
Bachelor’s thesis

Information and Communications Technology

2020

Tomi Vahde

DEVELOPING A BEHAVIOUR
TREE BASED AI SYSTEM

BACHELOR’S | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2020 | 25 pages

Tomi Vahde

DEVELOPING A BEHAVIOUR TREE BASED AI
SYSTEM

Artificial Intelligence (AI) is an important aspect of modern game development. With the vast
availability of different development tools, it is easier than ever before to develop an AI system
that mimics human behaviour.

The objective of this thesis was to create an advanced artificial intelligence system using
behaviour trees, document the development process and compare it to a process of working with
state machines. The AI system needed to be easily adjustable, visually self explanatory and
provide a fast way of solving potential unwanted AI behaviours .The system was created using
the Unity game engine version 2019.2.6f1 and the Behaviour Designer version 1.5.12.

The results highlighted advantages as well as disadvantages regarding the usefullness of
behaviour trees when compared to state machines. Main advantages being the visual clarity
behaviour tree editors provided, the non-existence of transitions between states and the flexibility
of the system. Disadvantages included a steeper learning curve when compared to state
machines as well as visual bugs and performance issues.

KEYWORDS:

Artificial Intelligence, AI, Unity

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2020 | 25 sivua

Tomi Vahde

KÄYTÖSPUUTA HYÖDYNTYVÄN
TEKOÄLYJÄRJESTELMÄN KEHITTÄMINEN

Tekoäly on tärkeä osa nykyaikaista pelinkehitystä. Eri kehitystyökalujen laajan saatavuuden
ansioista on entistä helpompaa kehittää ihmisten käyttäytymistä imitoivia tekoälyjärjestelmiä.

Tämän opinnäytetyön tavoitteena oli luoda tekoälyjärjestelmä käyttäen käytöspuita,
dokumentoida kehitysprosessi ja vertailla kehitysprosessia äärellisten automaattien kanssa
työskentelyyn. Tekoälyjärjestelmän tuli olla helposti säädettävissä, visuaalisesti selkeä ja tarjota
työkalut nopeaan ongelmanratkaisuun. Tekoälyjärjestelmä kehitettiin käyttäen Unity-
pelimoottorin versiota 2019.2.6f1 ja Behaviour Designer-ohjelmiston versiota 1.5.12.

Tulokset toivat ilmi käytöspuiden hyödyllisyyteen liittyviä vahvuuksia ja heikkouksia. Tärkeimpiä
vahvuuksia olivat järjestelmän visuaalinen selkeys, eri tilojen välinen siirtyminen ja järjestelmän
joustavuus. Heikkouksiin kuuluivat jyrkempi oppimiskäyrä, sekä visualiset virheet ja suorituskyky.

ASIASANAT:

Tekoäly, AI, Unity

CONTENTS

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 7

2 AI DEVELOPMENT OPTIONS 8

2.1 Finite state machines 8

2.2 Behaviour trees 9

3 CHOSEN DEVELOPMENT TOOLS 11

4 OBJECTIVE AND EXPECTATIONS 12

4.1 Objective and requirements 12

4.2 Expected difficulties 12

5 IMPLEMENTATION 13

5.1 Integrating behaviour tree with pre-excisting character model 13

5.2 Utilizing prebuilt tasks 13

5.3 Creation of custom tasks 14

6 RESULTS 16

6.1 Advantages 16

6.1.1 Visual scipting 16

6.1.2 Handling transition between AI states 16

6.1.3 Compartmentalization of code and readability 16

6.1.4 Utilizing prebuilt tasks 17

6.1.5 Sequences 17

6.1.6 Debugging 18

6.2 Challenges 19

6.2.1 Conditional aborts and composites 19

6.2.2 External behaviour trees 20

6.2.3 Performance 21

6.2.4 Visual Bugs 22

7 CONCLUSION 23

7.1 Suitability 23

7.2 Reliability of results 23

7.3 Future uses and projects 24

REFERENCES 25

LIST OF ABBREVIATIONS

2D Two dimensional

3D Three dimensional

AI Artificial Intelligence

NPC Non-player character

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

1 INTRODUCTION

Ever since videogames became popular, artificial intelligence has been a crucial part of

them. Today most current videogames have some type of an AI in them, whether it is a

simple critter whose only job is to run away from the player, or a highly in depth AI in a

strategy game that needs to adapt to constantly changing situtations (Lou 2017).

As games have grown, so have the demands from an artificial intelligence and creation

of an AI that can react to different stimulations while mimicking human behaviour can be

a challenging task to achieve. In a videogame the different possible situations an AI might

need to react to can be multiple and in order to make the AI seem believable, it needs to

be able to change its actions in a logical way, much in the way an average human would.

Currently the development of games and AI is more approachable thanks to multiple

different and free to use game engines and tools, as well as a plethora of widely available

tutorials. One of the most common ways of programming a functional game AI has been

the use of different state machines or more recently the usage of behaviour trees. Both

of these approaches can create highly indepth AI systems that handle multiple different

actions an AI needs to take an well as reaction to outside stimulations. (Lou 2017).

The objective of this thesis is to develop a fully functional AI system using a behaviour

tree approach, analyze the development process and compare how behaviour trees

compare as a development tool to state machines. The results aim to provide insight into

what AI development tools developers can use if they are new to AI development and

which ones are more suitable to handle AI systems of different scales.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

2 AI DEVELOPMENT OPTIONS

2.1 Finite state machines

A finite state machine is a collection of different actions that a game character can be in

at any given time. These individual actions are referred to as states and they are often

used in games to handle actions such as different types of movement from running to

jumping or calculating combat actions such as target selection. (Unity Technologies

2018).

State machines work by combining different states with transitions between them. Since

state machines can only support one active state at any given time, each state must

have a transition to the next state, a visual example of this can be seen in figure 1. These

transitions are manually set by the developer based on the wanted behaviour of the AI.

A transition should only lead to a state that makes logical sense for the AI to take, for

example a landing on ground state should always be preceeded by a fall state. It is also

noted that not every state needs or should have a transition to every other state inside

the state machine. (Bevilacqua 2013).

Figure 1. State machine in Unity consisting of three different states with currently active
state marked in orange and transitions represented with white arrows. (Unity
Technologies 2018).

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

While state machines are relative easy to understand and set up inside the Unity editor,

they do have their own downsides. These come mostly in the form of increased

transitions as the amount of different states for the AI increases. If an AI needs to support,

for example, 10 different states and each state needs to have a transition to every other

state, the amount of transition that would have to be manually set would be 90. Managing

so many transition would take up significant amount of development time and can easily

lead into unwanted bugs as well as making the state machine visually look cluttered and

hard to read as seen in Figure 2.

Figure 2. Cluttered state machine with a high number of states and transitions (Opsive
2020).

2.2 Behaviour trees

One alternative to using state machine for handling AI logic is the usage of Behaviour

trees. Compared to state machines, the usage of behaviour trees in game development

is still rather new with the first major usage of them appearing in the game Halo 2

released at 2004. Behaviour trees differentiate themselves from state machines by not

relying on manual transitions and states, but rather by having a collection of different

tasks the AI can excecute in different sequences. (Opsive 2020)

The tasks that behaviour trees consist of work by running code that checks wanted

parameters and returns either a failure, success or currently running status. The

sequence will then decide whether to proceed to the next task, wait or to quit the

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

sequence altogether. The excecution order of these tasks mainly follow a preorder binary

tree traversal, where the logic flows from top to bottom and left to right, but this behaviour

can be manipulated with different composite tasks. For example, a parallel task seen in

Figure 3 will run both child tasks shoot and shoot animation at the same time. This is

also a differentation from state machines, since behaviour trees can run multiple different

tasks at once.

.

Figure 3. Example of a behaviour tree consisting of an eyesight check and shooting
tasks. (Opsive 2020).

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

3 CHOSEN DEVELOPMENT TOOLS

Unity itself does not have an integrated behaviour tree system, therefore it was

necessary to look for third party developed tools in the Unity Asset Store. The Asset

Store for Unity consists of free and purchasable extensions to the for the Unity editor,

that can extend it’s functionality in different ways.

For this project the chosen system to use was Opsives Behaviour Designer for Unity.

The main reasons for choosing this specific asset was it’s support for other third-party

assets currently used in the game project, most notably A* pathfinding, which handles

all the AI movement logic and Dialogue System for Unity that is used for managing quests

and character interactions by talking to different NPCs.

Other notable reasons for selection were it’s large userbase and documentation, this in

the hope that finding solutions to unexpected problems would be easier with a larger

community and more active forums than some other assets. Since Behaviour Designer

also receives frequent updates, it is unlikely that compatibility issues will rise with newer

version of Unity. It is not uncommong for third party assets from the asset store to

become deprecated with newer version of Unity, if the asset hasn’t been update to

support the newest release.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

4 OBJECTIVE AND EXPECTATIONS

4.1 Objective and requirements

The objective is to create a basis for an AI, that can change it’s actions between states,

works with pre-excisting code and supports future expandability.The finalized system

needed to support the addition of new tasks and creation of different AI variants, which

would utilize the already existing behaviour trees.

In addition to this, it needed be possible to adjust the different variables of certain tasks

on the fly. For example the range of an AI’s eyesight could be impacted by gameplay, so

different tasks need to dynamically support these changes.

4.2 Expected difficulties

Reading the documentiation of Behaviour Designer and getting familiar with some of it’s

tutorials projects, it was expected that a few challenges would arise during the

development.

The most obvious challenge was expected to be handling of the tree traversal logic.

While simple behaviour trees could consist of a single sequence, an extensive behaviour

tree that handles everything from movement, target acquisition, dialogue interactions

and cutscene logic would end up being much more of a challenge, since it needs to tie

different sequences to work together.

It was also unclear how manageable it would be to integrate individual tasks to work with

already excisting scripts in the project. One fear was that it might be required to set up

constantly running tasks, which do not take into account the current state of the

behaviour tree, for the reason that some of these scripts were not initially developed to

work with behaviour trees in mind.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

5 IMPLEMENTATION

5.1 Integrating behaviour tree with pre-excisting character model

Prior to working on the AI system, the game project already contained scripts for handling

character animations. These animations scripts consisted of roughly 2000 lines of code,

therefore it was important to get the AI system working with this codebase, in order to

not having to re-write the logic behind the animation handling. Secondly it is expected

that the original animation scripts will receive new functionality or alterations, therefore it

was highly important for not having separate animation handlers for the player and the

AI.

The majority of these animation handlers were located in the base character class. This

was an extendable class used by the PlayerInput class, that would automatically change

the characters current animations depending on current player inputs. Solution to this

was to create an NPCInput class, that would also extend the base character class. This

new class would consist of different functions that the behaviour tree could freely use

inside different tasks.

5.2 Utilizing prebuilt tasks

Behaviour Designer has by default multiple prebuilt tasks for developers to use in their

behaviour trees. The usage of these was as simple as dragging them into the currently

edited behaviour tree and setting up all the needed references in the inspector, these

mostly consisting of the gameobject that you wanted to track or the possible angle for a

field of vision. While the amount of prebuilt tasks varied based on their type, the more

commonly used gameobject components did have a wider selection. For example the

animator component that is used to handle all character animations from walking to

running had an extensive amount of tasks allocated to it as seen in figure 4. But the

lesser used ones like the BoxCollider2D component had only two prebuilt tasks, get size

and set size.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

Figure 4. Example of animator related tasks.

5.3 Creation of custom tasks

The creation of new tasks was mostly only needed to bridge the gap in delivering and

receiving information from the NPCInput and BehaviourTreeReference classes. This

was usually done by taking pre-existing tasks and modifying them in order to create a

new variant. Since most of the low level AI logic was done inside the NPCInput class,

the tasks classes ended up usually only having a few lines of code that called certain

functions inside the NPCInput class. Figure 5 provides a good example how it was

possible to keep custom tasks down to approximately 40 lines of code by mostly doing

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

comparison tasks inside the OnUpdate function and making the task in question return

the wanted outcome.

Figure 5. Example of a custom task

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

6 RESULTS

Working with behaviour trees proved to be very different from programming finite state

machines. Here we will look at the biggest advantages and challenges that rose up

during the development.

6.1 Advantages

6.1.1 Visual scipting

Since Behaviour Designer works by a visual editor inside Unity, setting up different AI

tasks and behaviours is a completely separate process from actual programming. For

this reason the AI development process can be divided between multiple people in larger

development teams. A programmer can focus on creating the individual tasks the AI has

to execute, where as a second person can handle setting up the tasks inside the visual

editor. In this case the second person does not neccecarily need to know actual

programming, since organizing the behaviour tree can be done by visually dragging

different tasks to their correct positions. When working with finite state machines this is

not a possibility, since all the work that goes into handling AI states and behaviours

requires actual programming.

6.1.2 Handling transition between AI states

Main advantage of using a behaviour tree from a programmers point of view was the fact

of not having to worry about handling transitions between states. When all the selectors

were set up correctly the logic flow behaved excatly as it was required. This also helped

keep the visual editor looking clean, compared to what a state machine can look like

when the amount of different states and transition grow. (Add picture here)

6.1.3 Compartmentalization of code and readability

Since Behaviour Trees work by running individual tasks, this had the positive effect of

automatically forcing you to separate your code into individual classes that the tasks use.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

This made reading through the written code much more easier, since the common

mistake of writing script classes that consist of thousands of lines of code wasn’t really

a possibility.

The visual editor also proved helpfull in a way that it allowed you to quickly find parts of

the AI’s behaviour that you wanted to edit. For example if you needed to adjust how the

AI’s eyesight works while it’s chasing the player, all you had to do was to visually identify

the correct task and edit the code it contained. Again contrasting this to a non-visual

approach, where locating the correct lines of code can take considerably longer.

6.1.4 Utilizing prebuilt tasks

As Behaviour Designer offers a library of prebuilt tasks that you can use, this resulted in

not having to write custom tasks for navigation, eyesight and proximity detection. Luckily

these tasks had support for 2D projects, so the initional fears of custom tasks only

working in a 3D project did not come true.

Another positive is that although these tasks wouldn’t have been extremely difficult to

create for someone who knows programming, it also meant that it might be entirely

possible to create a simple AI for a basic game completely from these prebuilt tasks,

without having any programming skills.

6.1.5 Sequences

Creating actions for the AI that should happen in a sequence one after another turned

out to be extremely simple and effective. Being able to edit these sequences by dragging

new tasks between the already existing ones proved that the system can easily be

expanded in the future without having to worry about breaking to original AI logic. For a

simple example of an attack sequence, see figure 6.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

Figure 6. Sequence for cheking target distance and starting attack functions.

6.1.6 Debugging

Behaviour Designer offers a runtime view for each behaviour tree currently active in the

scene. This proved to be a very effective way of visually debugging and keeping track of

the different AI tasks. Tasks that would return success would be highlighted in green,

therefore it was easy to understand what state the AI was currently in. Example of the

runtime editor view can be seen in figure 7.

Figure 7. Runtime view of Behaviour Designer.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

Compared to a completely script based state machine AI, where the main ways of

debugging is setting up breakpoints in code or printing out statements into the console,

the visual nature of Behaviour Designer proved to be a much faster and user friendly

way of debugging the AI, since you always knew if the unwanted actions of the AI were

the cause of being in the wrong state at the wrong time, or a certain state not working as

intended.

6.2 Challenges

6.2.1 Conditional aborts and composites

One of the largest obstacles to overcome was understanding how Behavior Designers

conditional aborts work. Conditional aborts are used to determine how often a composite

task should re-evaluate itself. Meaning should the chosen task change in the future, if

the prequisites for that task itself change from what they currently are.

Main problem with these was the non-descriptive naming of the abort type variables.

Since the different abort types of None, Self, Lower Priority and Both (as seen in figure

8) are not in themselves very descriptive of the actual functionality when a task should

be reevaluated or not, adding of adjusting them in the editor almost always resulted in

having to go back to the documentation.

Further problem was that the documentation itself was not very user friendly to

newcomers, which meant that the fastest way to get the conditional aborts working as

intended was to basically test all the different types while the game was running and see

which abort type was the one needed. This was especially the case if you had not edited

the conditional aborts for some time, since their logic is very different from other

programming tasks, it was easy to forget how each abort type worked.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

Figure 8. Conditional Abort types (Opsive 2020).

6.2.2 External behaviour trees

The original plan was to divide tasks into external behaviour trees, that would each

handle a very specific AI logic. For example one external tree would handle patrolling

between waypoints in the game world, where as another would focus on target selection.

The finalized version of the AI would then take and combine these external behaviour

trees into one larger tree at runtime.

While in theory this would be a very organized and efficient way of handling the behaviour

trees, the development highlighted a few issues with this approach. First problem was

passing references to each external behaviour tree. Since the external behaviour trees

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

wouldn’t be instantiated by Behaviour Designer untill runtime, you ran into the issue of

the reference script not finding the external behaviour trees.

One solution would have been to make each task get their needed references from the

reference script individually. The downside to this is that certain tasks would require the

AI gameobject to have a specific script component, which would limit the reusage of said

tasks.

Therefore the chosen option was to make the different AI types consist of one complete

behaviour tree which would have all the needed tasks.This resulted in not being able to

quickly re-use the planned external behaviour trees, but having to copy paste individual

tasks and selectors from one behaviour tree to the other. Another downside to this is that

if in the future the logic for example the targeting behaviour needs to be changed, then

these changes would needed to be made manually into each AI type. Overall this was

decided to cause less problems in the future, compared to having the individual tasks be

dependent on specific script components.

These problems also tie in with the performance of Behaviour Designer, which we will

discuss next.

6.2.3 Performance

Another reason for giving up on external behaviour trees was the overall performance of

Behaviour Designer.

Opening a behaviour tree for editing caused frequent freezes, making Unity completely

unusable during this time. These freezes seemed to not be effected by the number of

tasks or overall complexity of the opened behaviour tree and could last anywhere from

two to ten seconds. This time would quickly add up during development, when each

external behaviour tree would need to be closed and opened multiple times to adjust

their tasks and logic flow.

It is advisable to note that these performance issues might not happen for everyone and

might not occur in future versions of Unity or Behaviour Designer.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

6.2.4 Visual Bugs

Behaviour Designer also had atleast one very frequent visual bug with viewing the

chosen behaviour tree at runtime. Viewing a tree that consist of many tasks would cause

some of them to visually overlap, resulting in having to drag them to their correct places

with the mouse each time, as seen in figure 9.

Figure 9. Visual bug of overlapping tasks.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

7 CONCLUSION

7.1 Suitability

After developing the AI using a behaviour tree and comparing the development process

to a more traditional approach with state machines, it is safe to say that both approaches

have their uses in different scenarios.

Due to the fact that a substantial amount of time had to be spent on becoming familiar

with the logic flow of behaviour trees and how to tie it together with already existing code

structure, developing the same functionality with a state machine might not have been

as time-consuming. Having mentioned this, it should be taken into account that the time

required to understand the basics of the logic flow and tree traversal mechanics will vary

from person to person. For someone with previous experience with behaviour trees and

state machines these results might not be accurate.

7.2 Reliability of results

Reflecting on the positive aspects of behaviour trees, the results and advantages should

be easily reproducible, with the expectation that the requirements for the AI would stay

the same.

When it comes to the challenges encountered, it is safe to assume they are not the case

for every user. The perfomance and bugs of Behaviour Designers editor might be tied to

a certain computer, other third party tools in use or the current versions of Behaviour

Designer and Unity.

It should also be taken into consideration that since the Unity Asset Store consists of

many different behaviour tree tools, some of them might not share the same advantages

or challenges as those of Behaviour Designer. Starting out with a free asset such as

Behaviour Bricks might be a good way to prototype and become familiar with the

workflow of a behaviour trees, without having to purchase a more expensive third party

software, such as Behaviour Designer.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

7.3 Future uses and projects

Although there were multiple pre-built tasks to use, it should be noted that most of these

were mostly suited for a very specific AI, in this case most of them were based around

movement and actions such as eyesight and distance checking. For example, AI in a

cardgame would not find these pre-built tasks very useful, which would result in the

developers having to write more custom tasks. Therefore becoming familiar with the

different tasks that Behaviour Designer comes with through documentation should help

in figuring out how much development time can be saved by the usage of these tasks.

It would also be beneficial to evaluate the potential of behaviour trees in the future for

handling more than just AI. For example, it would be possible to handle all player input

inside a behaviour tree with customs tasks. This would have helped in unifying the base

character class and have resulted in not having to spend as much time worrying about

different player states when deciding which player inputs should be accepted.

In the end, developers should base the decision of what AI development tools to use on

the scope of the project and the AI requirements. For a simple AI that does not require

multiple different states and transitions, it might be better to use traditional state

machines and build ther code around them. This is especially true in case i there is no

need to expand the AI’s functionality in the future, since the advantages of fast

reorganizion and reusage of tasks in behaviour trees cannot be utilized to their full

potential. On the other hand, in projects where the AI needs to accommodate many

changing states, behaviour trees offer a very effective way of creating large and complex

systems, without having to spend extensive time worrying about state transitions.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Tomi Vahde

REFERENCES

Simson, C. 2014. Behaviour tree for AI: How they work. Consulted 27.4.2020. Available:
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for

_AI_How_they_work.php

Bevilacqua, F. 2013. Finite-State Machines: Theory and Implementation. Consulted
27.4.2020. Available: https://gamedevelopment.tutsplus.com/tutorials/finite-state-
machines-theory-and-implementation--gamedev-11867

Lou, H. 2017. AI in Video Games: Towards a More Intelligent Game. Consulted
30.4.2020. Available: http://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-
intelligent-game/

Opsive. Behaviour Trees or Finite State Machines. Consulted 26.4.2020. Available:
https://opsive.com/support/documentation/behavior-designer/behavior-trees-or-finite-
state-machines/

Opsive. Conditional Aborts. Consulted 26.4.2020. Saatavilla sähköisesti osoitteessa:
https://opsive.com/support/documentation/behavior-designer/conditional-aborts/

Unity Technologies 2018. State Machine Transitions. Consulted 26.4.2020. Available:

https://docs.unity3d.com/2018.2/Documentation/Manual/StateMachineBasics.html

Unity Technologies 2018. State Machine Transitions. Consulted 26.4.2020. Available:
https://docs.unity3d.com/2018.2/Documentation/Manual/StateMachineTransitions.html

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867
http://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-intelligent-game/
http://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-intelligent-game/
https://opsive.com/support/documentation/behavior-designer/behavior-trees-or-finite-state-machines/
https://opsive.com/support/documentation/behavior-designer/behavior-trees-or-finite-state-machines/
https://opsive.com/support/documentation/behavior-designer/conditional-aborts/
https://docs.unity3d.com/2018.2/Documentation/Manual/StateMachineBasics.html
https://docs.unity3d.com/2018.2/Documentation/Manual/StateMachineTransitions.html

