
 

 

Implementing cluster backup solution to build 

resilient cloud architecture 
Dang Minh Bui 

 

 

 

 

 

 

 

 

 

 

 

2020 Laurea 

 

 



   

 

 

Laurea University of Applied Sciences  

 

 

 

 

 

 

 

 

Implementing cluster backup solution to build resilient cloud ar-

chitecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Author: Dang Minh Bui 

 Business Information Technology 

 Bachelor’s Thesis 

 May, 2020  



   

 

 

Laurea University of Applied Sciences  Abstract 

Degree Programme in Business Information Technology  

Bachelor’s Thesis 

 

Dang Minh Bui 

Implement cluster backup solution to build resilient cloud architecture 

Year 2020  Number of pages 24  

This thesis project aimed to implement a backup solution in the cloud architecture of the cli-
ent company - Solibri. The company provides out-of-the-box tools for model validation, com-
pliance control, design process coordination, design review, analysis and rules checking. With 
Solibri products, every party involve in a construction project can build, view and check er-

rors of the building models blueprint.  

The company is in the progress of migrating their desktop application to become completely 
cloud native, and in the long-term to a Software-as-a-Service product. To build a stable infra-
structure that is resilient against disaster scenarios, the author of this report oversaw the im-
plementation of a back-up solution called Velero into the running cluster. The criteria to im-
plement Velero was found by careful studying documentation from Velero website along with 
learning about the company’s current cloud infrastructure. One criteria was a persistent stor-
age location is needed for backups to reside. Such a resource was partitioned from the cloud 
provider Amazon Web Service. Afterwards, the backup solution was configured to connected 
to a partitioned storage location, deployed into the cluster, and created schedule backups for 

several resources.  

Using Kubernetes as a cluster orchestrator, the information about the deployed Velero solu-
tion can be viewed from the command line. Next, the author checked to see if the backups 
are in place. The scheduled backups can be viewed from AWS console along with retrieved 
from the command line. The results from these tests showed that the backup solution was in-
tegrated into the cluster and creating schedule backups as needed. Since this project is lim-
ited to only integrating a backup solution, further steps are still needed to complete the dis-
aster recovery pipeline which should be addressed in future projects. This report can act as 
documentation on the procedure and knowledge needed to implement this backup tool.  

 

 

 

 

 

 

 

 

 

Keywords: Backup solution, resilient infrastructure, cloud native 



   

 

 

Contents 

1 Introduction ............................................................................................... 5 

1.1 About the company ............................................................................. 5 

1.2 About the project ............................................................................... 5 

2 Research & organization frameworks ................................................................. 6 

2.1 Software development life cycle (SDLC) .................................................... 6 

2.2 DevOps organization framework.............................................................. 7 

2.3 Agile project management methodology ................................................... 9 

2.4 Applying research method within organization framework............................ 10 

3 Knowledge base ......................................................................................... 10 

3.1 Resilience Architecture ...................................................................... 11 

3.2 Containerized application architecture ................................................... 11 

3.2.1 Application containerization technology .......................................... 11 

3.2.2 Cluster orchestration ................................................................. 13 

3.3 DevOps Tools ................................................................................... 14 

3.3.1 Yaml file format ....................................................................... 14 

3.3.2 Ansible .................................................................................. 14 

3.3.3 Helm chart ............................................................................. 15 

3.4 Disaster recovery solution - Velero ........................................................ 15 

4 Implementation & testing ............................................................................. 16 

4.1 Sprint 1: Requirement Analysis ............................................................. 16 

4.2 Sprint 2: Knowledge gathering & design .................................................. 17 

4.3 Sprint 3: Deployment & Testing ............................................................ 17 

4.3.1 Deployment ............................................................................ 17 

4.3.2 Testing .................................................................................. 19 

5 Conclusion ............................................................................................... 21 

Figures ......................................................................................................... 24 

 



  5 

 

 

1 Introduction 

Construction spending is an economic measure that calculates how much money is spent on 

new construction. According to a survey conducted “Statista.com” through the period of 2014 

to 2017, construction spending on a global scale has reached 11.4 trillion dollars in 2018. This 

number is projected to reach 14 trillion by 2025. This includes the public and private sector, 

which involves residential and non-residential construction. With such amount of capital in-

vested in construction, it is important that projects are carried out smoothly and effectively. 

Thus, quality assurance throughout every steps of the project plays a key aspect in a success-

ful project.  

One of the essential tools to keep every parties involved on the project on track is the Build-

ing Information Modelling (BIM) tool. NBS (2016) stated that is a process for creating and man-

aging information on a construction project across the project lifecycle. One of the key out-

puts of this process is the Building Information Model, the digital description of every aspect 

of the built asset. This model draws on information assembled collaboratively and updated at 

key stages of a project. Creating a digital Building Information Model enables those who inter-

act with the building to optimize their actions, resulting in a greater whole life value for the 

asset. Following the “NBS BIM Object Standard”, a BIM model can be viewed as a combination 

of many different elements. The model must have necessary information content to define 

the product. These data include product properties, geometry representation, etc. The model 

must also contain visualization data for the object to have a recognizable appearance for us-

ers. With such information, the BIM models can provide every parties, within the project, 

with a visual outcome of project construction along with needed information for develop-

ment. 

1.1 About the company 

In 1996, Solibri was found with the purpose of helping construction specialists to eliminate 

any obstacle by detecting problems early on. After 20 years of constant development and in-

novation, Solibri has become the leader in BIM Quality Assurance and Quality Control. The 

company provides out-of-the-box tools for BIM validation, compliance control, design process 

coordination, design review, analysis and code checking.  

With the company’s product: “Solibri Office”, users can not only build and view the project’s 

model but also use it as a collaborative platform throughout the entire project life cycle. 

Every needed information about every component of a building is brought together. With 

Solibri Office, the BIM data can be used to illustrate the entire building lifecycle, from start 

to completion, from inception and design to demolition and materials reuse. Spaces, systems, 

products and sequences can be shown in relative scale to each other and, in turn, relative to 

the entire project. The product also comes with predefined rules which every building must 

comply. By signalling conflict detection, Solibri Office prevents errors to go unfixed at the 

various stages of the construction development. After an architecture designer has created a 

BIM model, the software will automatically run checks on the model against those rules. The 

software comes with other checks and measurements for construction aspects such as mate-

rial cost optimization and building regulations according to specific countries and regions. 

1.2 About the project 

Currently, the company’s products are only available as desktops application which are only 

available on operating systems such as Microsoft Windows and MacOS. These products are 

working well and bring value to customers. However, there are certain drawbacks with desk-

top applications. Firstly, any improvements to the product can only be published through an-

nual release versions. Although, these releases contain many fixes to bugs and new feature, 

they can take up to 2 to 3 months of development. Within such period of times, customers 

must find a way to work around any bugs that have not been fixed. Secondly, fixing bugs and 



  6 

 

 

errors are quite tedious. Since errors which appear in production are only found by users, cus-

tomers are the only party who can produce error reports. With the users’ desktop configura-

tion relative unknown to developers, it takes up a lot of time to verify that the programs had 

the errors or the users’ environment caused it. The company wanted to tackle the by utilizing 

functionality of cloud computing in service develop.  

Some initial research into the capability of cloud computing services showed that the issue 

can be fixed. This research found that using the partitioned resources, the application can be 

run from partitioned computers in multiple geological locations. Using this approach, custom-

ers would not have to install the desktop application anymore. Solibri’s services could be ac-

cessed through a good internet connection from any geological location. Furthermore, the 

software would only be running on the partition machines so any environment ambiguity 

would be eliminating. With these findings, developers had tried to migrate the entire code 

base of the desktop application to provisioned cloud resources. However, the project resulted 

in a complete failure. Next, development teams have decided to completely build the appli-

cation from the very beginning. Every function of the application will be re-developed. With 

this approach, the company can enter an entirely new way of development. The current desk-

top application can be completely transformed into cloud-native application which customers 

can used as a Software-as-a-Service product. 

However, the company does not have any cloud infrastructure to host the application. So, the 

first steps for the migration plan are to build a reliable cloud infrastructure. The DevOps 

team oversaw developing the needed infrastructure. Most of the components needed are ei-

ther in development or scheduled. However, it is vital that a cloud infrastructure provide 

enough resiliency against disasters which this infrastructure did not have. Therefore, the au-

thor of this project oversaw implementing a cloud backup solution. The purpose of this pro-

ject is to eliminate human errors accidentally cause by developers. The scenario which this 

project aims to aid is considered the “worst case scenario”. Since the current infrastructure 

is managed using Kubernetes and every DevOps engineer have access to the tool and entire 

cluster, they can easily terminate the entire cluster. Without any backup to restore the clus-

ter from, the infrastructure would need to be rebuild from the beginning. For any company, 

this scenario could be devastating to its open SLAs, revenue and reputation. Before the begin-

ning of this project, Velero was chosen as the most suitable solution. The author’s responsi-

bility in this project is to successful integrate Velero into the current system and backup cur-

rent system’s state. It is important to note that this project only addresses part of a complete 

solution to the disaster scenario. The project scope is only to implement a backup solution to 

restore the cluster. The process of implementing steps to recover the cluster will be imple-

mented in later projects. 

2 Research & organization frameworks 

Establishing a good research approach can aid developers greatly in any project. In 2009, 

Dawson stated that research is the expansion of knowledge with series of systematic activities 

that have not been executed. The author also mentioned that theory plays a valuable factor 

in every research. Throughout this project, the author applied several theories as support to 

the development of the final product. 

2.1 Software development life cycle (SDLC) 

Within Solibri DevOps team, the infrastructure which the team oversees is completely cloud 

based. This meant that every resource that the team utilized is accessed and controlled re-

motely through coding. “Infrastructure as code” is the term used for this approach (Dadgar, 

2018). Unlike Networking engineers, who deals with hardware infrastructures, Solibri’s 

DevOps engineers handles infrastructure by partitioning cloud resources and manage them re-

motely through running scripts and commands. Every configuration, modification, feature of 

the infrastructure is treated as software. Therefore, the “Software development life cycle” 



  7 

 

 

(SDLC) is a suitable procedural guideline for development in this project. The SDLC procedure 

comprises of 5 main distinctive sections shown in figure 1. Each has its own role within a pro-

ject, and each support one another. 

Firstly, developers need to analysis and collect information about the requirements of the fi-

nal product. The outcome of this step should be a list of conditions that the software needs 

to satisfy. The result of this phase will be used as the fundamental grounds for development 

in later steps. 

Next, developers and engineers work together to come up with a basic design of the final ap-

plication. This includes its functionalities, features and operation within the company. In this 

phase, the procedures to build the software are also drawn up.  Based on all the features of 

the application, steps to complete such functions are created so whoever take up the tasks 

can easily follow them without ambiguity. 

Thirdly, the engineers in charge of making the application, which is the author of this report, 

will start coding at this phase. Using the predefined procedure and requirements listed as 

guides, the develop will build the application. Furthermore, any unknown knowledge needed 

to carry out this task will also be gathered. 

Once, the application is developed, it needs to go through testing to ensure the product 

meets conditions stated in the first phase. These tests also use the requirements as guides to 

be developed. 

Finally, the product is deployed to production environment and maintained. The product will 

be monitored for any errors which will be fixed with later releases. New features will also be 

added if they are deemed necessary. Once the product no longer provides customer with 

value, it will be discarded, and its life cycle ends. 

  

 

Figure 1 Software Developement Life Cycle phases 

2.2 DevOps organization framework  

Although, the SDLC is a good procedural guideline for linear software development, the 

DevOps development framework also needs to be mentioned. Many aspects of project follow 

steps within this framework therefore it should be discussed. 

The main role of a software developers ends when the final product has been built. The de-

velopers then wait for any errors report or features request before continuing. However, this 



  8 

 

 

is not so for the role of a DevOps engineer. The term “DevOps” can be viewed as a combina-

tion of “development” and “operation”. This also means that the engineer is responsible for 

both the building of the infrastructure, monitoring of application and maintenance of the in-

frastructure. Illustrated in Figure 2, the DevOps development lifecycle is a continuous cycle 

and not as linear step as the SDLC. In Figure 2, encompassing the entire cycle is the term: 

“Real-time communication”. This illustration pointed out the key aspect for successful 

DevOps approach is the need for team member to continuously communicate. Any problem 

that the engineer encounters should be relayed and reported to be fixed. Since the team 

oversees the entire application infrastructure, any errors that gets pass could potentially re-

sult in the company’s service becoming unavailable. At the centre of the illustration, two key 

aspect of DevOps development are shown, which are “continuous integration” and “continu-

ous feedback”. With the team communicating frequently and effectively, issues can be ad-

dressed early on and fixed. This leads to the team repeatedly developing and integrating solu-

tions to the infrastructure. 

To effectively find and detect errors, DevOps engineer needs to rely heavily on tools as pro-

duction environment can have numerous disasters scenario. Furthermore, DevOps engineers 

are also overseeing development of an automated, continuous pipeline for service deploy-

ment. With fierce competition, any new feature and errors fixes which developers have cre-

ated needs to reach the market as soon as possible. With so much to monitor and develop, it 

is best practice DevOps engineers to utilize automated tools as much as possible. In 2018, a 

blog post from AltexSoft stated that existing DevOps tools cover almost all phases of continu-

ous delivery, starting from continuous integration environments and ending with containeriza-

tion and deployment. While today some of the processes are still automated with custom 

scripts, mostly DevOps engineers use various open source products. However, this heavy utili-

zation of tools also has one drawback. With new technology, a learning curve is necessary. 

Most engineers who are unfamiliar with a technology will need time to do research on how to 

use the tools and its compatibility with current system. Therefore, learning about modern 

technology plays a vital part in day-to-day operation of a DevOps engineer. 

The Solibri DevOps team also takes this principle to heart and constantly utilized modern 

tools to build a more robust and effective cloud-native infrastructure. Team members empha-

sis on the practice of learning about new technology and plan to integrate them into our 

workflow. The author of this report also shares the same principle and utilize numerous tools 

to complete the project. These tools will be discussed in the “Knowledge base” section of the 

report. 

 

Figure 2 DevOps developement lifecycle 



  9 

 

 

2.3 Agile project management methodology 

Agile methodology is a project management methodology following the Lean development 

principles. This principle was created to help developers concentrate on issue and activities 

which contributes to the service enhancement (Fair, 2012). In Fair’s opinion, Lean principle 

main purpose is to eliminate the “waste” and focus developer’s attention on more important 

aspects such using customer feedback as knowledge to build products and add business value. 

The “waste” which this principle tries to discard included unnecessary meetings with manag-

ers to decide which products or features to be built. Planning large product development pe-

riod can be considered “waste” as this step can take a large amount of time and yield plans 

that are subjected to changes. 

Agile method represents a flexible software development method that divides the process 

into small, manageable iterations called “Sprints”, illustrated in figure 3. The duration for 

each sprint usually last for 2 weeks. Before each sprint begins, the team while host a meeting 

to determine what should be the focus of development and divide the role of each developer. 

The context of the meeting usually includes the projected outcome, tasks needed to be com-

pleted, knowledge supporting each task and final product of the sprint. Engineers also takes 

this time to discuss what could be possible drawback and impediments to be eliminated first. 

Once the meeting is over, engineers carry out the written plan for that sprint. When each 

sprint is completed, the work can be reviewed by the project team. Once the expected 

results are not satisfied, the work is revised and modified into new sprint planning. 

An obvious benefit gained from this method is fast product time to market. At the end of 

every sprint, new features and bug fixes are created. DevOps team can deploy those new 

changes through the continuous pipeline and keep development speed fast. With team mem-

bers constant communication throughout the process, they can see a more realistic progress 

of the project, from planning to review sessions. Agile deliver this transparency due to devel-

opers are focused on the same goal as one another.  This project management method also 

provides improvement in quality assurance and adapting to new changes. By testing and fixing 

defects so quickly in each cycle, Agile increases the overall quality of the final product. 

Furthermore, another advantage of using Agile, which can be considered as its “signature”, is 

the ability to familiarize with new modifications. With sprint being such short period of times, 

engineers will be available soon after each sprint and ready to deal with new issues. Addition-

ally, agile allows for changes to be made in any stage of development.  

There are some disadvantages when applying Agile methodology that should be mentioned. 

For example, a project using Agile requires constant communication between team members.  

During a sprint, member can still come into impediments and requires assistance. A sprint will 

only be considered successful if all tasks are completed. With members not receiving needed 

help, the task can be delayed along with the sprint goal and deadline. Therefore, Agile meth-

odology requires a high involvement and collaboration from team members. 



  10 

 

 

 

Figure 3 Agile sprints iteration 

2.4 Applying research method within organization framework 

As mentioned above, the Solibri DevOps team build the current infrastructure following the 

principle “infrastructure as code”. Therefore, the final product was treated as a software and 

the SDLC guideline was used. However, it is important to note that this project main purpose 

is not to develop new software but to integrate an existing solution. The SDLC only acted as 

initial instruction to assist in planning of tasks needed to be carried out. Throughout the pro-

ject, the author used mainly the practices and principle of DevOps development lifecycle and 

Agile project management framework.  

The SDLC model main components were used as main goals of each Agile Sprints iteration. 

These iterations were created for the SDLC phases: “Requirements”, “Knowledge gathering & 

Design”, “Implementation and testing”. Although the guideline comprises of 5 main phases, 

some changes were made to be more suitable to the project. 

Within the First phase, the requirements for the final product is not the only focus point. As a 

DevOps engineers, the author must intergrade new technology into the current system. 

Therefore, requirements on such subject also needed to be discussed. The second phase had 

an additional purpose. As mentioned, the DevOps development principle have a heavy learn-

ing curve with new technology before being implemented. Thus, after having all primary re-

quirements have been established, the author needed to gather enough knowledge to design 

a plan for development. The purpose of this extra work is to discard any possible ambiguity 

during development. Thirdly, “implementation” and “testing” are combined as a single step. 

This is caused since the solution needed to be deployed to the infrastructure. This deploy-

ment is considered a test to see if the solution is integrated successfully. If it fails, the engi-

neer needed to investigate the error and redeploy as many times as needed. The final change 

made to the SDLC model is the discard of the “maintenance” phase. This project only focus-

ses on implementing a solution to Solibri infrastructure. Therefore, this phase is not men-

tioned. Although, it is continued beyond the time of completion of this project. 

3 Knowledge base 

Within this project, the author had to use several theoretical concepts to implement the 

backup solution. The following section explains the concepts of resilience infrastructure, con-

tainerized application architecture, and the DevOps tools used through out the project. 



  11 

 

 

3.1 Resilience Architecture 

For an application to be considered resilient. It must withstand multiple harsh factors of pro-

duction environment and any disaster that comes with it. For example, the application must 

work flawlessly under extremely high workload. The Kubernetes must be setup to automati-

cally response to such situation. A common configuration is to create more nodes to handle 

the workload.  

According to an article by Google in 2020, a resilient application is one that continues to 

function despite failures of system components. This resiliency requires planning at all levels 

of the underlying architecture. It influences how engineers lay out infrastructure and net-

work, and how data storage and services were designed. Building and operating resilient ap-

plication infrastructure is considered difficult. This is especially true for distributed apps, 

which might contain multiple layers of infrastructure, networks, and services. Mistakes and 

outages happen and improving the resilience of the service is a crucial continuous process. 

Another type of disaster is misconfiguration of the infrastructure. Unlike other scenario which 

are cause by parties outside the company. This type of disaster is caused by developers. Alt-

hough this seems rare, this scenario does happen. Any enough privilege can make changes to 

the running infrastructure, either with or without harmful intention, the developer can mis-

configure the entire cluster to behave in undesired way. This can greatly affect how the ap-

plication functions on clients’ side. Cassel, in 2017, had written an article on an incident 

caused by a Junior Developer. The developer accidental clears the company’s production da-

tabase completely. Although, this was an accident, legal measure was needed as the data loss 

was extremely severe. Human errors are an existing hindrance to any infrastructure. There-

fore, when building any sort of architecture, this type of issue also needs to be considered 

and remedied. 

3.2 Containerized application architecture 

This method of application architecture design is used by the Solibri’s DevOps team. The cur-

rent architecture is built following this method. Therefore, it is important to understand this 

concept before implementing or configuring and part of the current infrastructure. 

3.2.1 Application containerization technology 

According to Pablo in 2017, application ccontainerization (container-based virtualization) is a 

method for deploying and running applications and services. This method allows services to 

be released for customers without having to launch Virtual Machines for each application. The 

illustration in figure 4 shows the comparison between virtual machines application and con-

tainerized application. 



  12 

 

 

 

Figure 4 Virtual machines vs container based architectures 

Currently, the most well-known method and tool for application containerization is Docker. 

This tool utilizes resources isolation aspect of the Linux kernel, such as “kernel namespaces”. 

With such implementation, independent containerized applications or “containers” can be 

run without the need for virtual machine. Ultimately, overheads from starting and managing 

resources for each virtual machine is discarded. Figure 5 illustrates the client-server architec-

ture used by Docker. The client sends commands form users to the Docker daemon, which 

consists of all the main containerizing function such as building, running and deploying con-

tainers. Both the client and the daemon could be running on the same environment or from 

remote system. With remote systems, the two sides communicate through network inter-

faces. 

 

Figure 5 Docker architecture overview 

In 2017, Iorio has mentioned that there are numerous advantages to using containerized ap-

plication. This approach to development help developers in every stage of the service lifecy-

cle include development, quality assurance and product maintenance. For example, “Homo-

geneous environments” is one of the best advantages of this technology. Developers can focus 



  13 

 

 

on building the solution and once it containerized, it will work on any predefined environment 

with docker engine. This ensure eliminate maintenance overhead of separate development 

and production environment. Furthermore, with a well-defined continuous integration pipe-

line, any changes to the container can trigger a new build and testing process. Once all the 

testing pass, the new changes will be automatically deployed. This saves developers valuable 

time. 

3.2.2 Cluster orchestration 

Once an application has been built and containerized, it will reach customers by being de-

ployed to provisioned machined called “nodes”. These nodes are usually partitioned through 

utilizing available resources from cloud providers such as Amazon, Microsoft and Google. With 

such approach, the application can reach customers across geological location.  With a large 

audience of users, more and more nodes will be deployed to meet customers’ demand. The 

numbers of nodes could be thousands. It is practically impossible to manually manage such 

large-scale infrastructure. Therefore, cluster (multiple nodes) needs to be managed through 

Orchestration tools such as Kubernetes which is currently utilized within Solibri DevOps team. 

A Kubernetes cluster is a set of node machines for running containerized applications. At a 

minimum, a cluster contains five worker nodes and three master nodes illustrated in figure 6. 

The master node is responsible for maintaining the desired state of the cluster, such as which 

applications are running and which container images they use. Worker nodes execute the pro-

cess needed to run the applications and workloads. A desired state is defined by configuration 

files made up of “manifests”, which are JSON or YAML files that declare the type of applica-

tion to run and how many replicas are required to run a healthy system. The cluster’s desired 

state is defined with the Kubernetes API. This can be done from the command line (using the 

kubectl tool) or by using the API to interact with the cluster to set or modify the desired 

state. Kubernetes will automatically manage the cluster to match the desired state. As a sim-

ple example, an application with a desired state of "3" was deployed. This means 3 workers 

nodes with the container of the application should be running. If a single container crashes, 

Kubernetes will see that only 2 replicas are running, so it will add 1 more to satisfy the de-

sired state. Within different scenarios, Kubernetes will responses differently. However, this 

cluster orchestration tool will always maintain the desired state of the cluster. 

 

Figure 6 Minimum Kubernetes cluster illustration 



  14 

 

 

3.3 DevOps Tools 

As mentioned above, within the DevOps organization framework, multiple tools are used in 

day-to-day operation. Therefore, it is vital that engineers understand the tools needed to 

complete any given task. The following tools are  

3.3.1 Yaml file format 

This file format was mentioned as it differs from normal format used for coding. The author 

of this report had to learn and become familiarized with this format before implementation 

can begin. Throughout this project, every tool used this file format. Each of the DevOps tools 

also has its own syntax and parameter in YAML format. To understand how to use them, these 

fields also needed to be study before development. 

According to Wikipedia contributors (2020), YAML (a recursive acronym for "YAML Ain't Markup 

Language") is a human-readable data-serialization language as exampled in figure 7. This lan-

guage is commonly used in configurations files with the purpose of storing data to be trans-

mitted. YAML main advantage is its simple syntax which allows anyone to read and under-

stand the program. Additionally, YAML syntax follows key/value pair. Every variable will have 

a value, this helps transmit data easily. Another great advantage of YAML is its usage of Py-

thon-style indentation and nesting. This helps engineers create lists and arrays and for loops 

with YAML file. In this format, square brackets “[]” are used for lists and curly brackets “{}” 

for maps. 

 

Figure 7 YAML file format example 

3.3.2 Ansible 

Kubernetes main functionality is to ensure the application health and availability. This tool 

manages how the infrastructure is scaled and how the nodes functions. However, the state of 

the software, nodes and cluster must be declared to the orchestration tool. The Ansible tool 

was made for such purpose. In this project, Ansible is considered the cluster configuration 

tool. 

According to Red Hat official documentation, Ansible is an information technology automation 

tool. This tool can be used to configure systems, deploy software, and orchestrate more 



  15 

 

 

advanced tasks. Ansible works by establishing OpenSSH connection to currently running nodes 

and deploy small applications called "Ansible modules". These programs resource models of 

the desired state of the cluster. Once the tools have finished executing every single module 

on all required nodes, these modules will be removed. The main purpose of using this tool in 

development is to simplify the cluster configuration tasks for engineers. By using a central-

ized tool for configuration and each configuration is written as file, engineers can easily 

mange and see what has been configured to the cluster. 

To fully understand how to work with this tool, a few concepts must be mentioned. Firstly, 

Ansible need to know exactly what nodes needs modification. The lists of managed nodes are 

called the inventory filer or “hostfile”. Using these files, developers can segment to infra-

structure and make changes to specific segment using Ansible. The second concept that engi-

neers should be aware of is “modules”. Ansible comes will prebuild function which are called 

“modules”. Each module has a particular use, from administering users on a specific type of 

database to managing VLAN interfaces on a specific type of network device. Developers can 

invoke a single module with a task or invoke several different modules in a playbook. A “task” 

is a command or a call for action from users. An Ansible “playbook” is a list of such tasks. 

Playbooks are written in YAML and are easy to read, write, share and understand. When exe-

cuting a playbook, the tasks will be carried out sequentially. Within these files, some specifi-

cation can be declared including targeted hosts, SSH tunnelling port, users’ privilege, creden-

tial, destination folder, etc. 

3.3.3 Helm chart 

With numbers of applications and tools deployed to the cluster, it is important to have means 

of configuring and updating such programs when needed. Helm is a Kubernetes package and 

operations manager. According to Foster in 2019, Helm-Charts are used to deploy an applica-

tion, or one component of a larger application. A Helm repository is an http server with an in-

dex.yaml file containing names and metadata for the repository’s charts. This means that the 

server location is extremely versatile. Developers can use any online repository of the appli-

cation such as GitHub or GitLab. Only the packages are stored in this repository. The charts 

themselves are version controlled, usually with the application that they support. A Chart is 

organized as a collection of files inside of a directory. The directory name is the name of the 

chart (without versioning information). All information about the package are defined within 

this repository. A typical chart file structure would look like the example of figure 8. In this 

figure, the example chart describes a software called “WordPress”.  Engineers will specify 

any configuration needed to the software using the Chart files. Afterwards, Helm tool is used 

to deploy this updated software to the cluster. 

 

Figure 8 Chart file structure example with explanation 

3.4 Disaster recovery solution - Velero 

Velero was designed to be an out-of-the-box cloud-native backup solation. The software al-

lows backing up and restoring deployed Kubernetes cluster resources and persistent volumes. 

DevOps engineers can run Velero with a cloud provider or on-premises data storage. Main 



  16 

 

 

function of this tools includes taking backup of the cluster manifests along with application 

state, migrating and replicating clusters to other clusters. Each operation, including on-de-

mand backup, scheduled backup and restore, is a custom Velero resource, defined with a Ku-

bernetes Custom Resource Definition (CRD) and stored in etcd. This backup tool also includes 

controllers that process the custom resources to perform backups, restores, and all related 

operations. With such features, Velero can be seamlessly integrated into any Kubernetes clus-

ters. 

 

Figure 9 Velero backup flow 

Illustrated in figure 9, a backup process has 4 distinctive operation. Firstly, from the com-

mand line, users can create a backup of any desired resources. This will create a call to the 

Kubernetes API server to create a backup object. Next, the BackupController is alerted of the 

new Backup object and performs validation. Afterwards, the same controller will execute the 

backup process by collecting data through a query to the Kubernetes API for resources. Fi-

nally, the backup is uploaded to the desired destination which could be cloud providers’ per-

sistent volumes. 

4 Implementation & testing 

This section documents the procedure used to integrate Velero into the running architecture. 

4.1 Sprint 1: Requirement Analysis 

Firstly, in the kick-off meeting, the team discussed and specified some requirements for the 

final product. This backup solution needs to help the DevOps engineers build a more resilient 

infrastructure. This includes enhancing the architecture to deal with the “worst case sce-

nario” of complete cluster termination. Therefore, the solution needs to able to constantly 

make backup of current system. Additionally, the backups need to be run automatically. Fur-

thermore, the backups need to be easily restored in case such disaster occurs. Finally, secu-

rity measure to ensure only personnel with credential can access these backups files. 

The requirements for Velero integration was not discussed in the meeting. This task was dele-

gated to the author of this report. After some research, some initial configuration require-

ment could be seen. The backup tool needs a persistent volume for the backup to be stored. 

Since the company is using resources from AWS (Amazon Web Service), Amazon S3 bucket is 

the most suitable product to used for this project. However, AWS has IAM (See Appendices) 

security measures in place where no services can access resources without proper credential. 

Therefore, Velero needs credentials to use the S3 bucket. Furthermore, the current system 

has implemented protocols to deploy new application through Ansible and Helm Chart. Thus, 

to deploy a backup solution, this software also needs to follow the team’s protocol. 

 



  17 

 

 

4.2 Sprint 2: Knowledge gathering & design 

As mentioned, the DevOps principle focus heavily on learning about new technology. The au-

thor has gathered a list of subjects that was unfamiliar but needed to complete the project. 

The result of this process is the “knowledge base” section within this report. However, the 

information within that section is not enough to complete the project. An overall understand-

ing of deployment protocol is necessary. The protocol utilized of the time of this project have 

conditions on how to use each DevOps tools.  

Kubernetes communicated with the deployed application through namespaces. Therefore, 

each component needs a separate namespace. Furthermore, Kubernetes secretes for each 

software’s needs to be stored in the “k8s_secrets” directory. These secrets are credential to 

access AWS resources. They must be hashed with Ansible-vault built-in function. 

Ansible is used as the deployment tools and each deployment must be executed through the 

playbook “k8s-cluster.yml”. Every necessary configuration must be in place before the play-

book is ran. Furthermore, every task must be written in playbooks and not execute as ad-hoc 

commands. This ensure that the team can review what have been deployed to the cluster. 

Helm is utilized as the package manager for the cluster. This tool has a built-in function to 

compare changes in local helm charts with charts from designated repository. By default, the 

Helm will prepare the application according to the upstream repository. However, if there are 

any changes detected in the comparison, Helm will modify the software to match such 

changes. Therefore, in this project, developers only needs to specify needed change in the 

“values.yaml” of the Velero helm chart since this file is responsible for the configuration. 

With the requirements and gathered knowledge, a design of procedural steps to complete the 

project can be drawn up. Firstly, AWS resources and security measures needs to be in place 

before further action can be taken. Next, the namespace for the backup solution needs to be 

created. After the above steps are complete, the configuration file of the solution needs to 

be created. Finally, the solution can be deployed and used to make backup. 

4.3 Sprint 3: Deployment & Testing 

This section document the deployment and testing results of integrating Velero into the run-

ning infrastructure. 

4.3.1 Deployment 

First, a persistent volume storage service (S3 bucket) was partitioned from AWS cloud pro-

vider. This resource was named “velero-backup-1504-io” for later configuration. Once the 

volume is set up, a user account was created for Velero. This account only has enough privi-

lege to access the bucket. Next, the ansible-vault tool was used to hash the credentials. The 

ansible pipeline will automatically decrypt the credential when the service makes a request 

to AWS resources. Furthermore, the hash key can only be accessed by team members to en-

sure security integrity. The resulting encrypted credential is stored in the directory “k8s_se-

crets” following team’s protocol as shown in figure 10. 



  18 

 

 

 

Figure 10 Hashed credential for Velero 

Next, a namespace for the backup solution is created. The team also had a playbook to auto-

matically create new namespace when necessary. The author added a file in the directory 

“k8s_namepsace” which specify that a namespace called “velero” is needed (figure 11). 

 

Figure 11 Velero namespace file 

Finally, the Velero configurations needs to be modified so the solution can be deployed an in-

tegrated. A new task to install new application across nodes needs to be added to tasks file in 

the “k8s_helm” repository, (figure 12). The team’s protocol stated that configuration or val-

ues files must remain under the repository “k8s_helm/files/chart_values”. Furthermore, the 

values file must follow a common naming convention. Once the task has been added, the val-

ues file was created as shown in figure 13. This configuration file stated several aspects of 

the desired final product. First, the initial container needs to be created if it is not present. 

The container needs to be built with an image of the Velero plugin for AWS. The backup stor-

age location is the S3 bucket with the name “velero-backup-1504-io” within the eu-west-1 



  19 

 

 

region. Kubernetes will communicate with this application through the namespace “velero” as 

stated by the serviceAccount configuration. Although, the YAML file format make the file 

seems simple. In this project, the syntax was followed strictly from Velero documentation as 

the tool has its own syntax for configuration file. 

 

Figure 12 Tasks file in k8s_helm repository 

 

Figure 13 Velero configuration 

4.3.2 Testing 

Once every component was creating following the team’s protocol and the solution’s docu-

mentation. Velero was deployed to the cluster for testing using the flowing command: 

“ansible-playbook -i inventory/k8s.1504.io/hosts k8s-cluster.yml” 

This command told Ansible to run the deployment playbook against every nodes listed in the 

inventory. Once the playbook has finish running, the deployed application information can be 

checked using the kubectl component in Kubernetes against the “velero” namespace. If the 



  20 

 

 

namespace was created unsuccessfully, an error would occur. On the other hand, successfully 

deploying the solution should be shown information about its container. The following com-

mands was used to check for the needed information: “kubectl -n velero describe deploy 

velero”. Figure 14 shows the outcome of running the command through terminal. The figure 

also shows that a positive result. The application is running on a container with the correct 

image version. 

 

Figure 14 Kubectl command result 

Next, Velero’s backup functionality needs to be tested and 2 schedule backups was created. 

The daily backup is for day-to-day development of a software running on the infrastructure. 

The weekly backup is used for storing the manifest of the entire cluster. After running the 

necessary commands to schedule these backups, the files can be view from AWS Web console 

as shown in figure 15. From screenshot, the schedule backups can clearly be seen. This indi-

cates that Velero is triggering backups to be created correctly. 



  21 

 

 

 

Figure 15 AWS management console 

Finally, the most important aspect of the solution needs to be tested. Engineers needs to be 

able to retrieve the backups from its storage. The built-in command “velero get backup” 

should retrieve the closet backups from the S3 buckets. After executing the command, results 

can see in the terminal screen shot in figure 16. The terminal interface shows that retrived 

files match the files in the AWS console. Therefore, this test has yield positive results in fa-

vour of Velero successful deployment. 

 

Figure 16 Velero command result 

5 Conclusion 

As technology and customers’ demand grows. It is important for companies such as Solibri to 

integrate new solution to build better products. However, with development methods and in-

frastructure always brings new challenges. This thesis project was created to help the com-

pany built a more resilient architecture by implementing the cluster backup solution: Velero.  



  22 

 

 

This solution is meant to help DevOps engineers to recover the cluster in case of entire archi-

tecture termination. Through working closely with the DevOps teams, following their proto-

col, learning and implementing modern tools, the author managed to implement the backup 

solution. Within this project, the author had used knowledge on several subjects. These con-

cepts include containerized application architecture, what resilience infrastructure is and 

how to use different DevOps tools for different tasks. Each of these concepts plays a different 

but equally valuable part throughout the project. These subjects, especially the functionality 

of DevOps tools, where used to prepare, configure and deploy Velero into the cluster. Addi-

tionally, testing procedure were conducted through using this software as well. Using the Ku-

bernetes built-in management tool (kubectl), the deployed container information could be 

seen from the command line. This showed that the application was deployed successfully. Us-

ing Velero, some backups were created to act as restore points in case of disaster. These 

backups can be seen through the AWS web console, which shows that the backups exist in the 

correct storage space. Finally, backups can also be retrieved through command line. These 

indicates that the backups are ready whenever needed. These testing results shows that 

Velero was integrated to the cluster and the backup solution is ready to be used. This project 

has provided means of backing up any needed data from the cluster. However, not every as-

pect of disaster recovery was dealt with. The pipeline in which the cluster can be restored is 

not in place. These subjects need to be addresses in later project to build a fully resilient in-

frastructure for Solibri’s future development. 



  23 

 

 

References 

Printed 

Dawson, C. 2009. Introduction to Research Methods: a practical guide for anyone undertaking 

a research project. 

Electronic 

Ansible documentation 

https://docs.ansible.com/ansible/latest/index.html 

Ansible VS Kubernetes 

https://www.simplilearn.com/ansible-vs-kubernetes-article 

Construction industry spending worldwide from 2014 to 2025 (in trillion U.S. dollars). Sta-

tista.com. Accessed March 2020: 

https://www.statista.com/statistics/788128/construction-spending-worldwide/ 

Container based Architectures I/III: Technical advantages. Pablo I. 13th July 2017. Accessed 

March 2020: 

https://medium.com/@pablo.iorio/container-based-architecture-i-iii-technical-advantages-

7176195456c5 

DevOps principle practices and DevOps engineer role. AltexSoft. 2020. Accessed March 2020:  

https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-

engineer-role/ 

Patterns for scalable and resilient apps. Google. Accessed March 2020: 

https://cloud.google.com/solutions/scalable-and-resilient-apps 

What is Infrastructure as code. Dadgar A. 20th August 2018. Accessed March 2020: 

https://www.hashicorp.com/resources/what-is-infrastructure-as-code/ 

What is Kubernetes cluster. Red Hat Inc. 2020. Accessed March 2020: 

https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-cluster 

What is Kubernetes. The Kubernetes Authors. 2020. Accessed March 2020: 

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ 

What is a Helm Chart – A beginner’s guide. Foster R. 6th August 2019. Accessed April 2020: 

https://www.coveros.com/what-is-a-helm-chart-a-beginners-guide/ 

YAML Tutorial: Everything You Need to Get Started in Minutes. Goebelbecker E. 11th Decem-

ber 2018. Accessed March 2020: 

https://rollout.io/blog/yaml-tutorial-everything-you-need-get-started/ 

YAML. Wikipedia contributors. Last updated 20th May 2020. Accessed March 2020: 

https://en.wikipedia.org/wiki/YAML 

  

https://docs.ansible.com/ansible/latest/index.html
https://www.simplilearn.com/ansible-vs-kubernetes-article
https://www.statista.com/statistics/788128/construction-spending-worldwide/
https://medium.com/@pablo.iorio/container-based-architecture-i-iii-technical-advantages-7176195456c5
https://medium.com/@pablo.iorio/container-based-architecture-i-iii-technical-advantages-7176195456c5
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://cloud.google.com/solutions/scalable-and-resilient-apps
https://www.hashicorp.com/resources/what-is-infrastructure-as-code/
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-cluster
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.coveros.com/what-is-a-helm-chart-a-beginners-guide/
https://rollout.io/blog/yaml-tutorial-everything-you-need-get-started/
https://en.wikipedia.org/wiki/YAML


  24 

 

 

Figures 

Figure 1 Software Developement Life Cycle phases .....................................................7 

Figure 2 DevOps developement lifecycle ..................................................................8 

Figure 3 Agile sprints iteration ............................................................................ 10 

Figure 4 Virtual machines vs container based architectures ......................................... 12 

Figure 5 Docker architecture overview .................................................................. 12 

Figure 6 Minimum Kubernetes cluster illustration ..................................................... 13 

Figure 7 YAML file format example ....................................................................... 14 

Figure 8 Chart file structure example with explanation .............................................. 15 

Figure 9 Velero backup flow ............................................................................... 16 

Figure 10 Hashed credential for Velero .................................................................. 18 

Figure 11 Velero namespace file .......................................................................... 18 

Figure 12 Tasks file in k8s_helm repository ............................................................. 19 

Figure 13 Velero configuration ............................................................................ 19 

Figure 14 Kubectl command result ....................................................................... 20 

Figure 15 AWS management console ..................................................................... 21 

Figure 16 Velero command result ......................................................................... 21 

 

 

 


