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Site Search is an indispensable feature of any successful ecommerce businesses. Shopping 
experiences will be ruined if users cannot find what they are looking for. Ecommerce search 
expectation are high as driven by leading players like Amazon and Google. However, many 
search sites are falling to build a good search experience. 
 
This thesis focuses on the query understanding component of the search – the key to unlock 
next level of search relevance. Query understanding is an active area of research, giving 
rises to different techniques that aim at understanding the search intent behind the search 
query.  
 
Among many tasks of query understanding, Query Named Entity Recognition (QNER) aims 
to decode user intent by identifying and classifying query segments of the search queries. 
The QNER process is the enablement behind many query transformations tasks such as 
query scoping, query relaxation, query expansion. In addition, it will simplify the rest of infor-
mational retrieval process and open the opportunities for advanced features such as search 
suggestion, personalization, and recommendation. 
 
The objective of this thesis is to build search system for ecommerce enhanced with Query 
Named Entity Recognition. This thesis proposes a practical three-phases QNER process 
and implements it on top of the leading open source search engine Elasticsearch. A state-
less search application was built, benefiting from QNER process by using it for query scop-
ing. The outcome of the project is a performant, scalable search architecture enhanced with 
query understanding capability. 

Keywords Search, QNER, Elasticsearch, Distributed System, Ecom-
merce 
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List of Abbreviations 

NER Named Entity Recognition – the task of identifying the classifying named 
entity in free text to predefined class such as persons, movies, … 

QNER Query Named Entity Recognition – the NER task performed specifically 
on search engine queries 

SERP Search Engine Result Page 

JSON JavaScript Object Notation – an open source, human-readable data inter-
change format 

IR Information Retrieval – the task of retrieving information system resources 
such as documents from a collection of resources to satisfy the infor-
mation need 

RPS Requests Per Second – the rate of requests per time unit second 
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1 Introduction 

Ecommerce refers to the commercial transactions conducted electronically via the Inter-

net. Example of ecommerce activities are the buying and selling of physical goods and 

services online. Without a doubt, ecommerce is playing an increasingly important role in 

modern life. In fact, ecommerce worldwide revenue, while taking a small share of 16.1% 

of total global retail, is growing strongly with forecasted annual revenue growth rate of 

8.1% [1]. As global retail sale is growing at half the speed (4.5% annually), the line be-

tween physical and digital ecommerce is blurring.  

For ecommerce businesses, site search is an indispensable feature. A well-engineered 

search is key feature to acquire and retain customers and thus a major contribution to 

the revenue. It is reported that on-site searcher is 216% more likely to convert then reg-

ular users. On-site searchers, in contrast to users who browse for inspiration, do search 

because they already have something of interest in their mind. A well-engineered search 

engine acts like a good sale person will quickly presents to user products that are rele-

vant to their search intents. The secret sauce behind a useful search engine lies in the 

query understanding component. In fact, this is an interesting and active area of re-

search.  

Query understanding is the research umbrella for the tasks with goal to detect user intent. 

When the intent behind the submitted search query is known, search query will no longer 

be treated merely as string to match against text in the documents, but the meanings 

extracted from the query’s keywords are used to deliver the sensible and relevant search 

result. Various query understanding tasks such as query classification, query transfor-

mation, query segmentation, and named entity recognition contribute to the overall goal 

of understanding user intent.  

This thesis focuses on the ultimate task of query understanding - named entity recogni-

tion in search query or QNER for short. QNER is the cornerstone of the truly intelligent 

search engine. For example, QNER will enable various query understanding transfor-

mation tasks such as query scoping, query relaxation, and query expansions. Beyond 

search, QNER can enable important features that enrich user journey such as recom-

mendation and personalization. 
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The objective of this thesis is to implement a performance and scalable search engine 

powered by QNER for ecommerce business. A practical three phases QNER framework 

is proposed and implemented on top of the leading open source search engine Elas-

ticsearch. In addition, a client web application is built to facilitate the assessment of the 

search experience. 

The thesis is structured as follow. The next section builds the theoretical background for 

the task of query understanding in search. The third section presents the goals of the 

project and documents the implementation and design decisions made. The fourth sec-

tion evaluates the effectiveness of the NER powered search system a data set of 20k 

ecommerce products. This is followed by the fifth section, which evaluates the goals of 

project against its outcome and present improvement directions.  

2 Literature review 

2.1 Characteristics of search queries 

Search query is the sequence of keywords submitted by users to search engine as a 

mean to fulfill their information need. Users will then be presented with search engine 

result page (SERP) containing result items matching the search criteria in form of free 

text. In web search engine, each result item from web page collection, or search snippet, 

is composed of the site URLs, the web page title, and the description which has relevant 

sentences from the page with matching keywords. In ecommerce context, result items 

are products which are often presented with relevant attribute such as titles, images, and 

prices. 

Presentation and content of the SERPs heavily influences user interactions. Users rarely 

go beyond the first few results contained in the first page [2]. As a result, successful 

search engines present matching search items in the relevant, ideally personalized order 

to submitters. Furthermore, as users seldomly interact with other result collections such 

as images or videos, search engines often build landing result pages with most relevant 

items from different collections. 
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User activities within the search sessions are recorded by search engine in search log. 

During search sessions, users assess the search results presented for their search 

query, and either navigate to the presented resources or submit other search queries. 

Often, users refine the search queries further as more attempts to satisfy their infor-

mation need are made. Search query logs in general contain four type of data [3]:  

• Submitter information, such as user ID, browser user agent, IP address of the 

submitting host  

• Submission information, such as original submitted query terms, timestamp of 

submission, and applied filters 

• Search result information, such as number of matching documents, and docu-

ment ranking 

• Interaction information, such as clicked result item, filtering, or navigations. 

Search log is invaluable source that gives insight into users’ interactions. Because of 

this, many researches into search log have been conducted to understand the nature of 

search queries. The first large scale search log analysis work was done by Silverstein et 

al. in 1999 on a data set of approximately 1 billion queries [2]. The paper presents finding 

about the analysis of individual queries, query sessions, and query duplication. The sub-

sequent research efforts from Croft et al. [4], Bicardo Baeza-Yates et al. [5], and Spink 

et al. [6] [7] drilled down further in frequency distribution and length aspects of the search 

queries. The gist of their finding will be summarized. 

The distribution of search query frequencies follows the power law distribution. Alike a 

myriad of biological, physical, and natural phenomena following the power law distribu-

tion, whereas the majority of the search queries appear in low frequency, a fraction of 

search queries account for the majority of the search requests. For instance, finding in 

[5] indicated that 50% of search queries collected over one-year period were distinct. 

Similarly, 63% of queries are unique in research by Silverstein et al. [2]. 

Users seldomly modify the search query within a search session. This is supported in 

research by Silverstein et al. where staggering 77% of search sessions included only 

one query [2]. Furthermore, the share of search session having more than three search 

queries was merely 4.5% as found in the same research. 
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Search query is very short in length. In average, search queries contain between 2.3 to 

2.6 keywords [6] [7]. The number of queries contained up to 4 keywords make up to 90% 

of the search volume as reported by Croft et al. [4]. Furthermore, the brevity explains 

why search queries are often highly ambiguous. For instance, the search query “apple” 

could mean a type of fruit, or a phone company. 

2.2 Search query understanding 

Modern search engines consist of five major components: query understanding, user 

understanding, document understanding, document ranking, and monitoring and feed-

back [3]. Query understanding component detects the search goal behind the query in 

orders to provide relevant results in appropriate presentation. Document understanding 

transforms searchable entities into representations carrying content and importance. 

Document ranking component boosts visibility of relevant documents with regards to the 

submitted search query. User understanding component further sorts documents based 

on user profile to provide personalized search experience. Monitoring and feedback com-

ponent outputs metrics indicating effectiveness of the search system to help steer and 

refine search. 

Research efforts focuses on the field of query understanding can be further classified 

into the following sub tasks: 

• Query classification, which aims to classify queries along different dimensions 

such as search goals, sematic classes.  

• Query transformation, which aims to rewrite the original query without compro-

mising the original search intent. 

• Query segmentation, which aims to divide search query into phrases or sematic 

units. 

• Named entity recognition, which aims to locate and classify named entities exist 

within the query. 

Understanding intent of search queries is an integral part of an effective search system. 

As big players such as Amazon and Google continuously set new expectation for search 

experience, treating search query as a mere string can hardly satisfy user experience. 

Understanding search goals of the search queries is the key to the next level of search 
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relevance. Query understanding component helps the retrieval of relevant documents, 

improves ranking of relevant search result, and enables relevant search presentations. 

It can enable the implementation of other features such as query completion [8], and 

query suggestions [9]. The following sections walk through the aforementioned sub-tasks 

of query understanding in detail with their applications. 

2.3 Query classification 

In the literatures, major dimensions that queries classification were performed on are 

goals and topics. In query classification task, the whole query is classified without ana-

lyzing further on the its internal structure. 

The earliest research on query understanding aim to address the task of identifying 

search intents. From the search users’ point of view, search goals could be navigational, 

informational, transactional [10]. Users have navigational intent when they want to go to 

a specific site. Informational intent is present as user want to find information assumed 

to be present on some webpages. Intent is transactional when users execute web-medi-

ated actions such as buying furniture or register for an event. In any specific case, search 

intent of the user should be clear, either navigational, transactional, or informational. Re-

searches on this topic outputs various heuristics applied on three main class of features: 

i) statistics draw from web page in containing query keywords ii) query log-based statistic 

such as users’ clicked links and iii) query feature - query length and query keywords [11]. 

There are still challenges on identifying search intent for tail queries as much less data 

is available for the classification. Queries are ambiguous, inherently subjective, and la-

tent. In additional, the same search query might have different intent in different context 

and time. Because of this, the ability of search engine to accurately identify search goals 

remains controversial. Research focus shifted towards other tasks of query understand-

ing.  

Topical classification tasks aim to assign topic labels such as “Business”, “Entertain-

ment”, “Commercial” to search query. The task is often useful in determining the search 

result presentation or advertisement targeting. The semantic class used as label can be 

coarse (e.g., “commercial” and “non-commercial”) or fine-grained (e.g., thousand nodes 

commercial taxonomy). To overcome the short and ambiguous nature of queries, several 

approaches leverage query enrichment with search snippets such as works by Shen et 
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al. [12] and Border et al. [13]. Many approaches make use of clicks through bipartite 

graph. The learning problem becomes the propagation of the labels from the labelled 

nodes to the whole graphs, assuming similar nodes have similar click patterns. There 

exist approaches that simply use search queries mined from the search log but large 

sets of manually classified queries are prerequisite. Overall, training a topic model is 

costly as it requires manual human evaluation to create labelled dataset. 

2.4 Query transformation 

The task of query transformation aims to alter the original query to produce queries hav-

ing exact or similar original intent. For example, query “vp salary” can be rewritten as 

“vice president salary”, resulting in more search result and still being relevant. Query 

transformation is also known as as query rewriting, query alteration, or query finding in 

the literature. 

Query transformation techniques in general increases the recall of the search result. Re-

call, also known as sensitivity, is the fraction of the relevance instances that were re-

trieved. For example, if recall is 50%, half of the relevant instances were included in the 

result set. Techniques introduced after this section will serve to increase query precision.  

Technique mean of query expansion and query relaxation, or spell checking. Techniques 

that contributes to increase recall are query expansions, query relaxation. Method such 

as query segmentation and query scoping help enhancing precision. Spell checking is 

very important query transformation task to help increase both recall and precision. 

2.4.1 Query expansion 

Query expansion adds to original query more terms and phrases to increase query recall. 

Additional tokens maybe be the synonyms, abbreviations, and unabbreviated terms. 

Lemma and stem of the query terms can also be added to the set of the additional terms. 

Spelling checked terms can also be leveraged.  

Additional tokens are employed to provide alternative matches for the original terms. If 

the original query is an AND of tokens, query expansion replaces it with AND and OR. 
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Alternative terms mainly help to increase the recall by matching more documents. In 

addition, expansion terms can also help to increase precision as matches containing 

additional terms can be more relevant to user search intent. The presence of the expan-

sion terms can also be an indicator of relevance. 

2.4.2 Query relaxation 

In contrast to query expansion, query relaxation, also referred to as query reduction, 

removes or make the original query terms optional. For instance, omitting term “elegant” 

in “elegant blue office shirt” query can provide more results that are still relevant original 

search intent. Query relaxation technique increases recall by not requiring one or more 

query terms to be present in the matching documents. Query relaxation should be em-

ployed carefully because optimizing terms central to original query will completely 

change the intent of the search query. For example, omitting term “shirt” in “casual shirt” 

query might lead to completely irrelevant result set. Because of this, advanced query 

analysis should be employed to identify the main concept in the query and optionalize 

terms that serve as modifier. In general, it is good to apply this technique for no hits 

search query, as irrelevant search result page in many cases are still better than empty 

one.  

Major approaches in implementing query relaxation in increasing the order of complexity 

are stop words, syntactical analysis, and semantic analysis.  

Stop words can be viewed as a curated set of words in a certain language that should 

be filtered out. Stop words are usually the most commonly used word in a language, 

such as determiners (examples: the, a, an), coordinating conjunctions (examples: and, 

or, so) and preposition (in, under, before). Such common words are removed from the 

search queries so that important words can be used to identify relevant documents more 

effectively.  For example, in an ecommerce search context, search query “the dress for 

office” can have stop words “the” and “for” filtered out.  

Knowledge into linguistic structure of the search query can help determine which tokens 

can be made optional. Large fraction of search queries is noun phrases. Using part-of-

speech tagger, the head noun and the modifying adjectives can be identified. A reason-

able relaxation strategy is to preserve the head noun and remove its modifiers.  
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Semantic analysis goes beyond the token frequency and syntax to consider tokens’ se-

matic or meaning. For example, search query “polo shirt” can be simplified as “polo” as 

the term imply shirt category. However, the query “button shirt” should not be relaxed as 

“button” as the two queries have completely different search intent. 

2.4.3 Spellcheck 

Search engine queries are often misspelled. According to Cucerzan and Brill [14], the 

share of misspelled search query is between 10% to 15%. This problem plagues tail 

queries even more, where approximately 20% are not correctly spelled [15]. Because of 

this, spelling error correction in query is a very important task of query transformation. 

The spellchecked queries will deliver improvements in both recall and precision for the 

search. 

Search queries might be spell-checked in different ways. For example, query term “juse” 

could be spellchecked as “just” or “juice”. Spellchecking is then translated to the task of 

calculating the probabilities of correction 𝑐, out of all possible candidate corrections, 

given the original word 𝑤. The most probable candidate is then proposed as the spell-

check: 𝑚𝑎𝑥𝑐	∈	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃(𝑐|𝑤). By Bayes’ conditional property theorem, this is equivalent 

to  𝑚𝑎𝑥𝑐	∈	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
𝑃(𝑐)𝑃(𝑤|𝑐)

𝑃(𝑤)
. Since 𝑃(𝑤) is the same for every possible candidate 𝑐, it 

can be factored out, giving the following equation for probabilistic spelling correction: 

𝑚𝑎𝑥𝑐	∈	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃(𝑐)𝑃(𝑤|𝑐) 

Three part of this expression are: 

1. The candidate model 𝑐	 ∈ 	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, which provides the set of candi-

dates to be scored. 

2. Language model 𝑃(𝑐), the probabilities that 𝑐 appears as a word. 

3. Error model 𝑃(𝑤|𝑐), the probability that 𝑤 is used when users mean 𝑐. 

To build candidate model, the main ideas are based on edit distance or phonetic similar-

ity. Candidates can be set of words that are 1, 2, or more edit distance away from the 

original word. The minimum number of edit operations required to transform a string to 
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the another is defined as edit distance. It is used to quantify how dissimilar two strings 

from one another. Levenshtein distance are the most wildly used edit distance with the 

4 simple edit operations: insertion, deletion, transposition, or replacement. It was found 

that the great majority (about 80%) of wrong spelling was 1 edit distance away from the 

correct one.  

Candidate model can also be built with the idea that misspelled word is phonetically 

similar to the intended word. For instance, central to the Soundex system devised by 

Knuth 1973 is an algorithm that encodes words to the form that preserves the salient 

features of the pronunciation. A lookup by Soundex code can be built and used as a 

lookup for word with similar pronunciation. 

A simple language model can be built by computing the frequency that words appear in 

the corpus – a collection of written text. Large corpuses benefit the spellchecking process 

as it is more unlikely to encounter words unknown to the dictionary based on them. How-

ever, with large corpuses come more rare words and more correction candidates, requir-

ing more sophisticated error models to select the more probable candidates. More so-

phisticated language models factor in the context around the misspelled words. For ex-

ample, correcting the word “where” to “were” only make sense in certain context, such 

as “I where going”.  

The error model, which tells how likely a candidate is given the misspelled word, can 

have a varied degree of complexity. It can be as simple as treating candidates with edit 

distance of one equally probable and are infinitely more probably than candidates with 

two edit distance. More sophisticated approaches, such as the one developed at Bell 

Labs for correcting typing errors, is capable of assigning probabilities for concrete edit 

operations. For example, it correctly picks actress as the most probable candidate for 

word acress among candidates such as access, across, caress as the combination of 

letter t omitted after a c combined with frequency of word actress gives higher probability 

overall. To make this work, a significantly sized corpus of spelling errors is necessary. 

2.4.4 Mining similar queries 

In contrast to rule-based query rewriting approaches like query expansion and query 

relaxation, search queries with similar intent can also be discovered directly from the 



10 

  
 

search log. While this approach would perform poorly on tail queries, it is practical for 

head queries.  

Click-through Bipartities graph is a good source sources of information where similar 

search queries can be mined. It is observed that similar queries leads to similar URLs 

clicks. Because of this, click-through Bipartities graph can be leveraged to calculate sim-

ilarity score or to perform query clustering. In [16], Xu calculated query similarity from 

click-through bipartite using the Pearson correlation coefficient. They found that when 

the Pearson coefficient is larger than 0.8, more than 82.1% of query pairs were similar 

query pairs. In the work by Berger and Beeferman [17], a simple agglomerative clustering 

algorithm for clustering similar queries using a click through bipartite graph successfully 

discovered high-quality query clusters.  

Search session data is also a source for mining similar queries, as user sometimes sub-

mit similar queries in the same search sessions. Jones et al. devised a method to calcu-

late the statistical significance of co-occurred search queries [18]. When the likelihood of 

two queries being submitted within the same session is higher than the defined threshold, 

two queries can be considered as similar or substitutable. 

2.5 Query segmentation  

Query segmentation works by dividing the search query into a sequence of sematic units. 

Each semantic unit, composed of one or more tokens, carries single concept or meaning 

and should be treated as a phrase. Such phrases are then used by the retrieval system 

as indivisible units in order to improve retrieval precision. Ideally, users assist search 

engines by quoting the phrases. In practice, users are not usually aware of this option. 

Hence, the search engines apply the query segmentation algorithm prior to retrieving 

documents to predict user intended phrases. 

The number of possible query segmentations grow exponentially with the number of key-

words in query. Concretely, for query with n keywords, the number of possible segmen-

tations is 2/01. For example, there are 4 ways to segment search query “machine learn-
ing courses”: 

• [machine] [learning] [courses] 
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• [machine learning] [courses] 

• [machine] [learning courses] 

• [machine learning courses] 

The main use case for query segmentation is to improve precision of the search system. 

Treating query segments as indivisible units mean that for segments containing more 

than one word, the words of the segments will exist in the retrieved document in the 

same order as they exist in the segments. At the core, search engine treats search terms 

independently and return relevant research results containing the search terms ignoring 

the order in which they are specified in the query. Because of this, without query seg-

mentation, any documents containing “table”, “football” will be returned for search query 

“table football”. Irrelevant result titled “Premier League Table – Football – BCS Sport” will 

be included in the result set and negatively affect the retrieval precision. By treating mul-

tiple words as single unit when appropriate, false positive can be filtered out. In summary, 

the intent of the user is more closely captured by looking at the intent unit (query seg-

ments) in the queries, rather than tokenizing on white space of individual term-based 

retrieval. 

Query segmentation also assists in others query understanding tasks, such as query 

transformation. When a query is divided into segments, each representing a semantic 

unit, query expansion and query reduction should be performed on the segment rather 

than at word/token level. For example, when query “ac adapter and battery charger for 

macbook pro” are divided into segments “[ac adapter] [and] [battery charger] [for] [mac-

book pro]”, the query reduction can be applied to produce new query “[battery charger] 

[macbook pro]”. This improvement could be huge in term of recall especially for long 

queries, which often suffer zero-recall problem [19].  

Query segmentation is an important part of Named Entity Recognition process. The goal 

of Named Entity Recognition task is to further identify the semantic meaning of each 

query segments. Named Entity Recognition will be discussed in detail the next chapter. 

Two major approaches to tackle the task of query segmentation are: 

• To segment or not: given a query and a position in the query, decide if the new 

segment should start. 
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• Segmentations scoring: select the optimal segmentation with the best overall 

score composed of individual segment scores. 

Bergsma and Wang [20] presented a supervised learning approach in which segmenta-

tion decisions are made at each adjacent word pair. Given 𝑘 word query, 𝑘 − 1 segmen-

tation decisions are made. A Support Vector Machine classifier was trained for the prob-

lem utilizing lexical features and corpus-based features. Lexical features include the part-

of-speech, keyword, and break position; corpus-based features include the cooccur-

rence frequency of the surrounding keywords and keyword count. After that, Bendersky 

et al. presented an efficiency improvement to this algorithm by introducing two-stage 

model [21]. In the first stage, the query is segmented into noun phrase chunks using a 

Conditional Random Field phrase chunker. The second stage further breaks down noun 

phrases into smaller segments, using feature similar to those exploited in [20]. The main 

challenge of supervised learning approach is the requirement of a large set of manually 

segmented queries. This could be unsustainable as search queries evolve quickly. 

Subsequent research focus more on unsupervised approaches. For example, Tan and 

Peng in [22] built a probabilistic model to score segmentations. The probability of a seg-

mentation is estimated by 𝑃 = ∏ 𝑃(𝑠2)/
201  for query consists of n segments. The proba-

bility of each segment 𝑃(𝑠2) is calculated from the language model based on concepts 

built over a web corpus. To increase segmentation accuracy, segments appear as title 

of Wikipedia article are assigned higher weight.  

As a departure from sophisticated probabilistic approaches for query segmentation, Ha-

gen et al. proposed a naive query segmentation technique that is equally competitive 

[23]. This method scores all segmentation of a given query by the weighted sum of the 

frequencies of contained segments: 

𝑠𝑐𝑜𝑟𝑒(𝑆) = 	 ; |𝑆||4|
4∈5,|4|78

∙ 𝑓𝑟𝑒𝑞(𝑠) 

𝑆 is a valid segmentation of query 𝑞, consisting of disjunct segment 𝑠, each a contiguous 

subsequence of 𝑞, whose concatenation equals 𝑞.The weight |𝑆||4| factor gives signifi-

cant boost to long segments compared to shorter ones, compensating the power law 

distribution of occurrence frequencies on the Web. In follow up work, the authors group 

leveraged Wikipedia to boost the weight of segments that exist in the article titles. 
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2.6 Query Named Entity Recognition 

In simple terms, Named Entity Recognition for search query (QNER) is the task of iden-

tifying, and classifying semantic units in the search query to categories or entity classes, 

such as persons, organizations, brands, categories, colors, times, prices, quantities. Per-

forming this task with high accuracy is considered as major leap in query understanding 

because it simplifies the rest of the query retrieval system. For example, given search 

query “blue running shoes adidas performance”, QNER would output identifies blue as 

COLOR, running shoe as CATEGORY, and adidas performance as BRAND. Color, cat-

egory, and brand are predefined categories or entity classes, and blue, running shoe, 

and adidas performance are concrete instances of such entity classes. In the context of 

search query, QNER is also referred to as Query Tagging. 

The set of categories, or entities classes is domain dependent and often predefined. For 

instance, in fashion domain, useful attributes are brand, pattern, material, color. In con-

trast, in car domain, the set of attributes could be manufacturer, model, year, travel dis-

tance, or rim type.  

2.6.1 QNER applications 

Thanks to QNER, various improvements can be made to the query understanding com-

ponent. For example, QNER can simplifies the implementation of precision-improving 

query rewriting techniques such as query scoping, and recall-increasing techniques such 

as query expansion and query relaxation. Ultimately, QNER breeds search systems 

where the tradeoff between precision and recall can be fine-tuned. 

One of the important application of entities-tagged queries is query scoping. Query scop-

ing matches the query segment to the right attributes. This is an effective measure to 

improve precision of the search result. For instance, for simple query “blue shirt”, “blue” 

will be matched against color and “shirt” will be matched against category. NER helps to 

specifically identified user intent in this case, and thus irrelevant shirts from brands con-

taining the word blue such as “united by blue” can be filtered out. QNER implemented 

as multiclass classifier might produces multiple labels for given query unit. In this case, 

the query unit might be matched against multiple, best attributes. Determining the num-

ber of attributes to scope the matching is a precision/recall tradeoff. 
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QNER can help in query transformation tasks such as query expansion and query relax-

ation. Query expansion can be more performed more accurately if the classes of the 

query unit being expanded are known. For instance, additional terms can be introduced 

to broaden the sematic scope of the search query. A search query for “running shoe” can 

be expanded as “[running shoe] OR [sport shoe]” if “running shoe” is identified as cate-

gory whose parent category is “sport shoe”. This can make a big difference if original 

query returns no result. Similarly, with the understanding of the semantic unit of the 

search query, query relaxation can more accurately optionalize or relax the less signifi-

cant semantic units in the search query. For instance, “colorful puma sweatshirt” can be 

relaxed to “puma sweatshirt” as colorful color is most likely less significant to search 

intent compared to the puma brand and sweatshirt category. 

QNER can also be leveraged to classify the search intent. For instance, if the search 

query is identified as product identifier, user search intent can be detected as naviga-

tional. Then, it would be best to direct users at the product detail page of the shop. As 

another example, if the search query “Adidas” is labeled as brand, search system can 

help users to directly reach the brand page. 

Besides being a game changer to the query understanding process, result produced by 

QNER can be leveraged to enhance multiple touch points across user journey. Search 

experience can be made more meaningful, educative and fun with the knowledge boxes. 

For example. for search queries about single entity instance, users can be presented 

with knowledge and fact around it. Detected named entity in search query may also help 

with providing more relevant search suggestions. Personalization can be improved by 

taking the signal in submitted search queries. For instance, user’s affinity with certain 

brands is spoken when the submitted search queries contain the brands. User profiles 

can be built dynamically based on this. User experiences will improve if along the jour-

ney, more relevant products are surfaced. Related entities can be recommended to user 

throughout the journey to eliminate dead end and to make the navigation more fluid. 

2.6.2 Methodologies 

In the literature, there are many approaches to NER in search query. In general, ap-

proaches to QNER can be classified as statistical, semi-supervised, and unsupervised. 
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There exist many QNER models that relies on large human input effort in form on hand-

crafted rules or training data set. For example, in [24], the NER model for 200 entity 

classes was backed by manually tagged entity 130000 entities and 1400 hand-made 

rules. Similarly, McCallum and Li trained a Conditional Random Fields (CRF) model for 

QNER task with lexicons obtained from the web [25]. In recent work, Eiselt et al. pre-

sented a supervised QNER approach that trains a two-step CRF models using 80,000 

manually labeled search queries [26]. 

One common supervised approach to NER in search query is bootstrapping. Started with 

few seed instances of a target class, all search queries containing the seed instances 

are extracted from the query corpus. Search queries containing seed instances are 

parsed for contextual information, which will be used to induce new instances having 

similar contextual clue. When new instances are identified, search queries containing the 

new instances are used to build richer contextual clue for the entity class. The algorithms 

alternate between extracting instance and extracting contextual information. 

Different bootstrapping approaches have different way to induce the contextual clues 

and induce the new class instances. In [27], Pasca presented an approach where re-

mainders of all search queries containing the known entities belonging to same class are 

aggregated into a single vector called class search-signature. The frequency of the query 

in the query log is given as the weight to each query pattern (the remainder of query). 

The query patterns are exploited to produce new candidate instances having identical 

patterns. For each candidate instance, a search signature vector is built from the remain-

der of all search queries containing it, which is then used to compare with the class 

search-signature. Jensen-Shannon divergence that quantifies distributional similarity is 

used to compute similarity score between search query and class search-signature, 

which is used to decide its membership to the target entity class. 

Alasiry et al. improved upon existing bootstrapping approach by exploiting top search 

result snippets of the search query as contextual clue [11]. Starting from seed entities 

mined from semi-supervised algorithms, contextual clues of search snippets of search 

queries containing seed entities are used to build Bag of Word Context (BoWC) Class 

Vector, where each context word is assigned the weight as its frequency. As new candi-

date named entities are assigned to the target entity classes on condition that similarity 

of its Entity Vector is close enough, the Class Vectors are expanded with every iteration. 
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The similarity measure employed was cosine similarity commonly used in text mining 

especially for spare vectors [28]. 

In contrast to deterministic approach presented by [11], probabilistic approaches where 

one entity might be long to multiple class was presented by Guo et al. [29]. In their work, 

the problem of classifying entity e appearing in query context 𝑡 – words in the query 

surrounding 𝑒 – as a class 𝑐 is formulated as: 

Pr(𝑒, 𝑡, 𝑐) = Pr	(𝑒)Pr	(𝑐|𝑒)Pr	(𝑡|𝑐) 

This is a topic modelling problem, where named entity corresponds to the document, the 

contexts of entity t corresponds to words of the document, and the classes of a named 

entity correspond to topics of the model. A weakly-supervised version of Latent Dirichlet 

Allocation – a topic modelling technique – was exploited. In the first phase of offline 

training step, bootstrapping technique in [27] was used to generate training data set in 

the form (𝑒2 , 𝑡2), which is used to train the topic model that gives Pr(𝑐|𝑒) for each of the 

seed named entity and Pr(𝑡|𝑐)for each class. In second phase, query corpus is scanned 

again to get all queries containing the contexts, extract candidate entities. With Pr(𝑡|𝑐) 

fixed, Pr(𝑐|𝑒)is given by the topic model, and Pr(𝑒) as total frequency of query containing 

e, all component probabilities were computed and indexed for all entities and classes. In 

online prediction step, given query q is exhaustively segmented to entities and contexts, 

and the segmentation with highest Pr(𝑒, 𝑡, 𝑐) is the result of the prediction. 

In contrast, Pennacchiotti described in [30] an unsupervised technique for QNER in an 

open-domain fashions, where the entity classes are automatically discovered. The first 

phase - Entity Extraction - mines entity candidates from the search log based on heuristic 

and assumption that users oftentimes construct the search query by copying them from 

existing texts. In second phrase, Clustering by Committee clustering algorithm was used 

to support the scale of open domain. In the algorithm, remainder entity in search queries 

and click through data are used as features. 

2.7 Measuring search relevance 

In the literature, popular measure of relevance is the combination of recall  and precision. 
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Precision is defined as the fraction of relevance instances among the retrieved instances. 

Recall is the fraction of the retrieved instances that are relevant to the total amount of 

relevance instances. In the information retrieval context, precision and recall are defined 

mathematically as follow: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠} ∩ |{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|
 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠} ∩ |{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑠	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|
 

Precision indicates the usefulness of the result set, while recall indicates completeness 

of the result set. For a concrete example, suppose the total number of documents rele-

vant to the search query “blue office shirts” is 100. If a search engine returns 50 results, 

among which 30 documents are actually relevant, the precision is 60% (30/50), and the 

recall is 30% (30/100). This means only 60% of search results is useful to user, and the 

search result is not complete. 

In practice, there exists a tradeoff between precision and recall. Increase one score is 

often done at the cost of decreasing the other. Achieving recall score of 1.0 is trivial by 

simply returning all documents. However, the precision would suffer as only small frac-

tion of the retrieved document is relevant. In contrast, search engines may aggressively 

filter out less relevant document, returning few documents that is the most relevant. Alt-

hough this conservative approach results in increased precision, recall will be low as 

small fraction of the relevant documents will be surfaced.  

Because of the intrinsic tradeoff between recall and relation, the two indicators are rarely 

discussion in isolation. Instead, both are combined into single score, or the values of a 

measure are compared when another value is fixed. An example of combinational meas-

ure is the weighted hormonic mean of recall and precision also referred to as F-measure. 

𝐹 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 

Building perfect search engines that offer 100% precision and recall is impractical. In 

practice, by employing different query understanding methods introducing in the 
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subsequent sections, a balance tradeoff between precision and recall can be achieved, 

resulting in high quality search system. 

3 Implementing QNER enhanced ecommerce search 

3.1 System requirements 

3.1.1 Functional requirements 

The goal of the project is to implement a fully functional full text search solution for ecom-

merce enhanced with query understanding capability with Named Entity Recognition at 

its core. 

The first part of the objective is working full text search engine for ecommerce. Con-

cretely, structured ecommerce documents or products must be indexed and made re-

trievable with free-text query. The precision and recall of the retrieval system should be 

reasonably good. Documents should be returned in the order of relevance. Search query 

with typo should be tolerable and relevant search result would still be delivered. 

The second part of the goal is to enhance the search engine with query understanding 

capability. Concretely, Named Entity Recognition will be implemented. In addition, the 

major application of NER will be implemented and integrated, including query scoping, 

query relaxation, and query expansion. The applications of NER will allow the fine tuning 

of precision and recall. 

The full-text search operation is exposed via an HTTP endpoint. In addition, there will be 

an UI to make search request and render the search result page for testing purpose. 

3.1.2 Technical requirements 

The search system should be suitable for small to medium scale ecommerce business 

having hundreds of thousands of products in its catalog.  
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The system should be performant, highly available, and horizontally scalable. The rea-

son is that search infrastructure plays a critical role in the enabling various application in 

ecommerce domain beyond search, such as recommendation, personalization.  

This thesis aims at building a search system that can easily achieve the throughput of at 

least 100rps (requests per second) at 100ms p95 latency in a single node setup. 

3.2 Ecommerce QNER methodology 

In this section, a practical method for conducting QNER is presented. The primary goal 

is to have QNER execution model that is extensible. As seen in the literature, QNER can 

be conducted in many different approaches, ranging from semi-supervised, to super-

vised, to unsupervised techniques. However, the common patterns as seen in research 

such can be factored out.  In the literature, such as [11] [26] , Named Entity Recognition 

task is tackled in two separate phases: query segmentation, and segment classification. 

The output of the first phase is single query segmentation. This is unnecessarily strict in 

the context of ecommerce search: if one of the alternative query segmentations is con-

sidered more effective, it will be selected. Similarity, we allow for multiple entity classes 

per query segments. With this flexibility, we need a way to pick up the best NER. The 

concrete detail is discussed in the following paragraphs. 

The sequence of query keywords that may refer to an entity instance of any entity classes 

is defined as a candidate named entity. 

The framework proposed for NER for ecommerce search query is consisted of following 

phases: 

1. Query segmentation of queries to split query into segments where each 

represent a candidate named entity. There can be multiple segmentations 

produced by this step. 

2. Segment classification assigns multiple weighted class labels to each 

query segments for segmentations produced in the first phase. 

3. Scoring phase identifies the best query segmentation and best class la-

bels for each segment of the segmentation. 
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Query segmentation tasks aim to identify the most likely semantic units or phrase – a 

sequence of keywords that means one thing – in the search query. For example, seg-

mentation of query “Metropolia University principal lecturers” should give two phrases: 

“[Metropolia University] [principal lecturers]”. In NER, query segmentation is used to iden-

tify the segment boundary where named entities might occur. 

Formally, query segmentation task is defined as follows. Given query Q consisted of 𝑛 

keywords 𝑤1, 𝑤8, … , 𝑤/ in the original order as submitted by user, the set of all possible 

segmentations is 𝑆(𝑄) = {𝑆1	, 𝑆8, … , 𝑆9	}, where each segmentation 𝑆2	 ∈ 𝑆(𝑄) is a se-

quence of disjunct segments 𝑠, each a contiguous subsequence of 𝑞, whose concatena-

tion yield 𝑞. The query segmentation phase output most probably segmentations 𝑆:(𝑄) =

{𝑆1	, 𝑆8, … , 𝑆;}, where 𝑆:(𝑄) ⊆ 𝑆(𝑄). There are 2/01 possible segmentation for 𝑛 terms 

query, giving upper bound 𝑡 ≤ 𝑚	 ≤ 2/01. 

Segment classification assigns one or more weighted class labels to each segment 𝑠2,<	 

of all segmentation in 𝑆:(𝑄). For instance, for segmented search query “[harry potter] 

[walkthrough]”, label GAME, MOVIE, and BOOK can be assigned to the first segment. 

Based on the remainder of the search query, smart algorithm would give GAME more 

weight. It is normal if segment cannot be classified into predefined set of classes. In this 

case, it can be assigned to special class UNKNOWN. 

Scoring phase score multiple query segmentations having segments assigned to one or 

more entity classes. Output of the scoring phase is the segmentation with highest score. 

In the literature context, QNER would often be conducted in only two phases: named 

entity detection (query segmentation) that output single best segmentations and classi-

fication that give single best classification per segments. However, in practical engineer-

ing context, it is simple to validate different query segmentations by evaluating it against 

the search engine to quantify the effectiveness of the interpretation. To make the overall 

system more flexible by allowing multiple segmentation and multiple classifications, this 

step is necessary to identify the optimal named entity interpretation of given search 

query.  

As presented in the literature, there are multiple approaches to implement each phase 

of the proposed NER framework, ranging handcrafted rules, to pure statistical technique, 

to highly sophisticated ones employing semi-supervised to unsupervised methods.  
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To keep it simple, this project implements the three phases of NER as described in the 

following paragraphs.  

In the first phases, all possible n-gram segmentations of the submitted search query are 

returned. The maximum number of numbers of query token, 𝑛, is configurable. 

In the second phase, the statistic about each query segment is retrieved to assign one 

or more weighted class labels to it. Concretely, for each segment, the classes in which 

the segment appears as an instance are used as class labels, and the frequency of the 

occurrence is used as the weight. For instance, if query segment “adidas performance” 

exists as brand in 30 documents, it is assigned label BRAND with weight of 30. 

In the last phase, all classified segmentations are given score and best interpretation will 

be chosen. In the implementation, query builder component is used to convert NER in-

terpretation to actual low-level search engine query to get the number matching docu-

ments 𝑑5. The numbers of matching documents are then used to derive the best NER 

using the following formula: 

𝑠𝑐𝑜𝑟𝑒(𝑆) = (;|𝑠||4|
4∈5

∙ 𝑓𝑟𝑒𝑞(𝑠)) ∙ 𝑑5 

The scoring formula is the variation of the scoring function for naïve query segmentation 

as presented by Hagen in [23]. Concretely, all segments will contribute to the final score, 

and the number of documents matching the QNER interpretation directly influence the 

score. It is noteworthy that the length of the query segment has significant contribution 

to the score with the factor |𝑠||4|. The exponential weight is meant to compensate for the 

power law distribution of the query n-gram. 

3.3 System architecture 

From high level point of view, the search application is composed of a stateless search 

application that provides search API and implements business logics and algorithms on 

top of the underlying search engine. To keep it simple, the search service is used by 

directly the customer facing application. The main components of the search architecture 

is described in c4 diagram in figure 1. 
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Figure 1. End-to-End high-level architecture of the search application 

In the following sub sections, technical decisions regarding the Search Engine and the 

Search Application are documented. More importantly, the three-phase QNER approach 

used to implement the search system enhanced with query understanding is also pre-

sented.  

3.3.1 Search engine 

At the heart of any ecommerce search system is the search engine. Basically, search 

engines indexes documents in an efficient manner for supported data retrieval opera-

tions.  

Functionally, the following support is desired across various phases that searchable doc-

uments goes through from data source to the search results: 

• Content awareness: robust support for push of documents via API. 

• Content processing: support for content normalizations at different level such as 

characters, tokens. Normalization technique might be stemming, lemmatization, 

stop words, synonym expansion. 



23 

  
 

• Indexing: fine-grain control over indexing of document fields to optimize use-case 

specific data access patterns; support for zero down time re-indexing of data.  

• Query processing: support full-text query, term query, and structured query. 

Operationally, the chosen search engine must offer high performance, availability and 

scalability.  

The candidates for Enterprise search include both open source and proprietary solutions. 

Popular open source software offerings are Elasticsearch, Apache Solr, Sphinx, Terrier. 

Notable proprietary offerings for enterprise search are AWS CloudSearch, Algolia, and 

SearchSpring. In general, proprietary offerings provide ready-made search capabilities 

such as spell checking, named entity recognition, and faceted search. Because of the 

limited extensibility, the cost, and limited value in learning a close-source software solu-

tion, proprietary software will not be used. Among open source search engines, Elas-

ticsearch and Apache Solr stands out as the most prominent. They are both created with 

an open source search engine library named Apache Lucene. Elasticsearch is the 

emerging winner that is gaining strong interest within the community as it offers superior 

distributed architecture and ease of use in comparison to Solr.  

In the wild, Elasticsearch is used as the underlying search engine powering complex 

features and requirements. Elasticsearch offers simple RESTful API for indexing and 

searching of document. For ingestion of searchable documents, there are many com-

posable out-of-the-box components such as character filters, tokenizer, and token filters. 

Those components that transform full text in different ways at characters and tokens level 

are combined into analyzers, such as language analyzers, which play a crucial role in 

processing to increase recall. Elasticsearch provides powerful search feature such as 

phrase search, faceted search, spelling correction, auto suggest.  

Elasticsearch is a distributed, highly scalable, highly available full-text search engine. In 

high availability setup, Elasticsearch cluster is composed of multiple nodes or servers 

that participate in the cluster’s indexing and search capabilities. Data is organized into 

shards replicated into multiple replicas shards. The replications and rebalancing of both 

primary and replicas shards across multiple nodes in the cluster is managed transpar-

ently and automatically. Search query is executed in parallel across all the shards, bring-

ing exceptional scalability and performance. In figure 1, an Elasticsearch cluster setup 

with three nodes, six shards, one replica is shown. 
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Figure 2. Three nodes elastic search cluster with six shards and one replica 

3.3.2 Programming language 

For this project, Golang programming language is used as it offers good development 

experience, performance, and powerful concurrency programming model. 

Golang code is maintainable, reliable and fun to develop. Golang is statically typed lan-

guage that compile instantaneously into executable binary across platforms. Golang is 

very simple programming language with small set of language keywords, well-engi-

neered garbage collection, and simple scoping rules. The language has powerful stand-

ard library that is extensive and well designed. It is backed by rich ecosystem maintained 

by strong open source community. Last but not least, it has modern package manage-

ment solution that greatly ease the developer workflow. 

Golang shines with first class support for concurrency. Primitive such as goroutine and 

channel makes programming concurrency easy and intuitive while efficiently capitalizing 

on the multithreading capability of modern hardware in a transparent manner. Designed 

for usage of multicore computers, and being compiled directly into machine code, Golang 

can power web system to achieve remarkable performance and concurrency.  

Search is critical infrastructure of any ecommerce businesses. The goal is to build a 

search system that is maintainable yet offer high performance to support business 

growth for years. Because of its offering, Golang is a great fit for this project. 
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3.3.3 QNER enhanced Search architecture 

The technical implementation the search application is simple. It is a Golang HTTP 

server which implements three-phased QNER on top of Elasticsearch engine. 

In high level, the behavior of the QNER component is as follows: given a search query, 

it gives back single Named Entity interpretation, which is the NER classification and seg-

mentation that is most effective and best reflect user’s intent. Three-phase QNER system 

implements this behavior and is composed of three sub-components that implement seg-

mentation, classification, and scoring logics. Main interfaces of the application material-

ize in listing 1. 

type NEREngine interface { 
 Analyze(query string) (QNER, error) 
} 
 
type threePhasesNEREngine struct { 
 classifier NERClassifier 
 segmenter  NERSegmenter 
 scorer     NERScorer 
} 
 
type NERSegmenter interface { 
 Segment(query string) ([]Segmentation, error) 
} 
 
type NERClassifier interface { 
 Classify(segmentation []Segmentation) ([]QNER, error) 
} 
 
type NERScorer interface { 
 Score(interpretations []QNER) ([]ScoredQNER, error) 
} 

Listing 1. Interfaces of NER engine and composition of three-phase NER system. 

To enable search functionality of the ecommerce system, NER interpretation is then con-

verted to a structured search engine query and is executed against search engine to give 

back search result. These steps are represented as high level interfaces in listing 2.  

type QueryBuilder interface { 
 Build(query QNER) (interface{}, error) 
} 
 
type QueryEngine interface { 
 Query(qry interface{}, pagination Pagination) (Result, error) 
} 

Listing 2. A Python subroutine that outputs information about objects in possession of a player. 
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Finally, a search service composed of NEREngine, QueryBuilder, and QueryEngine will 

delivery search result to the search requests. This service composition is illustrated in 

listing 3. 

type Service interface { 
 Search(query string, paging Pagination) (Result, error) 
} 
 
type nerSearch struct { 
 nerEngine    NEREngine 
 queryBuilder QueryBuilder 
 queryEngine  QueryEngine 
} 
 
func (s *nerSearch) Search(query string, paging Pagination) (Result, error) { 
 
 qner, err := s.nerEngine.Analyze(query) 
 // err handling 
  
 query, err := s.queryBuilder.Build(qner) 
 // err handling 
 
 res, err := s.queryEngine.Query(query, paging) 
 // err handling 
 
 return res, nil 
} 

Listing 3. Search service interface and implementation 

The use of interfaces enables different implementations for each of the processes to be 

composed and plugged in in different way. For instance, two different QNER scoring 

implementation can be composed in to one, enabling AB test to benchmark the effec-

tiveness of the different solutions. This enable great flexibility for the whole system. Im-

plementation section will describe how each of the interface will be implemented on top 

of the Elasticsearch engine. 

3.4 Implementation 

In this section, implementation of the ecommerce search system powered by NER en-

gine on top of Elasticsearch is described. 

3.4.1 Search indexing 

The first challenge is to index structured product data from eCommerce domain into 

Elasticsearch to facilitate the NER process. Regardless of the data source and 
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eCommerce domain, the searchable documents must provide three data fields to enable 

the QNER feature. The first field is named _props, which contains an array of properties 

object with field key indicating the property class and field val for the property value. An 

example of property key is Color and value is Blue. The other required fields are 

fulltext_search and fulltext_search_boosted, which contain the free text relevant to the 

documents and will be searched against query segments with no classes label. 

Documents providing the specified three fields required for NER feature are then indexed 

into Elasticsearch with the indexing mapping in listing 4. It is worth noting that _props 

field are indexed as nested property. The property keys are indexed as keyword since it 

is not used for full text matching but for aggregation and filtering purpose. The property 

keys and full-text search fields are indexed as text with english analyzer to benefit from 

the advanced language specific text analysis provided by Elasticsearch.  

{ 
  "properties": { 
    "_props": { 
      "type": "nested", 
      "properties": { 
        "key": { 
          "type": "keyword" 
        }, 
        "val": { 
          "type": "text", 
          "analyzer": "english", 
          "index_phrases": "true" 
        } 
      } 
    }, 
    "fulltext_search": { 
      "type": "text", 
      "analyzer": "english" 
    }, 
    "fulltext_search_boosted": { 
      "type": "text", 
      "analyzer": "english", 
      "boost": 4 
    } 
  } 
} 

Listing 4. Search service interface and implementation 

3.4.2 QNER on top of Elasticsearch 

In this section, three phase QNER implementation using Elasticsearch is described.  



28 

  
 

Similar to the work by Hagen [23], the implemented NER segmentation produces n-gram 

segmentations of given query. In other words, it outputs all possible segmentations 

where length of each segment is at most the configured 𝑛 words. It requires a tokenizer 

that split the search query into consecutive words. The simple tokenizer implementation 

where the search query is split by empty spaces are used. 

QNER classification is implemented as follow. First, statistic for each query segments 

are retrieved from Elastic Search. For each query segment, the number of documents 

having entity instances per class are retrieved. Then, the overall score is given for each 

possible class labels of query segment are given based on the statistics.  

In QNER classification process, the Elasticsearch query employed utilize analytics fea-

ture of the search engine. Concretely, aggregation functions are composed to give the 

count of matching documents per entity class that are associated with a requested entity 

instance. For instance, given the phrase “adidas performance”, the query will return sta-

tistic that are 90 documents with the value as brands, and 24 documents having it as 

names. The actual query instance is documented in listing 4, and the construction of the 

query in described in the next paragraph. 

The Elasticsearch query used for QNER classification process is composed of three 

nested aggregation functions. The top-level nested aggregation enables aggregating on 

nested documents. The nested documents, referred to as property documents, are prop-

erties of the searchable document, each containing information about the property class, 

and property instance/value. Inside this aggregation is the filters aggregation, which de-

fine multiple buckets, each collecting all property documents that match given filter. The 

filter used is phrase query for each query segments of the given search query. For each 

bucket of properties document, term aggregation is used to create multi-bucket of prop-

erty class and count the entity instances in each sub-bucket.  

{ 
 "aggregations": { 
  "spec_objs": { 
   "nested": {"path": "_props"}, 
   "aggregations": { 
    "filtered_spec_objs": { 
     "filters": { 
      "filters": [  
       {"match_phrase": {"_props.val":  
          {"operator": "AND","query": "Eco Friendly"}}}, 
       {"match_phrase": {"_props.val":  
          {"operator": "AND", "query": "Adidas Performance"}}}, 
      ] 
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    }, 
    "aggregations": { 
     "spec_key": { 
      "terms": {"field": "_props.key"}}}}}}}, 
 "size": 0 
} 

Listing 5. Search service interface and implementation 

In the last QNER phase, the scorer is implemented by scoring each QNER interpreta-

tions produced by the classification steps. It uses the query builder component to convert 

QNER interpretations to search engine queries. Using Elasticsearch filters aggregation, 

the number of matching documents for each QNER interpretation is retrieved. This is the 

input for the scoring function described in the Architecture section. 

It is not always possible to classify a query segment into as any of the existent search 

properties. In such case, the query segment is classified as UNKNOWN, a special prop-

erty class. 

3.4.3 QNER powered Search 

QNER powered search engines take the output of the QNER process and convert it to 

search engine result. This section discusses the conversion of QNER interpretation to 

search result. 

The query builder component takes the QNER interpretation as the input, which are mul-

tiple query segments, each labelled as one or more properties of the searchable docu-

ments. Since supporting query relaxation is not in scope of this project, all query seg-

ments are required to match the documents. Furthermore, since each query segment 

may have one or more property type labels, the query segment must match the instance 

of one of the property classes. Concretely, for interpretation “[a]X|Y [b]Z”, which classify 

“search query” into segment a, an instance of property class X or Y, and segment b – 

instance of class Z, the resulting Elastic Search query used to get search result is pre-

sented in the listing 6. 

{ 
  "query": { 
    "bool": { 
      "must": [ 
        { 
          "nested": { 
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            "path": "_props", 
            "query": { 
              "bool": { 
                "must": [{  
                  "match_phrase": {"_props.val": "a"}}], 
                "should": [ 
                  {"term": {"_props.key": "X"}}, 
                  {"term": {"_props.key": "Y"}}], 
                "minimum_should_match": 1}}}}, 
        { 
          "nested": { 
            "path": "_props", 
            "query": { 
              "bool": { 
                "must": [ {  
                  "match_phrase": {"_props.val": "b"}}], 
                "should": [ 
                  {"term": {"_props.key": "Z"}}], 
                "minimum_should_match": 1}}}}]}} 
} 

Listing 6. Search service interface and implementation 

In listing 6, a Boolean query is used to compose a boolean condition for multiple queries. 

It’s must clause has multiple sub queries; each specifies the matching condition for la-

belled query segments. For sub queries, nested query is used to query nested property 

documents stored at “_props”. The query used in nested query requires that the query 

segment must phrase-match as property value, and one of the segment labels must 

match as the property keys. 

If the class labels are missing for a query segment, the query segment will be matched 

against the fulltext_search and fulltext_search_boosted fields of the indexed documents. 

3.4.4 Search front-end 

To simplify the testing and evaluation process, a client webservice is developed in Vue.js, 

a modern, open-source model–view–viewmodel JavaScript framework. The frontend is 

developed in Typescript to take advantage of static typing. 

A simple user interface is implemented with a search input and a search button. The 

product data can be inspected further in JSON format with a pop-up model when the 

product is clicked. Paging functionality is also included.  
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Figure 3. Three nodes elastic search cluster with six shards and one replica 

The search frontend enables the evaluation of  

4 Evaluation 

To test the solution, the Flipkart products data set containing 20k products was obtained 

from Kaggle website. The dataset was pre-crawled from the website of Indian ecom-

merce giant Flipkart. The data set contains rich product features, such as brand, name, 

description, images, category tree, price, ratings, and rich property sets.  

Before products data can be searched, it is processed to provide data fields required for 

QNER feature and then indexed into Elasticsearch. The following product properties will 

be made available for NER classification: PRODUCT_TYPE, USER_GROUP, OCCA-

SION, COLOR, FABRIC, MATERIAL, BRAND, UID (Unique Identifier). Field 

fulltext_search_boosted is generated with product name, brand, and unique identifier; 

the fulltext_search field incorporates product description and all product properties. 
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4.1 Precision and recall 

Measurements of precision and recall are conducted for 60 search queries that contains 

at least one named entity in the predefined classes. Search queries are divided into three 

types according to [11]: 

• Focused query (FQ) that is the target candidate named entity itself. 

• Very focused query (VFQ) that contains single candidate named entity with one 

or more query keywords. Additional keywords are used to further refine the 

search result and cannot be classified to any entity classes. 

• Unfocused query (UF) that contains more than one named entity and optionally 

have the refiner keywords. 

For each group of search query, three assessments are conducted: 

• QNER accuracy. Is the QNER result expected? The metric shows the percentage 

of correctly identified QNER produced by the search system. 

• Precision of the search result, which is the fraction of the relevant documents 

among the retrieved documents. The metrics represent the average precision of 

the retrieval for search queries in the group. 

• Recall of the search result, which is the fraction of the relevant documents that 

was actually retrieved. 

Input search queries are manually annotated with Named Entity by human. The manual 

NER annotation is then compared with the system output. This enables the calculation 

of QNER accuracy metric. To evaluate the precision and recall metrics of the retrieval, 

comparisons between the actual result set and the expected result set must be made. 

Author identifies the actual result set by evaluating search result where documents must 

match at least one of the search keywords. It is noteworthy that this result set compro-

mises precision to maximize recall. 

The result is presented in table 1: 
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Table 1. QNER precision and recall evaluation 

Query type QNER  accuracy Precision Recall 

FQ 98% 97% 94% 

VFQ 80% 72% 76% 

UQ 96% 99% 95% 

All 92% 89% 88% 

4.2 Performance test result 

To perform the performance test, Locust – a modern load testing tool is used. Locust can 

generate distributed and scalable load. It is capable of simulating millions of simultane-

ous users. Locust test is easy to write in Python code. 

The test was conducted in single local machine (an iMac with 3.4 GHz Quad-Core Intel 

Core i5 CPU and 8GB 1600MHz DDR3 memory) with single container instance each for 

Elasticsearch and the search application. Elasticsearch container had resource limit of 

2G memory and 2 CPUs. The application had resource limit of 512Mb memory and 

1CPU. 

On this infrastructure, a simulation was run in which 800 concurrent users searched for 

products with complex three term queries. The hatch rate was 5 new users/seconds. As 

seen in figure 3, the load gradually reached 115rps and stayed stable. The error rate was 

0%. 

 

Figure 4. Search throughput as the number of concurrent users increase from 0 to 800 
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Figure 5. Search latency as the number of concurrent users increase from 0 to 800 

As seen in figure 4, the p95 latency of the system stayed around 80ms and well under 

100ms except during two brief latency spikes. In addition, when the load is under 60rps, 

the p95 latency is only around 40ms. This performance was achieved without any cach-

ing mechanism in place. 

5 Discussion 

In this section, the QNER powered search engine implementation is evaluated against 

the initial requirements. The evaluation is based on the correctness assessment and 

performance test result in the previous section. In addition, this section also describes 

the future improvement to this project. 

5.1 QNER evaluation 

Overall, the three phase QNER implementation correctly identifies and classifies the 

named entity for the majority of cases. From the assessment of the QNER powered 

search, it is found that the current implementation works well if all query segments can 

be classified as one of the known property types. As a concrete example, search query 

“adidas sport sandal” undergoes three phases query as described in table 2 and correctly 

outputs the interpretation “[adidas]Brand [sport sandal]ProducType”.  

Table 2. Example of QNER process 

Segmentation Classification Score 

[adidas] [sport] [sandal] [adidas]Brand [sport]Occasion [sandal]ProductType 3.0 
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[adidas sport] [sandal] [adidas sport]Unknown [sandal]ProductType 1.04 

[adidas] [sport sandal]                 [adidas]Brand [sport sandal]ProductType 5.0 

[adidas sport sandal] [adidas sport sandal]Unknown 0.27 

The algorithm implemented fails for case where the identified class label for a query 

segment does not combine with others classified query segments. For instance, for query 

“adidas car”, the query segmentation would produce the NER “[adidas]Brand 

[car]ProducType”. This gives 0 search result for the query. To address this limitation, the 

classification step might tag the query segment as Unknown in addition to the matching 

labels, giving more QNERs for the scoring phase. 

5.2 System evaluation 

Overall, the resulting system is well-built and fulfill the operational objectives of being 

scalable and performant.  

The resulting search system is highly scalable. Because the search application is state-

less, the scalability bottle neck would be in the underlying search backend - Elas-

ticsearch. However, Elasticsearch is designed from scratch to be distributed and mas-

sively scalable. 

Generally, system designers aim for maximum throughput with acceptable latency. The 

performance test result indicates that this goal is achieved. The system responds under 

100ms latency, which is the threshold under which users perceive the interactions as 

instantaneous. In addition, the single instance throughput is high at 115rps, which trans-

lates to 10M requests per days. This is achieved without any caching mechanism imple-

mented. The performance test result conducted for 20K products and single Elas-

ticsearch node might not transfer to huge collection of products (hundreds of thousands 

to millions) where a multi-node setup is needed. 

It is noteworthy that the resulting search system behaves in eventually consistent man-

ner. According to CAP theorem, only two out of three properties of distributed system 

can be supported: partition tolerance, consistency, availability. As networks are not reli-

able, partition tolerance must be supported, or otherwise a single network hiccup will 
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bring whole offline. Since the system is designed to be scalable, it cannot support strong 

data consistency where every read returns the most recent write or an error. This is 

clearly acceptable for search use case. It is of no harm if users are potentially exposed 

to out-of-stock/deleted products via search. 

5.3 Next steps 

At this point, a baseline implementation of the QNER enhanced search engine is in place. 

The current implementation can work with any structured eCommerce product data and 

offer great performance and scalability. The baseline implementation does not imple-

ment any sophisticated QNER approaches as seen in the literature, but it encapsulates 

well the execution steps of characteristic of the query understanding task. The QNER is 

exploited to implement query scoping, where query segments are only matched against 

sensible properties of the documents.  

Current state of the project may be evolved in three main directions: to improve existing 

QNER process, to leverage QNER to implement other tasks of query understanding, to 

enhance current search system with more essential search features. 

There is plenty of room for improvement for existing three-phases QNER process. For 

each phase – segmentation, classification, QNER scoring, new algorithms can be imple-

mented and evaluated against the base line implementation. For instance, the naïve 

query segmentation algorithm proposed by Hagen et al. for can be implemented for first 

phase. For query classification phase, the context (remainder of the query) of the query 

segment should be taken into account to improve precision of the classification.  

Many practical tasks of query understanding beyond query scoping can be implemented 

thanks to QNER. For example, query relaxation can be implemented by optionalize query 

segments tagged with classes that deem inessential to the user intent. Similarly, query 

expansion can be implemented by firstly building a knowledge graph of entities with syn-

onyms. For any entity present in search query, its synonyms can be used to match more 

documents. Query relaxation and expansion tasks will improve the recall of the retrieval; 

they will complement query scoping feature which improves search precision. 
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Most importantly, aiming to deploy the current search system into the wild with more 

essential search features are the most practical direction. Exposing the implemented 

system to the harsh reality of user input is the best way to understand its value to user 

and iterate on practical improvements. It will be important to build monitoring and feed-

back to the search solution so that future improvements to the overall search, or specif-

ically QNER process can be AB tested, enabling data driven decision making. Besides, 

search suggestion and spellcheck are among essential search features that will greatly 

improve user experience. 
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6 Conclusion 

The objective of the thesis is to build a performant and scalable search application for 

ecommerce enhanced with Query Named Entity Recognition – an advanced query un-

derstanding capability. The thesis proposes a flexible three-phases QNER framework 

with an implementation on top of leading open-source search engine Elasticsearch. 

QNER enhances the search system by enabling the implementation of query scoping – 

a query transformation task. The resulting system is well engineered, and it satisfies the 

functional and operation objectives put forth. Before the implementation, the background 

researches in the field of query understanding were meticulously analyzed, especially 

the task of query transformation, query segmentation, and query named entity recogni-

tion. In addition, search query analysis and information retrieval evaluation methods were 

explained in detail.  

The implemented search system has many rooms for improvements. For example, each 

of the three phases of the QNER process can be improved and tested with different 

implementations to increase the overall relevance of the search result. Besides, QNER 

opens the opportunities to implement advanced query understanding techniques such 

as query relaxation, query expansion. Most practical next step could be to build neces-

sary search features and deploy the search system into the wild. 

In summary, this thesis demonstrates how QNER can be applied to improve search. It 

emphasizes the role of query understanding component in search, which is ab indispen-

sable feature of any ecommerce businesses. 
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