To generate data for the analysis, a simulated intrusion scenario including most

phases of a typical intrusion kill chain was executed in the test environment. The

simulation included the following steps:

1. The user executes malicious exploit.vbs script on the workstation ws-w10-1 that
opens Meterpreter session for the adversary. (Execution: T1064 – Scripting)

2. The adversary uses the Meterpreter getsystem command to elevate privileges.
(Privilege Escalation: T1050 – New Service)

3. The adversary uses the Meterpreter migrate command to migrate to another
process. (Defence Evasion: T1055 – Process Injection)

4. The adversary uses PowerShell to execute in-memory Mimikatz to dump credentials
from the operating system. (Credential Access: T1003 – Credential Dumping)

5. The adversary executes commands to discover information about the networks and
users of the environment. (Discovery: T1087 – Account Discovery, T1016 – System
Network Configuration Discover, T1087 – Account Discovery)

6. The adversary use PowerShell to download PSExec tool. (Execution: T1086 –
PowerShell)

7. The adversary uses PSExec to move laterally to the domain controller. (Lateral
Movement: T1077 – Windows Admin Shares)

8. The adversary deletes PSExec on the workstation ws-w10-1 to hide his tracks.
(Defence Evasion: T1107 – File Deletion)

5.3 Data analysis process

A separate CentOS Linux host was set up for the data analysis purpose. The host

included Jupyter Lab for illustration and visualization purposes, as well as libraries for

81

fetching the data from Elasticsearch, parsing the data and conducting the analysis

and visualization. Complete code for the data analysis can be seen in Appendix 26.

The data analysis process begins with fetching the data from Elasticsearch using the

Python Elasticsearch Client. For performance reasons, the dataset was limited to only

include events from the relevant time range and which are associated with a MITRE

technique. Figure 82 shows an example of a partial document fetched from

Elasticsearch.

Figure 82. Elasticsearch document example

Json_normalize function from pandas package was used to transform the JSON data

from Elasticsearch into a flat table dataframe. Some field names and values were also

normalized.

The next step was to create edges for the graph. The method selected for this step

was to merge pandas dataframe with itself on the column that will connect events

together. The user_name column was used in this particular case. The merge

operation results a dataframe with events that have the same user_name field value.

In addition to the user_name field, the dataframe includes id, mitre_technique_id,

82

timestamp and computer_name fields for both connected events, with a _x and _y

prefix. Figure 83 displays an example row from the dataframe.

Figure 83. Merged dataframe example

One issue with the resulting dataframe is that it includes unnecessary rows. Each

event has a connection to itself and there are also two connections between distinct

events, one for each direction. Removing the self-connections can be accomplished

by filtering all rows where id_x and id_y have the same value. Filtering out the

duplicate connections between distinct events was a more challenging issue. The

way to solve the issue was to filter out the rows where timestamp_x is greater than

timestamp_y or where both are equal. This left only a single connection between

each of the connected event. The final filter applied was to remove connections with

the same mitre_technique_id.

After the nodes and edges have been defined, the graph itself can be formed using

the NetworkX package. This process starts with creating a Graph object by using the

from_pandas_edgelist function which creates a graph from pandas dataframe. The

arguments given to the function specified that the graph should be directed graph

and which fields indicate the source and target nodes. To limit the size of the graph,

the NetworkX DiGraph dag_longest_path function was used to find the longest path,

which represents the longest chain of connected events. The function returns a list of

nodes, which were used to create a new directed graph that only included the

longest path.

The final part of the data analysis process was visualizing the results. The goal of the

visualization was to give the user a view of the different techniques detected from

the event data to aid determining if the activity is malicious or not. Another goal was

to have an interactive visualization that would update based on the applied filters.

Plotly Python library was chosen for the visualization because of its interactive nature

and support for Jupyter Lab.

83

To make the different tactic categories and hosts stand out, different symbols for the

tactics and colors for the hosts were assigned. Plotly figures consist of one or more

traces that contain the data used to display content of the figure. Two traces are

required to draw a graph, one that for the nodes and one for the edges. Traces

contain dictionary of properties, such as x and y coordinates and symbol and color

for each data point. The y coordinate of each node was set to a static value so that all

the nodes would be placed on the same line horizontally. The x coordinates were

based on timestamps of the events. One interactive feature of Plotly is the ability to

display information about the data points by hovering over them. A hover text was

defined that displays id, event id, event action, timestamp, computer name, MITRE

technique id and MITRE tactic category field for each node of the graph.

Plotly figure is created by defining a Figure object that includes data traces and

layout configuration. Figure is displayed by calling the show method, as illustrated in

the Figure 84.

Figure 84. Plotly graph visualization

The figure displays each node of the graph in a timeline. Each node represents an

event that has a MITRE adversary technique associated with it. The Nodes are

labeled by technique id. Additional information about events can be seen by

hovering over a node as seen in Figure 85.

84

Figure 85. Plotly hovertext

As can be seen in Figure 84, there is a cluster of nodes between timestamps 15:00

and 18:00. By zooming in, a multiple different MITRE techniques (PowerShell, New

Service, Windows Admin Shares…) executed across multiple tactic categories

(Execution, Persistence, Lateral-Movement) can be seen on both ws-w10-1 (red) and

dc (blue) hosts as illustrated in Figure 86. These events represent the actions from

the intrusion simulation.

Figure 86. Plotly figure zoomed

The figure in its current form is static in a way that the user has no control over the

data that is displayed. For example, the username that connects events together is

hardcoded in the source code. Ipywidgets is a collection of interactive HTML widgets,

which can be used to change input in JupyterLab. The widgets make it possible for

users to change the data values and have the figure automatically update to reflect

the change.

A form was created using ipywidgets that included a select box for selecting

username and checkboxes to filter which MITRE tactics should be included in the

figure. Change of values in these widgets triggers function that reruns the data

manipulation, graph and figure generation steps described previously with the

85

selected values. Figure 87 shows an example where the system user is selected and

only execution tactic category techniques are included.

Figure 87. Ipywidgets filter

6 Conclusions

The fight between adversaries and defenders is an arms race where adversaries are

constantly developing new techniques to evade defenses and stay hidden, while

defenders struggle with lack of visibility and growing complexity of IT environments.

Finding traces of adversary activity from a vast amount of event data is difficult,

however, not impossible if right approach is used. The behavior driven approach

helps the defenders identify which events are indicators of a certain adversary

behavior and map the events to the techniques and tactics. The events can be

further correlated together to form a chain of events, which is a strong indicator of

compromise compared to inspecting events in isolation.

Building a system for detecting intrusions does not require huge amount of resources

or buying expensive security solutions. The MITRE ATT&CK knowledge base provides

an easy starting point with a plethora of actionable information that security teams

can use to measure their current defenses and develop new methods of detecting

adversary behavior. The free and open-source software ecosystem has also evolved

rapidly over the last few years. Tools such as the ELK or HELK stack provide a

platform which competes with many commercial SIEM solutions in terms of features

and ease of use. The data analysis tools have also advanced so that there is no longer

need for massive compute resources or professional data analysts to get value out of

them.

The research question that the thesis aimed to answer was whether it is possible to

identify and link the stages of cyber kill chain by collecting and analyzing event data.

The implementation and data analysis sections demonstrate that this is indeed

86

possible. However, some requirements have to be taken into consideration in order

to get reliable results. The first requirement is to have knowledge on how the

adversary techniques work and how they can be detected. This information is well

documented in knowledge bases such as the MITRE ATT&CK. An issue that often

arises is how to distinguish legitimate behavior from the adversary behavior, since

many of the adversary techniques resemble normal every day activity happening in

every IT environment. Solving this issue requires not only knowing which events a

certain technique generates, but the context it occurs. For example, use of PsExec

remote management tool may be common in one organization for administrative

purposes but raise alarm in other. Another example could be that user login events

are common during the daytime but a login event during the night could be

considered suspicious. The reliability of adversary technique detection can be

increased if an organization adjusts their detection rules according to the context of

their IT environment instead of relying on static predefined rules.

The main challenge with connecting events and the associated techniques together is

determining which field or fields to use as the connection. Events rarely contain

fields which explicitly map an event to another. Instead, we have to rely on common

fields across different types of events, such as usernames or IP addresses. Problem is

that two events containing the same username may or may not be connected

depending on the event types and the context that they occur. Another problem is

that all events may not contain these common fields, which can lead to gaps in

detection coverage. The most reliable approach to connecting events would be to

use multiple fields for the connections and filter the events based on context, such as

specific time range in which the events occur.

The overall conclusion from the implementation was that while the concept of

identifying cyber kill chain seemed straightforward, implementing a solution which

produces real benefits can be challenging. The open source tools provide a great

starting point; however, building an easy to operate and reliable solution requires

skills and knowledge of the environment to which the solution is deployed.

87

7 Deliberation and futher research

The research approach chosen for the thesis makes the reliability evaluation of the

results difficult. As mentioned in chapter 2.3, the research was conducted using

observation method. An issue from the reliability standpoint is that the observation

was only done by the researcher, which produces subjective results. The researcher

will base the observations on their own perspective and experience, which may not

correspond to objective truth. The researcher will always interpret the world from

his or her own frame of reference (Kananen 2015b, 339). Having outside individuals

use the system developed during the implementation in a more realistic scenario,

such as cyber exercise and surveying them afterwards would have produced more

objective results that could be compared to the author’s own observations. The

complications causing the implementation to take longer than expected and

schedules of upcoming cyber exercises did not, however, make conducting such a

survey feasible. Implementing the system in an exercise environment, creating the

survey and analyzing the results would have delayed the completion of the thesis

significantly.

The data analysis part of the thesis turned out to be more complicated than

expected. The main issue was related to the heterogeneous nature of the event data.

Even though the event data was collected from a single platform (Windows), many

event types still contain a different set of fields. This caused some adversary

techniques not to be included in the chain of events when the event did not include

the user_name field, even though the event was part of the simulated intrusion kill

chain. The author’s lack of experience with data analysis methods and tools also

slowed down the process.

The thesis produced a proof of concept implementation on how an intrusion kill

chain could be detected and visualized. More research and development is required

to make the implementation suitable for use in real environments. Identifying and

mapping the events to techniques can be expanded by adding more data points and

making the rules more granular. This would improve accuracy and reduce the

number of false positives. The data analysis part of the thesis used only a single field

for connecting the events together; however, the ability to connect the events

88

through multiple fields would make the connections between the events stronger,

e.g. two events connected through username versus both username and IP address.

Using multiple connected field would also help with cases where all events do not

contain the same set of fields. For example, an event might not contain a username

field but includes a source IP field which connects it to other events. Another

interesting further research topic would be to test if different graph types, such as

weighted graph, could be used to improve the accuracy of the results. It would also

be interesting to compare the length of the event chains against historical data in

order to detect anomalies.

Visualization of the intrusion kill chain is important in order to detect patterns or

anomalies and to be able to drill down into details. The visualization used in the

thesis displays a simple graph with basic interactivity features, which could be

improved in many ways. Scaling of the graph could be improved so that the

individual events can be better distinguished when many events exist within a small

time frame. A better ability to filter and focus on specific parts of the graph would

also help users to get a better understanding of the chain of events. Enhancing

interactivity of the graph in general, such as highlighting interesting nodes and edges

or attaching more information to them would be an interesting further development

topic.

The author feels that the thesis reached the goal of producing a model and a proof of

concept implementation for detecting and mapping adversary techniques into cyber

kill chain. The thesis provides a good starting point for further research into the topic

as well as for more practical implementations.

89

References

Aon. 2019. 2019 Cyber Security Risk Report. Accessed 2 June 2019. Retrieved from
https://www.aon.com/getmedia/51bff3db-20ea-46dd-a9aa-1773cfe089ce/Cyber-
Security-Risk-Report-2019.pdf.aspx

Babinec, K. 2014. Executing PowerShell scripts from C#. Accessed 17 August 2019.
Retrieved from https://blogs.msdn.microsoft.com/kebab/2014/04/28/executing-
powershell-scripts-from-c/

Beyer B. Nickels K., 2019. ATT&CK™ Your CTI with Lessons Learned from Four Years in
the Trenches. Accessed 27 August 2019. Retrieved from
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-
1548090281.pdf

Bohannon D. & Holmes L. 2017. Revoke-Obfuscation: PowerShell Obfuscation
Detection Using Science. Accessed 1 September 2019. Retrieved from
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-
report.pdf

Boundy J.A. & Murty U.S.R. 2008. Graph Theory. Springer Publishing.

Brute Force. N.d. Accessed 28 September 2019. Retreived from
https://attack.mitre.org/techniques/T1110/

Cambridge Dictionary. 2019. Meaning of hypothesis in English. Accessed 2 July 2019.
Retrieved from https://dictionary.cambridge.org/dictionary/english/hypothesis

Cisco. 2018. Cisco 2018 Annual Cybersecurity Report. Accessed 7 June 2019.
Retrieved from https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-
hub/pdf/acr-2018.pdf

Command and Control. N.d. Accessed 14 October 2019. Retrieved from
https://attack.mitre.org/tactics/TA0011/

Command-Line Interface. N.d. Accessed 8 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1059/

Commonly Used Port. N.d. Accessed 20 October 2019.
https://attack.mitre.org/techniques/T1043/

Credential Access. N.d. Accessed 6 September 2019. Retreived from
https://attack.mitre.org/tactics/TA0006/

CYBER ATTACK LIFECYCLE. N.d. Accessed 21 March 2020. Retreived from
https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-
attack-lifecycle/

Davidson, M., Jordan, B. & Wunder, J. 2017. TAXII™ Version 2.0. Accessed 28
September 2019. Retrieved from
https://docs.google.com/document/d/1Jv9ICjUNZrOnwUXtenB1QcnBLO35RnjQcJLsa
1mGSkI/pub

https://www.aon.com/getmedia/51bff3db-20ea-46dd-a9aa-1773cfe089ce/Cyber-Security-Risk-Report-2019.pdf.aspx
https://www.aon.com/getmedia/51bff3db-20ea-46dd-a9aa-1773cfe089ce/Cyber-Security-Risk-Report-2019.pdf.aspx
https://blogs.msdn.microsoft.com/kebab/2014/04/28/executing-powershell-scripts-from-c/
https://blogs.msdn.microsoft.com/kebab/2014/04/28/executing-powershell-scripts-from-c/
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1548090281.pdf
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1548090281.pdf
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/revoke-obfuscation-report.pdf
https://attack.mitre.org/techniques/T1110/
https://dictionary.cambridge.org/dictionary/english/hypothesis
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/tactics/TA0006/
https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-attack-lifecycle/
https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-attack-lifecycle/
https://docs.google.com/document/d/1Jv9ICjUNZrOnwUXtenB1QcnBLO35RnjQcJLsa1mGSkI/pub
https://docs.google.com/document/d/1Jv9ICjUNZrOnwUXtenB1QcnBLO35RnjQcJLsa1mGSkI/pub

90

Defense Evation. N.d. Accessed 27 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0005/

Dunwoody, M. 2016. Greater Visibility Through PowerShell Logging. Accessed 16
August 2019. Retrieved from https://www.fireeye.com/blog/threat-
research/2016/02/greater_visibilityt.html

Elasticsearch for Apache Hadoop. N.d. Accessed 1 August 2019. Retrieved from
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/reference.html

Execution. N.d. Accessed 8 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0002/

File and Directory Discovery. N.d. Accessed 5 October 2019. Retreived from
https://attack.mitre.org/techniques/T1083/

File Deletion. N.d. Accessed 27 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1107/

FireEye. 2019. M-TRENDS 2019. Accessed 2 June 2019. Retrieved from
https://content.fireeye.com/m-trends

Getting Started with Plotly in Python. N.d. Accessed 6 April 2020. Retrieved from
https://plotly.com/python/getting-started/

Getting Started with Windows PowerShell. N.d. Accessed 10 August 2019. Retrieved
from https://docs.microsoft.com/en-us/powershell/scripting/getting-
started/getting-started-with-windows-powershell?view=powershell-6

Goodin D. 2019. Serial publisher of Windows 0-days drops exploits for 2 more
unfixed flaws. Accessed 24 August 2019. Retrieved from
https://arstechnica.com/information-technology/2019/05/serial-publisher-of-
windows-0days-drops-exploits-for-3-more-unfixed-flaws/

GraphFrames Overview. N.d. Accessed 2 August 2019. Retrieved from
http://graphframes.github.io/graphframes/docs/_site/index.html

How to remove administrative shares in Windows Server 2008. 29.10.2012. Accessed
13 October 2019. Retrieved from https://support.microsoft.com/en-
us/help/954422/how-to-remove-administrative-shares-in-windows-server-2008

Hutchins, E., Cloppert, M. & Amin, R. 2010. Intelligence-Driven Computer Network
Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains.
Lockheed Martin.

Input Capture. N.d. Accessed 16 September 2019. Retreived from
https://attack.mitre.org/techniques/T1056/

Introduction. N.d. Accessed 1 August 2019. Retrieved from
https://www.elastic.co/guide/en/kibana/current/introduction.html

Jordan, B., Piazza, R. & Wunder, J. 2017. STIX™ Version 2.0. Part 1: STIX Core
Concepts. Accessed 28 July 2019. Retrieved from http://docs.oasis-
open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html

Jupyter. N.d. Accessed 2 August 2019. Retrieved from https://jupyter.org/index.html

https://attack.mitre.org/tactics/TA0005/
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/reference.html
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1107/
https://content.fireeye.com/m-trends
https://plotly.com/python/getting-started/
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://arstechnica.com/information-technology/2019/05/serial-publisher-of-windows-0days-drops-exploits-for-3-more-unfixed-flaws/
https://arstechnica.com/information-technology/2019/05/serial-publisher-of-windows-0days-drops-exploits-for-3-more-unfixed-flaws/
http://graphframes.github.io/graphframes/docs/_site/index.html
https://support.microsoft.com/en-us/help/954422/how-to-remove-administrative-shares-in-windows-server-2008
https://support.microsoft.com/en-us/help/954422/how-to-remove-administrative-shares-in-windows-server-2008
https://attack.mitre.org/techniques/T1056/
https://www.elastic.co/guide/en/kibana/current/introduction.html
http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
https://jupyter.org/index.html

91

JYVSECTEC. 2018. CYBERDI. Accessed 9 June 2019. Retrieved from
https://jyvsectec.fi/2018/10/cyberdi/

Kananen, J. 2015a. Kehittämistutkimuksen kirjoittamisen käytännönopas. Jyväskylä:
Publications of JAMK University of Applied Sciences.

Kananen, J. 2015b. Opinnäytetyön kirjoittajan opas. Jyväskylä: Publications of JAMK
University of Applied Sciences.

Kerr, D. & Ewing, P. 2018. The Endgame Guide to Threat Hunting. Annapolis:
CyberEdge Group, LLC.

Logstash Introduction. N.d. Accessed 31 July 2019. Retrieved from
https://www.elastic.co/guide/en/logstash/current/introduction.html

Lateral Movement. N.d. Accessed 6 October 2019. Retrieved from
https://attack.mitre.org/tactics/TA0008/

Lee, R. & Lee, R. 2019. Generating Hypotheses for Successful Threat Hunting. SANS
Institute Reading Room.

Lee, R. & Lee, R. 2018. SANS 2018 Threat Hunting Survey Results. SANS Institute
Reading Room.

Lee, R. & Lee, R. 2019. The Who, What, Where, When, Why and How of Effective
Threat Hunting. SANS Institute Reading Room.

Mandiant. 2013. APT1: Exposing One of China’s Cyber Espionage Units. Accessed 21
March 2020. Retreived from https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/mandiant-apt1-report.pdf

Metcalf, S. 2018. Unofficial Guide to Mimikatz & Command Reference. Accessed 8
September 2019. Retreived from https://adsecurity.org/?page_id=1821

MITRE ATT&CK®. N.d. Accessed 23 March 2020. Retrieved from
https://attack.mitre.org/

MITRE. Crown Jewels Analysis. Accessed 6 September 2019. Retrieved from
https://www.mitre.org/publications/systems-engineering-guide/enterprise-
engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis

NetworkX. N.d. Accessed 5 April 2020. Retrieved from https://networkx.github.io/

Obfuscated Files or Information. N.d. Accessed 1 September 2019. Retrieved from
https://attack.mitre.org/techniques/T1027/

Package overview. N.d. Accessed 5 April 2019. Retrieved from
https://pandas.pydata.org/docs/getting_started/overview.html

Persistence. N.d. Accessed 17 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0003/

PowerShell. N.d. a. Accessed 10 August 2019. Retrieved from
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-
6

https://jyvsectec.fi/2018/10/cyberdi/
https://www.elastic.co/guide/en/logstash/current/introduction.html
https://attack.mitre.org/tactics/TA0008/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://adsecurity.org/?page_id=1821
https://attack.mitre.org/
https://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
https://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
https://networkx.github.io/
https://attack.mitre.org/techniques/T1027/
https://pandas.pydata.org/docs/getting_started/overview.html
https://attack.mitre.org/tactics/TA0003/
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-6

92

PowerShell. N.d. b. Accessed 10 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1086/

Privilege Escalation. N.d. Accessed 23 August 2019. Retrieved from
https://attack.mitre.org/tactics/TA0004/

Remote Desktop Protocol. N.d. Accessed 11 October 2019. Retreived from
https://attack.mitre.org/techniques/T1076/

Remote File Copy. N.d. Accessed 8 October 2019. Retreived from
https://attack.mitre.org/techniques/T1105/

Rodriguez, R. 2017. Chronicles of a Threat Hunter: Hunting for In-Memory Mimikatz
with Sysmon and ELK - Part I (Event ID 7). Accessed 12 September 2019. Retreived
from https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-
hunting-for.html

Rodriguez, R. 2018a. Welcome to HELK! : Enabling Advanced Analytics Capabilities.
Accessed 31 September 2019. Retrieved from
https://cyberwardog.blogspot.com/2018/04/welcome-to-helk-enabling-
advanced_9.html

Rodriguez, R. 2018b. Categorizing and Enriching Security Events in an ELK with the
Help of Sysmon and ATT&CK. Accessed 5 August 2019. Retrieved from
https://cyberwardog.blogspot.com/2018/07/categorizing-and-enriching-
security.html

Run and RunOnce Registry Keys. N.d. Accessed 20 August 2019. Retrieved from
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-
registry-keys

Security Account Manager (SAM). N.d. Accessed 7 September 2019. Retreived from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
server-2003/cc756748(v=ws.10)

Security Subsystem Architecture. N.d. Accessed 8 September 2019. Retreived from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-
server/cc961760(v=technet.10)

Services. N.d. Accessed 25 August 2019. Retrieved from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
server-2008-R2-and-2008/cc772408(v=ws.11)

Shackleford, D. 2017. Cloud Security: Defense in Detail if Not in Depth. SANS Institute
Reading Room. 1-2.

Scripting. N.d. Accessed 9 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1064/

Storm, B. 2018. ATT&CK 101. Accessed 23 April 2020. Retrieved from
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
blog/attck-101

Storm, B., Battaglia, J., Kemmerer, M., Miller, D., Wampler, C., Whitley, S. & Wolf, D.
2017. Finding Cyber Threats with ATT&CK-Based Analytics. MITRE Corporation.

https://attack.mitre.org/techniques/T1086/
https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/techniques/T1076/
https://attack.mitre.org/techniques/T1105/
https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-hunting-for.html
https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-hunting-for.html
https://cyberwardog.blogspot.com/2018/04/welcome-to-helk-enabling-advanced_9.html
https://cyberwardog.blogspot.com/2018/04/welcome-to-helk-enabling-advanced_9.html
https://cyberwardog.blogspot.com/2018/07/categorizing-and-enriching-security.html
https://cyberwardog.blogspot.com/2018/07/categorizing-and-enriching-security.html
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc756748(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc756748(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc961760(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc961760(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc772408(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc772408(v=ws.11)
https://attack.mitre.org/techniques/T1064/
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/attck-101
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/attck-101

93

Sqrll. N.d. Hunt Evil: Your Practical Guide to Threat Hunting.

Sqrrll. 2018. A Framework for Cyber Threat Hunting.

Sysmon. 2019. Accessed 30 September 2019. Retrieved from
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

System Network Configuration Discovery. N.d. Accessed 4 October 2019. Retreived
from https://attack.mitre.org/techniques/T1016/

Task Scheduler. N.d. a. Accessed 18 August 2019. Retrieved from
https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-
page

Task Scheduler. N.d. b. Accessed 19 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1053/

Valid Accounts. N.d. Accessed 22 August 2019. Retrieved from
https://attack.mitre.org/techniques/T1078/

What is Elasticsearch?. N.d. Accessed 31 September 2019. Retrieved from
https://www.elastic.co/what-is/elasticsearch

Wrightson, D. 2012. CAPTURING WINDOWS 7 CREDENTIALS AT LOGON USING
CUSTOM CREDENTIAL PROVIDER. Accessed 18 September 2019. Retreived from
https://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-
using-custom-credential-provider/

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://attack.mitre.org/techniques/T1016/
https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1078/
https://www.elastic.co/what-is/elasticsearch
https://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-using-custom-credential-provider/
https://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-using-custom-credential-provider/

94

Appendices

Appendix 1. top_10_groups_by_techniques.py

#!/usr/bin/env python3

from attackcti import attack_client
from stix2 import TAXIICollectionSource, Filter, CompositeDataSource
from taxii2client.v20 import Collection

from pandas import *
from pandas.io.json import json_normalize

lift = attack_client()

ATTCK_STIX_COLLECTIONS = "https://cti-taxii.mitre.org/stix/collections/"
ENTERPRISE_ATTCK = "95ecc380-afe9-11e4-9b6c-751b66dd541e"

ENTERPRISE_COLLECTION = Collection(ATTCK_STIX_COLLECTIONS + ENTERPRISE_ATTCK + "/")
TC_ENTERPRISE_SOURCE = TAXIICollectionSource(ENTERPRISE_COLLECTION)

pandas.set_option('display.max_rows', 200)

techniques = {
 'group': [],
 'techniques': []
}

filter_relationship_objects = [
 Filter('type', '=', 'relationship'),
 Filter('relationship_type', '=', 'uses'),
]

all_relationships = TC_ENTERPRISE_SOURCE.query(filter_relationship_objects)

filter_technique_objects = [
 Filter('type', '=', 'attack-pattern'),
 Filter('x_mitre_platforms', '=', 'Windows'),
]

all_techniques = TC_ENTERPRISE_SOURCE.query(filter_technique_objects)

filter_group_objects = [
 Filter('type', '=', 'intrusion-set'),
]

all_group_objects = TC_ENTERPRISE_SOURCE.query(filter_group_objects)

for group in all_group_objects:

 group_techniques = []
 group_relationships = list(filter(lambda x: x.source_ref == group.id, all_relationships))

 for relationship in group_relationships:
 group_techniques.extend(list(filter(lambda x: x.id == relationship.target_ref, all_techniques)))

95

 group_techniques = lift.translate_stix_objects(group_techniques)

 techniques['group'].append(group.name)
 techniques['techniques'].append(len(group_techniques))

techniques = pandas.DataFrame(techniques)
techniques = techniques.sort_values('techniques',ascending=False).head(10)
print(techniques)

96

Appendix 2. top_3_techniques_by_tactic.py

#!/usr/bin/env python3

from attackcti import attack_client
from stix2 import TAXIICollectionSource, Filter, CompositeDataSource
from taxii2client.v20 import Collection

from pandas import *
from pandas import json_normalize

lift = attack_client()

ATTCK_STIX_COLLECTIONS = "https://cti-taxii.mitre.org/stix/collections/"
ENTERPRISE_ATTCK = "95ecc380-afe9-11e4-9b6c-751b66dd541e"

ENTERPRISE_COLLECTION = Collection(ATTCK_STIX_COLLECTIONS + ENTERPRISE_ATTCK + "/")
TC_ENTERPRISE_SOURCE = TAXIICollectionSource(ENTERPRISE_COLLECTION)

pandas.set_option('display.max_rows', 200)

techniques = []
groups = ['APT32',
 'Lazarus Group',
 'APT28',
 'APT3',
 'OilRig',
 'Dragonfly 2.0',
 'Threat Group-3390',
 'Patchwork',
 'menuPass',
 'BRONZE BUTLER'
]
tactics = ['discovery',
 'lateral-movement',
 'execution',
 'persistence',
 'defense-evasion',
 'command-and-control',
 'privilege-escalation',
 'credential-access'
]

filter_relationship_objects = [
 Filter('type', '=', 'relationship'),
 Filter('relationship_type', '=', 'uses')
]

all_relationships = TC_ENTERPRISE_SOURCE.query(filter_relationship_objects)

filter_technique_objects = [
 Filter('type', '=', 'attack-pattern'),
 Filter('x_mitre_platforms', '=', 'Windows')
]

97

all_techniques = TC_ENTERPRISE_SOURCE.query(filter_technique_objects)

filter_group_objects = [
 Filter('type', '=', 'intrusion-set'),
]

all_group_objects = TC_ENTERPRISE_SOURCE.query(filter_group_objects)

def filter_tactics(technique):
 new_tactics = []
 for tactic in technique['tactic']:
 if tactic in tactics:
 new_tactics.append(tactic)
 technique['tactic'] = new_tactics
 return technique['tactic']

for group in groups:
 group_object = list(filter(lambda x: x.name == group, all_group_objects))[0]

 group_techniques = []
 group_relationships = list(filter(lambda x: x.source_ref == group_object.id, all_relationships))

 for relationship in group_relationships:
 group_techniques.extend(list(filter(lambda x: x.id == relationship.target_ref, all_techniques)))

 group_techniques = lift.translate_stix_objects(group_techniques)
 group_techniques = list(filter(filter_tactics, group_techniques))
 techniques.extend(group_techniques)

techniques = json_normalize(techniques)

s = techniques.apply(lambda x: pandas.Series(x['tactic']),axis=1).stack().reset_index(level=1,
drop=True)
s.name = 'tactic'
techniques = techniques.drop('tactic', axis=1).join(s).reset_index(drop=True)
techniques = techniques.reindex(['tactic','technique','technique_id'], axis=1)

techniques =
techniques.groupby(['tactic','technique'])['technique'].count().to_frame(name='technique_count')
g = techniques['technique_count'].groupby(level=0, group_keys=False)
techniques = g.apply(lambda x:
x.sort_values(ascending=False).head(3)).to_frame(name='technique_count')
print(techniques)

98

Appendix 3. Observation diary

99

Appendix 4. Technique, tactic & event ID matrix

100

Appendix 5. Winlogbeat configuration

Winlogbeat 6, 7, and 8 are currently supported!
You can download the latest stable version of winlogbeat here:
https://www.elastic.co/downloads/beats/winlogbeat

For simplicity/brevity we have only included only the enabled options necessary for sending
windows logs to HELK.
Please visit the Elastic documentation for the complete details of each option and full reference
config:
https://www.elastic.co/guide/en/beats/winlogbeat/current/winlogbeat-reference-yml.html

#======================= Winlogbeat specific options ==========================
winlogbeat.event_logs:
 - name: Application
 ignore_older: 30m
 - name: Security
 ignore_older: 30m
 - name: System
 ignore_older: 30m
 - name: Microsoft-windows-sysmon/operational
 ignore_older: 30m
 - name: Microsoft-windows-PowerShell/Operational
 ignore_older: 30m
 event_id: 4103, 4104
 - name: Windows PowerShell
 event_id: 400,600
 ignore_older: 30m
 - name: Microsoft-Windows-WMI-Activity/Operational
 event_id: 5857,5858,5859,5860,5861

#----------------------------- Kafka output --------------------------------
output.kafka:
 # initial brokers for reading cluster metadata
 # Place your HELK IP(s) here (keep the port).
 # If you only have one Kafka instance (default for HELK) then remove the 2nd IP that has port 9093
 hosts: ["<HELK-IP>:9092","<HELK-IP>:9093"]
 topic: "winlogbeat"
 ############################# HELK Optimizing Latency ######################
 max_retries: 2

 max_message_bytes: 1000000

Appendix 6. Technique T1059 Logstash filter

filter {

 if [process_name] == "cmd.exe" or [process_parent_name] == "cmd.exe" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"

101

 query => "technique_id:T1059"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 7. Technique T1064 Logstash filter

filter {

 if [process_name] in ["cscript.exe","wscript.exe"] or [process_command_line] =~
"\.(bat|cmd|hta|jse|ps1|sct|vbs|vbe|wsf)" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1064"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 8. Technique T1086 Logstash filter

filter {

 if [event_id] in [4103,4104] {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1086"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 9. Technique T1053 Logstash filter

filter {

102

 if [event_id] in [4698,4702] {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1053"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 10. Technique T1060 Logstash filter

filter {

 if [event_id] == 13 and [registry_key_path] =~ "\\CurrentVersion\\Run" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1060"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }

 if [event_id] == 11 and [file_name] =~ "\\startup" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1060"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 11. Technique T1078 Logstash filter

filter {

 if [event_id] == 4720 {

103

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1078"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
 if [event_id] == 4672 and [user_name] != 'system' {
 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1078"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 12. Technique T1050 Logstash filter

filter {

 if [event_id] == 4697 and [service_account_name] == 'LocalSystem' {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1050"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
 if [event_id] == 7045 and [service_account_name] == 'localsystem' {
 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1050"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

104

Appendix 13. Technique T1107 Logstash filter

filter {

 if [powershell][command][name] == 'Remove-Item' and [event_id] == 4103 {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1107"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 14. Technique T1027 Logstash filter

filter {

 if [powershell][host][application] =~ "\-[Ee^]{1,2}[NnCcOoDdEeMmAa^]+ [A-Za-z0-9+/=]{5,}" and
[event_id] == 4103 {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1027"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 15. Technique T1003 Logstash filter

filter {

 if [event_id] == 7 and [module_loaded] =~ "(WinSCard|cryptdll|hid|samlib|vaultcli)\.dll" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1003"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"

105

 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 16. Technique T1056 Logstash filter

filter {

 if [event_id] == 12 and [event_type] == "CreateKey" and [registry_key_path] =~
"\\Authentication\\Credential Providers" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1056"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 17. Techinque T1110 Logstash filter

filter {

 if [event_id] == 4625 or ([event_id] == 4771 and [event_status] == "0x18") {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1110"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 18. Technique T1087 Logstash filter

filter {

 if [event_id] == 1 and [process_command_line] =~
"(net\s+user)|(net\s+localgroup)|(dsquery\s+user)|(dsquery\s+group)" {

106

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1087"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 19. Technique T1016 Logstash filter

filter {

 if [event_id] == 1 and [process_command_line] =~ "ipconfig|route|arp" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1016"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 20. Technique T1083 Logstash filter

filter {

 if [event_id] == 4103 and [powershell][command][name] in ['Get-Item','Get-ChildItem'] {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1083"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 21. Technique T1105 Logstash filter

107

filter {

 if [event_id] == 5140 and [share_name] !~ "ipc\$|sysvol" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1105"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 22. Technique T1076 Logstash filter

filter {

 if [event_id] == 4624 and [logon_type] == "10" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1076"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 23. Technique T1077 Logstash filter

filter {

 if [event_id] == 5140 and [share_name] =~ "c\$|ipc\$|admin\$" {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1077"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

108

Appendix 24. Technique T1071 Logstash filter

filter {

 if [event_id] == 3 and [dst_port_name] in ["http","https","dns","smtp"] and [dst_ip_public] {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1071"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 25. Technique T1043 Logstash filter

filter {

 if [event_id] == 3 and [dst_port] in [22,123,110] {

 elasticsearch {
 hosts => ["helk-elasticsearch:9200"]
 index => "mitre-attack-*"
 query => "technique_id:T1043"
 sort => "modified:desc"
 fields => { "tactic" => "mitre_tactic"
 "technique" => "mitre_technique"
 "technique_id" => "mitre_technique_id"
 }
 }
 }
}

Appendix 26. Data analysis code

Import packages

from elasticsearch import Elasticsearch, helpers
from pandas import json_normalize
import networkx as nx
import ipywidgets as widgets
from IPython.display import display
import plotly.graph_objects as go

Fetch data from Elasticsearch

es = Elasticsearch(['http://172.16.100.50:9200'],timeout=600)

109

match_all = {
 "size": 10000,
 "query": {
 "bool": {
 "must": [
 {
 "exists": {
 "field": "mitre_technique_id"
 }
 },
 {
 "range": {
 "@timestamp": {
 "format": "strict_date_optional_time",
 "gte": "2020-02-16T22:00:00.000Z",
 "lte": "2020-02-17T22:00:00.000Z"
 }
 }
 }
],
 "filter": [
 {
 "match_all": {}
 }
],
 "should": [],
 "must_not": [
 {
 "match_phrase": {
 "meta_user_name_is_machine": {
 "query": "true"
 }
 }
 }
]
 }
 }
}

res = helpers.scan(
 client = es,
 scroll = '2m',
 query = match_all,
 index = "logs-endpoint*")

doc_count = 0
docs = []

for doc in res:
 data = doc['_source']
 data['_id'] = doc['_id']
 docs.append(doc['_source'])

print("DOC COUNT: %s" % len(docs))

Craete pandas dataframe and normalize fields

df = json_normalize(docs)

110

df.rename(columns={'_id': 'id', '@timestamp': 'timestamp'},inplace=True)
df['user_name'] = df['user_name'].str.lower()

Function to generate the graph and visualization

def create_graph(df, filters):

 # Define id and edge columns
 column_ID = 'id'
 column_edge = 'user_name'
 columns = ['mitre_technique_id', 'timestamp', 'winlog.computer_name']

 # Filter dataset based on values of the ipywidgets form
 user_cond = df['user_name'] == filters['user_select']
 tactics = [k for k,v in filters.items() if (v == True and k != 'user_select')]
 tactic_cond = df['mitre_tactic'].apply(lambda x: list(set(x) & set(tactics)))
 df_filtered = df[user_cond & tactic_cond]

 # Remove duplicates and merge dataset to itself
 data_to_merge = df_filtered[[column_ID, column_edge,
*columns]].dropna(subset=[column_edge]).drop_duplicates()
 data_to_merge = data_to_merge.merge(data_to_merge[[column_ID, column_edge, *columns]],
on=column_edge)

 # Get remove self connections
 df_merged =
data_to_merge[~(data_to_merge[column_ID+"_x"]==data_to_merge[column_ID+"_y"])].reset_index(
drop=True)

 # Remove bidirectional connection
 df_merged.drop(df_merged.loc[(df_merged["timestamp_x"]>df_merged["timestamp_y"]) |
(df_merged["timestamp_x"]==df_merged["timestamp_y"])].index.tolist(), inplace=True)

 # Remove connections with same technique id

df_merged.drop(df_merged.loc[df_merged["mitre_technique_id_x"]==df_merged["mitre_technique_
id_y"]].index.tolist(), inplace=True)
 df_merged.reset_index().drop(columns=['index'])

 # Create NetworkX directed Graph object and add node attributes (fields)
 G = nx.from_pandas_edgelist(df=df_merged, source=column_ID+"_x", target=column_ID+"_y",
edge_attr=True, create_using=nx.DiGraph)
 nx.set_node_attributes(G, df_filtered.set_index('id').to_dict('index'))

 # Find the lognest path
 longestPath = nx.algorithms.dag.dag_longest_path(G)

 # Create new Graph object with only the nodes from the longest path
 graph=nx.DiGraph()
 nx.add_path(graph,longestPath)

 # Set node and edge attributes to the new Graph
 nx.set_node_attributes(graph,{n: d for n,d in G.nodes(data=True)})
 nx.set_edge_attributes(graph, {(e[0],e[1]): e[2] for e in G.edges(data=True)})
(Re)Create graph and visualization when for the ipywidgets controls are changes
def controlls(**filters):
 create_graph(df, filters)

Create ipywidgets form to filter the visualization

111

defaut_user = 'administrator'

users = df['user_name'].dropna().unique()

tactics = ['execution', 'persistence', 'privilege-escalation', 'defence-evasion', 'credential-access',
'discovery', 'lateral-movement', 'collection', 'command-and-control']

w = {}

w['user_select'] = widgets.Dropdown(
 options=tuple(users),
 value=defaut_user,
 description='User',
 disabled=False,
 layout={ 'margin': "0px 10px 0px 0px"}
)

for t in tactics:
 w[t] = widgets.Checkbox(
 value=True,
 description=t,
 disabled=False,
 indent=False,
 layout={ 'width': 'max-content', 'margin': "0px 10px 0px 0px"}
)

wi = widgets.HBox(tuple(w.values()))
display(wi)
widgets.interactive_output(controlls, w)

