

Tri Hoang

JAMStack Continuous Integration and
Continuous Deployment with CircleCI
and Netlify

Metropolia University of Applied Sciences

Bachelor of Engineering

Name of the Degree Programme

Bachelor’s Thesis

1 May 2020

 Abstract

Author

Title

Number of Pages

Date

Tri Hoang

JAMStack continuous integration and continuous deployment

with CircleCI and Netlify

31 pages + 12 appendices

1 May 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Kari Salo, Principal Lecturer

The purpose of this study is to introduce Continuous Deployment and Continuous

Integration for JAMStack web application. These new development solutions are able to

enhance reliability, keeping the development flowing fast and smoothly. The paper first

deep dives into JAMStack then discuss the benefit of having a Continuous Deployment and

Continuous Integration pipeline.

In conclusion, this paper emphasizes the benefit of Continuous Deployment and

Continuous Integration, how to leverage CircleCI and Netlify to its full potential and

putting it into actual software development.

Keywords Continuous Deployment, Continuous Integration, Testing,

CI/CD pipeline, JAMStack

Contents

List of Abbreviations

Glossary

1 Introduction 1

2 JAMStack compare to Traditional stack 2

2.1 Traditional stack 2

2.1.1 LAMP stack 2

2.1.2 ME(X)N stack 3

2.2 JAMStack 3

3 Characteristics of Continuous Integration and Continuous Deployment 5

3.1 Old software deployment pattern 5

3.2 The new deployment pipeline 5

3.3 Continuous Integration 6

3.4 Continuous Deployment 7

4 Implementing Continuous Integration and Continuous Deployment 8

4.1 Infrastructure as a Service 10

4.2 Platform as a Service 10

4.2.1 CircleCI 11

4.2.2 Netlify 12

4.3 The benefit of using both Netlify and CircleCI 14

5 Implementation and Evaluation CI/CD with CircleCI and Netlify 15

5.1 Project overview 15

5.2 Implementation method 16

5.2.1 Prerequisite 16

5.2.2 Gatsby configuration 17

5.2.3 CircleCI configuration 18

5.2.4 Netlify Configuration 20

5.2.5 Setting up the CLI for CI/CD 20

5.2.6 Project structure 24

5.3 Evaluation 27

5.3.1 Performance 27

5.3.2 Development workflow 28

6 Conclusion 30

References 31

Appendices

List of Abbreviations

AWS Amazon Web Services

CI Continuous Integration

CD Continuous Deployment

CMS Content management system

DDOS Distributed Denial of Service

DNS Domain name system

IaaS Infrastructure as Cod

JS Javascript

REST Representational State Transfer

SaaS Software as a Service

PaaS Platform as a Service

SSR Server-side rendering

Glossary

YAML

A human-readable data-serialization language commonly used for

configuration files.

JAMStack

JAMstack, a cloud-native web development architecture based on client-

side JavaScript, reusable APIs, and markup.

ME(X)NStack

 MongoDB(M) as Database, Express.js(E) as the server framework, a

Javascript front-end framework such as React, Angular, Vue … as the

client framework(X), and Node.js(N) as the server environment.

LAMPStack

Most popular web stack, LAMP stack is made of four core technologies:

Linux (L), Apache(A), MySQL(M) and PHP, Pearl or Python (P).

1

1 Introduction

Nowadays in the advanced technological era, almost every single business is using at

least some form of technology to be able to run their business efficiently. The need for

better software applications to support business logic has led to a growing number of

software developers all around the world. Moreover, globalization has made all

businesses around the world to change their business models in great speed to adapt

to the market.

Big demands come with big challenges; software developers not only have to deliver

software applications fast to meet the demands but also have to ensure and maintain

the quality of the software applications. This raises the need for methods to help

developers meet the requirements for quality, delivery time, and service cost.

Continuous Integration, Continuous Deployment, and JAMStack are important

solutions to this problem.

Continuous Integration, Continuous Deployment and JAMStack connect developers

with their products and services, enable ease on maintaining content for the client

through Content Management System (CMS). These technologies aim to automate

product packaging, quality assurance, and publishing processes, making development

work more transparent, improve the quality and, above all, more working easier for

everyone.

Software developers are trying to find ways to apply these technologies by asking basic

questions: Where to start? What services and architect should be used? This thesis

attempts to answer the above questions by evaluating the concept and market. Another

aim of this study is to provide an exemplary implementation of Continuous Integration,

Continuous Deployment and JAMStack in the real-world scenario.

2

2 JAMStack compare to Traditional stack

2.1 Traditional stack

Websites traditionally have been powered by monolithic architectures, with the user

interface (UI) provided by front-end and content served by the back-end. These two

parts are tightly coupled together, every change made on one of which required

software developers to maintain the other.

Two of the most famous architectures are LAMP stack and ME(X)N Stack.

2.1.1 LAMP stack

Considered to be the oldest and most popular web stack, LAMP stack is made of four

core technologies: Linux (L), Apache(A), MySQL(M) and PHP, Pearl or Python (P).

This raises the difficulty for beginner developers and takes a long time to master all the

required technologies to be able to develop a good website out of LAMP stack:

For instance, Apache Web Server acts as a director that helps route HTTP requests

from the front-end to their corresponding back-end functions and controllers. The

developer must learn how to configure Apache to route correctly and efficiently, in case

of heavy traffic, bad Apache configuration could lead to slow experience for the end-

user and at the worst unresponsive website.

Not only that, using MySQL means that there should be a server providing database

service, which leads to high operation costs and harder to maintain. Database structure

in MySQL is crucial and needs to be done right from the start. Poor structure usually

required schemas changed, which required migration data from old schemas to newer

schemas. This procedure costs a lot of time and money and some cases lead to data

loss.

3

2.1.2 ME(X)N stack

Just like LAMP stack, the components of ME(X)N include MongoDB(M) as the

Database layer, Express.js(E) as the server-side application framework, a Javascript

front-end framework such as React, Angular, Vue … as the client-side application

framework(X), and Node.js(N) as the server-side environment. The best part is that all

of its components are opensource and all have a Javascript base.

ME(X)N has many advantages over LAMP stack, for example, MongoDB is a very

unique database because it is unlike traditional relational databases that usually

require SQL to interface with the underlying data. MongoDB uses a Javascript like a

set of calls to pull data and stores data in JSON vs tables. This can be ideal especially

if the client’s website is very document-heavy such as blogs.

Javascript typically can only run in the browser. Node.js was developed as a Javascript

based runtime environment that allows developers to run code outside of the browser.

This allowed developers the ability to code from the back to front-end all in Javascript.

Express.js plays a similar role in Node.js that Flask does for Python. Express helps

manage routes and incoming HTTP requests. This makes it easier to develop web

applications and makes it much easier to develop between the back and front-end of

your project.

Still ME(X)N stack retains some characteristics from LAMP stack. It still has a front-end

and back-end connect to a database service. Also deploying ME(X)N stack still

requires a web server framework such as Apache or Nginx. In the end, even though

ME(X)N stack is more advanced than LAMP stack, it still has not solved the traditional

front and back end architecture. That is why JAMStack was invented for.

2.2 JAMStack

JAMStack was invented to solve a lot of problems, some of the most challenging are:

• Providing a way for the client, who has no knowledge of coding, to be able to

change content on the website, without having assistance from software

developers.

4

• Monolithic apps are rarely conducive to superior site performance. They need

to generate and deliver HTML every time a new visitor arrives on the site. This

significantly slows down page loading time. [1, 1]

• Having a backend and database service results in more security issues.

• The traditional stack comprises front-end and back-end, which means higher

cost to operate since there are 2 services to maintain. Also, this architect

required skillful developer in operation (DevOps)

Fortunately, JAMStack can solve all the problems through its architecture. The
JAMStack is not about specific technologies. It is a new way of building websites and
apps that delivers better performance, higher security, lower cost of scaling, and a
better developer experience [2]. [3, 17]

At its core, JAMStack pre-renders all the HTML content, after that, it is sent to the

visitor on the site. This approach provides unmatched performance because the visitor

browser does not have to run all the Javascript (JS) code and render the HTML.

Moreover, with the integration of a headless content management system such as

Contentful or Netlify-CMS. JAMStack drops the need for a back-end system and relies

on the REST-API for the content of the website. The benefit of a headless content

management system is huge: there is no need to maintain because the service is

handled by the provider and this provides an interface for the client to interact and

change the content without the assistance of developers.

Also hosting JAMStack is a big advantage compare to other stacks. Since JAMStack

pre-renders all HTML content, hosting servers only need to serve the HTML and do not

need to run any complicated code nor compute complex calculations, this simplified the

hosting server technology. With JAMStack, security threats will be reduced to a

minimum as the website will rely on static webpages and get content from CDNs. This

limits the plausible methods hostile actors can attack your site.

5

3 Characteristics of Continuous Integration and Continuous Deployment

One of the most important problems that professional developers face is how to

convert a good idea, to bring a business case into real life as fast as possible. The

answer to that is to focus on build, deploy, test and release procedure.

3.1 Old software deployment pattern

In many software projects, releasing is a manually intensive process. The

environments that host the software are often crafted individually, usually by operation

or IS team. Third-party software that the application relies on is installed. The software

artifacts of the application itself are copied to the production host environments.

Configuration information is copied or created through the admin consoles of web

servers, applications servers, or other third-party components of the system. Reference

data is copied, and finally, the application is started, piece by piece if it is a distributed

or service-oriented application. [3, 17]

This old model proved to be prone to errors. If one of many steps is executed wrongly,

the whole application will not run properly. Moreover, when an error occurred, it may

not be clear which is the error and which step is wrong causing development to take a

big hit not only in quality but also delivering speed.

3.2 The new deployment pipeline

To prevent this problem, an approach focusing on automating the software

development lifecycle is a must. And the continuous integration and continuous

deployment pipeline pattern – CI/CD for short – is the answer.

CI/CD is an automated implementation of an application’s build, deploy, test, and

release process. Every organization will have differences in the implementation of their

deployment pipelines, depending on their value stream for releasing software, but the

principles that govern them do not vary [3,18]. An example of a deployment pipeline is

given in (see Figure 1).

6

Figure 1: Continuous Integration and Continuous Deployment pipeline

Every change that is made to an application’s configuration, source code, environment,

or data, triggers the creation of a new instance of the pipeline. One of the first steps in

the pipeline is to create binaries and installers. The rest of the pipeline runs a series of

tests on the binaries to prove that they can be released. Each test that the release

candidate passes gives us more confidence that this particular combination of binary

code, configuration information, environment, and data will work. If the release

candidate passes all the tests, it can be released. [3,18]

The deployment pipeline has its foundations in the process of continuous

integration and is, in essence, the principle of continuous integration taken to its logical

conclusion.

3.3 Continuous Integration

In the old fashion way, to implement quality checks on software development. All

planning phases, building application and testing its functionalities must be done by the

software developers (see Figure 2). These processes are repeated every single time if

there is any small change to the application itself. Setting up and performing these

tasks manually make a big impact on time efficiency and quality control.

The first step to delivering consistent and high-quality software is Continuous

Integration (CI). CI is all about ensuring your software is in a deployable state at all

times. That is, the code compiles and the quality of the code can be assumed to be of

reasonably good quality [4, 8]

7

Figure 2: Continuous Integration and Continuous Deployment

Developing software requires planning for change, continuously observing the results,

and incrementally course-correcting based on the results (see Figure 1). This is how CI

operates. CI is the embodiment of tactics that gives us, as software developers, the

ability to make changes in our code, knowing that if we break software, we’ll

receive immediate feedback. This immediate feedback gives us time to course-correct

and adjusts to change more rapidly [5, 10].

3.4 Continuous Deployment

At the end of any software development cycle, software developers have to put their

applications into production by deploying. Usually, after testing, the software

application will be manually deployed by software developers. This process not only

takes a lot of time but also prone to error due to human mistakes. Automate the

deployment phase of a software application is an essential key to ensure delivery

speed and eliminate human error out of the equation.

8

Figure 3. Continuous Deployment characteristics.

The final stage of automating software development process is Continuous

Deployment. When practicing Continuous Deployment, every check into the source

control is deployed to a production (like) environment on a successful build. The

rationale behind this is that software developers are going to deploy the software to

production sooner or later. The developers do this, the better the chance bugs will be

detected and able to be fixed faster [4, 10].

4 Implementing Continuous Integration and Continuous Deployment

Developers can choose between three models of implementations: On-premises,

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

In a traditional On-premises data center, the IT team has to build and manage

everything. Whether the team is building proprietary solutions from scratch or

purchasing commercial software products, they have to install and manage one-to-

many servers, develop and install the software, ensure that the proper levels of security

9

are applied, apply patches routinely (operating system, firmware, application, database,

and so on), and much more. With so many manual tasks in different fields make this

model prone to error and cause high operating cost.

The other options are two cloud service models: Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS) (see figure 4). Each cloud service model provides a

level of abstraction that reduces the efforts required by the service consumer to build

and deploy systems. Each cloud service model provides levels of abstraction and

automation for these tasks, thus providing more agility to the cloud service consumers

so they can focus more time on their business problems and less time on managing

infrastructure.

Figure 4. Continuous Deployment characteristics.

10

4.1 Infrastructure as a Service

With IaaS, many of the tasks related to managing and maintaining a physical data

center and physical infrastructure (servers, disk storage, networking, and so forth) are

abstracted and available as a collection of services that can be accessed and

automated from code- and/or web-based management consoles. There is no physical

infrastructure to manage anymore. Gone are the long procurement cycles where

developers would order physical hardware from vendors that would ship the hardware

to the buyer who then had to unpackage, assemble, and install the hardware, which

consumed space within a data center [6, 45]. This reduces high TCO costs and

simplified the requirement for server/dev-ops developer. There are many IaaS vendors

but the most popular one is AWS with its Code Build and Code Deploy solutions for

CI/CD.

However, developers still have to design, code entire applications and administrators

still need to install, manage, and patch third-party solutions. This required a Cloud

developer to manage the infrastructure and also introduce complexity in optimizing the

infrastructure to work best with the business model.

4.2 Platform as a Service

The next level up on the stack is PaaS. What IaaS is to infrastructure, PaaS is to the

applications. PaaS sits on top of IaaS and abstracts much of the standard application

stack–level functions and provides those functions as a service. PaaS eliminates the

need for a Cloud Developer to manage the infrastructure. Also, since the entire

infrastructure has been built and optimized, there is a very low risk of error compared to

building and managing our infrastructure. Right now, the market of PaaS for CI/CD is

huge. There are many players with many products, and since PaaS is usually heavily

optimized for a specific purpose when it comes to JAMStack, CircleCI and Netlify

surface as heavy contenders for our CI/CD PaaS.

11

4.2.1 CircleCI

For integrating Continuous Integration into the software development pipeline,

developers either have to develop their solution or use prebuilt solutions. When it

comes to the Continuous Integration Service market, there are many Continuous

Integration providers, but it is split into two categories: hosted and cloud base.

Hosted solutions such as Jenkins required a big infrastructure set up by developers in

order to run properly. Not only that, Jenkins also required developers to build their

plugin if there is no prebuilt solution, also maintaining dependencies and plugins raise a

big challenge in scalability if the software development pipeline becomes too big.

Fortunately, cloud-based Continuous Integration services fix all the issues. Unlike

hosted solutions, cloud-based Continuous Integration runs on the cloud, removing the

needs of infrastructure. Companies and developers do not have to allocate resources

to build and maintain the server because it is done by the service provider.

Right now, on the market, there are hundreds of cloud-based Continuous Integration

Providers such as Travis, Bamboo, Drone, etc. But stands out is CircleCI which leads

its category with 4,65% of the market [7] (see figure 5).

Figure 5. Market share of Continuous Integration service. (Datanyze.com 2019)

CircleCI provides enterprise-class support and services, with the flexibility of a startup.

We work where you work: Linux, macOS, Android, and Windows - SaaS or behind your

firewall [8].

CircleCI runs nearly one million jobs per day in support of 30,000 organizations.

Organizations choose CircleCI because jobs run fast and build can be optimized for

speed. CircleCI can be configured to run very complex pipelines efficiently with

12

sophisticated caching, docker layer caching, resource classes for running on faster

machines, and performance pricing [8].

Figure 6. CircleCI/config.yml sample

Developers using CircleCI can SSH into any job to debug build issues, setting

up parallelism in .CircleCI/config.yml file (see Figure 6) to run jobs faster, and

configure caching with two simple keys to reuse data from previous jobs in

your workflow. As an operator or administrator of CircleCI installed on your servers,

CircleCI provides monitoring and insights into your builds and uses Nomad Cluster for

scheduling.

4.2.2 Netlify

For integrating Continuous Deployment to software development pipeline, developers

have to handle these tasks:

• Hosting service

• DNS service

• Server for the website

13

• Security protection

Every single task mentioned above required enormous development effort from

developers. Traditionally, this was done manually which proved to be inefficient and

expensive. Nowadays, there are a lot of service providers for each of these single

tasks. But Netlify turns out to be the strongest since it offers an all-in-one solution from

hosting, DDOS protection, DNS services, building web application.

Netlify is an all-in-one platform for automating modern web projects. Replace your

hosting infrastructure, continuous integration, and deployment pipeline with a single

workflow. Integrate dynamic functionality like serverless functions, user authentication,

and form handling as your projects grow. [9]

By using Netlify, software developers no longer need to build and maintain a

deployment service. Everything is handled by Netlify. Every time software developers

publish an application, Netlify will automatically build and deploy the web application

with only the configuration file written by developers.

With the netlify.toml file (see Figure 7), Netlify support the Infrastructure as Code

model. Developers can enjoy the benefit of maintaining the infrastructure through a

single file of code and easy to share the configuration for different projects.

14

Figure 7 netlify.toml sample.

4.3 The benefit of using both Netlify and CircleCI

Netlify and CircleCI are very different services at its core:

Netlify beside providing continuously building your project, it also provides Content

Delivery Network (CDN) feature for your website. Netlify can host your website and re-

route the traffic to edge location, ensure the End User to have the best connectivity and

speed while accessing your website hosted on Netlify. Unfortunately, Netlify does not

provide container service for you to run your owned code, which, you cannot run tests,

auditing your code before building or integrate with other services at build time.

However, CircleCI provides just that. CircleCI provides containers services for you to

run any code related to your project. You can run tests, audit security issues, report

any found bug back to the developer via email or store report in other storage like

Amazon S3 bucket. Being a container service means CircleCI can build your website

after it passed all tests and checks set up by developers and deploy it to Netlify. Since

the website is already built-in CircleCI, Netlify is not required to build the website again

but deploy the already built package by CircleCI immediately. This is a significant cost

reduction because both CircleCI and Netlify are Lambda services. You only paid for the

computing time your website required, that means you only paid for the time CircleCI is

building and testing your website, when deploying to Netlify, since it is already built,

Netlify will not do any computing task but deploy it right away and because Netlify is not

building anything, there is zero cost generate at Netlify. This workflow is applied to the

project mention in this thesis and could be described in the diagram (see figure 7).

Furthermore, since CircleCI is a container service. We can spin up Linux container and

bash/ssh code right in the container. Developers can leverage this huge advantage by

writing customized scripts to add and customize CircleCI even more. For example, in

5.2.3 CircleCI Configuration, all four scripts are written to communicate with Github

using Github's API to send an easy preview of deployment directly in Github without

going to CircleCI.

15

Figure 7 Workflow of CircleCI and Netlify CI/CD.

5 Implementation and Evaluation CI/CD with CircleCI and Netlify

5.1 Project overview

As brought up in the introduction, this project is an implementation of Continuous

Integrations and Continuous Development with JAMStack using Netlify and CircleCI.

The goal of this project is to evaluate all theories discussed above. This project is a

Command Line Interface that can generate a JAMStack project with these features:

16

Get started immediately: You don’t need to install or configure tools.

They are preconfigured so that you can focus on the code. However, all configuration

files are exposed so you can customize them whenever you need them.

Continuous Integrations and Continuous Development pipeline support out-of-the-box:

You just need to sign up for services, get access tokens and connect your services

and the rest is handled by create-gatsby-web

Integrated with scripts to provide real develop-staging-production experience.

Content Management Service support: Prebuilt webhooks support for CMS, you can

configure your CMS to call to CircleCI webhooks. CircleCI is already preconfigured to

run CI/CD job if being called by this webhook.

5.2 Implementation method

5.2.1 Prerequisite

Before the project work is started, there are requirements to fulfill before being able to

develop the JAMStack boilerplate. Requirement and chosen tools are as follow:

• An Integrated Development Environment (IDE)

• NodeJS v10 an up installed on the system

• Yarn package manager

• Github personal access token for CircleCI reporting deployment to Pull Request
and Github Deployment, note down the token
as GITHUB_DEPLOYMENTS_TOKEN=<the-token>.

• Netlify development personal access token for CircleCI to deploy preview and
staging (this one belongs to Dev team Netlify's account). Note down the token
as NETLIFY_ACCESS_TOKEN=<the-token>. This is your staging website.

• Netlify production personal access token for CircleCI to deploy production (this
one belongs to Client Netlify's account - if you owned the project then
development access token is enough). Note down the token

https://github.com/settings/tokens
https://app.netlify.com/user/applications?&_ga=2.114107908.208815282.1582632982-167014225.1582120451#personal-access-tokens
https://app.netlify.com/user/applications?&_ga=2.114107908.208815282.1582632982-167014225.1582120451#personal-access-tokens

17

as NETLIFY_CLIENT_ACCESS_TOKEN=<the-token>. This is your production
website.

Installing NodeJS on macOS or Linux

Download NodeJS from https://nodejs.org/en/download/

Install NodeJS to the system. To make sure NodeJS is installed, run the below
command (should get current node version, v10.15.0 at the time of writing)

node -v

node version 10.15.0

Installing Yarn on macOS or Linux

Follow the instruction on https://yarnpkg.com/en/docs/install#mac-stable

To make sure Yarn is installed, run the below command (should get current yarn
version, 1.19.0 at the time of writing)

yarn -v

1.19.0

Sign Up Github Account

Follow the instruction on https://github.com/join

Sign Up Netlify Account

Follow the instruction on https://app.netlify.com/signup

Sign Up CircleCI Account

Follow the instruction on https://CircleCI.com/signup/

5.2.2 Gatsby configuration

Gatsby is a static website generation tool for React developers. In essence, this tool

lets you build React components and captures their rendered output to use as the

static site content. However, Gatsby takes static site generation to the next level. In

particular, it provides mechanisms for sourcing your website data and transforming it

into GraphQL that's more easily consumed by React components. Gatsby can handle

anything from a single page brochure site to a site that spans hundreds of pages. [10,

52]

https://nodejs.org/en/download/
https://yarnpkg.com/en/docs/install#mac-stable
https://github.com/join
https://yarnpkg.com/en/docs/install#mac-stable
https://yarnpkg.com/en/docs/install#mac-stable
https://yarnpkg.com/en/docs/install#mac-stable
https://circleci.com/signup/

18

In order for Gatsby to work correctly, it relies on the configuration file name as gatsby-

config.js (Appendix 2). This file contains all the plugins needed for your Gatsby project.

Since our aim to provide the best performance website out-of-the-box. We will

specifically pre-installed some of Gatsby-plugins:

Gatsby-plugin-canonical-URLs: When multiple pages have similar content, search

engines consider them duplicate versions of the same page. For example, desktop and

mobile versions of a product page are often considered duplicates. Search engines

select one of the pages as the canonical, or primary, version and crawl that one more.

Valid canonical links let you tell search engines which version of a page to crawl and

display to users in search results [11]. This plugin will auto add canonical URLs to

HTML pages generated by Gatsby [12].

Gatsby-plugin-offline: Enable service-worker for caching, help web load faster and

better under poor network connection. Also, enable Progressive Web App capability

[13].

5.2.3 CircleCI configuration

config.yml (see Appendix 1) is configured to run in the latest Ubuntu container with

browser preinstalled. The Configuration contains eight types of jobs:

• install-dependencies-test-lint: this job is to install all dependencies needed to

build the project. Here, we use a feature from CircleCI called caching. Caching

is to persisting data between two different workflows. When using caching, we

checksum the lock file, if the lock file is changed, CircleCI will download it from

the beginning. But if the lock file does not change, CircleCI will just download

the persisted cache from storage without having to download and install from

the internet, saving a huge amount of time as well as resources.

• checking-performance: this job is configured to run lighthouse ci to check for

website performance, accessibility, SEO, best practices as well as PWA

capability. Passing threshold can be configured in lighthouserc.json (see

Appendix 3)

19

• gatsby-build-preview-deploy: this job is configured to only run on branches

beside Develop and Master, it will run gatsby-deploy-start.sh (see Appendix 5)

then use Gatsby to build the website. After finishing the build, it will run gatsby-

deploy-end.sh (see Appendix 4). Both scripts are for reporting deploying status

back to Github, this will save developers a lot of time, not having to go to Netlify

to see the preview build. In gatsby-deploy-end.sh (see Appendix 4), the script is

written to use netlify-CLI to deploy the recently built website (Netlify preview

built). This helps developers can always checking for run-time error before

releasing to production.

• storybook-build-preview-deploy: this job is configured to only run on branches

beside Develop and Master, it will run storybook-deploy-start.sh (see Appendix

6) then use Storybook to build the website. It will run storybook-deploy-end.sh

(see Appendix 4). Both scripts are for reporting deploying status back to

GitHub. After finishing building, the built will be saved das CircleCI artifact and

can be view directly by accessing the path to the artifact.

• cms-gatsby-build-staging-deploy: this job is configured to rebuilding the demo-

website to fetching updated content in the CMS from Develop branch. CMS

webhook will be configured to automatically trigger this job if there are any

changes to the content. Storybook will not be updated because it is not affected

by the updated content.

• gatsby-storybook-build-staging-deploy: this job is configured to build both the

website and storybook documentation using Gatsby and Storybook from

Develop branch. After that, CircleCI will use Netlify CLI to deploy to demo link

with tag –prod (production).

• cms-gatsby-build-release-deploy: this job is configured to rebuilding the

production-website to fetching updated content in the CMS from Master branch.

CMS webhook will be configured to automatically trigger this job if there are any

changes to the content. Storybook will not be updated because it is not affected

by the updated content.

• gatsby-build-release-deploy: this job is configured to use Gatsby to build the

website from Master branch and release the built to production.

20

5.2.4 Netlify Configuration

Since everything is built-in CircleCI, Netlify does not need any Netlify.toml configuration

for building the website. Being a very optimize CDN and hosting service. Netlify

handles all traffic routing, caching in edge network and best of all cost nothing since we

do not run any building task in Netlify.

5.2.5 Setting up the CLI for CI/CD

1. Clone this Repo

npx create-gatsby-web <your-project-name>

2. Install all packages

Using either yarn/npm install

cd <your-project-name>

yarn

or

cd <your-project-name>

npm install

3. Setting up Continuous Integration and Development

• Upload project to Github's repo, if you want to use CircleCI for free,

Github's repo must be public.

• Install LighthouseCI via this LINK, let LighthouseCI access your project

repo, note down the TOKEN provided on the authorization

confirmation page as LHCI_GITHUB_APP_TOKEN=<the-TOKEN>.

• Run yarn build/ npm run build, you will get Gatsby built public folder

in the root directory.

https://github.com/apps/lighthouse-ci

21

• Run yarn build-storybook/ npm run build-storybook, you will get

Storybook built build-storybook folder in the root directory.

• Login to Dev team Netlify, upload the public folder via the image

below (DO NOT USE new site from GIT), after upload you should

get new project deployment in Netlify, click on it and go to site

settings, note down the API ID as NETLIFY_SITE_ID_STAGING=<the-API-ID

>.

• Still in Dev team Netlify, upload the build-storybook folder via the

image below (DO NOT USE new site from GIT), after upload you

should get storybook deployment in Netlify, click on it and go to site

settings, note down the API ID as NETLIFY_SITE_ID_STORYBOOK=<the-API-

ID >.

• Log in to Client Netlify, upload the public folder via the image

below (DO NOT USE new site from GIT), after upload you should

get new project deployment in Netlify, click on it and go to site

settings, note down the API ID as NETLIFY_SITE_ID_RELEASE=<the-API-ID

>.

• Login to CircleCI, click on add project -> set up project -> start

building -> add manually

• Go back to the main dashboard -> jobs -> click on the setting of your

project -> environment variable -> add variable. Then add all the 7

ENV that we just got.

Now the project is ready for integrating with CI/CD

4. Setting up Content Management Service Webhook

• CircleCI personal access token for CMS to call CircleCI webhooks. Note
down the token as CIRCLE-TOKEN=<the-token>.

https://circleci.com/docs/2.0/managing-api-tokens/

22

• CMS account, recommended Contentful

• Connection keys from CMS, if you use Contentful, click on settings -> API
keys -> Content delivery/preview tokens -> Add API key. Note down as:

CONTENTFUL_SPACE_ID=<the-Space-ID>
CONTENTFUL_ACCESS_TOKEN=<the-Content-Delivery-API-access token>

1. Setup Contentful

• Create a .env in project root directory, put this in the .env file:

CONTENTFUL_SPACE_ID=<the-Space-ID>
CONTENTFUL_ACCESS_TOKEN=<the-Content-Delivery-API-access token>

• Run yarn add gatsby-source-contentful / npm install --save gatsby-
source-contentful

• Navigate to gatsby-config, uncomment the block of code:

/***** REMOVE COMMENT TO ENABLE CONTENTFUL CMS
{
 resolve: `gatsby-source-contentful`,
 options: {
 spaceId: process.env.CONTENTFUL_SPACE_ID,
 accessToken: process.env.CONTENTFUL_ACCESS_TOKEN,
 },
 },
******/

• Login to CircleCI, main dashboard -> jobs -> click on the setting of your

project -> environment variable -> add variable. Then add your

CONTENTFUL_SPACE_ID and CONTENTFUL_ACCESS_TOKEN.

2. Setup webhook

Webhook for staging website

• Login to Contentful, settings -> webhooks -> add webhooks

• Details -> name Trigger CircleCI Build Develop Branch

• Details -> URL -> POST -

> https://CircleCI.com/api/v2/project/github/<org-name-or-your-
account-name>/<repo-name>/pipeline

• Triggers -> Select specific triggering events -> tick all Publish +

Unpublish

• Headers -> add custom header -> Name: Circle-Token -> Value: <the-
token-value>

• Content type -> application/json

• Payload -> Customize the webhook payload:

https://www.contentful.com/

23

{
 "branch": "develop",
 "parameters": {
 "trigger": false,
 "cms-develop": true
 }
}

• Click save, voila! you got the staging webhook setup. Every time there is

a change in contentful, the webhook will trigger CircleCI to run the

pipeline and deploy the new content.

Webhook for production website

• Login to Contentful, settings -> webhooks -> add webhooks

• Details -> name Trigger CircleCI Build Master Branch

• Details -> URL -> POST -

> https://CircleCI.com/api/v2/project/github/<org-name-or-your-
account-name>/<repo-name>/pipeline

• Triggers -> Select specific triggering events -> tick all Publish +

Unpublish

• Headers -> add custom header -> Name: Circle-Token -> Value: <the-
token-value>

• Content type -> application/json

• Payload -> Customize the webhook payload:

{
 "branch": "master",
 "parameters": {
 "trigger": false,
 "cms-master": true
 }
}

After setting this up, every time you push, CircleCI will check for lint + testing
error, if passed you can click details in CircleCI check and see the Web URL
deployed on Netlify.

Note that for master branch, CircleCI will build the App and release to Netlify
with tag --prod for Production deployment.

5. Open the source code and start editing!

yarn start

or

npm run start

Your site is now running at http://localhost:8000!

24

Open the React-Gatsby-Typescript-CircleCI-Netlify-Boilerplate directory in your
code editor of choice and edit src/pages/index.js. Save your changes and the
browser will update in real-time!

5.2.6 Project structure

A quick look at the top-level files and directories in this boilerplate.

.
├── .CircleCI
│ └── config.yml
├── .storybook
│ ├── addons.js
│ ├── config.js
│ └── webpack.config.js
├── config
│ └── testing
│ ├── setupTests.js
│ └── __ mocks __
│ ├── file-mock.js
│ ├── gatsby.js
│ └── styleMock.js
├── node_modules
├── src
│ ├── images
│ ├── pages
│ │ ├── index.jsx/tsx
│ │ └── your_page
│ │ └── index.jsx/tsx
│ └── components
│ ├── seo
│ │ └── index.jsx/tsx
│ └── < your component >
│ ├── index.jsx/tsx
│ ├── __ stories __
│ │ └── your_component.stories.jsx/tsx
│ └── __ tests __
│ └── your_component.test.jsx/tsx
├── tasks
│ └── deployment
│ ├── gatsby-deploy-end.sh
│ ├── gatsby-deploy-start.sh
│ ├── storybook-deploy-end.sh
│ └── storybook-deploy-start.sh
├── .eslintignore
├── .eslintrc.js
├── .gitignore
├── .huskyrc.json
├── .lintstagedrc.json

25

├── .lighthouserc.json
├── .prettierignore
├── .prettierrc
├── gatsby-browser.js
├── gatsby-config.js
├── gatsby-node.js
├── gatsby-ssr.js
├── jest-preprocess.js
├── jest.config.js
├── LICENSE
├── loadershim.js
├── README.md
├── package.json
├── tsconfig.json -- only available on typescript template
└── yarn.lock/package-lock.json

1. ./CircleCI: This directory contains CircleCI configuration file. Note that there are
4 type of jobs: preview-staging-release-webhook

2. .storybook/: This directory contains all the configuration files for Storybook.

3. ./config/testing: This directory contains all the MOCK configuration files for
Jest testing.

4. ./node_modules: This directory contains all of the modules of code that your
project depends on (npm packages) are automatically installed.

5. ./src: This directory will contain all of the code related to what you will see on
the front-end of your sites (what you see in the browser) such as your site
header or a page template. src is a convention for “source code”.

6. .eslintignore: This file tells eslint which files it should not track.

7. .eslintrc.js: Eslint configuration file.

8. .gitignore: This file tells git which files it should not track / not maintain a
version history for.

9. .huskyrc.json: Husky configuration file. Already set up with a pre git commits
hooks.

10. .lintstagedrc.json: Lint-staged configuration file. Already set up to auto lint and
format code before commit.

11. .lighthouserc.json: Lighthouse configuration file. You can adjust passing
parameters here. Already configured with optimum parameters.

12. .prettierignore: This file tells prettier which files it should not track.

26

13. .prettierrc: This is a configuration file for Prettier. Prettier is a tool to help keep
the formatting of your code consistent.

14. gatsby-browser.js: This file is where Gatsby expects to find any usage of
the Gatsby browser APIs (if any). These allow customization/extension of
default Gatsby settings affecting the browser.

15. gatsby-config.js: This is the main configuration file for a Gatsby site. This is
where you can specify information about your site (metadata) like the site title
and description, which Gatsby plugins you’d like to include, etc. (Check out
the config docs for more detail). SEO component already preconfigures, only
production deployment will get index by Google bots all preview and staging will
have noindex meta tag.

16. gatsby-node.js: This file is where Gatsby expects to find any usage of
the Gatsby Node APIs (if any). These allow customization/extension of default
Gatsby settings affecting pieces of the site build process.

17. gatsby-ssr.js: This file is where Gatsby expects to find any usage of
the Gatsby server-side rendering APIs (if any). These allow customization of
default Gatsby settings affecting server-side rendering. Preconfigured to
convert stylesheet inline to link, preventing too long head which prevents
Facebook, Twitter ... scraping data.

18. jest-preprocess.js: This file contains babel options to build gatsby project for
Jest testing.

19. jest.config.js: This file contains all of Jest configurations.

20. LICENSE: This boilerplate is licensed under the MIT license.

21. loadershim.js: This file contains loader setting for Jest.

22. package.json: A manifest file for Node.js projects, which includes things like
metadata (the project’s name, author, etc). This manifest is how npm knows
which packages to install for your project.

23. README.md: A text file containing useful reference information about your
project.

24. tsconfig.json: This file contains all of typescript configurations for type
checking.

25. yarn.lock/package-lock.json (See package.json below, first). This is an
automatically generated file based on the exact versions of your npm
dependencies that were installed for your project. (You won’t change this file
directly).

https://prettier.io/
https://www.gatsbyjs.org/docs/browser-apis/
https://www.gatsbyjs.org/docs/gatsby-config/
https://www.gatsbyjs.org/docs/node-apis/
https://www.gatsbyjs.org/docs/ssr-apis/

27

5.3 Evaluation

To evaluate the outcome of the implementation. We decided to migrate a JAMStack E-

commerce website with the following specification:

• Currently running on Gatsby and is a JAMStack website

• Manually deploy on AWS

• Content served by Contentful

• Project code was hosted on Github without any CI/CD

5.3.1 Performance

These scores were measured by Google’s Page Insight and Lighthouse audit by just

simply migrate the current website into using the create-gatsby-web (with Netlify and

CircleCI).

After migrating, the website is running 75% faster than the original version, certified to

be a Progressive Web App and got a perfect 100% score on SEO.(see figure 8, 9)

Figure 8 Original Lighthouse score.

28

Figure 9 Lighthouse score after migrating to create-gatsby-web

5.3.2 Development workflow

Before migrating, the website had some downtime due to errors that got past manual

inspection by developers (see figure 10).

After migrating, we observe a 0% failing rate (see figure 11)

Figure 10. Website uptime before migrating.

Figure 11. Website uptime after migrating.

29

Also, reporting from developers involving in the project are very optimistic. Pull

request is being reviewed at a much faster pace and more informative than the original

project, thanks to the CircleCI customized scripts. They also reported feeling less

stressed because CI/CD preventing any bug that causes the website to shut down to pass

through.

11/11 developers said to be very satisfied with the CI/CD implementation and would

use it again in future projects.

30

6 Conclusion

This thesis advocates the benefits of software development with Continuous Integration

Continuous Deployment and JAMStack by discussing the history of software

development and how the future of business market leads to the trend of Continuous

Integration and Continuous Deployment. These two methods with their many

advantages over traditional software development enhance the delivery speed, reduce

cost and maintenance upkeep delegation. Web development will shift from a monolithic

architecture to JAMStack, which will vigorously continue to develop with the help of

Continuous Integration service and Continuous Deployment service.

The paper also introduces CircleCI as Continuous Integration service and Netlify as

Continuous Deployment service. These are the most popular service in its category.

Moreover, these services combined under Infrastructure as Code architecture to create

the JAMStack boilerplate, which proves the concept of CI/CD to be very beneficial, low

cost and very efficient.

The combination of Continuous Integration, Continuous Development and JAMStack

will be the future of web development, bringing more value to businesses relying on

technology. The possibility of the internet is endless and these technologies offer

unlimited scalability in the future market. Already, more and more new services support

this pipeline model creating an ecosystem around CI/CD and JAMStack. These new

services have higher abstraction levels and functionality to meet the upcoming

requirements of the industry.

31

References

1 Biilmann Mathias. Modern Web Development on the JAMStack. O’Reilly Media,
Inc; 2019

2 JAMStack Documentation. JAMStack organization; Available from:
https://jamstack.org [cited December 15, 2019]

3 Humble Jez, Farley David. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, Video Enhanced Edition;
O’Reilly Media, Inc; 2019

4 Rossel Sander. Continuous Integration, Delivery, and Deployment. Packt

Publishing; 2017

5 Duvali Paul M, Glover Andrew, Matyas Steve. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley Professional;
2007

6 Kavis Michael. Architecting the Cloud: Design Decisions for Cloud
Computing Service Models (SaaS, PaaS, and IaaS). Wiley; 2014

7 Continuous Integration market share report 2019; Datanyze.com; Available
from: https://datanyze.com/market-share/ci [cited December 15, 2019]

8 CircleCI.com; Available from: https://CircleCI.com/docs/2.0/about-
CircleCI/#section=welcome [cited December 15, 2019]

9 Netlify Documentation. Netlify.com; Available from:
https://docs.netlify.com/#get-started [cited December 15, 2019]

10 Boduc Adam. React 16 Toolings; Packt Publishing; 2017

11 Google Web Dev best practices. Web.dev; Available from
https://web.dev/canonical [cited May 8, 2020)

12 Gatsby Documentation. Gatsby.js.org; Available from
https://www.gatsbyjs.org/packages/gatsby-plugin-canonical-urls/ [cited May 8,
2020)

13 Gatsby Documentation. Gatsby.js.org; Available from
https://www.gatsbyjs.org/packages/gatsby-plugin-offline/ [cited May 8, 2020)

32

Appendix 1

 1 (6)

1 config.yml

version: 2.1

orbs:

 jq: circleci/jq@2.0.1

parameters:

 # This parameter is used to trigger the main workflow

 trigger:

 type: boolean

 default: true

 cms-develop:

 type: boolean

 default: false

 cms-master:

 type: boolean

 default: false

executors:

 node-executor:

 docker:

 - image: circleci/node:lts-browsers

 working_directory: ~/repo

jobs:

 checking-performance:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - attach_workspace:

 at: ~/repo

 - run:

 name: Install Moreutils

 command: sudo apt-get install moreutils

 - run:

 name: Detecting all pages

 command: ./tasks/lighthouse/detect-pages.sh

 - run:

 name: Lighthouse Auditing

 command: yarn lhci:run

 - run:

 name: Lighthouse Report To Github

 command: yarn lhci:upload

 install-dependencies-test-lint:

 executor: node-executor

 steps:

 - checkout

 - attach_workspace:

 at: ~/repo

 - restore_cache:

 keys:

 - yarn-cache-11-{{ checksum "yarn.lock" }}

 - run:

 name: Install Dependencies

 command: yarn install && npm rebuild

 - run:

 name: Check lint error

 command: yarn lint

 - run:

 name: Testing

 command: yarn ci-test

 - save_cache:

 key: yarn-cache-11-{{ checksum "yarn.lock" }}

Appendix 1

 2 (6)

 paths:

 - ./node_modules

 - persist_to_workspace:

 root: .

 paths:

 - ./node_modules

 gatsby-build-preview-deploy:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - attach_workspace:

 at: ~/repo

 - run:

 name: Create GitHub Gatsby Deployment

 command: ./tasks/deployment/gatsby-deploy-start.sh >

gatsby_deployment

 - restore_cache:

 keys:

 - gatsby-public-cache-{{ .Branch }}

 - run:

 name: Gatsby Build

 command: GATSBY_ACTIVE_ENV=staging GATSBY_CPU_COUNT=2 yarn build

 - save_cache:

 key: gatsby-public-cache-{{ .Branch }}

 paths:

 - ./public

 - run:

 name: Add GitHub Gatsby Deployment success status

 command: ./tasks/deployment/gatsby-deploy-end.sh success

 when: on_success

 - run:

 name: Add GitHub Gatsby Deployment error status

 command: ./tasks/deployment/gatsby-deploy-end.sh error

 when: on_fail

 - persist_to_workspace:

 root: .

 paths:

 - ./public

 storybook-build-preview-deploy:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - attach_workspace:

 at: ~/repo

 - run:

 name: Create GitHub Storybook Deployment

 command: ./tasks/deployment/storybook-deploy-start.sh >

storybook_deployment

 - restore_cache:

 keys:

 - v9-storybook-public-cache-{{ .Branch }}

 - run:

 name: Storybook Build

 command: yarn build-storybook

 - store_artifacts:

 path: build-storybook

 - save_cache:

 key: v9-storybook-public-cache-{{ .Branch }}

 paths:

 - ./build-storybook

 - run:

 name: Add GitHub Storybook Deployment success status

 command: ./tasks/deployment/storybook-deploy-end.sh success

 when: on_success

 - run:

Appendix 1

 3 (6)

 name: Add GitHub Storybook Deployment error status

 command: ./tasks/deployment/storybook-deploy-end.sh error

 when: on_fail

 cms-gatsby-build-staging-deploy:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - restore_cache:

 keys:

 - yarn-cache-{{ checksum "yarn.lock" }}

 - run:

 name: Install Dependencies

 command: yarn install && npm rebuild

 - run:

 name: Check lint error

 command: yarn lint

 - run:

 name: Testing

 command: yarn ci-test

 - save_cache:

 key: yarn-cache-{{ checksum "yarn.lock" }}

 paths:

 - ./node_modules

 - run:

 name: Create GitHub Gatsby Deployment

 command: ./tasks/deployment/gatsby-deploy-start.sh >

gatsby_deployment

 - restore_cache:

 keys:

 - gatsby-public-cache-{{ .Branch }}

 - run:

 name: Gatsby Build

 command: GATSBY_ACTIVE_ENV=staging GATSBY_CPU_COUNT=2 yarn build

 - run:

 name: Add GitHub Gatsby Deployment success status

 command: ./tasks/deployment/gatsby-deploy-end.sh success

 when: on_success

 - run:

 name: Add GitHub Gatsby Deployment error status

 command: ./tasks/deployment/gatsby-deploy-end.sh error

 when: on_fail

 - save_cache:

 key: gatsby-public-cache-{{ .Branch }}

 paths:

 - ./public

 - run:

 name: Netlify Deploy Gatsby

 command: ./node_modules/.bin/netlify deploy --site

$NETLIFY_SITE_ID_STAGING --auth $NETLIFY_ACCESS_TOKEN --prod --dir=public

 gatsby-storybook-build-staging-deploy:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - attach_workspace:

 at: ~/repo

 - run:

 name: Create GitHub Gatsby Deployment

 command: ./tasks/deployment/gatsby-deploy-start.sh >

gatsby_deployment

 - restore_cache:

 keys:

 - gatsby-public-cache-{{ .Branch }}

 - run:

 name: Gatsby Build

 command: GATSBY_ACTIVE_ENV=staging GATSBY_CPU_COUNT=2 yarn build

Appendix 1

 4 (6)

 - run:

 name: Add GitHub Gatsby Deployment success status

 command: ./tasks/deployment/gatsby-deploy-end.sh success

 when: on_success

 - run:

 name: Add GitHub Gatsby Deployment error status

 command: ./tasks/deployment/gatsby-deploy-end.sh error

 when: on_fail

 - save_cache:

 key: gatsby-public-cache-{{ .Branch }}

 paths:

 - ./public

 - run:

 name: Netlify Deploy Gatsby

 command: ./node_modules/.bin/netlify deploy --site

$NETLIFY_SITE_ID_STAGING --auth $NETLIFY_ACCESS_TOKEN --prod --dir=public

 - restore_cache:

 keys:

 - v9-storybook-public-cache-{{ .Branch }}

 - run:

 name: Storybook Build

 command: yarn build-storybook

 - save_cache:

 key: v9-storybook-public-cache-{{ .Branch }}

 paths:

 - ./build-storybook

 - run:

 name: Netlify Deploy Storybook

 command: ./node_modules/.bin/netlify deploy --site

$NETLIFY_SITE_ID_STORYBOOK --auth $NETLIFY_ACCESS_TOKEN --prod --dir=build-

storybook

 cms-gatsby-build-release-deploy:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - restore_cache:

 keys:

 - yarn-cache-{{ checksum "yarn.lock" }}

 - run:

 name: Install Dependencies

 command: yarn install && npm rebuild

 - run:

 name: Check lint error

 command: yarn lint

 - run:

 name: Testing

 command: yarn ci-test

 - save_cache:

 key: yarn-cache-{{ checksum "yarn.lock" }}

 paths:

 - ./node_modules

 - restore_cache:

 keys:

 - gatsby-public-cache-{{ .Branch }}

 - run:

 name: Gatsby Build

 command: GATSBY_ACTIVE_ENV=production GATSBY_CPU_COUNT=2 yarn build

 - save_cache:

 key: gatsby-public-cache-{{ .Branch }}

 paths:

 - ./public

 - run:

 name: Netlify Deploy Gatsby

Appendix 1

 5 (6)

 command: ./node_modules/.bin/netlify deploy --site

$NETLIFY_SITE_ID_RELEASE --auth $NETLIFY_CLIENT_ACCESS_TOKEN --prod --

dir=public

 gatsby-build-release-deploy:

 executor: node-executor

 steps:

 - checkout

 - jq/install

 - attach_workspace:

 at: ~/repo

 - restore_cache:

 keys:

 - gatsby-public-cache-{{ .Branch }}

 - run:

 name: Gatsby Build

 command: GATSBY_ACTIVE_ENV=production GATSBY_CPU_COUNT=2 yarn build

 - save_cache:

 key: gatsby-public-cache-{{ .Branch }}

 paths:

 - ./public

 - run:

 name: Netlify Deploy Gatsby

 command: ./node_modules/.bin/netlify deploy --site

$NETLIFY_SITE_ID_RELEASE --auth $NETLIFY_CLIENT_ACCESS_TOKEN --prod --

dir=public

workflows:

 version: 2

 build-deploy:

 when: << pipeline.parameters.trigger >>

 jobs:

 - install-dependencies-test-lint

 - gatsby-build-preview-deploy:

 requires:

 - install-dependencies-test-lint

 filters:

 branches:

 ignore:

 - develop

 - master

 - storybook-build-preview-deploy:

 requires:

 - install-dependencies-test-lint

 filters:

 branches:

 ignore:

 - develop

 - master

 - gatsby-storybook-build-staging-deploy:

 requires:

 - install-dependencies-test-lint

 filters:

 branches:

 only:

 - develop

 - gatsby-build-release-deploy:

 requires:

 - install-dependencies-test-lint

 filters:

 branches:

 only:

 - master

 - checking-performance:

 requires:

 - gatsby-build-preview-deploy

 filters:

Appendix 1

 6 (6)

 branches:

 ignore:

 - develop

 - master

 cms-webhook-develop:

 when: << pipeline.parameters.cms-develop >>

 jobs:

 - cms-gatsby-build-staging-deploy

 cms-webhook-master:

 when: << pipeline.parameters.cms-master >>

 jobs:

 - cms-gatsby-build-release-deploy

Appendix 2

 1 (1)

2 gatsby-config.js

module.exports = {

 siteMetadata: {

 title: `jamstack-javascript-boilerplate`,

 description: `jamstack-javascript-boilerplate`,

 author: `@tripheo0412`,

 type: process.env.GATSBY_ACTIVE_ENV || 'staging',

 siteUrl: `https://www.your-app-domain.netlify.app/`,

 hostname: `your-app-domain.netlify.app`,

 },

 plugins: [

 `gatsby-plugin-react-helmet`,

 {

 resolve: `gatsby-source-contentful`,

 options: {

 spaceId: process.env.CONTENTFUL_SPACE_ID,

 accessToken: process.env.CONTENTFUL_ACCESS_TOKEN,

 },

 },

 {

 resolve: `gatsby-plugin-canonical-urls`,

 options: {

 siteUrl: `https://www.your-app-domain.netlify.app/`,

 },

 },

 {

 resolve: `gatsby-source-filesystem`,

 options: {

 name: `images`,

 path: `${__dirname}/src/images`,

 },

 },

 {

 resolve: 'gatsby-plugin-i18n',

 options: {

 langKeyDefault: 'en',

 useLangKeyLayout: false,

 prefixDefault: false,

 },

 },

 {

 resolve: `gatsby-plugin-manifest`,

 options: {

 name: `jamstack-javascript-boilerplate`,

 short_name: `starter`,

 start_url: `/`,

 background_color: `#663399`,

 theme_color: `#663399`,

 display: `minimal-ui`,

 icon: `src/images/gatsby-icon.png

 },

 },

 `gatsby-plugin-sitemap`,

 `gatsby-plugin-offline`,

 `gatsby-transformer-sharp`,

 `gatsby-plugin-sharp`,

],

}

Appendix 3

 1 (1)

3 lighthouserc.json

{

 "ci": {

 "collect": {

 "url": ["http://localhost/"],

 "numberOfRuns": 2,

 "staticDistDir": "./public"

 },

 "assert": {

 "preset": "lighthouse:recommended",

 "assertions": {

 "first-contentful-paint": [

 "warn",

 {

 "maxNumericValue": 2500,

 "aggregationMethod": "optimistic"

 }

],

 "interactive": [

 "warn",

 {

 "maxNumericValue": 5000,

 "aggregationMethod": "optimistic"

 }

],

 "uses-long-cache-ttl": "off",

 "uses-http2": "off",

 "canonical": "off",

 "is-crawlable": "off",

 "link-name": "off",

 "meta-description": "off",

 "dom-size": ["error", { "minScore": 0.98 }],

 "uses-rel-preconnect": "off",

 "unused-css-rules": "off",

 "offscreen-images": ["warn", { "minScore": 0 }]

 }

 },

 "upload": {

 "target": "temporary-public-storage"

 }

 }

}

Appendix 4

 1 (1)

4 gatsby-deploy-end.sh

#!/bin/sh

set -eu

token=${GITHUB_DEPLOYMENTS_TOKEN:?"Missing GITHUB_TOKEN environment variable"}

if ! gatsby_deployment_id=$(cat gatsby_deployment); then

 echo "Deployment ID was not found" 1>&2

 exit 3

fi

if ["$1" = "error"]; then

 curl -s \

 -X POST \

 -H "Authorization: bearer ${token}" \

 -d "{\"state\": \"error\", \"environment\": \"storybook\"" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}/deployments/${gatsby_deployment_id}/statuses"

 exit 1

fi

if ! netlify_deployment_url=$(./node_modules/.bin/netlify deploy --json --site

$NETLIFY_SITE_ID_STAGING --auth $NETLIFY_ACCESS_TOKEN --dir=public | jq

'.deploy_url'); then

 echo "Netlify preview deployment failed"

 exit 1

fi

echo ${netlify_deployment_url}

if ! gatsby_deployment=$(curl -s \

 -X POST \

 -H "Authorization: bearer ${token}" \

 -d "{\"state\": \"success\", \"description\": \"deployed on

Netlify\", \"environment\": \"gatsby\", \"environment_url\":

${netlify_deployment_url}, \"target_url\": ${netlify_deployment_url},

\"log_url\": ${netlify_deployment_url}}" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}/deployments/${gatsby_deployment_id}/statuses"); then

 echo "POSTing deployment status failed, exiting (not failing build)" 1>&2

 exit 1

fi

Appendix 5

 1 (1)

5 gatsby-deploy-start.sh

#!/bin/sh

set -eu

token=${GITHUB_DEPLOYMENTS_TOKEN:?"Missing GITHUB_TOKEN environment variable"}

if ! gatsby_deployment=$(curl -s \

 -X POST \

 -H "Authorization: bearer ${token}" \

 -d "{ \"ref\": \"${CIRCLE_SHA1}\", \"environment\":

\"gatsby\", \"description\": \"Gatsby\", \"transient_environment\": true,

\"auto_merge\": false, \"required_contexts\": []}" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}/deployments"); then

 echo "POSTing deployment status failed, exiting (not failing build)" 1>&2

 exit 1

fi

if ! gatsby_deployment_id=$(echo "${gatsby_deployment}" | python -c 'import

sys, json; print json.load(sys.stdin)["id"]'); then

 echo "Could not extract deployment ID from API response" 1>&2

 exit 3

fi

echo ${gatsby_deployment_id} > gatsby_deployment

Appendix 6

 1 (1)

6 storybook-deploy-start.sh

#!/bin/sh

set -eu

token=${GITHUB_DEPLOYMENTS_TOKEN:?"Missing GITHUB_TOKEN environment variable"}

if ! storybook_deployment=$(curl -s \

 -X POST \

 -H "Authorization: bearer ${token}" \

 -d "{ \"ref\": \"${CIRCLE_SHA1}\", \"environment\":

\"storybook\", \"description\": \"Storybook\", \"transient_environment\":

true, \"auto_merge\": false, \"required_contexts\": []}" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}/deployments"); then

 echo "POSTing deployment status failed, exiting (not failing build)" 1>&2

 exit 1

fi

if ! storybook_deployment_id=$(echo "${storybook_deployment}" | python -c

'import sys, json; print json.load(sys.stdin)["id"]'); then

 echo "Could not extract deployment ID from API response" 1>&2

 exit 3

fi

echo ${storybook_deployment_id} > storybook_deployment

Appendix 7

 1 (1)

7 storybook-deploy-end.sh

#!/bin/sh

set -eu

token=${GITHUB_DEPLOYMENTS_TOKEN:?"Missing GITHUB_TOKEN environment variable"}

if ! storybook_deployment_id=$(cat storybook_deployment); then

 echo "Deployment ID was not found" 1>&2

 exit 3

fi

if ["$1" = "error"]; then

 curl -s \

 -X POST \

 -H "Authorization: bearer ${token}" \

 -d "{\"state\": \"error\", \"environment\": \"storybook\"" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}/deployments/${storybook_deployment_id}/statuses"

 exit 1

fi

if ! repository=$(curl -s \

 -X GET \

 -H "Authorization: bearer ${token}" \

 -d "{}" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}"); then

 echo "Could not fetch repository data" 1>&2

 exit 1

fi

if ! repository_id=$(echo "${repository}" | python -c 'import sys, json; print

json.load(sys.stdin)["id"]'); then

 echo "Could not extract repository ID from API response" 1>&2

 exit 3

fi

path_to_repo=$(echo "$CIRCLE_WORKING_DIRECTORY" | sed -e "s:~:$HOME:g")

url="https://${CIRCLE_BUILD_NUM}-${repository_id}-gh.circle-

artifacts.com/0/build-storybook/index.html"

if ! storybook_deployment=$(curl -s \

 -X POST \

 -H "Authorization: bearer ${token}" \

 -d "{\"state\": \"success\",\"description\": \"deployed on

CircleCI\", \"environment\": \"storybook\", \"environment_url\": \"${url}\",

\"target_url\": \"${url}\", \"log_url\": \"${url}\"}" \

 -H "Content-Type: application/json" \

"https://api.github.com/repos/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPO

NAME}/deployments/${storybook_deployment_id}/statuses"); then

 echo "POSTing deployment status failed, exiting (not failing build)" 1>&2

 exit 1

fi

	1 Introduction
	2 JAMStack compare to Traditional stack
	2.1 Traditional stack
	2.1.1 LAMP stack
	2.1.2 ME(X)N stack

	2.2 JAMStack

	3 Characteristics of Continuous Integration and Continuous Deployment
	3.1 Old software deployment pattern
	3.2 The new deployment pipeline
	3.3 Continuous Integration
	3.4 Continuous Deployment

	4 Implementing Continuous Integration and Continuous Deployment
	4.1 Infrastructure as a Service
	4.2 Platform as a Service
	4.2.1 CircleCI
	4.2.2 Netlify

	4.3 The benefit of using both Netlify and CircleCI

	5 Implementation and Evaluation CI/CD with CircleCI and Netlify
	5.1 Project overview
	5.2 Implementation method
	5.2.1 Prerequisite
	5.2.2 Gatsby configuration
	5.2.3 CircleCI configuration
	5.2.4 Netlify Configuration
	5.2.5 Setting up the CLI for CI/CD
	5.2.6 Project structure

	5.3 Evaluation
	5.3.1 Performance
	5.3.2 Development workflow

	6 Conclusion
	References

