

KARELIA UNIVERSITY OF APPLIED SCIENCES
Degree Program in Information and Communication Technologies

Jesse Heiskanen

COMPARING DEVOPS PROCESSES IN DIFFERENT CLOUD
PLATFORMS FROM A SOFTWARE DEVELOPERS PERSPECTIVE

Thesis
May 2020

OPINNÄYTETYÖ
Toukokuu 2020
Tieto- ja viestintätekniikan koulutus
Tikkarinne 9
80200 JOENSUU
+358 13 260 600

Tekijä
Jesse Heiskanen

Nimeke
DevOps-prosessien vertailu eri pilvipalvelujen välillä ohjelmistokehittäjän näkökulmasta

Toimeksiantaja
Valamis Group

Tiivistelmä

Tässä opinnäytetyössä vertailtiin kahta Valamis Groupissa käytettyä DevOps-alustaa
sekä niihin liittyvien prosessointiaikojen tuloksia. Vertailun kohteena oli automatisoitujen
prosessointiaikojen lisäksi, työnkulku ja alustojen käyttöliittymät. DevOps-alustojen sa-
mankaltaisuudesta huolimatta prosessointiajoissa paljastui huomattavia eroja.

Opinnäytetyössä esitellään molempien DevOps-alustojen rakentamisprosessi. Työssä
esitellään myös palveluihin luotavan yksinkertaisen DevOps-pipelinen rakentaminen ja
siihen liittyvän automatiikan luominen. Pipelinet luotiin molempiin palveluihin käyttäen nii-
den tarjoamia omia työkalujaan. Työssä vertailtiin työnkulkua pipelineä käyttäen, sekä
automatisoidun pipelinen prosessiaikoja testattiin kahden eri testin avulla.

Opinnäytetyö esittelee DevOpsin tarkoituksen ohjelmistokehityksessä, sekä sen alkupe-
rää ja kehitystä jatkuvasti kasvavana kulttuurina ohjelmistokehittäjien keskuudessa.
Opinnäytetyö käsittelee myös ohjelmistokehittäjien käyttämää työnkulkua DevOps pro-
sessin sisällä.

Kieli

englanti

Sivuja 41

Liitteet 1

Liitesivumäärä 2

Asiasanat

DevOps, Azure DevOps, Amazon Web Services

THESIS
May 2020
Degree Program in Information and
Communication Technologies

Tikkarinne 9
80200 JOENSUU
FINLAND
+ 358 13 260 600

Author
Jesse Heiskanen

Title
Comparing DevOps Processes in Different Cloud Platforms From a Software Developer’s
Perspective

Commissioned by:
Valamis Group

Abstract

In this thesis a comparison between two DevOps platforms and the process times in
those platforms is created. The comparison includes differences in the automated pro-
cess times, differences in workflows and differences in user interface. Even if the DevOps
platforms seem similar, there were notable differences found in the processing times.

In this thesis, the setting up of each DevOps platforms are presented. Also, the creation
of a simple DevOps pipeline is show and how the automatic functions work inside the
pipeline is explained. The pipelines are created separately inside both compared DevOps
platforms. The workflow and the process times in the automated pipelines are then com-
pared. Data for the process time is composed of two different sets of tests.

This thesis also introduces the meaning of DevOps, how DevOps was created and what
it means for the software developer. The workflow in the DevOps processes is also dis-
played. Both of these platforms are used at Valamis Group.

Language

English

Pages 41

Appendices 1

Pages of Appendices 2

Keywords

DevOps, Azure DevOps, Amazon Web Services

CONTENTS

1 INTRODUCTION ... 6

2 DEVOPS PROCESS ... 7
3 DEVOPS CLOUD PLATFORMS.. 12

3.1 Microsoft Azure DevOps .. 12
3.2 Amazon Web Services (AWS) ... 13

3.3 Google Cloud Platform .. 14
4 DEVOPS PROCESS TESTING ... 14

4.1 Setting up the environments .. 16
4.1.1 Setting up the Azure DevOps .. 16

4.1.2 Setting up the Amazon Web Services ... 21

4.2 DevOps Workflow Process .. 28

4.2.1 Workflow in Azure .. 28

4.2.2 Workflow in AWS ... 29

4.3 User interface comparison ... 31

4.4 Process Time Measurement .. 32

4.4.1 Process Time in Azure ... 32

4.4.2 Process Time in AWS .. 33

4.5 Process time in failed test .. 34
4.5.1 Bad deploy in Azure ... 35

4.5.2 Bad deploy in AWS .. 36

5 SUMMARY OF RESULTS ... 36

6 REFLECTIONS .. 39
REFERENCES ... 41

Appendices

Appendix 1 azure-pipeline.yaml

Abbreviations

DevOps Software Development (dev) and IT Operations (ops), is a combi-

nation of practices striving to bring continuous value to customers

AWS Amazon Web Services, cloud service provided by Amazon

GCP Google Cloud Platform, cloud service provided by Google

CI/CD Continuous Integration/Continuous Delivery is a method used in

DevOps to ensure a frequent delivery to customer by using auto-

mated tools

IaC Infrastructure as Code is a way to modify infrastructural services by

configuring system files

SCM Source Control Management is a tool and practice used to track

and manage code changes.

AI Artificial Intelligence is a software that can-do different functions

and possibly learning from those functions to make choices on its

own.

IDE Integrated Development Environment is graphical application used

to edit and debug code.

UI User interface is the display of site/software that user interacts with.

IAM Identity and Access Management is used to manage access for us-

ers to different services and resources provided in AWS.

6

1 INTRODUCTION

Nowadays, the DevOps developing process is the go-to way to give customer

great value by giving them continuously smaller updates instead of creating a

single big update. This way of working helps other developers that are just jump-

ing into a project but also the customer. By having these constant small updates

helps the customer to be as close as possible with development and increases

their understanding about where development is heading. This enhances their

possibilities to give feedback about development. As the name DevOps suggests

it is striving to combine development and operations processes so that the two

teams would work closer. Because DevOps is not only a software platform but

more like a combination of cultures, practises and the implementation of DevOps

into to a workflow will not be an easy task. When applying the DevOps culture to

an old way of working within a project it is important to understand that this

change will take extra resources. Good way to start implementing the new work-

flow would be by first pinpointing the process that needs most attention rather

than trying to transform every workflow to be using DevOps as a solution.

This documentation will present more about what DevOps can mean and com-

pare differences between the two most used DevOps cloud solutions; Microsoft

Azure DevOps and Amazon Web Services (AWS). This thesis is part of an as-

signment from Valamis Group Oy, which is the company I work for. As a base for

this thesis Valamis needed the documentation for new employees about the

workflow of Azure DevOps in customer projects. Valamis and I decided to expand

the thesis’ area, and we chose to include the other DevOps platform that had

been used in few customer projects at Valamis Group. We planned to compare

the differences between the two platforms. I will be trying to find if there are any

notable differences in workflow or process time.

I would like to note that previously before this project I had only used Azure

DevOps as the DevOps service cloud platform in my daily work and I had no

earlier experience when using AWS. In Valamis Group Azure DevOps is the more

7

common DevOps platform but there are few projects that use Amazon Web Ser-

vices.

2 DEVOPS PROCESS

Introduction of agile development methodology was a huge leap towards more

organized and ideal development cycle. But where agile tends to solve the com-

munication problems with developer and the client DevOps strives to also solve

similar problem between developer and operations. Therefore, many view

DevOps as the logical continuation of agile method. This can also be noticed

when looking into DevOps culture since DevOps shares multiple similarities with

agile development. DevOps culture got introduced because it was noticed that

the developers and IT operators rarely worked together as a team toward the

same goal, but they worked as separate units. [1.]

DevOps is not supposed to make developers do operational work or operations

doing development work so that another unit could be released. It is to make

developers and system operators work together with as minimal barrier between

them as possible. Also one big reason to introduce the DevOps culture to a work-

flow is to make updates more smaller and frequent and automate some parts of

the software workflow so that developers and operations will be able to work more

efficiently rather than having to do for example multiple build tests for every small

update by themselves. [2, p. 14]

Since DevOps is a constantly growing trend, more and more companies are start-

ing to implement the DevOps into their development cycle and only a fraction has

not heard of DevOps as shown by search done by Dimensional Research in 2018

(Figure 1).

8

Figure 1. Growth of DevOps [3].

In the ideal scenario of DevOps, the developers receive constant feedback on

their work which allows the developers tackle possible errors faster and imple-

ment, validate and deploy new code changes to the production environment at a

constant pace. This way the time required to deploy code changes to the envi-

ronment is shortened and the company and the customer will gain more value

from the increased quality of work. [4.] This constant process of code validation

and deployment is called continuous integration/continuous delivery or CI/CD in

the DevOps environment.

Continuous integration ensures that issues are found early and all parts that are

essential for the process platform are kept on the same page. Continuous delivery

on the other hands strives to ensure that customer gains functional software, up-

dated in small bits as frequent as possible. [2, p. 55.]

Because big part of DevOps services happens in cloud also system’s activities

and administrative tasks can be managed as a software code. This is called In-

frastructure as Code, IaC for short. In DevOps environment this means using

9

different configuration files to handle system operations and automate certain

tasks for example restarting virtual or physical machines if needed. [5.]

DevOps process can easily be confused only as a continuous integration/contin-

uous delivery (CI/CD) but should not be, because DevOps and CI/CD are related

but are not the same thing. DevOps is more than just CI/CD and usually CI and

CD are included in DevOps. The big part of the CI/CD process is automated by

using something called pipelines. Multiple pipelines with different stages and jobs

inside those stages can be made for specific environment, for example one pipe-

line for development environment, one for staging environment and one for pro-

duction environment. Since developer may not need to have same tools on de-

velopment and production environment, customizing pipelines for different envi-

ronments is a possibility. [2, p. 85-87]

The most basic pipeline usually uses at least some these 5 tools. These tools

include the Framework for CI/CD, the Source Control Management (SCM) tool,

the tool for Build Automation, the Web Application Server, and the tool to help

with Automated Code Testing. Framework for CI/CD is a tool used to guide the

CI/CD process by working with other services and tools in the pipeline. This is the

brain of CI/CD process. As an example, Jenkins is one of the most popular CI/CD

tools. SCM is used to control code in repositories which makes versioning the

code easier. SCM can also be used for code backups and the most common

SCM tool is Git. To make code into a deployable format or to make it executable

a tool for building the code is needed. These Automated building tools compile,

test and deploy the code. Most common building tools include Maven, Gradle and

Ant. Web Application Server is the endpoint where to deploy the code. Common

tools include Tomcat and JBoss. Lastly to ensure the quality of the deployed code

some testing tools can be integrated to CI/CD process. JUnit is quite common

tool used for testing. These pipelines can be customized with using different

plugins and extensions to help user further automate building, testing, deploying,

adding new integrations and many other functions. There are many community

created extensions for multiple purposes. This makes developing and configuring

the pipelines integral part of DevOps culture. These pipelines change a workflow

a bit compared to agile development. [6.]

10

Here is an example of one type of workflow that uses these pipelines and CI/CD

integration. The workflow can be divided to four different stages as presented in

the figure 2. These stages are Planning, Development, Delivery and Monitoring.

These stages can run parallel to each other, which ensures continuity.

First stage is “Planning”, in this stage developers may have sprint meetings where

the goal of the upcoming sprint with the customer is decided. In this stage it is

important for developers to visualize the goal and possible obstacles. Different

tools that are used include for example Kanban boards that are used also in agile

development. After the goals are set, it is time to start the development process.

Second stage is “Development” where code changes are constantly committed

to code repositories and merged to make a deployable package. This is the con-

tinuous integration phase of DevOps. Before deploying a build, unit and code

quality are tested automatically. These tests should ensure stability and possibly

collect some metric data that can be compared to earlier builds. Further some

manual testing may be done on test environments before delivering the changes

to customer environments.

In the third stage, “Delivery”, when earlier tests succeed, and the project team is

ready to deploy the update to customer is time to move to the continuous delivery

phase. This phase will need some help from the IT operations team to ensure

that deployment is a success. Also, some parts of this phase can be made auto-

matically depending on how the pipeline is configured. When changes are de-

ployed in the production environment the team currently working on a project can

start moving to the fourth stage “Monitoring” or sometimes called “Operating”. As

the name suggests during this stage new deployed build is further monitored

when used by a customer to aim for high availability and least amount of down-

time as possible. Here the possible issues are tracked and if any issues are found

they are logged as tickets into an issue tracking service for example. Given the

importance of issue, fix should be made as soon as possible. During the delivery

and the monitoring stages the operations team is working closely with the devel-

opment team. This is what the DevOps is all about. The DevOps workflow can be

11

similar to the development with agile way, but with DevOps culture, the IT oper-

ations and automation are mixed in.

Figure 2. Application lifecycle [7].

During all these stages it is important to maintain communications inside the

teams between the developers and operations, but also maintain the communi-

cation with the customer. This ensures that the customer receives the product

they are paying for and in the deadline set for the update.

When IT operations are working as closely as possible with the development

team, the quality of the service can be maxed out, and the communication barrier

is shrunk. This means it is easier to see IT Operations and Development team as

one functional team, rather than separate entities. Automation on the other hand

gives more time for developers to work on actual solutions rather than doing te-

dious and monotonous tasks time after time.

12

3 DEVOPS CLOUD PLATFORMS

The DevOps trend has also caused the competition between different cloud ser-

vice providers to intensify because a big part of the DevOps process and auto-

mation happen in the cloud. The most notable of these cloud solutions are Ama-

zon Web Service (AWS), Microsoft Azure and Google Cloud Platform (GCP).

AWS is the oldest and the biggest platform currently at the time of writing this

thesis. AWS was launched in 2006, Azure in 2010 and GCP in 2011. Because

AWS was the first cloud domain it has had time to expand its network all around

the world, and it has also had time to develop its platform and different tools for

the longer time compared to other providers. In 2019, AWS held around 30% of

cloud market shares, followed by Azure with 16% and GCP with 10%. [8.]

Workflow in AWS and Microsoft Azure seems be quite similar to each other be-

cause they offer comparable functions regarding integration, building & testing,

automation, deployment and monitoring but they offer their own version of these

services. Both cloud services provide support for 3rd party tools.

3.1 Microsoft Azure DevOps

Microsoft Azure DevOps is the Microsoft’s take on DevOps solutions. This solu-

tion is the evolved form of the former Visual Studio Team Services. Azure

DevOps includes five different services: Azure Boards, Azure Repos, Azure Pipe-

lines, Azure Test Plans and Azure Artifacts. These services are extensible and

flexible, and they can be used with different platforms and clouds so the user may

choose not to use the default Azure cloud solution when using these Azure tools.

Azure DevOps also offers a variety of extensions and support for user created

extensions. There are extensions for example for Docker, Slack, GitHub, So-

narQube and AWS tools. Many of these extensions are offered free, but some

may require paid subscription.

13

Azure Boards is the planning tool used to track the work and backlogs of the

projects. Azure Repos is the Git hosting service with pull requests, reviews and

unlimited repositories. Azure Test Plans is used for manual and investigating test-

ing, and Azure Artifacts is used to manage the public and private packages of the

project. Azure Repos, Test Plans and Artifacts can be integrated with Azure Pipe-

line’s CI/CD. [9.]

Azure DevOps Services’ pricing model will mostly depend on how big of a team

is working with Azure Cloud. Even with the free version users gain access to

Azure Boards, Azure Repos, Azure Artifacts, Azure Test Plans and Azure Pipe-

lines. These CI/CD pipelines costs change how much traffic and how many mul-

tiple parallel jobs can be done at the same time. Azure Portal is also needed to

host virtual machines when deploying the test apps. Costs for Azure Portal can

be changed with different subscriptions. For the testing in this study I will be using

the free subscriptions for both Azure DevOps and Azure Portal.

3.2 Amazon Web Services (AWS)

Amazon Web Services or AWS for short is the biggest cloud solution when com-

paring the market shares. Because AWS is much older than other competition it

has had time to develop multiple different developer tools to use in the DevOps

process. These tools include AWS CodeBuild, AWS CodePipeline, AWS Cod-

eDeploy, AWS CodeStar, AWS Cloud Development Kit, AWS X-Ray, AWS

CloudWatch, AWS CodeCommit and AWS Device Farm to name a few. [10.]

In AWS, the CodePipeline is built by first defining the CodeCommit or the source,

like GitHub. After that the building and deploying stages can be configured. The

workflow can then be configured to use also other services and extensions in the

build and deploy stages. AWS CodeBuild is a build service that can process mul-

tiple builds concurrently. AWS CodeDeploy is used to make code deployments

to environments. [11.] For project’s monitoring AWS provides AWS X-Ray and

Amazon CloudWatch. The user can choose which of these services are used so

14

every tool mentioned comes out of the box with AWS subscription, but they are

not necessary to use.

In AWS the user only pays for the individual services, so if one does not use

something it will not cost extra. Some services are tiered; this means user might

get more value by choosing a more expensive plan. For this thesis I will be work-

ing with quite simple version and focusing to use the basic repository, build, de-

ploy and pipeline tools that AWS provides.

3.3 Google Cloud Platform

GCP is Google’s DevOps platform and it was made available by the end of 2011.

GCP uses the same infrastructure as Google’s search engine and YouTube,

which makes it a respectable contender in the DevOps competition. GCP has

also focused on using artificial intelligence (AI) and machine learning to help with

the DevOps process. Like other competitors GCP is flexible and can be used

alongside other cloud providers. Different services inside GCP range from com-

puting, storage and databases to big data, AI and security services. [12.]

We decided during project meetings that I will leave Google Cloud Platform out

from comparison because we do not use GCP in our work at Valamis Group.

4 DEVOPS PROCESS TESTING

The plan is to find if there are any notable differences between the two cloud

services used in Valamis. The tests include the workflow process and time meas-

urement with multiple deployments. Setting up the environments will also be doc-

umented. With workflow testing I wanted to know that if the different tools pro-

vided by these two services would alter the process between these two services.

I am also interested to know if this would cause differences in process time, be-

cause at least I think there are differences in processing strength between the

15

two when using the cheapest subscriptions. With these tests I will also keep an

eye out for the UI if there happens to be something notable, so usability is tested.

The plan is to create a branch in the DevOps service’s own repository, to pull the

branch to local environment, to make changes, to commit, to push the test app

back to DevOps remote repository, to have the app be built in the pipeline, to see

it pass the JUnit test and to deploy it to a virtual machine. Another test is similar

but involves making the JUnit test fail to see if there are any different reactions or

if there are differences in the build time.

For the tests I am going to be using my custom home computer with Windows 10

Home 64-bit, Intel Core i5 3.80GHz and 16Gt of RAM (DDR4). The app I used

for the tests is a simple “Hello World” Java app with JUnit test build in. The JUnit

test looks for the two integers that have been set inside a function. The test suc-

ceeds only if the integer 2 is bigger than integer 1. The repository is made in my

personal Git which is then cloned to the DevOps services. I will try to make the

pipelines as similar as possible using tools the different platforms provide so that

tests would be comparable. I will be using the “Free” or the most basic subscrip-

tion/version for both cloud services. The Integrated Development Environment,

IDE, I will be using is Visual Studio Code.

I chose to use as simple data as a test since I wanted to focus more on the dif-

ferences in workflows and if I could find any differences in the pipeline process

between the two compared services. More complicated test data could possibly

make the differences in the process times more noticeable, but unfortunately that

would have cost more time and resources, which I did not have. Hopefully when

using the free subscriptions for the platforms, even the simple test app can pro-

vide some differences in the process times.

During the environment set up I will also keep notes of any notable differences in

the user interface if some errors appears. In the UI comparison I will also compare

some of the differences in the functionality of the platforms that I had noticed. I

strive to give objective comparison between the two UIs, but because I have used

Azure DevOps earlier, I will not compare which platforms UI is easier to use.

16

4.1 Setting up the environments

In this segment I will provide info about how I set up the environments as close

as possible. The difficulty of setting up these platforms is not compared because

it is more related to personal taste and because I have more experience of using

Azure, the comparison would not be fair. For both services I used a GitHub re-

pository that I created just for these projects, because both supports GitHub inte-

gration. In this segment I will not provide steps on how to create GitHub repository

because the goal is to set up the environment and creating a CI/CD pipeline for

the DevOps services.

4.1.1 Setting up the Azure DevOps

First of all, I need to create new account for Azure DevOps which can be created

in https://azure.microsoft.com/en-gb/services/devops/. After the account crea-

tion, dev.azure.com is available to use and should take the user to the main page

of the Azure DevOps. Here I am going to build the CI/CD pipeline. I created new

private project called Azure_T and was then greeted by the home page for Azure.

From the sidebar I can find all services Azure provides (Figure 3).

Figure 3. Azure DevOps’ homepage.

17

Now I will need to import my GitHub repository to Azure. It can be done from the

Repos tab in the sidebar. From there click “Import Repository” and select repos-

itory type as Git, users will need to paste their Git repository URL to the option.

Note that if a repository is set up as private, users will need to select “Requires

Authentication” option and they will then be asked for authentication. After options

are set, they should select “Import” to start importing process.

Now in the Repos tab userd can browse files, look at commits and pushes, modify

and create branches for this repository, create tags for commits and view and

create pull requests. Pull requests are used for teams to review and either deny

or accept the changes others have made. I will also clone the Azure repository to

my computer, so all future commits are sent to Azure. This is done by clicking

Repos and from the right-side selecting Clone, (Figure 4). I used the “Clone in

VS Code” since that is the IDE I am using during these tests. When clicked, a

prompt appears that suggests opening these files in VS Code. From VS Code I

saved the project in a new folder.

Figure 4. Cloning repo to a local machine in Azure.

Next, I can start creating the barebone version of pipeline that can build our test

app. Pipelines are managed from the sidebar by selecting the Pipelines tab. Here

I opened the Azure Pipeline wizard by selecting “Create Pipeline”.

This opens up a new prompt that wants to select our source location. Because I

am using GitHub as a source, I need to authenticate my access to GitHub. After

connecting and selecting our source I am asked to select a template for this pipe-

line. Our test app is going to use Java components so I will select Maven as a

18

template for this pipeline. This will create a yaml file that is pushed to our reposi-

tory and can be viewed/modified if necessary, before saving. Pipeline can be

modified at any time by just editing this azure-pipeline.yml file, I used the template

without modifications for this test build (Figure 5).

Figure 5. Maven template.

Next, I saved this file. Because this is a whole new file it must be committed and

pushed to my repo. This will also automatically activate and run the pipeline I just

created, because the pipeline is triggered when there are any changes to a mas-

ter branch. This pipeline will just build our app using Maven. Everything seems to

be working without errors, so I am ready to start creating the deployment envi-

ronment and then I will be creating a different pipeline that also deploys to the

said environment.

The deployment environment is in portal.azure.com. I logged on to the site with

the same Microsoft account I used when creating Azure DevOps project. I started

by clicking “Create resource” and selecting a web app. I created a new Web App

that runs in Tomcat 8.5 and the operating system used was Linux. For subscrip-

tion I chose to use Free Trial. I also needed to fill in resource group, instance

19

name (name of the web page) and created new app service plan which controls

the computing resources, such as memory for our app. For this also I will use

Free F1 plan that has 1GB of memory. Details can be seen in the figure 6.

Figure 6. Web app details.

Before creation, the web app can be reviewed. After reviewing, everything

seemed fine, so I clicked “Create”. After creation more details about the web app

can be looked up from the main page. By clicking the web app I noticed that it is

currently running, and by clicking on the URL which is the web address composed

of the web app instance name and .azurewebsites.net, and by checking the site

I was greeted by the default message (Figure 7).

20

Figure 7. Azure website.

Now that the environment was up, it was time to create a pipeline that deployed

the test web app to this site. For that I created new pipeline from Azure DevOps,

in the same way I created the first build pipeline. For this pipeline I will be using

“Azure Repos Git” as source because I pushed all tests to Azure Repos. For the

deployment there is also a pipeline template, “Maven package Java project Web

App to Linux on Azure”. After selecting this template, a user is asked to select

subscription. This was the same subscription which was selected when account

was created in Azure Portal. Authentication might also be asked about once

more. Next, I selected the web app I just created. Users can once more review

the pipeline if there happens to be something wrong. In this case I did not change

anything from the template, the YAML file for pipeline is set as Appendix 1. The

user can then just click save and run the new pipeline. If the pipeline runs clean,

the test app should have been deployed to the new environment. This can also

be confirmed by looking at overview of the web app in Azure Portal that there has

been some activity.

But by refreshing the azurewebsites.net I was still greeted by same “Hey, Java

developer” message. With further inspection I noticed that the default .jsp file in

the wwwroot/webapps/ROOT hadn’t for some reason been overridden. This is

where that Azure default page is located, but the deployment had been pushed

21

to a new folder inside wwwroot/webapps/helloworld. And when going to the di-

rectory inside the site I was greeted with my own “Hello World!” customization

(Figure 8).

Figure 8. Deployment complete.

The complete pipeline now builds our test app that has JUnit test put inside it and

deploys it to remote environment. After the build stage is complete, the build is

stored as a .war file as an artifact. Next, in the deploy stage this artifact was

deployed to the virtual environment hosted in Azure Portal.

4.1.2 Setting up the Amazon Web Services

To start setting up the Amazon Web Services cloud platform, first an account for

AWS is needed. Account can be created in aws.amazon.com. Because AWS will

charge users by the usage amount of their services a credit card is asked for.

This will cause a small payment to happen in the account, but that money will be

given back after some time. After an account is created user may, now access

the AWS management console from the main page as the root user (Figure 9).

The user can access everything AWS has to offer from this management console.

22

Figure 9. AWS Management Console homepage.

For security reasons it is suggested to not use the root user for these administra-

tive tasks, so I will create an IAM, Identity and Access Management user, that I

will use for the rest of this project. Users can find any services AWS provides

from the search inside the management console, by typing in IAM and selecting

the IAM dashboard opens. Here individual IAM users can be managed and cre-

ated. I created a new user with all accesses and custom passwords then gave it

an AdministratorAccess policy. Before creation, one can view the accesses given

(Figure 10).

Figure 10. IAM user details.

23

When user is created it can now be used to sign into AWS platform with the cus-

tom login address AWS provides. Before creating a repository inside the AWS, I

needed to add Git credentials for our IAM user. This can be done from IAM ser-

vice by selecting “Users” from the side menu, then selecting the user that was

just created. Then from the user menu, one should select “Security Credentials”,

and from this menu scroll down to a “HTTPS Git credentials for AWS CodeCom-

mit” topic and clicking on “Generate credentials”. Then, one should save the cre-

dentials somewhere for later use.

Next, it was time to get my code to the remote repository inside AWS. For this, I

used AWS CodeCommit service. From the management console, one can search

for CodeCommit. They were then taken to CodeCommit dashboard, where new

repositories are made. They can then provide the name and optional description

for the repository. At this point, we had an empty repository inside the CodeCom-

mit, so it was time to add the test app in the repo. To add data, I first copied the

repository using the git clone command repository provided (Figure 11) and

pasted it in my local command-line. It is important to note that at this point the

credentials that were created were needed. I made a mistake when writing cre-

dentials, so my access was denied. When I tried copying the repository again, I

was instantly denied access without asking any credentials. I found out that Win-

dows stored the wrong credentials inside its own credential manager, so I had to

modify those credentials manually from inside the Windows’ settings.

Figure 11. Copying repository to local machine in AWS.

24

Now that I had cloned the repository to a local environment. I copied all the test

app files to this local folder. Then I created a commit and pushed the changes to

the master branch. Now I had my test app inside the CodeCommit.

Next, I created a build stage for the test app. To make a build stage I used

CodeBuild service. This can also be accessed from the Management Console.

From the CodeBuild dashboard, users should select “Create project”. Here they

can customise how the build stage works by filling in the name of the build stage,

then choose the CodeCommit as a source. The repository should be the one that

was just created. As a branch I used the master branch, so build would use the

latest version of master branch every time it was run. I chose Ubuntu with stand-

ard 2.0 image as the environment that is used when building (Figure 12). I chose

to use the buildspec.yml that stores yaml commands for the build stage. When

all options seemed good, I clicked on “Create build project” to finish the setup

wizard.

Figure 12. AWS Build environment.

25

Before going any further, it was time to create the buildspec.yml file. Because

there were not any templates for this file structure, I used azure-pipelines.yml as

a reference for YAML file used by AWS. This file provided information on building

the Java app with Maven and then packaging it as .war so that it could be sent to

the deployment environment (Figure 13). After creating this file, it had to be

pushed to the repository inside the AWS.

Figure 13. buildspec.yml

Next, I created the deployment instance. I used Elastic Beanstalk as the environ-

ment. Like other services, Elastic Beanstalk can be accessed from the Manage-

ment Console’s search function. From the Elastic Beanstalk, users should click

the “Create Application” in the same manner that the CodeBuild stage was cre-

ated. Here one needs to fill in the basic information, such as the name for the

environment. Next, for the platform I used “Tomcat 8.5 with Java 8 running on

64bit Amazon Linux” with recommended version of 3.3.6. The sample application

can be used to deploy to the environment, because it will be overridden by the

test app later. Configuration for the environment can be seen in Figure 14.

26

Figure 14. Elastic Beanstalk configurations.

After clicking “Create application” the environment was created and started. The

creation process takes few minutes, but after it is done it can be accessed. The

user is then taken into a dashboard for the environment where the health status,

running version and the platform used can be seen. This dashboard also provides

a view for recent events that have happened in the environment. In the top left

the URL for the environment can be seen and by clicking it, user is taken to a site

where currently the AWS created sample app is located (Figure 15).

Figure 15. Sample app inside new Elastic Beanstalk.

Now that source repository (CodeCommit), build stage (CodeBuild) and the de-

ployment environment (Elastic Beanstalk) had been created it was time to create

27

a pipeline that uses all these services. Pipeline can be created from the Manage-

ment Console using CodePipeline. The configuration of the pipeline can be

started from the CodePipeline’s “Getting Started” tab. For the first step in setting

up the pipeline, the user is asked to enter the name for the pipeline. In the second

step, the user is asked to fill in the details for the source code, so in this case the

provider was CodeCommit, repository was the “aws-test” I created earlier. As a

branch I selected to use the master branch. To detect the changes in this branch

I used “Amazon CloudWatch Events”. This meant that the pipeline may be auto-

matically started with every change to a master branch.

Next step was to add the build stage, and for this stage I filled in the details about

the build stage that was created earlier. Final step for the pipeline was to add the

deploy stage, so user is asked to fill in the details about the Elastic Beanstalk

service that was created earlier. Then the pipeline can be reviewed before crea-

tion. After the creation, the whole pipeline process can be viewed (Figure 16).

Figure 16. AWS CodePipeline

28

The pipeline should start running automatically the first time it is created. If eve-

rything went well it should run without any errors. After the deployment stage has

run successfully, the changes can be noticed inside the Elastic Beanstalk envi-

ronment, and the sample application from before should be overridden as can be

seen from the Figure 17.

Figure 17. Successful deployment to Elastic Beanstalk.

To recap, the pipeline checks for the changes in the master branch, and when

the changes are noticed it will start automatically to build the master branch with

new changes. Build stage creates a .war file that is then deployed to Elastic Bean-

stalk.

4.2 DevOps Workflow Process

Because both environments are now set up, I will introduce how the development

workflow proceeds in each environment with the pipeline I have created for both

platforms. This type of workflow will be used during the tests. I will also compare

the differences in UI I found during the setting up process.

4.2.1 Workflow in Azure

Workflow with Azure is quite simple, but there are few things to be noted. This is

simplest workflow with the pipeline I have created. First user creates a branch

inside Azure DevOps and then either clones the Azure repository if this is the first

time working with project, or, if user already has repository set in the local envi-

ronment they can just pull the new branch and start working on it. After the

changes are made and user is ready to push the changes to repository, a commit

is needed to be made that describes the changes. After the commit, the user can

29

push changes to Azure DevOps. Then from inside the Azure DevOps site, when

clicking on the “Repos” tab there is notification that states there are new changes

in the branch. It also proposes making a pull request out of it.

Pull requests are used by development team to review the changes to the code.

The changes can be approved, rejected and other team members can comment

on changes and suggest alternative fixes for the code. Pull requests can be man-

aged from under the “Repos” tab and selecting “Pull requests”. Here, users can

create a new pull request for the branch they have been working on. If someone

is set as a reviewer for code changes made by others, they will see those re-

quests here. When the right number of reviewers have accepted the changes the

pull request can be created. This will merge the changed branch to a master

branch.

Next is the continuous pipeline’s turn to start doing its part. This pipeline can be

modified to automatically start the deployment process when the master branch

is changed. This means that it builds the code and does the tests included in it.

There is also an artifact created after the build process. The artifact is then de-

ployed to the virtual environment by the deploy stage. After the pipeline has run

its stages, the changes can be seen in the deployment environment.

4.2.2 Workflow in AWS

The workflow in AWS is quite straightforward, as it is in other DevOps platforms.

First, new branch is needed to make out of the master branch, this is done in

CodeCommit, where the repository is located. In the CodeCommit users can se-

lect the repository they are using, and from the side menu the ”Branches” tab

provides information about every branch in the repository. Here, new a branch

can also be created. When clicking ”Create Branch” a new prompt appears

where users can give name to a branch and then choose what existing branch

will act as basis for the new branch. When a new branch is created it can be

pulled to the local repository, provided the user has copied the repository earlier

30

to the local machine. Next, the user makes their changes locally and then makes

a commit and pushes the changes back to the remote repository.

Then, before the automatic deployment pipeline can be started, the code must

be merged to the master branch. From the CodeCommit repository in the side

menu there is ”Pull requests” tab. If there are new pull requests made oneself or

if the user is set as a reviewer, active pull requests show up here. A new pull

request can be created by clicking ”Create pull request”. When clicked, a new

window opens where source branch and destination branches can be chosen.

Here a new branch will be used as a source and as a destination branch the

master branch is set. New pull request window opens, and there is notification

made if merge issues are or are not detected. The next step is to give the pull

request a title and optional description. Code changes and commits are also vis-

ible in this page. After necessary information is given, active pull request is now

made. This request can be viewed by any project team members and they can

give feedback and approvals before merging to the master branch.

When all seems to be good with the pull request, merging it to a master branch

can be done by clicking on the ”Merge” button. Before merging, a user is asked

how the merge should be done with three different strategies. Also, source branch

can be deleted if wanted. When ”Merge pull request” is clicked the master branch

will be updated.

I built the pipeline to automatically start when there are changes made to a master

branch. Now when changes are noticed the pipeline starts building the app and

runs the JUnit test within. Successful build is packed inside the .war file and sent

forward in the pipeline. The deploy stage then sends the .war file further to Elastic

Beanstalk service, which is our deployment service, where the pushed changes

can be verified.

31

4.3 User interface comparison

During the creation of the pipelines and when testing the workflow, I noticed three

key differences in UI between the two platforms. Azure has a clean interface, and

all the necessary tools are accessible from the side menu. Because AWS has a

lot more services and components, they all cannot be fitted to the similar side

menu. AWS has solved this problem with the search function in its management

console. AWS also updates its management console page, giving users quick

access to the tools that were recently used. This also helps AWS to avoid crowd-

ing in the number of services. There were no weirdly placed elements in the UI

for both platforms, so it boils down to user preferences which user thinks had

more likeable UI.

Azure seemed to be more beginner friendly with its UI and services. One great

example is how different templates were used when creating the pipeline. This

meant that users did not need as much prior experience working with pipelines.

AWS on the other hand seemed to be aimed more so at professional developers,

as it had many different configuration options appearing during the pipeline cre-

ation. During the pipeline creation process in AWS, I did not find that it provided

any templates in the pipeline set up tool that could be used in the pipeline.

Last notable difference I found was related to the deployment environment that

was used to display the app. In Azure this was created in the Azure Portal, which

is a separate page from Azure DevOps. I had to create a separate free subscrip-

tion in there and configure the deployment environment completely inside that

portal page and later connect it to the DevOps. Because AWS had huge pool of

different services, the creation of this deployment environment could be done

from inside the AWS management console. This made some of the necessary

tasks easier.

32

4.4 Process Time Measurement

The process time will be measured from the pipeline’s start of the build to the end

of the deployment stage where changes can be seen in a test environment. This

test will be done for ten times with a fresh build every time to see if there are any

notable differences in the average time of the pipeline process. I will create

graphs out of the test results to better show the results. The tests are done as

follows: first for every new test a new branch is created and pulled to the local

environment. In local environment I will modify the paragraph from the index.jsp

file so that changes can be previewed in the deployment environment. Figure 18

shows an example.

Figure 18. index.jsp.

4.4.1 Process Time in Azure

Azure DevOps has its own timer that is set off when the pipeline starts working

with the first stage and is stopped when the last stage has finished (Figure 19). I

will be using this data to compare the times between different builds.

Figure 19. Example process time from Azure.

For every test I created new branch and modified the index.jsp file that is dis-

played on the web page. This allowed verifying that the changes had been made.

33

I then pushed changes to Azure, where I would make a pull request for the

changes. During testing there was one error that happened with test number 7.

This error happened in deploy stage but still it was deployed successfully to the

test environment. I could not be sure if this had affected the process time, so I

decided to run the test again so that all data would be comparable. After the tests

it is noticeable that the first test took the longest time, 87 seconds and the average

after 10 tests was 63.6 seconds. The shortest process time was with test number

9, with a duration of only 54 seconds. Visualised data can be viewed for the re-

sults in Figure 20.

Figure 20. Visualised process time in Azure.

4.4.2 Process Time in AWS

The process time was tested in an identical way compared to the tests in Azure.

AWS also provides the duration of the pipeline process and that is the data I will

compare with the tests (Figure 21).

34

Figure 21. Example process time in AWS

For every test I created a new branch and made local changes index.jsp. Then I

pushed the changes to the AWS repository and merged the changes with master

branch to trigger the pipeline. After the pipeline had deployed the changes suc-

cessfully, I manually checked the Elastic Beanstalk environment that the changes

to the .jsp could be seen. After the ten test builds, I noticed that the pipeline’s

processing time was consistent with only a few changes here and there. The

longest time was 105 seconds; the shortest was 103 seconds, which happened

with 5 out of 10 tests. The average was 103.6 seconds, which also shows the

consistency between test times. Test results have been visualised in Figure 22.

Figure 22. Visualised process time in AWS.

4.5 Process time in failed test

This test will find out if there are any differences in time when the JUnit test fails.

This test is also done ten times with fresh build to see if there were differences in

35

time of the building stages. Also the possible differences in the output message

of the error was checked. The results will be documented same way as I did with

the last tests.

4.5.1 Bad deploy in Azure

This test was done in same principle as the test with the whole process time, but

this time I made the test fail so it would not get past the building stage. Again, I

did all ten tests with new branch and new commit every time and would use the

pull request for the merge to start the automatic pipeline. Every time the JUnit

test failed with the error message saying “Failed tests: isGreaterTest(junit.Jun-

itMeasureTest): Num1 is greater than Num 2”. Once more, I would compare the

times Azure provides in the pipelines. After the tests it seems that the build times

move a lot by random. The longest time for build stage was 34 seconds, and the

shortest time was only 17 seconds, or half of the longest time. The average time

for the tests was 26.7 seconds. Figure 23 visualizes the data.

Figure 23. Build time in Azure for failed tests visualised.

36

4.5.2 Bad deploy in AWS

This test was done same way as the last test runs. The difference this time was

to make the built in JUnit test fail and to see if there was anything notable in the

error logs or in the build time. For these tests, a new branch was created and

merged to master after changes to trigger a fresh pipeline.

Like the last AWS test there, was not much disparity between the build times.

Test failed every time with message: ”Failed tests: isGreaterTest(junit.JUn-

itMeasureTest): Num 1 is greater than Num 2”. In Figure 24 the test data is visu-

alised for clarity.

Figure 24. Build time for failed tests in AWS visualised.

5 SUMMARY OF RESULTS

Both cloud platforms were built using similar toolsets, and the pipelines were cre-

ated to be as similar as possible. The focus was to create the pipelines using the

own tools each platform had created, so I did not want to make same pipeline to

both services using third party tools.

37

The development workflow between the two platforms did not vary at all when

looking at the entirety of the workflow. There were minor user interface differ-

ences, but nothing major in the big picture of the workflow. For both platforms the

workflow goes as follows: user creates a branch, pulls branch to local environ-

ment, makes some changes to the code, pushes changes back to DevOps re-

pository, creates a pull request and merges it to a master branch. Then the pipe-

line automatically deploys changes to deployment environment.

After the process time tests, it was easy to notice that in Azure DevOps both

process times, in the test with complete deployment pipeline and the test where

JUnit test failed, were much faster compared to the Amazon Web Services. Pro-

cess times can be seen compared in Figures 25 and 26.

Figure 25. Process time comparison.

38

Figure 26. Process time comparison in failed test.

The average process time in Azure was 40 seconds faster in the first test than in

AWS. Azure showed even more notable differences in average times with the

build time in the failed JUnit test. In failed test, Azure’s average was 41.6 seconds

faster than AWS. Because the build pipeline was almost identical, the reason for

this big difference might be related to the processing power of the AWS. In AWS

I had used the free model, which was using 3 GB memory, 2 vCPUs. Unfortu-

nately, I could not find the exact information about what Microsoft-hosted agents

in Azure were used in the pipeline during the tests. I was therefore not able to

conduct any hardware comparisons. The agent used in Azure environment varies

using three different processors: Intel Xeon 8171M 2.1GHz, Intel Xeon E5-2673

v4 2.3 GHz or Intel Xeon E5-2673 v3 2.4 GHz. This might explain the wide variety

of process times in the tests with Azure.

Difference between the slowest and fastest time in Azure environment was 33

seconds in the first set of tests and 17 seconds in the second set of tests. These

same numbers in AWS were only 2 seconds of difference in both set of tests.

Consistency between build times seem to be on AWS’ side based on test results.

39

Both platforms did not have any notable differences in the error message from

the failed JUnit tests. When the JUnit tests failed also the pipelines stopped, so

nothing broken was deployed to remote environments. On one occasion, deploy-

ment in Azure failed once for unknown reason during the first process tests. Even

though the pipeline notified that deployment had failed, the changes were still

applied in the environment. This made me redo the test for one extra time be-

cause it might have affected the pipeline’s speed. Otherwise there were no other

problems during the process time tests, and I am confident that I gained compa-

rable data for these two platforms.

When the user interface comparison is taken to account, the Azure DevOps’ more

beginner friendly UI with the usage of ready-made templates is even with AWS’

bit more in-depth approach to the interface with vast amount of services at hand.

There were no bigger problems found when using either of the interfaces.

The two cloud services are almost identical when looking purely at the workflow.

The differences start to arise when checking the process time of the automated

pipeline. From the numbers it is easy to see that Azure DevOps was much faster

in the pipeline process. On the other hand, the inconsistency of the process times

is something to keep in mind. That is where the Amazon Web Services were

shining, because there were only few alternations in process time between the

tests. But when looking purely at processing speed of the pipeline, which was the

focus point of the tests, the average time for the Azure was around 40 seconds

faster than the AWS after both tests. This means that Azure DevOps takes the

upper hand from this comparison.

6 REFLECTIONS

Before this project I only had experiences in using the Azure DevOps platform.

But now that the tests and the comparison is done, I have not only gained expe-

rience on the AWS platform, but I understand the DevOps process a bit better

40

with new view for the whole area. As I see it, the entire DevOps culture is the next

step for us developers to be able to produce good products for the customers.

Comparing the two big DevOps platforms was a good experience and I would not

mind using either of these services in my daily work. No matter what the results

would have been, I still would have to use Azure in my work. It was still insightful

to look how DevOps process works in other platforms. It feels like during this

project I only scratched the surface of the AWS, but there are also functions that

were not used during the tests on the Azure environment.

Unfortunately, with the budget and time I had for this project I had to use the free

subscriptions and the pipelines in the environments were simple. Still, I think be-

cause of the free subscriptions, the test data varied so much between the plat-

forms. To improve the tests conducted, I would use paid subscriptions and have

multiple and more complicated tests so that the pipeline created would have to

have more processing power. With these changes the results would have more

impact on the company level.

41

REFERENCES

1. Lucidchart Content Team. 2020 Understanding the DevOps process flow.
https://www.lucidchart.com/blog/devops-process-flow [Used 3rd March
2020]

2. Swartout, P. 2012. Continuous Delivery and DevOps: A Quickstart guide.
Packt Publishing.

3. Belagetti, P. 2018. 8 reasons why DevOps gets more exciting in 2019.
JAXenter. https://jaxenter.com/top-8-devops-predictions-2019-
152914.html [Used 5th March 2020]

4. Humble, J., Willis J., Kim G., Debois P. 2016. The DevOps Handbook. IT
Revolution Press. https://learning.oreilly.com/library/view/the-devops-
handbook/9781457191381/DOHB-pt_04_text.xhtml

5. Vadapalli, S. 2018. DevOps: Continuous Delivery, Integration, and De-
ployment with DevOps. Packt Publishing. https://learning.oreilly.com/li-
brary/view/devops-continuous-delivery/9781789132991/ch02s02.html

6. Son, B. 08.04.2019. A beginner's guide to building DevOps pipelines with
open source tools. https://opensource.com/article/19/4/devops-pipeline
[Used 14th April 2020]

7. Microsoft Corporation. 2020. https://azure.microsoft.com/en-us/over-
view/what-is-devops [Used 3rd May 2020]

8. Intellipaat. 2019. https://intellipaat.com/blog/aws-vs-azure-vs-google-
cloud/ [Used February 16th 2020]

9. Microsoft Corporation. 19.05.2020. https://docs.microsoft.com/en-us/az-
ure/devops/user-guide/services?view=azure-devops [Used 28th May
2020]

10. Amazon Web Services. 2020. https://aws.amazon.com/ [Used 28th May
2020]

11. Amazon Web Services. 2020. DevOps Pipeline Example.
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-
devops-example.html [Used 28th May 2020]

12. Google. 2020. https://cloud.google.com/why-google-cloud [Used 28th
May 2020]

https://www.lucidchart.com/blog/devops-process-flow
https://jaxenter.com/top-8-devops-predictions-2019-152914.html
https://jaxenter.com/top-8-devops-predictions-2019-152914.html
https://learning.oreilly.com/library/publisher/it-revolution-press/
https://learning.oreilly.com/library/publisher/it-revolution-press/
https://learning.oreilly.com/library/publisher/it-revolution-press/
https://learning.oreilly.com/library/view/devops-continuous-delivery/9781789132991/
https://learning.oreilly.com/library/view/devops-continuous-delivery/9781789132991/
https://learning.oreilly.com/library/publisher/packt-publishing/
https://opensource.com/article/19/4/devops-pipeline
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://intellipaat.com/blog/aws-vs-azure-vs-google-cloud/
https://intellipaat.com/blog/aws-vs-azure-vs-google-cloud/
https://docs.microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops
https://aws.amazon.com/
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-devops-example.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-devops-example.html
https://cloud.google.com/why-google-cloud

 Appendix 1 1(2)

azure-pipeline.yaml

Maven package Java project Web App to Linux on Azure

Build your Java project and deploy it to Azure as a Linux web app

Add steps that analyze code, save build artifacts, deploy, and more:

https://docs.microsoft.com/azure/devops/pipelines/languages/java

trigger:

- master

variables:

 # Azure Resource Manager connection created during pipeline creation

 azureSubscription: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'

 # Web app name

 webAppName: 'azure-t'

 # Environment name

 environmentName: 'azure-t'

 # Agent VM image name

 vmImageName: 'ubuntu-latest'

stages:

- stage: Build

 displayName: Build stage

 jobs:

 - job: MavenPackageAndPublishArtifacts

 displayName: Maven Package and Publish Artifacts

 pool:

 vmImage: $(vmImageName)

 steps:

 - task: Maven@3

 displayName: 'Maven Package'

 inputs:

 mavenPomFile: 'pom.xml'

 - task: CopyFiles@2

 displayName: 'Copy Files to artifact staging directory'

 inputs:

 SourceFolder: '$(System.DefaultWorkingDirectory)'

 Contents: '**/target/*.?(war|jar)'

 TargetFolder: $(Build.ArtifactStagingDirectory)

 - publish: $(Build.ArtifactStagingDirectory)

 artifact: drop

 Appendix 1 2(2)

azure-pipeline.yaml

- stage: Deploy

 displayName: Deploy stage

 dependsOn: Build

 condition: succeeded()

 jobs:

 - deployment: DeployLinuxWebApp

 displayName: Deploy Linux Web App

 environment: $(environmentName)

 pool:

 vmImage: $(vmImageName)

 strategy:

 runOnce:

 deploy:

 steps:

 - task: AzureWebApp@1

 displayName: 'Azure Web App Deploy: azure-t'

 inputs:

 azureSubscription: $(azureSubscription)

 appType: webAppLinux

 appName: $(webAppName)

 package: '$(Pipeline.Workspace)/drop/**/target/*.war'

