
Cuong Hoang 

 

BUILDING JAVA WEB APPLICATION  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis 

CENTRIA UNIVERSITY OF APPLIED SCIENCES 

Information Technology 

June 2020



 
 

ABSTRACT 

 

Centria University 

of Applied Sciences 

 

Date 

June 2020 

Author 

Cuong Hoang 

Degree programme 

Information Technology 

Name of thesis 

BUILDING JAVA WEB APPLICATION  

Instructor 

Kauko Kolehmainen 

Pages 

40 + 3 

Supervisor 

Kauko Kolehmainen 

 

Technology, one of the most indispensable of mankind, is changing and growing rapidly in order to 

serve the escalating needs of humanity. Internet and website have been the key and the door to help hu-

mans get access to the outside world. By the constant development of technology and programming 

languages, the web application was born to operate the interaction between the end-user and the web 

that besides the website consists of static content to view and read-only. 

 

This thesis aims to dive deeply into one of the most popular web development languages, which is Java, 

used widely in many enterprises. This thesis concentrates on the theory and fundamentals in Java web 

development technologies: Servlet, JSP, and JDBC, and includes one sample project to help readers 

understand quickly how to build a Java web application with these technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key words 

HTML, CSS, Java, Jave EE, JVM, Servlet, JSP, JDBC, Web Application, MySQL, XAMPP. 



 

CONCEPT DEFINITIONS 

 

HTML Hypertext Markup Language 

CSS Cascading Style Sheets 

Java EE Java Enterprise Edition 

JVM  Java Virtual Machine 

JSP Java Server Pages 

JDBC Java Database Connectivity 

API Application Programming Interface 

JSF Java Server Faces 

EJB Enterprise Java Beans 

HTTP  Hypertext Transfer Protocol 

JSTL Java Server Pages Standard Tag Library 

MVC Model View Control 

ASP Active Server Pages 

CRUD Create Read Update Delete 

FAANG Facebook Amazon Apple Netflix Alphabet  



 

ABSTRACT 

CONTENTS 

1 INTRODUCTION ................................................................................................................................ 1 

2 JAVA WEB APPLICATION THEORY ........................................................................................... 2 
2.1 Web technologies ............................................................................................................................ 2 
2.2 JVM languages ............................................................................................................................... 3 

2.3 Java EE ........................................................................................................................................... 5 
2.3.1 Java EE platform ................................................................................................................. 5 
2.3.2 Layers in an enterprise application .................................................................................... 6 

3 USING SERVLET AND JSP IN JAVA WEB APPLICATION  .................................................... 8 
3.1 Installing and configuring Tomcat Server in Eclipse ................................................................. 9 

3.2 Servlet ............................................................................................................................................ 12 
3.2.1 Introduction of Servlet ....................................................................................................... 12 

3.2.2 Servlet lifecycle ................................................................................................................... 17 
3.3 JSP ................................................................................................................................................. 18 

3.3.1 JSP implementation ........................................................................................................... 18 
3.3.2 Comparing JSP with Servlet and other technologies...................................................... 21 

3.4 Basic web application structure .................................................................................................. 22 

4 ADDING DATABASE INTO JAVA APPLICATION BY JDBC ................................................. 23 

4.1 XAMPP ......................................................................................................................................... 23 
4.2 Installing and configuring MySQL............................................................................................. 25 

4.3 Introduction and integrating JDBC to Java application .......................................................... 26 

5 THE PROJECT ................................................................................................................................. 27 
5.1 Idea ................................................................................................................................................ 27 
5.2 Analysis ......................................................................................................................................... 27 

5.3 Coding and implementation ........................................................................................................ 29 

6 CONCLUSION .................................................................................................................................. 40 

 

REFERENCES ...................................................................................................................................... 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDICES 

 

FIGURES 

 

Figure 1. Functional level of JVM ............................................................................................................ 4 

Figure 2. N-Tier architecture in Java ........................................................................................................ 6 

Figure 3. General view of an enterprise application layers ....................................................................... 7 

Figure 4. Distributed system ..................................................................................................................... 8 

Figure 5. Step 1: Download Tomcat ......................................................................................................... 9 

Figure 6. Step 2: Extract the downloaded zip folder ............................................................................... 10 

Figure 7. Step 3.1: Install the Tomcat server .......................................................................................... 10 

Figure 8. Step 3.2: Install the Tomcat server .......................................................................................... 11 

Figure 9. Step 3.3: Install the Tomcat server .......................................................................................... 11 

Figure 10. Dynamic data request ............................................................................................................ 12 

Figure 11. Step 1.1: Create Dynamic Web Project in Eclipse IDE ........................................................ 13 

Figure 12. Step 1.2: Create Dynamic Web Project in Eclipse IDE ........................................................ 13 

Figure 13. Step 1.3: Create Dynamic Web Project in Eclipse IDE ........................................................ 14 

Figure 14. Step 2.1: Create Java class for implementing Servlet ........................................................... 14 

Figure 15. Step 2.2: Create Java class for implementing Servlet ........................................................... 15 

Figure 16. Step 3.1: Modify the generated Java class ............................................................................. 15 

Figure 17. Step 3.2: Modify the generated Java class ............................................................................. 16 

Figure 18. Step 4: Modify the web.xml file ............................................................................................ 16 

Figure 19. Running the FirstServlet web application ............................................................................. 17 

Figure 20. Stages and methods of Servlet Lifecycle ............................................................................... 18 

Figure 21. Step 1: Create a New Dynamic Web Project ......................................................................... 19 

Figure 22. Step 2: Add a new JSP file to Dynamic Web Project ............................................................ 19 

Figure 23. Step 3: Set up the file name for JSP file ................................................................................ 20 

Figure 24. Step 4: Modify the code in JSP file ....................................................................................... 20 

Figure 25. Accessing the JSP .................................................................................................................. 21 

Figure 26. Step 1: Download XAMPP for Windows.............................................................................. 24 

Figure 27. Step 2: XAMPP setup ............................................................................................................ 24 

Figure 28. Start MySQL and Apache on the control panel of XAMPP .................................................. 25 

Figure 29. phpMyAdmin user interface .................................................................................................. 26 

Figure 30. Project structure ..................................................................................................................... 28 



 

Figure 31. Project workflow ................................................................................................................... 29 

Figure 32. Create LoginForm as a dynamic web project ........................................................................ 29 

Figure 33. Create login.jsp ...................................................................................................................... 30 

Figure 34. Login.jsp ................................................................................................................................ 30 

Figure 35. Create LoginServlet.java ....................................................................................................... 31 

Figure 36. LoginServlet.java code .......................................................................................................... 32 

Figure 37. UserAccount.java code .......................................................................................................... 32 

Figure 38. UserAccountDAO.java code ................................................................................................. 34 

Figure 39. Create new MySQL database in phpMyAdmin .................................................................... 34 

Figure 40. Create new table in user database with 2 columns named username and password ............. 34 

Figure 41. Insert data into login table ..................................................................................................... 35 

Figure 42. Database result ....................................................................................................................... 35 

Figure 43. loginsuccess.jsp code ............................................................................................................. 36 

Figure 44. Modify web.xml .................................................................................................................... 36 

Figure 45. Libraries ................................................................................................................................. 37 

Figure 46. Modify and run Server to start the project ............................................................................. 38 

Figure 47. The first page when running the project ................................................................................ 38 

Figure 48. Users insert data into the log in form .................................................................................... 39 

Figure 49. loginsuccess.jsp called after successful log in ....................................................................... 39 

 

TABLES 

  

Table 1. Programming languages designed for JVM ................................................................................ 3 

Table 2. Programming languages ported to the JVM ............................................................................... 4 

Table 3. Advantages of JSP over Servlet ................................................................................................ 21 

 

 

 



1 

1 INTRODUCTION 

 

 

Internet in general and exchanging information online, in particular, have been essential objects in the 

human technical era. This is the reason why myriad social media platforms appeared to become one of 

the best connection ways for human interaction as well as exchanging information. Most of the popular 

enterprises, especially Facebook and Quora, are using web applications to build their social media plat-

forms, because of many advantages such as reducing business costs, zero-install, or quick and easy up-

dates. 

 

Furthermore, there are diverse options in the platform and programming language in order to construct 

a web application due to the constant development of technology. The Java technologies support to web 

application robustly with Java EE, JVM, Servlet, JSP, or JDBC. The reason why many firms were con-

vinced in choosing Java technologies for their web applications is strong and stable language program-

ming. In web application development, there are a lot of advantages of Java: complied and interpreted, 

independent and portable platform, object-oriented programming language, strong and secure, distrib-

uted, simple and small, multi-threaded and interactive, high performance, dynamic and scalable. Besides 

that, Java is a long-standing programming language with high popularity and familiar with many pro-

grammers, especially junior programmers who are the beginners in programming. 

 

Java web application helps to upgrade a static web page to be dynamic through Servlet and JSP, and it 

operates as a distributed system: server and client. Apache Tomcat server, which is one of the most 

widely used web servers, can process client requests and respond resources back to the client. Moreover, 

Servlet and JSP are server-side technology to expand web-server abilities by providing for dynamic 

content. Programmers, who are proficient in Java programming language, can move further easily in 

web applications with these Java technologies.  

 

The purpose of this thesis is about how to build web applications in Java and understand deeply Java 

web application knowledge. The project built a sample log in form by Java technologies. This log in 

form allows end-users to log in by using Servlet, JSP, and Apache Tomcat server. Data is requested and 

stored in MySQL database through JDBC, which is an API to connect and execute query with the 

MySQL database.  



2 

2 JAVA WEB APPLICATION THEORY 

 

 

The web application is the distributed application which means any web application runs on more than 

one device and communicates with the server to request resource by using network. Web application is 

more popular because it does not require installation and can be accessed by a web browser, which 

appears in every mobile device and computer. Without installation, updates and maintenance are easier 

than ever which become the biggest advantage to help web applications to have appeared in most pres-

tigious companies. The technology used to build web applications by Java is the Java EE platform.  Java 

web application technologies comprise a collection for dynamic content (Servlet, JSP, Java classes and 

jars) and static content (HTML pages and images). (Edurake 2019.) 

 

 

2.1 Web technologies 

 

Web development is divided into 2 parts: front-end and back-end. In the front-end part, developers have 

responsibilities for building the website’s interfaces and researching into immersive user experiences. 

There are abundant technologies for developing front-end, but every front-end developer must be famil-

iar with 3 main technologies: HTML, CSS, and JavaScript programming language. Besides that, web 

development technologies are changing rapidly with various useful frameworks, such as Bootstrap, 

Foundation, AngularJS, and EmberJS, which help developers to create a good-looking layout in any 

kind of device. Moreover, front-end web developers also have supported libraries like jQuery and LESS 

that provide template code into a more effective and time-saving form. Following that, Ajax is a good 

technique, which is used widely many front-end web developers for fetching data on dynamic web pages 

without reloading the web pages. (Wales 2014.) 

 

On the other hand, the back-end part is building the server, application, and database communication 

with each other that uses server-side programming languages such as Java, .Net, PHP, Python, JavaScript 

and SQL and NoSQL databases such as MySQL, PostgreSQL, MongoDB. Back-end developers also 

have some convenient tools like Git used for storing code and collaborating with partners, and Linux 

operating system used for development and deployment system. (Wales 2014) 

 

In this thesis, the author concentrated on Java which is server-side language has various supported web 

development technologies such as JSP, Servlet, JDBC. Although many web and product companies are 



3 

transitioning and adapting to new technologies, and the rapid growth of Python, Java still leads the top 

3 sectors in technologies field: software, IT and services, and internet. Many high-class business appli-

cations are using Java such as FAANG companies and the largest application vendors like SAP. Follow-

ing that, many popular unicorn start-ups are using Java such as Airbnb, Uber, and also LinkedIn which 

is a Microsoft product. Java owns the best collection of frameworks such as Spring framework and this 

is the reason why many companies trust in using Java. Moreover, most of the applications in govern-

ments, which are web-based, were developed by Java, because Java was known as the most secure pro-

gramming language. (Gupta 2018) 

 

 

2.2 JVM languages 

 

JVM which stands for Java virtual machine, is the runtime environment of Java platform allows to use 

different programming languages for web application interprets compiled into Java bytecode for any 

hardware platform (Rouse 2019.). There are plenty of programming languages and are designed for 

producing computer software that runs on JVM. The JVM languages classify into two types: program-

ming languages that are created for JVM and existing programming languages are ported to JVM. The 

short description of languages designed for JVM are shown in Table 1. (Layka 2014.) 

 

Table 1. Programming languages designed for JVM (Layka 2014) 

 

 

These programming languages are parts of Java language because initially JVM was created to support 

only Java programming language. All the above languages in Figure 1 are the functional programming 

language. Groovy was developed by Pivotal and Apache Software Foundation is providing presently. 

This JVM language is syntactically closest to Java that has had functional constructs and supported for 

static compilation in Groovy 2.0. The creator of Scala is Martin Odersky, and the general purpose of 



4 

designing Scala was to improve the efficiency of Java developers. Scala is the fully object-oriented pro-

gramming language and evolved out of a pure functional programming language. Clojure was developed 

with the purpose of developing a functional programming language for the JVM within the Lisp family 

by Rich Hickey. In contrast to Scala, Clojure is a non-object-oriented programming language and purely 

functional (Jain 2019). The development of JVM languages is shown in Figure 1. 

 

 

Figure 1. Functional level of JVM (Layka 2014) 

 

Because of the rapid development of technology and the potential of JVM, there are more adapted to run 

on JVM by Java implementation over the years. Jython was a milestone of the main alternatives that was 

a Python implementation for JVM. In 1997, the next implementation for JVM in JavaScript was born in 

Rhino. Following that, Ruby was launched JRuby in 2001 for JVM (Jain 2019). The short description 

of languages designed for JVM are shown in Table 2. 

 

Table 2. Programming languages ported to the JVM (Layka 2014) 

 

 

 

 

 



5 

2.3 Java EE 

 

Java started as a programming language created for stand-alone applications and accelerated into multi-

ple platforms. Java was designed in the mid-1990s by James A. Gosling, who worked for Sun Microsys-

tems as a computer scientist (Techopedia 2019).  In Java technologies, building web application is simple 

at this time because a large part of Java’s popularity can be supported. There are 2 parts in a web appli-

cation:  static and dynamic (interactive) contents in web pages. A static web page is one that usually 

built-in markup languages (HTML, XHTML), and the code is written in the content displayed to the 

user in order to provide information. On the other hand, a dynamic web page is written by using server-

side language (PHP, ASP, JSP) and the web page contents are requested by script language from a da-

tabase or other files on action generated by the user. Following that, a web application is comprised of 

a combination between static web pages and dynamic web pages which is able to display information 

by user requests. In contrast to a web page, a web application is not only providing content but also lets 

the user perform tasks and save the result to a file or a database. Moreover, building a web application 

is essentially distinct from building a stand-alone application that follows three main elements. First, the 

Java EE platform is the collection of APIs and tools which are the building blocks of the web application 

(Layka 2014.). Secondly, the web container is the interface between web server and web components 

that implements APIs of the Java EE platform. The web container solves tasks for managing the web 

component’s lifecycle, sending requests to web components and providing interfaces to context data 

(Oracle 2010). Thirdly, web components can be servlets, JSPs, JSFs, or Facelets that hosted by web 

containers. (Layka 2014.) 

 

 

2.3.1 Java EE platform  

 

The Java Platform – Enterprise Edition (Java EE) is the set of API specifications developed by Oracle 

under Java Community Process that helps developers to build server-side applications. The purpose of 

the Java EE platform is standardization and reduction in the complexity of enterprise application devel-

opment by providing an architecture for service implementation as N-Tier architecture (Multitier archi-

tecture) (Layka 2014). In software development engineering, N-Tier architecture is designed to have 

physically separated presentation, processing, and data management functions, also known as client-

server architecture like Figure 2 (Stackify 2017). N-Tier architecture consists of different logical com-

puting N layers and provides many advantages for production and development environments which 

speed up development, performance, scalability, and availability. (JReport 2019) 



6 

 

Figure 2. N-Tier architecture in Java (Layka 2014) 

 

In Figure 2, N-Tier architecture is separated into 3 parts. First, client machine (Client-Tier): is a visual 

thing that accessed by web pages through web browser or web-based application and displays desirable 

content and information to the end-users. Client tier is developed by front-end web technologies like 

HTML5, CSS3, JavaScript, or other popular web development frameworks, and connects to other layers 

by APIs (JReport 2019.). Secondly, Java EE server (Web-Tier & Business-Tier): contains components 

that operate the communication between clients and the business tier (Layka 2014.). Thirdly, database 

server (EIS-Tier): is a place to store data that is a database or a data storage system, for example: MySQL, 

MongoDB, Microsoft SQL Servers, PostgreSQL. Data is requested by API calls to access the Java EE 

server (Web tier & Business Tier). (JReport 2019.) 

 

 

2.3.2 Layers in an enterprise application 

 

In an enterprise application, layers are a collection of the software compositions which build an appli-

cation or service. Following Figure 3, there are several typical layers in order to organize the standard 

enterprise application such as web layer, service layer and data access layer. Separating multiple layers 



7 

in an enterprise application aims to minimize the impact of adding functions or features to an application. 

Moreover, the advantages of using these layers are simpler maintenance, code reusing and high cohesion. 

(Zeepedia 2019.) 

 

 

Figure 3. General view of an enterprise application layers (Layka 2014.) 

 

Enterprise application layers consist of 3 layers. First, web layer contains the web tier compositions of 

Java EE, for instance, Servlets and JSP. It should not be a tight connection between service layer and 

web layer because adjusting the service layer could lead a bad influence on web layer. The web layer 

could connect the service layer though. Secondly, service layer is comprised of the business tier compo-

sitions of Java EE such as EJBs. Like web layer, the service layer could connect the data access layer, 

but there should not be a tight connection between service layer and data access layer. In fact, the service 

layer should not be related to the web layer or data access layer. Thirdly, data access layer includes the 

data tier compositions of Java EE, for example, JDBC and JPA that should not consist of business logic. 

(Layka 2014.) 

 

 

 

 

 

 

 

 



8 

3 USING SERVLET AND JSP IN JAVA WEB APPLICATION  

 

 

Distributed system in Figure 4 consists of multiple nodes that are physically divided but they are con-

nected by network. In general, most of the systems on the Internet are like distributed systems which 

could be separated into 2 types: client and server. In a client-server distributed system, the client is the 

device that requests some information and the server is the device that supplies that information. A client 

could only contact one server at the time while a server is able to server multiple clients at the same time 

(Meador 2014). HTTP is the protocol that the client (web browser), the server (web server), and the web 

application using to communicate. The client dispatches HTTP requests to the server so that the server 

responds to the requested resource in the HTTP response forms. The client and the server in HTTP create 

the fundament of the World Wide Web. In the technology era, a billion bytes data is daily created and 

used, and many people are convinced in the misunderstanding that all web applications are developed 

by web frameworks like HTML, CSS, JavaScript, PHP. However, web applications could be developed 

over Java technologies using services such as Servlet and JSP (Meador 2014.). Section 3 aims to dive 

deeply into the Servlet and JSP concept, and how to use Servlet and JSP in Java web application. 

 

 

Figure 4. Distributed system (Meador 2014.) 

 



9 

 

3.1 Installing and configuring Tomcat Server in Eclipse 

 

Tomcat is developed as a Servlet implementation by James Duncan Davidson, who worked for Sun 

Microsystems at software architect position. Later, Tomcat is become the open-source implementation 

project and donated by Sun Microsystems to the Apache Software Foundation. Tomcat also is known as 

Apache Tomcat is the most common and popular web container that approves to run Servlet, JSP, Java 

Expression Language, and Web Socket based web applications. Tomcat provides a HTTP server envi-

ronment or HTTP connector on port 8080 in that Java code can execute. (Vogel 2019) 

 

Tomcat has available versions for most operating systems such as Windows, Linux, and macOS. First 

of all, users need to go to the Tomcat page https://tomcat.apache.org/download-90.cgi to look for a suit-

able version for the operating system in their devices. This thesis demonstrates how to download and set 

up Tomcat in Eclipse for Windows. For Windows version, users have 2 options that are 32 bit and 64 

bit, and are shown in Figure 5, depending on the user operating system computer. After choosing the 

right version for Windows, click on the zip file and the installer version for Windows is going to be in 

the download folder. (Singh 2019) 

 

 

Figure 5. Step 1: Download Tomcat 



10 

The newest Tomcat version for Windows device is 9.0.30 that shown in the name of Tomcat zip file. 

Users could select an older version, but the procedure is the same. In order to install Tomcat, go to 

download folder and extract the Tomcat zip folder file like Figure 6 

 

 
Figure 6. Step 2: Extract the downloaded zip folder 

 

After step 2 in Figure 6, open the Eclipse IDE and on the toolbar of Eclipse, go to Window, choose 

Preferences and click Server as shown in Figure 7 and click Add to choose Apache Tomcat v9.0 in 

Runtime Environment tab like Figure 8 to install Tomcat server. If users cannot find out the Server in 

the Preferences, they should go to Install New Software in Help on the toolbar, and choose Luna - 

http://download.eclipse.org/releases/luna/ in order to add Web, XML and Java EE Development to their 

Eclipse IDE (Singh 2019.). 

 

 

 
Figure 7. Step 3.1: Install the Tomcat server (Screenshot from Eclipse IDE) 

 

 

http://download.eclipse.org/releases/luna/


11 

 
Figure 8. Step 3.2: Install the Tomcat server (Screenshot from Eclipse IDE) 

 

After step 3.2 in Figure 8, it would be displayed with a window as shown in Figure 9. Click Browse and 

select the folder where the extracted Tomcat zip file in. After selecting the Tomcat installation directory, 

choose Finish and the Tomcat server in Eclipse have successfully installed. (Singh 2019.) Server 

Runtime Environment with Apache Tomcat version 9.0 is working now on Eclipse so that readers can 

run Java web application on their localhost. 

 

 
Figure 9. Step 3.3: Install the Tomcat server (Screenshot from Eclipse IDE) 



12 

3.2 Servlet 

 

Java technologies are strong and abundant so that developing dynamic web pages by Java is not longer 

a problem by using Servlet. Servlet is a program that executes on a web application or server and operates 

as a service layer between a request sending from web layer or other HTTP client and data access layer 

or applications on the HTTP server. Although Servlet can handle different types of requests, it generally 

deploys web containers for hosting web applications on web servers and matches requirements as a 

server-side Servlet web API. In web development, there are many other technologies for dynamic web 

content such as PHP and ASP.NET (o7planning 2019.). The purpose of section 3.2 is deep exploitation 

in Servlet in order to use Servlet effectively in Java web application. 

 

 

3.2.1 Introduction of Servlet 

 

Servlet follows a server-side module in Java programming which executes client requests and deploys 

the Servlet interface. Servlet could handle all types of requests, and it generally expands the applications 

hosted by web servers. In Figure 10, all requests are managed and mediated inside the Servlet container. 

The responsibility of Servlet is the processing requirement by a web application and Servlet is integrated 

into a Java class by the javax.servlet.Servlet interface. In terms of that integration, Servlet aims to work 

as a dynamic web resource. (Layka 2014.) 

 

 

Figure 10. Dynamic data request (Layka 2014) 

 

The section 3.1 introduced about how to install and configure Tomcat server in Eclipse IDE. After suc-

cessful Tomcat server installation, Servlet can be set up easily in these steps below. On the toolbar, go 

to File in order to create Dynamic Web Project as shown in Figure 11 in order to create a new Java web 

application file. Inside that file, reader can add JSP and Servlet file. 



13 

 

Figure 11. Step 1.1: Create Dynamic Web Project in Eclipse IDE (Screenshot from Eclipse IDE) 

 

In the Dynamic Web Project window as shown in Figure 12, create a project name and choose Next to 

go to step 1.3 in Figure 13. In this pop up interface, author was able to create and modify the configura-

tion for the dynamic web project, for instance, running server Apache Tomcat 9.0 or project location. In 

the next button, there are more configurations inside the file. 

 

 

Figure 12. Step 1.2: Create Dynamic Web Project in Eclipse IDE (Screenshot from Eclipse IDE) 



14 

After doing step 1.2, it would show the Web Module window like Figure 13. In this step, choose the 

Generate web.xml deployment descriptor and click Finish. A new dynamic web project was successfully 

created. Readers are able to map url in the web.xml file or more functions such as listener or filter. 

 

 

Figure 13. Step 1.3: Create Dynamic Web Project in Eclipse IDE (Screenshot from Eclipse IDE) 

 

After completing all the steps to create a new dynamic web project, the next step is creating a Java class 

for implementing Servlet. Right-click FirstServlet folder created in step 1.3 to create a Java class as 

shown in Figure 14. Set name and package for Java class like Figure 15 and choose Finish. 

 

 

Figure 14. Step 2.1: Create Java class for implementing Servlet (Screenshot from Eclipse IDE) 



15 

 

Figure 15. Step 2.2: Create Java class for implementing Servlet (Screenshot from Eclipse IDE) 

 

 

 

Figure 16: Step 3.1: Modify the generated Java class (Screenshot from Eclipse IDE) 

 

The next step is Servlet implementation in Java class via javax.servlet.Servlet interface. In Java class 

that was created in step 2.2, adding Servlet to the class by importing package as shown in Figure 16. 

This Java class extends HttpServlet class, and the web application runs directly from Java class named 

Servlet so that users must build HTML form from inside Servlet. In Figure 17, HttpServlet extension 

allows users to use the method doGet and doPost that are common methods of the HttpServlet. There 

are several methods commonly used in HttpServlet: DELETE (Eliminates specified resource), GET 

(Takes data from the server), POST (Gives data to the server), PUT (Alters a targeted re-source by 

uploading data). Displaying content to the web browser is equivalent to GET method, which is doGet in 

Figure 17, used to display Hello World and This is my first Servlet in HTML form. (Cheah 2019.) 



16 

 

Figure 17. Step 3.2: Modify the generated Java class (Screenshot from Eclipse IDE) 

 

However, to call the Servlet class that users must link through the generated web.xml deployment de-

scription in Figure 13. There are always 2 tags (servlet and servlet-mapping) for any Servlet in the 

web.xml as shown in Figure 18. When the /hello path inside the url-pattern tag is requested, from the 

web.xml it is going to retrieve to Java class in Figure 17 which is Servlet in provided package name with 

class name is the servlet-class tag. 

 

 

Figure 18. Step 4: Modify the web.xml file (Screenshot from Eclipse IDE) 

 



17 

Last, right-click Servlet.java class in the tutorial package and choose Run on Server in Run As to run 

FirstServlet project. The result is like Figure 19. When the Servlet called by url /hello, it run helloServlet 

class and did all the functions that belong to this helloServlet. Here is printing out the layout html code 

for the front-end. 

 

 

Figure 19. Running the FirstServlet web application (Screenshot from Eclipse IDE) 

 

 

3.2.2 Servlet lifecycle 

 

The Servlet lifecycle is controlled by the Servlet container that implements the java.servlet.Servlet in-

terface. Servlet Lifecycle comprises 4 stages and 3 methods that follow Figure 20. The first stage is 

Loading a Servlet that consists of 2 operations: loading and instantiation all the Servlets when a server 

starts up. The second stage is Initializing the Servlet through init() method. The init() method is called 

only once when the Servlet is created to notice the Servlet instance is instantiated completely and ready 

to put into service. The next stage is request handling by calling the service() method in order to handle 

the client's requests (web browser) and is called to inform about the client’s requests to the Servlet. In 

contrast, to init() method, service() method is the main method in the Servlet, which can be called mul-

tiple times, to determine the type of HTTP request (GET, POST, PUT, DELETE) and call the appropriate 

methods (doGet, doPost, doPut, doDelete). The frequently used methods in each request are doGet() 

method and doPost() method that depends on received client’s request.  The last stage is De-stroying the 

Servlet that the Servlet calls destroy() method to notify the end of the Servlet instance. The destroy() 

method is called only once during the Servlet lifetime as well as init() method. (Tutorials point 2019) 



18 

 

Figure 20. Stages and methods of Servlet Lifecycle (Thakral 2019) 

 

 

3.3 JSP 

 

Servlet allows the web server to generate dynamic content, but there is one problem in Servlet that users 

must convert HTML code to be hardwired in Java programming language. Because of that inconven-

ience, JSP was created, which includes HTML tags and JSP tags, is easier to maintain than Servlet. JSP 

is a combination of static content and dynamic content that divided into the designing and development 

parts. Section 3.3 aims to show more useful knowledge and skills in JSP to help thesis readers understand 

deeply about Java web development technologies. (Javatpoint 2019.) 

 

 

3.3.1 JSP implementation 

 

JSP is a server-side programming technology that allows generating dynamic content like Servlet tech-

nology. Some users think that JSP is as an extension of Servlet that gives more additional features than 

Servlet, for example: JSTL, Expression Language, Custom Tags (Javatpoint 2019.). JSP is an exact 

integral part of Java EE that makes a complete platform for enterprise applications. The most complex 

and demanding web applications become simpler by using JSP. JSP is able to access the whole Java 

APIs, especially JDBC API to access the enterprise database. (Tutorialspoint 2019.) 

 



19 

This section introduces thesis readers about how to implement JSP in a Java Web Application. Like 

Servlet implementation, users need to go to File to create a New Dynamic Web Project on the toolbar as 

shown in Figure 21. After this step, set up a name for the project name and click Finish to complete step 

1. 

 

 

Figure 21. Step 1: Create a New Dynamic Web Project (Screenshot from Eclipse IDE) 

 

 

Figure 22. Step 2: Add a new JSP file to Dynamic Web Project (Screenshot from Eclipse IDE) 

 

In the next step, right-click the created Dynamic Web Project in step 1 in order to create a JSP file as 

shown in Figure 22. In the JSP file, users allow to add and modify JSP code. In creating the JSP file to 

Dynamic Web Project step, users have to establish a file name for the JSP file as shown in Figure 23.   

 



20 

 

Figure 23. Step 3: Set up the file name for JSP file (Screenshot from Eclipse IDE) 

 

After adding a JSP file to Dynamic Web Project, users can modify the code in JSP file like Figure 24. 

The layout of the JSP file is similar to HTML so that it is easier to familiarize it with JSP than Servlet. 

Developers also can put the CSS and JavaScript code here or create on other files and import into JSP 

file. 

 

 

Figure 24. Step 4: Modify the code in JSP file (Screenshot from Eclipse IDE) 

 



21 

Last, right-click HelloWorld.jsp file in WebContent folder and choose Run on Server in Run As to run 

the FirstJSP project. The result is like Figure 25 and that is the front-end layout like other HTML file 

when they run. 

 

 

Figure 25. Accessing the JSP (Screenshot from Eclipse IDE) 

 

 

3.3.2 Comparing JSP with Servlet and other technologies 

 

As mentioned at the beginning of section 3, because of separating the designing and development part, 

the JSP page is simpler to maintain than Servlet. Moreover, there are many advantages from JSP that 

makes JSP is stronger and more efficient than Servlet technology as shown in Table 3. First of all, users 

can use all the functions from the Servlet in JSP, because JSP is an extension of Servlet. Moreover, users 

are able to use JSTL, Expression Language, Custom Tags in JSP that makes JSP development easier. 

The second advantage of JSP is mentioned above that is easy maintenance. Thirdly, when the JSP 

changed, users do not require to compile and deploy the project again. However, Servlet must compile 

again and update when the code changed. The last advantage is less code than Servlet. (Vaidya 2019.) 

 

 

Table 3. Advantages of JSP over Servlet (Vaidya 2019.) 



22 

Following that, there are many advantages of JSP over other technologies. Initially, JSP is stronger and 

simpler to use in dynamic than ASP, which is a Microsoft technology and popular in web development. 

ASP is not an independent platform, but JSP is. Next, compared to JavaScript, JSP is similar to JavaS-

cript in being able to create dynamic HTML content on the client. However, JSP follows server-side 

programming technology that can access databases, catalogs, pricing information. Pure Servlet is more 

flexible to write HTML than using println syntax to create HTML. Web developers can design the front-

end web page by JSP and insert the dynamic content by Servlet separately. (Hubberspot 2020) 

 

 

3.4 Basic web application structure 

 

A Java web application is built from many components. Servlet is the main key of any Java web appli-

cation, that mentioned in section 3.2, has responsibility for handling and responding to HTTP requests. 

That means every client request to the Java web application goes through Servlet. Moreover, a Java web 

application has a filter, which is a Java class, can prevent requests to Servlet to classify by needs, such 

as data formatting, response compression, authentication, or authorization. Java web application pro-

vides diverse types of listeners that notice code in multiple events. However, JSP is the most powerful 

tool in Java web development technology. As mentioned in section 3.3, JSP generates dynamic content 

easily. There are several features in Java web development technology than Servlet, filter, listener, and 

JSP, but these features mentioned above are the most popular and important for developing Java web 

applications (Williams 2014). However, any Java web application follows the structure: static contents 

(HTML), client-side files (CSS & JavaScript), dynamic content generated by JSP, Servlets, external 

library or jar files, Java utility classes, deployment descriptor (web.xml). (Wide-skills 2020) 

 

 

 

 

 

 

 

 

 

 

 

 



23 

4 ADDING DATABASE INTO JAVA APPLICATION BY JDBC 

 

 

Data that is stored and maintained in a database, is shared between web components and is persistent 

between web application requests. Java web application uses JDBC, which is a Java API to access and 

execute the query with the relational database. All the steps to use JDBC in a Java web application were 

mentioned in section 4. Section 4 shows how to MySQL database in section 4.1 after introducing about 

XAMPP platform for hosting MySQL database. JDBC and the process of integrating JDBC to Java 

application are shown in section 4.3 and section 4.4. 

 

 

4.1 XAMPP 

 

XAMPP is an abbreviation for Cross-Platform (X), Apache (A), MySQL (M), PHP (P), Perl (P). 

XAMPP is a simple and lightweight solution for Apache distribution on Windows, Linux and macOS, 

that offers MySQL (Database Server) & Apache (Web Server) in only one set-up and developers can 

manipulate them on the XAMPP dashboard. It is extremely basic for developers in order to create the 

local server (Apache) and database for web applications (MySQL) for testing purposes. Because of being 

a Cross-Platform, XAMPP works equally well on different kinds of operation systems (Linux, macOS, 

Windows). (Udemy 2020) 

 

As mentioned above, XAMPP is available on Windows, macOS, Linux operation system with the small 

file size (around 149MB). To download and install XAMPP, developers need to access to the XAMPP 

website: https://www.apachefriends.org/index.html. In this page, developers can find out the XAMPP 

version following their operating system. This thesis introduces how to download and install XAMPP 

for Windows operation system. After choosing the right install version for Windows, the installer version 

for Window is going to be in the download folder like Figure 25.  

 

https://www.apachefriends.org/index.html


24 

 

Figure 26. Step 1: Download XAMPP for Windows 

 

The latest XAMPP version for Windows is 7.4.3 that shows in the name of the XAMPP file as shown in 

Figure 26. Next, click the XAMPP installer file and select install components and choose the folder 

C:\xampp like Figure 27 and finish the installation. After that, developers can use MySQL database with 

Apache server. 

 

 

 

Figure 27. Step 2: XAMPP setup 

 

 



25 

4.2 Installing and configuring MySQL 

 

MySQL is a popular open-source database management system (RDBMS) based on Structured Query 

Language (SQL). MySQL is also one of the best RDBMS used for web-based application development. 

The advantages of using MySQL that help developers structure data, show the information in an orga-

nized, update, delete, edit, and retrieve data when developers request in any content management system. 

MySQL is created for handling big database rapidly that based on a client-server model. (Chahal 2019) 

 

XAMPP is compatible with Apache distribution as mentioned in section 4.1. Following that, MySQL 

works smoothly on different operating systems which can be integrated with PHP simply. MySQL op-

erates as a database component that must run a database-enabled website and servers on XAMPP. Ini-

tially, Apache and MySQL must be run first to start the website on the local server as shown in Figure 

28.  

 

 

Figure 28. Start MySQL and Apache on the control panel of XAMPP 

 

After starting Apache and MySQL, go to this link http://localhost/phpmyadmin/index.php?lang=en# via 

web browsers such as Google Chrome or Mozilla Firefox to use the control panel of MySQL as shown 

in Figure 29. On the phpMyAdmin user interface, developers are able to see and structure MySQL da-

tabase easily. With phpMyAdmin, developers are able to create or modify their databases by SQL syntax 

or integrated table. 



26 

 

Figure 29. phpMyAdmin user interface 

 

 

4.3 Introduction and integrating JDBC to Java application  

 

JDBC, which is an abbreviation of Java Database Connectivity, is a Java API to access and execute the 

query with any kind of tabular data, especially relational database. To access the database, JDBC users 

JDBC drivers, which fit into one of the four-driver categories, JDBC-ODBC bridge, Native-API driver, 

Network-Protocol driver, Database-Protocol driver. Because of using JDBC API, developers can con-

nect the Java programming language to a wide range of databases in order to save, update, delete, and 

retrieve data from the database. The main missions of integrating JDBC for connectivity between Java 

and databases are making a connection with a database, writing SQL or MySQL statements, executing 

SQL or MySQL queries in the database, viewing and modifying the data records (Javatpoint 2020). 

There are 5 steps for connectivity between Java application with MySQL database: loading the driver, 

creating connection, creating statements, executing the query and closing connection that mentions con-

cretely in section 5.3. (Gupta 2020) 

 

 

 

 

 

 

 

 

 

 



27 

5 THE PROJECT 

 

 

In order to understand clearly and have a concrete example about Java web application, the author built 

a sample Java web application with Servlet, JSP, and JDBC in this section 5. This project was developed 

on Eclipse which is a popular integrated development environment for Java applications. In this project, 

readers are able to see a Java web application on MVC architecture, which was built by a combination 

of Servlet, JSP, and JDBC. 

 

 

5.1 Idea 

 

The purpose of this project is to develop a sample web page that combines all of Java web technology 

and was researched above. This website is a basic login form which allows readers to understand how 

Servlet, JSP, and JDBC work together on Java web application based on MVC architecture. Because of 

frequent appearance on web development, readers can learn and build their own log in forms after read-

ing this thesis in their own projects. 

 

 

5.2 Analysis 

 

The author decided to use MVC pattern to create the login form website. In the MVC pattern, there are 

3 layers to separate and manage the application structure: model, view, controller. The model layer, 

which is the data layer, contains the business logic of the layer and delegates the state of the application. 

The controller layer works as an interface between view layer and model layer, which receives the user 

requests from the view layer and executes those requests, including the necessary validations. Following 

that, the user requests are sent to the model for data processing. The data is sent back to the controller 

layer again and displayed on the view layer after processing. On the MVC pattern, the view layer is the 

user interface that displays the output from the application. This presentation layer shows the data re-

trieved from the model layer by the controller layer and displays the data to the user (Choudary 2019). 

Based on the MVC architecture definition, the author decided to divide this login form website file 

structure like Figure 30. 



28 

  

Figure 30. Project structure (Screenshot from Eclipse IDE) 

 

Following Figure 30, beans folder in src represents model layer that stores data to be displayed or treated. 

Controller file is controller layer that included Servlet file to intercept the HTTP request and return the 

HTTP response. JSP files, which are login.jsp and loginsuccess.jsp, are the view layers to organise out-

put or display. Based on Figure 31, this login form web begins at login.jsp which users could input their 

username and password from the web browser in the login form. After filling the username and pass-

word, these data are sent to LoginServlet.java in order to process. Inside the LoginServlet.java, username 

and password which are input from users in the view layer login.jsp, are converted to an object follows 

the model of UserAccount.java in beans package. Then that object is checked with the data in the data-

base and return to loginsuccess.jsp on the web browser if the input data from the users match with data 

from the database. UserAccountDAO.java class has the responsibility to requests and return data from 

the database to LoginServlet.java. In the next section, the author shows how to create login form website 

step by step by Java in order to give the readers a detailed instruction about creating Java web applica-

tion. 

 



29 

 

Figure 31. Project workflow (Javatpoint 2020) 

 

 

5.3 Coding and implementation 

 

Following the analysis in section 5.2 and the project structure in Figure 30, the author created a new 

dynamic web project on Eclipse named LoginForm and organized the folder and file as well as Figure 

30. The first step in creating a new dynamic web project is similar to the introduction in section 3.2.1. 

After following these steps like the introduction in section 3.2.1, the author created LoginForm by choos-

ing the finish button as shown in Figure 32. 

 

 

Figure 32. Create LoginForm as a dynamic web project (Screenshot from Eclipse IDE) 



30 

Next, the author created login.jsp file which is the first layer view in the web browser and users could 

input the username and password there. This step was like the introduction of adding a new JSP file to 

a dynamic web project in section 3.3.1. The author added login.jsp to LoginForm by clicking the finish 

button as shown in Figure 33. 

 

 

Figure 33. Create login.jsp (Screenshot from Eclipse IDE) 

 

 

 

Figure 34. Login.jsp (Screenshot from Eclipse IDE) 

 

In the login.jsp as shown in Figure 34, it includes the form for logging in where users are able to fill in 

username and password. That log in form is written in HTML and CSS which is similar to many other 



31 

front-end web developments. Following that, readers can understand and modify the form easily if they 

want to do that. In the HTML part of the login form, it used normally form and input tags to retrieve 

data (username and password) from users. Inside the form tag, it has an action attribute to call the Servlet 

file in order to execute request log in when users click submit. After clicking the submit input tag, the 

username parameter and password parameter are sent to Servlet, and Servlet is going to handle that 

request which is checking the username and password with the data on the database. The next step was 

creating the Servlet file that carries out the request from users in the login.jsp. The Servlet file named 

LoginServlet.java was created by clicking new and other, and choosing create a new Servlet like Figure 

35. This step is the same as creating JSP file step. 

 

 

Figure 35. Create LoginServlet.java (Screenshot from Eclipse IDE) 

 

After creating the LoginServlet.java, the author has modified that file like Figure 36. Line 16 is the link 

to map Servlet file that could be called from the JSP file. From line 25 to line 31, this doGet function is 

used for calling login.jsp page. Because of the login form using method post as shown in Figure 34, 

author used doPost function inline 33 to handle the request from the Login.jsp. Line 36 and 37, the data 

of username and password are caught by request.getParameter following attribute name for input tag in 

Login.jsp. The author declared an object as UserAccount in order to store data which received from 

handling requests from Login.jsp in between line 38 and line 40. From line 42 to line 56, there is if-else 

condition to check the UserAccount with the database. In the first condition, if UserAccount validated 

the data from the database, the author would declare the session and used setAttribute for username to 



32 

send data inline 43 and line 44. Line 45, it would redirect the page to loginsuccess.jsp and the data set 

with setAttribute also send to loginsuccess.jsp. In the second condition, if UserAccount did not validate 

to data in the database, it would redirect the page to login.jsp as shown line 52. 

 

 

Figure 36. LoginServlet.java code (Screenshot from Eclipse IDE) 

 

The author created an object class in folder beans named UserAccount.java. This java class is an object-

oriented design for UserAccount with 2 parameters: name and password. In Figure 37, this is the encap-

sulation in object-oriented programming that would hide the data with users. 



33 

 

Figure 37. UserAccount.java code (Screenshot from Eclipse IDE) 

 

After these steps above, the author continued to start with the connection and retrieve data from the 

database in UserAccountDAO.java which is inside the dao folder. The code in UserAccountDAO.java 

follows Figure 38. From line 13 to line 16, there are declarations that are status for checking the validate 

function and return a Boolean value, Connection, PreparedStatement, and ResultSet for retrieving data. 

Between line 18 and line 22, these string variables are the information for connecting the MySQL data-

base which is called inline 26. Next line, this is the SQL syntax to query data from the database. Inline 

34, this code would execute the SQL syntax inline 29 and the Boolean value was going to be returned 

inline 35. If the username and password match with the data in the database, the status will be true and 

vice-versa. 

 



34 

 

Figure 38. UserAccountDAO.java code (Screenshot from Eclipse IDE) 

 

In order to connect to the database, it requires a MySQL database in the localhost. The author was going 

to create a new MySQL in the next step. To start working with MySQL, readers can read section 4.2: 

installing and configuring MySQL and follow these steps. Creating a new database by choosing new 

button in the left top corner as shown in Figure 39 and modify database name is user and language box 

is utf8_unicode_ci. Next, click user database in order to create a table named login with 2 columns and 

modify these columns as Figure 40. 

 

 

Figure 39. Create new MySQL database in phpMyAdmin 



35 

 

 

Figure 40. Create new table in user database with 2 columns named username and password 

 

After completing the login table in user database, the author inserted 1 row to the table as well as Figure 

41 by choosing insert button on the toolbar. The table result would be the same as Figure 42 after doing 

all of these steps above. Author set up 1 account which has username and password like Figure 41. 

 

 

Figure 41. Insert data into login table 

 



36 

 

Figure 42. Database result 

 

After that, the author created one more JSP file named loginsucess.jsp for redirect page when users log 

in successfully. The code inside loginsuccess.jsp file looks like Figure 43. Inline 12, session.getAttrib-

ute(“username”) would catch the data which is set at username parameter and the text inside <h1></h1> 

would be Hello, admin. The value of attribute that named username would be sent by Servlet. 

 

 

Figure 43. loginsuccess.jsp code (Screenshot from Eclipse IDE) 



37 

 

Figure 44. Modify web.xml (Screenshot from Eclipse IDE) 

 

The last steps are modifying web.xml and adding the library to the lib folder in WEB-INF. The author 

modified the web.xml file like Figure 44 in order to call login.jsp as index page. In the lib folder, the 

author inserted 3 libraries into this folder as shown in Figure 45 which are MySQL connector library, 

Servlet JSP library, and Servlet JSP API library. Readers can find out that easily on this page 

https://mvnrepository.com/ with these name libraries in Figure 45. Download jar files and copy these 

files to the lib folder. 

 

 

Figure 45. Libraries (Screenshot from Eclipse IDE) 

 

To run the project, right-click LoginForm folder, choose Run As, and choose Run On Server. In Run On 

Server pop up, choose Manually define a new server and modify that server like Figure 46 and click 

Finish to start running the project. After this step, Servlet and JSP are able to run on Tomcat v9.0. 

 



38 

 

Figure 46. Modify and run Server to start the project (Screenshot from Eclipse IDE) 

 

The result of this project would follow these below Figures (Figure 47, Figure 48, Figure 49). The user 

would insert username (admin) and password (abc123) into username and password box like Figure 48. 

After a successful login, this first page - login.jsp - would be redirected to loginsuccess.jsp and say hello 

to the user by username as shown in Figure 49. 

 

 

Figure 47. The first page when running the project 

 

 

 



39 

 

Figure 48. Users insert data into the log in form 

 

When the users submit data from the login form like Figure 48, the Servlet would receive and retrieve 

data from users. The data would be executed to check with the data on the MySQL database and if it 

was validated so that Servlet would send loginsuccess.jsp to web browser like Firgure 49. 

 

 

Figure 49. loginsuccess.jsp called after successful log in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

6 CONCLUSION 

 

The main goal of the project was to build the sample Java web application in order to have a concrete 

instance for understanding and learning how to use and combine Servlet, JSP, and JDBC in a Java web 

application. The important parts were creating JSP files, Servlet files, MySQL database, and connect-

ing the database to Servlet in login validation function. Many techniques such as XAMPP, MySQL, JSP, 

Servlet, JDBC are exposed in this thesis. 

 

This sample project can be expanded easily in such as registration or also a book-store application with 

these explained Java technologies above. The book-store application is comprised of CRUD, which are 

read, update, and delete functions in order to build some features such as add books, delete books, or 

also modify the user information. However, it requires more knowledge in web development, for in-

stance: AJAX, SQL, JavaScript, or jQuery to build a complete website. This thesis project can be a 

material for readers who want to learn and understand the fundamental Java web application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

REFERENCES 

 

 

Chahal, P. 2019. XAMPP MySQL: How to Install, Configure and Use. Available at: https://blog.tem-

platetoaster.com/xampp-mysql/. Accessed 24 March 2020. 

 

Cheah, D. 2019. How to work with Servlet, JSP and JDBC? Available at: https://me-

dium.com/@tattwei46/how-to-work-with-servlet-jsp-and-jdbc-fcc568a6a57b. Accessed: 27 December 

2019. 

 

Choudary, A. 2019. How to Implement MVC Architecture in Java? Available at: 

https://www.edureka.co/blog/mvc-architecture-in-java/. Accessed 31 March 2020. 

 

Edureka. 2019. What is a Java Web Application? Available at: https://www.edureka.co/blog/java-web-

application/. Accessed: 21 December 2019. 

 

Gupta, K. 2018.  What big companies still code in Java: Do major corporations still use Java? Available 

at:  https://www.freelancinggig.com/blog/2018/08/29/what-big-companies-still-code-in-java-do-major-

corporations-still-use-java/. Accessed 8 June 2020. 

 

Gupta, S. 2020. Establishing JDBC Connection in Java. Available at: https://www.geeksforgeeks.org/es-

tablishing-jdbc-connection-in-java/. Accessed 28 March 2020. 

 

Hubberspot. 2020. Java Server Pages (JSP): Advantages over Servlet technologies. Available at: 

https://www.hubberspot.com/2012/04/java-server-pages-jsp-advantages-over.html. Accessed: 1 Janu-

ary 2020. 

 

Jain, N. 2019. A Complete Guide to JVM Languages. Available at: 

https://www.whizlabs.com/blog/jvm-languages/. Accessed: 21 December 2019. 

 

Javatpoint. 2019. JSP Tutorial. Available at: https://www.javatpoint.com/jsp-tutorial. Accessed: 29 De-

cember 2019. 

 

Javatpoint. 2020. Java JDBC Tutorial. Available at: https://www.javatpoint.com/java-jdbc. Accessed 26 

March 2020. 

https://blog.templatetoaster.com/xampp-mysql/
https://blog.templatetoaster.com/xampp-mysql/
https://medium.com/@tattwei46/how-to-work-with-servlet-jsp-and-jdbc-fcc568a6a57b
https://medium.com/@tattwei46/how-to-work-with-servlet-jsp-and-jdbc-fcc568a6a57b
https://www.edureka.co/blog/mvc-architecture-in-java/
https://www.edureka.co/blog/java-web-application/
https://www.edureka.co/blog/java-web-application/
https://www.freelancinggig.com/blog/2018/08/29/what-big-companies-still-code-in-java-do-major-corporations-still-use-java/
https://www.freelancinggig.com/blog/2018/08/29/what-big-companies-still-code-in-java-do-major-corporations-still-use-java/
https://www.geeksforgeeks.org/establishing-jdbc-connection-in-java/
https://www.geeksforgeeks.org/establishing-jdbc-connection-in-java/
https://www.hubberspot.com/2012/04/java-server-pages-jsp-advantages-over.html
https://www.whizlabs.com/blog/jvm-languages/
https://www.javatpoint.com/jsp-tutorial
https://www.javatpoint.com/java-jdbc


42 

 

Javatpoint. 2020. MVC in JSP. Available at: https://www.javatpoint.com/MVC-in-jsp. Accessed 31 

March 2020. 

 

JReport. 2019. 3-Tier Architecture: A complete overview. Available at: https://www.jinfonet.com/re-

sources/bi-defined/3-tier-architecture-complete-overview/. Accessed: 24 December 2019. 

 

Layka, V. 2014. Learn Java for Web Development. America: Apress Media. 

 

Meador, D. 2018. Distributed System. Available at: https://www.tutorialspoint.com/Distributed-Sys-

tems. Accessed: 25 December 2019. 

 

o7planning. 2019. Java Servlet Tutorial for Beginners. Available at: https://o7plan-

ning.org/en/10169/java-servlet-tutorial. Accessed: 26 December 2019.       

 

Oracle. 2010. The web container. Available at: https://docs.oracle.com/cd/E19226-01/820-

7759/gcrmb/index.html. Accessed: 23 December 2019. 

 

Rouse, M. 2019. Java virtual machine (JVM). Available at: https://www.theserverside.com/defini-

tion/Java-virtual-machine-JVM. Accessed: 21 December 2019. 

 

Singh, C 2019. How to configure Apache Tomcat Server in Eclipse IDE. Available at: 

https://beginnersbook.com/2017/06/how-to-configure-apache-tomcat-server-in-eclipse-ide/. Accessed: 

25 December 2019. 

 

Stackify. 2017. What is N-Tier Architecture? How it works, examples, tutorials, and more. Available at: 

https://stackify.com/n-tier-architecture/. Accessed: 24 December 2019. 

 

Thakral, K. 2019. Life Cycle of a Servlet. Available at: https://www.geeksforgeeks.org/life-cycle-of-a-

servlet/. Accessed: 28 December 2019. 

 

Techopedia. 2019. Definition – What does Java mean? Available at: https://www.techopedia.com/defi-

nition/3927/java. Accessed: 22 Demcember 2019. 

 

https://www.javatpoint.com/MVC-in-jsp
https://www.jinfonet.com/resources/bi-defined/3-tier-architecture-complete-overview/
https://www.jinfonet.com/resources/bi-defined/3-tier-architecture-complete-overview/
https://www.tutorialspoint.com/Distributed-Systems
https://www.tutorialspoint.com/Distributed-Systems
https://o7planning.org/en/10169/java-servlet-tutorial
https://o7planning.org/en/10169/java-servlet-tutorial
https://docs.oracle.com/cd/E19226-01/820-7759/gcrmb/index.html
https://docs.oracle.com/cd/E19226-01/820-7759/gcrmb/index.html
https://www.theserverside.com/definition/Java-virtual-machine-JVM
https://www.theserverside.com/definition/Java-virtual-machine-JVM
https://beginnersbook.com/2017/06/how-to-configure-apache-tomcat-server-in-eclipse-ide/
https://stackify.com/n-tier-architecture/
https://www.geeksforgeeks.org/life-cycle-of-a-servlet/
https://www.geeksforgeeks.org/life-cycle-of-a-servlet/
https://www.techopedia.com/definition/3927/java
https://www.techopedia.com/definition/3927/java


43 

Tutorialspoint. 2019. Servlets - Life Cycle. Available at: https://www.tutori-

alspoint.com/servlets/servlets-life-cycle.htm. Accessed: 29 December 2019. 

 

Tutorialspoint. 2019. JSP Tutorial. Available at: https://www.tutorialspoint.com/jsp/index.htm. Ac-

cessed: 30 December 2019. 

 

Udemy. 2020. Development XAMPP Tutorial: How to Use XAMPP to Run Your Own Web Server. 

Available at: https://www.udemy.com/blog/xampp-tutorial/. Accessed 24 March 2020. 

 

Vaidya, N. 2019. Servlet and JSP Tutorial – How to Build Web Applications in Java? Available at: 

https://www.edureka.co/blog/servlet-and-jsp-tutorial/#Introduction. Accessed: 28 December 2019. 

 

Vogel, L. 2019. Apache Tomcat – Tutorial. Available at: https://www.vogella.com/tutori-

als/ApacheTomcat/article.html. Accessed: 25 December 2019.  

 

Wales, M. 2014. 3 Web Dev Careers Decoded: Front-end vs Back-end vs Full Stack. Available at: 

https://blog.udacity.com/2014/12/front-end-vs-back-end-vs-full-stack-web-developers.html. Accessed 

2 June 2020. 

 

Wideskills. 2020. Web Application Structure. Available at: https://www.wideskills.com/servlets/web-

app-structure. Accessed 22 March 2020. 

 

Williams, N. 2014. Professional Java for Wev Application. India: John Wiley & Sons, Inc. 

 

Zeepedia. 2019. Java: Layers and Tiers. Available at: https://www.zeepedia.com/read.php?java_lay-

ers_and_tiers_web_design_and_development&b=20&c=41. Accessed: 24 December 2019. 

https://www.tutorialspoint.com/servlets/servlets-life-cycle.htm
https://www.tutorialspoint.com/servlets/servlets-life-cycle.htm
https://www.tutorialspoint.com/jsp/index.htm
https://www.udemy.com/blog/xampp-tutorial/
https://www.edureka.co/blog/servlet-and-jsp-tutorial/#Introduction
https://www.vogella.com/tutorials/ApacheTomcat/article.html
https://www.vogella.com/tutorials/ApacheTomcat/article.html
https://blog.udacity.com/2014/12/front-end-vs-back-end-vs-full-stack-web-developers.html
https://www.wideskills.com/servlets/web-app-structure
https://www.wideskills.com/servlets/web-app-structure
https://www.zeepedia.com/read.php?java_layers_and_tiers_web_design_and_development&b=20&c=41
https://www.zeepedia.com/read.php?java_layers_and_tiers_web_design_and_development&b=20&c=41


 

 


