
 

 

 

Nina Schelehoff 

Optical music recognition: overview, 
challenges, and possibilities 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Information Technology 

Bachelor’s Thesis 

19.8.2020 



 Abstract 

 

Author 
Title 
 
Number of Pages 
Date 

Nina Schelehoff 
Optical music recognition: overview, challenges, and possibilities 
 
52 pages 
19 August 2020 

Degree Bachelor of Engineering 

Degree Programme Information and Communication Technology  

Professional Major Software Engineering 

Instructors 
 

Antti Piironen, Principal Lecturer 

The objective of this thesis is to provide an overview of OMR (Optical Music Recognition) 
and address the challenges and possibilities related to it. OMR is a field of research that 
investigates how to recognize music notation from printed and hand-written documents and 
to transform them into digital format. It is closely related to computer vision, machine learn-
ing, deep learning, musicology, and music information retrieval. It does not advance any of 
these fields, but it uses the knowledge they provide. Thus, OMR focuses, for example, on 
specifying what kind of information can be retrieved from music notation, how the retrieval 
is to be designed and executed, and what  the constraints related to specific forms of nota-
tion are.   
 
Advances in OMR contribute, for instance, to the preservation of cultural heritage, music 
education, music composition and practice, as well as research in musicology. In practice, 
some possible applications include the creation of searchable music databases for musico-
logical analysis, the publication of archived music scores, and especially the development 
of software for the automatic recognition of printed and handwritten music notation as well 
as the encoding of the output into formats such as MusicXML, MIDI or MEI.   
 
OMR has been researched for decades but still no computer system is able to overcome all 
the challenges related to music recognition. These challenges are directly related to the 
complexity of music notation and the lack of effective methods and algorithms capable of 
dealing with these problems. Music notation has evolved over the centuries into a sophisti-
cated visual language that has its own vocabulary, syntax, and semantics, and as any other 
language it also has its own practices, dialects, and styles. Furthermore, developments in 
music continuously introduce new forms of expression. Music notation also encompasses a 
vast amount of music symbols that are interpreted differently depending on the context and 
circumstance they are presented in as well as the relationship they have to other symbols.  
 
Due to the lack of proper technologies to solve these challenges, OMR has mainly focused 
on solving very specific and well-defined problems that serve limited purposes in music 
recognition. Nonetheless, recent advances in machine learning and deep learning could 
greatly improve the recognition process in the future. All in all, end-to-end OMR systems are 
still to be considered a problem to be solved. 

Keywords Optical music recognition, music notation, computer vision, 
machine learning, deep learning  
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Tämän opinnäytetyön tavoitteena on luoda yleiskuva OMR:stä (Optical Music Recognition) 
sekä käsitellä siihen liittyviä haasteita ja mahdollisuuksia. OMR on tutkimusalue, joka tutkii 
kuinka tunnistaa tietojenkäsittelyn menetelmin musiikkia sekä käsinkirjoitetuista, että paine-
tuista asiakirjoista. Tutkimusalueena se liittyy läheisesti konenäköön, koneoppimiseen, sy-
väoppimiseen, musiikkitieteeseen ja musiikkitietojen hakuun. OMR ei sinänsä edistä näitä 
tutkimusalueita vaan käyttää niiden tarjoamaa tietoa ja osaamista. Näin ollen OMR esimer-
kiksi määrittelee, millaista tietoa voidaan hakea musiikkiasikirjoista, miten haut tulisi suunni-
tella ja toteuttaa, sekä etsii ratkaisuja ajankohtaisiin tunnistamiseen liittyviin ongelmiin.  
 
OMR edesauttaa kulttuuriperintömme ylläpitämistä ja edistää esimerkiksi musiikkikasvatuk-
sessa, säveltaiteessa ja musiikintutkimuksessa käytettävää tietotekniikkaa. Käytännön ta-
solla OMR luo edellytyksiä esimerkiksi laajojen musiikitietokantojen sisällön analysoinnille, 
tarjoaa mahdollisuuksia arkistoitujen nuottikirjoitusten julkaisulle esimerkiksi MusicXML-, 
MIDI- ja MEI-formaatissa, sekä erityisesti keskittyy luomaan malleja ja käytäntöjä, joiden 
avulla voidaan kehittää ohjelmistoja automaattisen musiikintunnistuksen tarpeisiin.  
 
OMR:ää on tutkittu vuosikymmenien ajan, mutta vielä ei ole pystytty kehittämään järjestel-
mää, joka selviytyy kaikista musiikin tunnistamiseen liittyvistä haasteista. Nämä haasteet 
puolestaan johtuvat nuottikirjoituksen monimutkaisuudesta sekä siitä, että ei ole olemassa 
riittävän tehokkaita menetelmiä ja algoritmeja, joilla ratkaista nuottikirjoitukseen liittyvää 
kompleksisuutta. Musiikki on kehittynyt vuosisatojen saatossa monimutkaiseksi visuaa-
liseksi kieleksi, jolla on oma sanasto, syntaksi ja semantiikka. Kuten muissakin kielissä, 
myös sillä omat vivahteet, murteet ja tyylilajit. Lisäksi musiikin jatkuva kehitys tuo mukanaan 
uusia ilmaisumuotoja. Nuottikirjoitus sisältää myös suuren määrän yksittäisiä musiikkisym-
boleja, jotka asiayhteyden ja tilanteen mukaan tulkitaan eri tavalla ja joiden merkitys vaihte-
lee sen mukaan, mihin muuhun symboliin nämä ovat liitettynä. 
 
OMR on vuosien ajan pääasiassa keskittynyt musiikin tunnistamiseen liittyvien tarkoin mää-
riteltyjen ongelmien ratkaisemiseen. Kuitenkin viimeaikainen kehitys kone- ja syväoppimi-
sessa mahdollistanee tehokkaammat ja täsmällisemmät menetelmät musiikin tunnistusta 
varten.  
 
Avainsanat Optinen musiikin tunnistus, nuottikirjoitus, konenäkö, koneoppi-

minen, syväoppiminen 
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List of Abbreviations 

AI Artificial intelligence.  A field of research focused on the simulation of hu-

man intelligence in computers. 

ASCII American standard code for information interchange.  A character encoding 

standard for electronic communication. 

CPDL Choral public domain library. Virtual music score library focused on choral 

and vocal music within the public domain. 

CWMN Common Wester Music Notation. System for the visual representation of 

music that emerged in the Middle ages and develop over the centuries in 

the western countries. The terms Conventional Western Music Notation, 

Common Music Notation and Traditional Music Notation are as well used.  

DCG Definite clause grammars. A way of describing grammars for natural and 

formal languages in a logic programming language such as Prolog.    

DIAMM Digital image archive of medieval music. Virtual music score library focused 

on medieval and early modern polyphonic music manuscripts.   

DL Digital library. Online database focused on digital media content such as 

text, images, audio or video.  

GIF Graphics interchange format. A bitmap image format that uses irreversible 

compression.  

HMM Hidden Markov model. A statistical Markov model that assumes the system 

to be modelled to be a Markov process. Markov models are used to model 

randomly changing systems.  

IMSLP International music score library project. Virtual music library focused on 

public domain music scores.  
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MEI Music encoding initiative format. Open source initiative focused on the cre-

ation of a system for the representation of music scores in digital format. 

MIDI Musical instrument digital interface. Technical standard that describes the 

communication protocol for the connection of electronic musical devices.  

MusicXML Music extensible mark-up language. XML based format for the representa-

tion of music notation.  

NIFF Notation interchange file format. RIFF or RIFX based format for the repre-

sentation of music notation. This format has been replaced by MusicXML. 

NN Neural network. An algorithm model loosely based on biological neural net-

works designed for pattern recognition.  

OCR Optical character recognition. Process for the conversion of printed of 

handwritten text into digital format.  

OMR Optical music recognition. Field of research that investigates how to con-

vert printed or handwritten music notation into digital format..  

PDF Portable document format. A file format used for text formatting and im-

ages. Supports vector and raster images. 

PNG Portable network graphics. A raster image format that supports lossless 

data compression.  

PPI Pixels per inch. A measurement of pixel density or resolution of an image.  

RLE Run-length encoding. A simple form of lossless data compression in which 

sequences of repeating input data is typically encoded into two bytes. 

SMuFL Standard music font layout. Standard for the mapping of musical symbols 

optimised for the modern font formats. 
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TIFF Tagged Image File Format. Image file format which can be compressed or 

uncompressed and is used to save raster images. Widely supported for 

scanning, image manipulation, word processing, OCR, and OMR. 
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1 Introduction 

Music is a universal language that already existed before spoken language. It seeks to 

communicate information and convey emotions. Music happens in real time. The minute 

it stops, it belongs to the past unless there is a way to preserve it. For thousands of years, 

music was entirely an oral tradition. However, approximately a thousand years ago, mu-

sic started evolving into a literate tradition, and nowadays, there are numerous ways of 

recording music with electronic devices. Nonetheless, before these devices were in-

vented, humans preserved music via handwritten notation in order to reproduce it later. 

As such, music notation is linked to the human ability to read and write, and millions of 

songs have been documented over the past centuries.  

Interest in the conversion of music scores into digital format has been steadily growing 

over the past decades. The importance of creating computer-based systems for the 

recognition of music notation lies in the preservation of people’s cultural heritage and the 

facilitation of musicians as they still today often choose to record their work with tradi-

tional pen and paper. It is also worth observing that a large part of historical music man-

uscripts still exists only in unpublished paper format. Thus, finding an effective way for 

automating the digitation of music scores would save a lot of human effort.  

The objective of the thesis is to give an overview of optical music recognition (OMR) and 

assess its possibilities and challenges. OMR is a field of research that investigates how 

to convert printed of handwritten music notation into digital format. From the technical 

perspective, it is considered a subfield of computer vision and document analysis, and it 

is also closely connected to machine learning and especially deep learning. From the 

musical point of view, it is related to digital musicology, music composing and practice 

as well as music information retrieval. Advances in the field of OMR can be applied to 

areas such as the creation of large-scale searchable databases for musicological analy-

sis, the editing of existing notation, music teaching, publication of archived music scores, 

or the further conversion of music scores into file formats such as MIDI, MusicXML or 

MEI. From the practical point of view, the benefit of OMR lies in the reduction of costs 

related to digitation.  

The challenges related to OMR are related to the complexity of music notation itself. In 

principle, the notation is complex because of the vast amount of information it tries to 
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convey and the variations in notation styles that have evolved throughout history. This 

thesis focuses specifically on the Western tradition of music notation which had its first 

breakthrough in the Middle Ages. Over the centuries, it has evolved into a sophisticated 

visual language that has its own syntax and semantics. The full understanding and fur-

ther development of OMR requires, in addition to technical knowledge, a good under-

standing of the principles and intricacies of music notation as well as how it became to 

be what it is today and how it was interpreted in the past. Music history and music theory 

as such go beyond the scope of this thesis, but some of the main aspects that need to 

be taken into consideration in OMR are discussed in the first chapters of this thesis.   
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2 Western music notation 

2.1 Breakthroughs in music notation – historical background 

Western music notation started evolving in the Middle Ages. It continued developing in 

the Renaissance, and it basically achieved the form that is well known today in the Ba-

roque period. What started as simple instructions on the general melodic shape of a song 

grew into something as complex as the detailed instructions on how to perform a piece 

of music for an entire symphony orchestra. (Kelly, 2015.) 

The earliest documented music notation was liturgical, vocal, and monophonic which 

means that it was performed by one singer or a chorus in unison without accompaniment. 

Nonetheless, pictorial, and literary references have revealed that also secular, poly-

phonic, and instrumental music existed at the time, but it is not a well-documented tradi-

tion. (Taruskin, 2006.) Gregorian chant from the ninth century is the first known repertoire 

of liturgical songs that involved a rudimentary way of music notation which consisted of 

signs called neumes above the text that specified the rise or fall of a melody in relation 

to the text (Paxman, 2014). In the late ninth century, the relative height of neumes indi-

cated the melodic shape in more detail, but neumes still did not specify the exact pitch 

of notes nor their duration (Kelly, 2015). By the end of the tenth century, some scores 

also included one or two staff-lines to help reading the relative height of neumes (Pax-

man, 2014). 

In the eleventh century, an Italian monk called Guido of Arezzo, invented a system of 

writing music that allowed the performer to sing something never heard before (Taruskin, 

2006). Consequently, music started shifting from being an exclusively oral tradition to 

also a literate one. Guido organized notes into groups called hexachords along the lines 

and spaces of a color-coded four-lined stave set at intervals of a third (Paxman, 2014). 

He also created solmisation and gave the sequence of notes specific names which were 

ut – re – mi – fa – so – la. The idea behind the coloured staff-lines was that the red one 

indicated fa and the yellow one ut. Thereafter, it was possible to preserve pitches in 

relation to each other and sing a melody without knowing it beforehand (Kelly, 2015). 

Guido’s system was precise in the vertical axis of notation, but the arrangement of notes 

on the horizontal axis to indicate rhythm and temporal sequence still remained imprecise. 
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The means to notate rhythm emerged in the twelfth century along major developments 

in polyphony, which was seen as a way to embellish liturgical music with several concur-

rent melodies. A large repertoire of polyphonic music was created especially at the Ca-

thedral of Notre-Dame in Paris by two French composers, Leonius and Perotinius. As 

polyphony grew in complexity, music needed to be coordinated in a more timely manner. 

Leonius had already incorporated rhythmical aspects into his work, but the earliest doc-

umented music scores with explicit indication of rhythm were created by Perotinius. 

These pieces of music were called Viderunt and Sederunt, and rhythm was notated by 

grouping notes into formations called ligatures. Music created by Leonius and Perotinus 

was essentially a polyphonic version of Gregorian chant. (Kelly, 2015.) 

The way music was notated also changed during the twelfth century. A fifth staff-line as 

well as a shorter note called breve were introduced, and notes were written as square-

shaped symbols that occasionally had a stroke. This new way of notation was called 

squared notation, and it emerged as a consequence of writing with a new kind of pen 

that had a broad end. Depending on the position of the pen, the stroke was either thick 

or thin. (Kelly, 2015.)  

In the thirteenth century, music notation saw more innovations especially in terms of 

rhythm. Franco de Cologne meticulously described these new breakthroughs and even-

tually the newly emerged style of notation was referred to as the Franconian style (Kelly, 

2015). The most significant developments included the indication of the length of rests 

in music scores, and the indication of the length of each individual note with a specific 

shape, thus making ligatures obsolete (Taruskin, 2006). Franco also invented a diamond 

shaped note called semibreve that was shorter than the breve, and a system for the 

indication of time measure. (Paxman, 2014.) It is worth mentioning that even though the 

Franconian style became extremely popular, there still were musicians who preferred the 

old way of notating music. For example, the French troubadours and the French trou-

vères still mostly notated music in the Gregorian chant style (Kelly, 2015).  

In the fourteenth century, Europe became devasted by endless wars and catastrophic 

plagues. Despite all adversities, as illustrated in Figure 1, music notation continued 

evolving and ultimately Philippe de Vitry developed a system that forms the foundation 

of western contemporary music notation (Taruskin, 2006). De Vitry’s key innovations in-

clude a new way of systematically dividing notes, the creation of a new smaller note than 
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the semibreve called the minim, the invention of the double time measure, and the col-

our-coded indication of changes in rhythm (Kelly, 2015).  

 

Figure 1. Summary of major breakthroughs in music notation. 

Advances in music notation until the fourteenth century made it possible to record pitch 

and rhythm so that songs could be sung and played without knowing them previously. 

Hence, the oral tradition of preserving music shifted to a literate tradition. Music notation 

still continued evolving especially during the renaissance and the baroque eras, but in-

novations were more related to expression and articulation, and from this perspective 

were less dramatic than in the Middle Ages (Kelly, 2015). 

2.2 The current complexity of CWMN 

Over the centuries, CWMN has evolved into a sophisticated visual language that has its 

own vocabulary, grammar and syntax, and as any other language, it also has its common 

practices, dialects, and styles that make it semantically complex (Feist, 2017). It is worth 

observing that SMuFL which currently forms the foundation for music font mapping, in-

cludes over 2,400 music symbols and hundreds of optional symbols for different histori-

cal periods, types of music and instruments (SMuFL, 2019). Furthermore, the develop-

ment of existing music symbols still continues along with the introduction of new forms 

of musical expression. This large number of music symbols found in printed scores to-

gether with their variance in size and shape in handwritten scores, and especially in 

historical manuscripts makes OMR extremely challenging (Rebelo et al., 2012).  
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In addition to the complexities related to the different ways of notating music throughout 

history and the vast amount of music symbols, challenges are also related to individual 

music symbols as well as how symbols relate to each other (Bainbridge & Bell, 2001).  

2.2.1 Individual music symbols 

In essence, CWMN expresses pitch, time, loudness and timbre which are indicated by a 

series of notes and additional symbols arranged on five horizontal staff-lines or the 

spaces in between which are called staff-spaces (Feist, 2017). The stave refers to the 

group of staff-lines, and it is divided into measures or bars which in turn are delimited by 

barlines (Gould, 2014). Pitch is represented by notes on the vertical axis of the stave. 

Nowadays there are seven notes and they are named after the alphabet: A, B, C, D, E, 

F, G. Notes that are an octave apart from each other sound similar and thus have the 

same name, but they are written either with capital or small letters or with a superscript 

index (Joutsenvirta & Perkiömäki, 2014). As illustrated in Figure 2, the stave is often 

extended to pitches outside the range of staff-lines by using ledger lines (Feist, 2017). 

 

Figure 2. Notes and their names displayed on staves and ledger lines according to the desig-
nated clef. 

The clef indicates the relative position of a certain pitch on the stave. The most common 

clefs in contemporary music are the G or treble clef, the F or bass clef, the C or alto clef, 

and the tenor clef. Over the past centuries, a great variety of other clefs have also been 

used. Nowadays, from the range of C clefs only the viola and the trombone use the alto 

clef, and the tenor clef is used by the bassoon, trombone, cello and occasionally the 

double bass (Gould, 2014). The rest of the C clefs were common until the eighteenth 

century in choral music (Joutsenvirta & Perkiömäki, 2014).  
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A note on the same staff-line or staff-space can have different pitches depending on the 

clef preceding it. There are eight types of G-clefs which are treble, treble 8va alta, treble 

15 ma alta, treble 8va bassa, treble 15 ma bassa, double treble 8va bassa, treble 8va 

bassa, and the French violin. Figure 3 depicts the position of the g1 note on the vertical 

axis. 

 

Figure 3. G-clefs that depict the position the g1 note on the stave.  

There are seven types of F-clefs which are bass, bass 8va alta, bass 15ma alt bass 8va 

bassa, bass 15ma bassa, baritone, and subbass. Figure 4 shows the location of the f 

note on the vertical axis of the stave. 

 

Figure 4. F-clefs that depict the position of the f note on the stave.  

The most common C-clefs include the soprano, mezzo-soprano, alto, tenor and baritone 

clefs. As show in Figure 5, they all indicate the position of the c1 note on the vertical axis 

of the stave. The French violin clef is very rare today. It was mostly used in France in the 

baroque era. This variety of pitch location on the stave has to be taken into account 

during the optical recognition of music scores. 

 

Figure 5. C-clefs that depict the position of the c1 note on the stave. 

Accidentals or chromatic symbols indicate that a note has to be raised or lowered by a 

semitone or a tone. The most common accidentals are the sharp and the double sharp 

which raise a note respectively by either a semitone or a tone, the flat and double flat 
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which respectively lower a note by a semitone or a tone, and the natural sign which 

indicates that a raised or lowered note is to be restored to its original pitch (Feist, 2017).  

It is also worth noting that each accidental affects only notes of the same diatonic pitch, 

in the same octave and clef, and until the end of the measure, it has been placed on 

(Gould, 2014).  

 

Figure 6. Common chromatic symbols or accidentals used in CWMN. 

From the perspective of individual music symbols, the use of accidentals poses two chal-

lenges to OMR. Firstly, their use has been inconsistent over the centuries and often a 

matter of the composer’s or writer’s taste. The natural symbol was first met in the twelfth 

century and the sharp symbol was introduced in the thirteenth century. However, the 

meaning we assign today to the natural symbol was not encountered until the eighteenth 

century (Joutsenvirta & Perkiömäki, 2014). Secondly, the same pitch can be graphically 

represented on the stave either by using the flat or the sharp symbol. For example c1 

sharp has in reality the same pitch as d1 flat even though they can be depicted in alter-

native ways as indicated in Figure 7 (Joutsenvirta & Perkiömäki, 2014).  

 

Figure 7. Examples of different forms of notation that indicate the same pitch. 

Key signatures are groups of sharps and flats positioned at the beginning of the stave 

after the clef and before the time measure to indicate notes to be raised or lowered until 

the end of a music score or until  another key signature is encountered. In contrast to 

accidentals, key signatures affect pitches in all octaves. Their main objective is to reduce 

the amount of needed ledger lines and thus decrease complexity within the music score 

(Gould, 2019). Key signatures form diatonic scales with a specific pattern that indicate 

the modality (major or minor key) of a piece of music (Feist, 2017). The recognition of 

the tonic or first note and the subdominant or fifth note of the scale contributes to the 
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recognition of altered notes which are notes outside the scale used to provide a certain 

tension to a piece of music (Joutsenvirta & Perkiömäki, 2014).  

 

 

Figure 8. Key signatures with sharp and flat signs. 

As shown in Figure 9, chords are usually formed by combining two or more notes of the 

same duration onto the left side of the same stem (Feist, 2019). It is worth observing that 

in string music notes with different duration can be attached to the same stem (Gould, 

2014). Usually the direction of the chord’s stem is determined by the furthest note from 

the centre of the stave; the stem goes downward when the furthest note is above the 

centre; and downward when it is below (Feist, 2019). Chords pose a challenge to OMR 

because noteheads can be positioned on any point along the stem and they can even 

be pushed to the right side of the stem to avoid overlapping for example when writing 

intervals of a second, or when the chord has an odd number of notes (Pacha, 2019). 

Thus, the amount of graphical variations for chords is theoretically so high that a set of 

pre-set templates cannot be used for matching graphical shapes and chords (Bainbridge 

& Bell, 2001).  
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Figure 9. Noteheads placed along the same stem (Chopin, 1829-32). 

Another challenge related to individual music symbols is that the same symbols can be 

depicted in more than one way due to musical requirements (Bainbridge & Bell, 2001). 

This happens, for example, with flagged notes that have been grouped together by 

beams to increase readability (Byrd, 1984). These variations include, for example, the 

vertical stretching of stems to connect them to the beam (normally the length of the stem 

is one octave), the horizontal stretching of beams due to the vertical alignment of other 

voices played at the same time, the shearing of beamed notes, and the rotation of notes 

due to their placement on higher or lower staff-lines (Bainbridge & Bell, 2001). Figure 10 

shows an example which depicts the modification of beamed notes by horizontal and 

vertical stretching as well as shearing. Notes positioned on the third staff-line and above 

it, usually have downstems, while notes placed below the third staff-line have upstems. 

Accordingly, downstem notes have flags that curve outward and upstem notes have flags 

that curve inward (Feist, 2017). It is worth observing that in the case of sheared beamed 

notes, the angle is often determined by the music setter and it often creates a distinctive 

visual characteristic to the score (Gould, 2014). 

 

Figure 10. Horizontal and vertical stretching and shearing (Chopin, 1838-19) 
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Minor additions to music symbols may reflect important information in terms of musical 

expression. These additions include for example the use of articulation marks to clarify 

how a single note ought to be played (Bainbridge & Bell, 2001). Articulation marks are 

particularly ambiguous for OMR as they ought to be interpreted according to the style 

and period of the music score in question (Gould, 2014). Nowadays, however, the gen-

eral interpretation is that notes with a staccato mark should be played shortly, notes with 

an accented mark should be played loudly, notes with a tenuto mark should be played 

long, and notes with a strong accent mark should be played very loudly (Feist, 2017). 

Articulation marks are placed either above or below the notehead depending on its di-

rection. During the recognition process, staccato marks should not be confused with dot-

ted notes which normally have one or two dots on the right-hand side of the notehead to 

express an extension in the duration of the note (Gould, 2014).  

 

Figure 11. Common articulation marks placed either above or below the note head. 

The vertical position of the dot or dots depends on the whether the notehead is on the 

staff-line or on the staff-space; when the notehead is on the staff-space, the dot is aligned 

with the middle of the notehead; and when the notehead is on the staff-line, the dot is in 

the middle of the subsequent staff-space (Byrd, 1984). Notes placed along the horizontal 

axis of the stave follow time intervals but the exact distance between notes cannot be 

explicitly specified because other music symbols such as dots and accidentals often 

push notes further than otherwise necessary (Gould, 2014). 

 

Figure 12. Dotted notes and articulation marks above noteheads (Schumann, 1841-42). 
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2.2.2 The relationship between individual symbols 

OMR can be seen as an extension of OCR which is an area of research that focuses on 

the recognition of printed and handwritten text from documents (Bainbridge & Bell, 2001). 

OCR emerged in the 1940s and it was developed to recognise text from large amounts 

of paper such as government records, credit card imprints, commercial forms, and ad-

dresses on envelopes (Fornés, 2005). As such OCR is not applicable to music notation 

because the graphical properties of music symbols are very different from the properties 

of letters. Whereas text is organized along the page conforming to a baseline on the 

horizontal axis, the vertical axis is used in a very simple way. In music scores on the 

other hand, the use of the vertical axis has been extended to depict pitch (Bainbridge & 

Bell, 2001). Hence, OCR is applied to music notation only for the recognition of text such 

as lyrics and dynamic markings (Fornés, 2005). Nevertheless, the conversion of letters 

into ASCII form is not sufficient because text on a score is always associated to certain 

parts of the composition and therefore its meaning depends on its precise location (Bain-

bridge & Bell, 2001). 

The difference between text and music notation is not limited to the variety and alteration 

of its individual symbols (Bainbridge & Bell, 2001). Whereas text is one-dimensional in 

layout, music is two-dimensional which means that the interpretation of music symbols 

is defined by their relationship to other symbols on the score (Pacha, 2019). For example, 

a clef at the beginning of the stave affects subsequent notes until the end of the score or 

until another clef is encountered; similarly, an accidental inside a bar affects subsequent 

notes on the same staff-line or staff-space within the same octave until the end of the 

bar or until another accidental is encountered (Bainbridge & Bell, 2001).  

 

Figure 13. Change in key signature and clef (Schumann, 1841-42). 
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For example, as illustrated in Figure 14, the G clef at the beginning of the stave fixes the 

position of the g1 note on the second staff-line and subsequently the c2 on the third staff-

space. However, the pitch of the c2 note changes according to its relationship to other 

music symbols. In the first example (a), the first c2 sharp is an altered note which affects 

the pitch of all notes on the same staff-space within the same octave until the end of the 

measure; therefore, the eighth note on the stave is also a c2 sharp. In the second exam-

ple (b), however, there is an octave sign above the stave which indicates that notes under 

the dashed line are to be played one octave higher; therefore, the eighth note is a c3. In 

the third example (c), due to a prior change in clef, the eighth note is in a different octave 

and also has a different pitch, in this case it is an e. In the fourth example (d), the passage 

is played as at the time the song was composed which means that the eighth note is a 

c2 in order to avoid an augmented interval between the note in question and the following 

note. (Byrd & Simonsen, 2015.)   

 

Figure 14. Changes in pitch related to the relationship to other music symbols (Purcell, 1702).  

The two-dimensionality of music notation also affects the order in which notes are played 

(Bainbridge & Bell, 2001). In single voice music, this usually does not pose a problem, 

but for example piano music is written on two staves, one for the right and one for the 

left hand (Gould, 2014). Thus, sometimes the exact hand distribution may seem ambig-

uous on the score and experience in piano music is needed to intuitively recognise the 

correct order in which to the play the notes (Pacha, 2019). However, scores for multiple 

instruments, such as the string quartet as depicted in Figure 15, are played simultane-

ously (Bainbridge & Bell, 2001).   
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Figure 15. Music score for a string quartet (Mozart, 1783).  

Even in a simple situation when the correct order for playing music is evident, the com-

puter will struggle in the determination of the rules related to order. For example, as 

depicted in Figure 16, the computer has to determine which symbols to process first, the 

beamed notes or the accidental. According to music theory, the second note and the 

accidental form a subgroup, but the computer would connect the beamed notes as a 

group because they are physically connected, and the chromatic symbol would be rec-

ognised next and in isolation (Bainbridge & Bell, 2001).  

 

Figure 16. The effect an accidental has on a beamed note. 

Some music symbols pose exceptional challenges to OMR and such is the case with 

slurs as they are represented by long randomly shaped curved lines that connect notes 

(Novotný & Pokorný, 2015). The problem is related to their arbitrary shape which means 

that their location, longitude, and height can basically be anything. Slurs have different 

meanings for different instruments, but usually they indicate notes that should be played 

without separation (Feist, 2017). For example, in string music they indicate notes to be 

played with one bow stroke, and in vocal music notes to be sung in one syllable (Gould, 

2014). During the recognition process, slurs should not be confused with ties which are 

similar graphical symbols, but indicate the absence of rearticulation (Feist, 2017). Figure 

17 shows an example of a stave with slurs and ties.  
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Figure 17. Slurs and ties on the same music score (Chopin, 1834-35). 

Computer algorithms also struggle with the recognition of superimposed symbols such 

as overlapping beams, or dynamic markings that cross over bar lines, or in the case of 

piano music, markings that intersect with staves from one hand to the other (Bainbridge 

& Bell, 2001). Figure 18 shows an example of overlapping stems and beams.  

 

Figure 18. Overlapping stems and beams (Schumann, 1829-32). 

Crescendo and diminuendo markings or hairpins are generally placed horizontally on the 

score, but sometimes they might be positioned as tilted markings that follow a progres-

sion of pitches (Gould, 2014). Figure 19 depicts an example of a crescendo hairpin that 

cuts through four barlines. 

 

Figure 19. A crescendo marking crossing over several barlines (Chopin, 1829-32). 
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Markings that cross barlines and intersect several staves are also common in piano mu-

sic. Figure 20 shows an example of long slurs that cross over one key to the other across 

staves and barlines.   

 

Figure 20. Slurs crossing over staves and barlines (Chopin, 1834-35).  

To summarise, the most challenging aspects of OMR are related to how music notation 

has changed and evolved over the centuries, as well as to the complexity of music nota-

tion in terms of syntax and semantics, the adaptability of individual music symbols to 

specific situations, and the changing properties of music symbols according to their re-

lationship to other symbols. Additionally, it must be considered that the rules of music 

are at times ambiguous and occasionally intentionally broken by the composer. From 

this perspective, OMR requires more than the mere identification of music notes and the 

recognition of their relationships optimised to a certain musical period, style of music, or 

instrument. However, currently, there is no computer system capable of interpreting mu-

sic in such a demanding way. Once information has been disregarded or a composer 

breaks any of the conventions related to notation syntax or semantics in a music score 

OMR will produce erroneous interpretations of the notation. This is a problem that could 

possibly be solved to some extent with machine learning and deep learning approaches 

in the far future.  

  



 

  21 (49) 

 

 

3 Optical music recognition defined 

3.1 Relation to other fields of research 

As seen in previous chapters, OMR is closely related to fields such as musicology, music 

composition and practice and music information retrieval. The objective of this chapter 

is to put OMR in context in relation to fields of research within computer science. OMR 

is a subfield of computer vision and document analysis, and it is also closely linked to 

research in artificial intelligence, machine learning and deep learning (Calvo-Zaragoza 

et al., 2019).  

In its simplest form, computer vision refers to the field of research that concentrates on 

the automated extraction of graphical information from electronic documents. The re-

trieval of information can include tasks such as object detection, recognition, and group-

ing, as well as image content search and examination (Solem, 2012). Computer vision 

has been extensively researched; nonetheless, the computer still cannot interpret an 

image as a human would do. Szeliski (2010, page 3) aptly describes the underlying dif-

ficulty as follows: “vision is an inverse problem, in which we seek to recover some un-

knowns given insufficient information to fully specify the solution”. Thus, modelling our 

visual realm and all its complexities is a difficult endeavour, and this can be said to apply 

to OMR as well. From a broader perspective, computer vision refers to the field of re-

search that aims at describing the content of an image and the reconstruction of its par-

ticular features (Szeliski, 2010). Despite its intrinsic difficulties, computer vision is still 

largely studied and other fields of research such as medical imaging, automotive safety, 

surveillance, biometrics, and OCR use its outputs. OMR also widely uses computer vi-

sion methods and algorithms for the detection and identification of music objects on the 

score. Moreover, along the advances in machine learning and deep learning, new 

emerging approaches will highly likely prove to be valuable in the field of OMR, especially 

when appropriately combined with methods and algorithms of computer vision. 

AI is a general field of computer science that includes machine learning and deep learn-

ing as subfields. AI also encompasses symbolic AI which does not include any learning 

as such, but hardcoded rules imposed by programmers. Symbolic AI is a suitable ap-

proach for solving well-defined problems, but it is unsuitable for multifaceted problems 
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that involve tasks such as image classification and interpretation. The purpose of ma-

chine learning is to go beyond and make computers learn on their own to solve complex 

problems. The basic idea is that the computer learns the rules associated with a problem 

instead of having programmers hardcode the rules. Hence, systems based on machine 

learning must be trained to solve problems. The training is carried out by providing the 

computer a meaningful representation of the input data and examples of expected out-

puts.  A way is also needed to measure that algorithms eventually perform as intended. 

Deep learning takes machine learning even further by emphasizing the learning of suc-

cessive layers of meaningful representations which are learned by using models called 

neural networks. The term deep refers to these successive layers of meaningful repre-

sentations. Image manipulation, in turn, typically uses convolutional neural networks 

which consist of an input layer and an output layer as well as several hidden layers called 

convolutional layers. (Chollet, 2018.) 

Deep learning has been successful in areas such as image classification, speech recog-

nition, text recognition, language translation, and handwriting recognition (Chollet, 2018). 

Even though complete end-to-end systems have successfully been developed by using 

deep learning in other fields of research, currently there are no complete end-to-end 

OMR systems that can transform a music score into encoded music as an output (Pacha, 

2019). However, advances in the creation of end-to-end systems in deep learning and 

OMR have been made. As a start, convolutional neural networks have been successfully 

trained to identify music notation from other images within a database of 2,000 images 

and with an accuracy of nearly 100% (Pacha, 2019). This automated task of identification 

is useful, for instance, in scenarios where the user needs to find music scores from a 

large set of random documents. Convolutional neural networks have also been able to 

successfully classify the hand-written music symbols contained in the HOMUS dataset 

which has 15,200 samples of 32 different hand-written music symbols written by 100 

different musicians with an accuracy of 96% (HOMUS, 2020). However, it can be rea-

soned that the model still needs research as currently SMuFL contains over 2,500 differ-

ent music symbols. Therefore, even though advances have been made, research is still 

needed to train models that can accurately recognize all music objects available in 

SMuFL. Research is also needed for the correct interpretation of the relationships be-

tween music symbols and on the proper assignment of musical meaning to the score 

without having programmers formulate explicit rules (Pacha, 2019). As seen in previous 

chapters, this is not a trivial task due to the complexities related to music notation. Since 
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one of the main objectives of OMR is the automation of tasks that require human effort 

such as the creation and maintenance of large searchable databases for musicological 

analysis or the further conversion of notation into digital format, robust and efficient OMR 

systems are evidently needed.  

3.2 Definition of OMR  

According to Calvo-Zaragoza et al. (2019), OMR has not been defined precisely. In their 

research, they went through a large amount of papers on OMR, encountered several 

definitions but found them either relatively ambiguous or restricted. Therefore, they sug-

gest the following definition for OMR: “OMR is the field of research that investigates how 

to computationally read music notation into documents.” They argue that OMR is to be 

referred to in a broader sense as a field of research and not merely as a process, system, 

or technique. OMR should also be clearly differentiated from other fields of research, 

such as musicology, computer vision or machine learning, because OMR uses the 

knowledge these fields provide but it does not concentrate on advancing them. OMR 

also specifies what kind of information is to be recognized from music scores and how 

the recognition process should be designed and carried out. 

Music notation systems are designed to preserve the most important information about 

music, but , in addition, a certain degree of either intentional or unintentional information 

always occurs loss while notating it (Kelly, 2015). For example, tempo or dynamic mark-

ings could have been disregarded, and even rhythm or pitch could be missing from older 

manuscripts. In the field of music, lost information has been left to the musician’s better 

knowledge or taste. Calvo-Zaragoza et al. (2019) suggest that this is also where OMR 

boundaries are encountered because at present the computer cannot complete pieces 

of missing information that require prior knowledge of music or the ability to intuitively 

interpret it. Nevertheless, future advances in deep learning could change the situation.   

3.3 OMR inputs 

The OMR input refers to the original music notation document to be recognised. It has 

an enormous impact on the quality of the encoded OMR output after the recognition 

process, and therefore the requirements and design of the algorithms that perform the 
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recognition. OMR inputs have been categorised in five areas which are (1) offline OMR, 

(2) online OMR, (3) music notation systems, (4) music notation complexity, and (5) input 

quality. (Calvo-Zaragoza et al., 2019.) 

 

Figure 21. OMR input categories as defined by Calvo-Zaragoza et al., (2019). 

The first category of OMR inputs refers to offline OMR which includes static images of 

music scores that can be printed, handwritten on pre-printed staff paper, or completely 

handwritten (Calvo-Zaragoza et al., 2019). Research on the recognition of simple printed 

music scores has been relatively successful compared to the recognition of handwritten 

music scores which introduces additional difficulties to OMR because writers have dif-

ferent writing styles, hand-drawn staves may appear distorted, and the spaces between 

staff-lines may be uneven (Fornés, 2005). Additionally, the relative size of music symbols 

may vary greatly as they may appear overlapping each other, or they may be positioned 

at varying distances from each other (Novotný & Pokorný, 2015). Historical music man-

uscripts pose an even bigger challenge because of paper degradation, evolving music 

notation, and the lack of notation standards (Fornés, 2009).  



 

  25 (49) 

 

 

 

Figure 22. Sample from the CVC-MUSCIMA dataset depicting handwritten music notation written 
on pre-printed staff paper (Fornés et al., 2012). 

Offline OMR inputs are converted into digital form before starting the recognition process. 

Kinser (2019) states that in its simplest form, a digital image is saved so that each pixel 

is stored in three bytes, one for each colour channel. This method, however, produces 

extremely large image files which would make the recognition process inefficient. Hence, 

images have to be converted to compressed file formats such as TIFF, GIF, PNG, JPEG 

or PDF which are all different formats of raster images. A raster image refers to a dot 

matrix data structure formed as a rectangular pixel grid that is used, for example, for 

photographs and scanned images. It is worth mentioning that a PDF file can also have 

a vector file format which is based on mathematical formulas that define the image.  

The TIFF format can be saved with or without compression, and it is widely used for 

scanning, image manipulation, word processing, OCR, and OMR. The JPEG format is 

mainly used in photography and its compression efficiency is achieved by decreasing 

the clarity of the image’s sharp edges. The degree in compression can be adjusted, but 

once the image is saved, lost information cannot be restored. The GIF format uses a 

palette of 256 colours and compresses the image by replacing colours from the original 

image with colours that best match the palette. Thus, the GIF format is suitable for gray-

scale images and for images with very few colours. Once the file is saved, lost infor-

mation cannot be restored. The PNG format does not loose information after having been 

compressed. However, its file size is bigger than in the JPEG format. (Kinser, 2019.) 
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Offline inputs are also often saved as PDF files which support text as well as raster and 

vector images. OMR input files are usually saved at a resolution of 300 ppi and the com-

monly supported file formats of the most relevant OMR software range from PDF, TIFF, 

JPEG and PNG to GIF (Rebelo et al. 2012). The quality of the input image is crucial for 

the successful recognition of music notation. It is worth observing that when performing 

the recognition process with traditional computer vision techniques, TIFF files can be 

used even though their file size is large compared to other file formats. However, at-

tempting to perform the recognition process with techniques related to deep learning, 

PNG and JPEG file formats will prove more efficient due to their smaller file size espe-

cially if the dataset contains a large quantity of images.  

The second category of OMR inputs is online OMR which consists of capturing real time 

user interactions on electronic devices such as a touch screen (Calvo-Zaragoza et al., 

2019). This category goes beyond the scope of this thesis.  

The third category of OMR inputs distinguishes different music notation systems and it 

comprises systems such as the contemporary CWMN system which is the most com-

mon, and earlier notation systems such as the neumatic notation, Guido’s system of 

notation, the Franconian style of notation, and the squared notation (Calvo-Zaragoza et 

al., 2019). The recognition of historical music manuscripts may easily be ignored but it is 

important for the preservation of our cultural heritage and the musicological research on 

earlier music traditions (Fornés, 2005). Due to the different nature of historical music 

manuscripts, their recognition requires different methods and algorithms compared to 

notation made with the CWMN system (Fornés, 2009). Notation systems also include 

instrument specific systems such as percussion notation and tablatures for string instru-

ments such as the guitar or the lute, and notation systems from other than Western music 

traditions (Calvo-Zaragoza et al., 2019). From the musicological perspective it would be 

interesting to have OMR end-to-end systems that could automatically examine and an-

alyse differences among music from cultural traditions.  

The fourth category of OMR inputs refers to music complexity (Calvo-Zaragoza et al., 

2019). Some music scores are inherently more difficult to recognize computationally than 

others because the level of music complexity itself can vary greatly. However, as there 

are always exceptions to the rule, this does not always mean that an easy to play piece 

of music is always easy to recognize, or conversely that a difficult to play composition is 
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difficult to recognize (Byrd & Simonsen, 2015). Therefore, there are many ways to clas-

sify music complexity in relation to OMR and one way distinguishes the amount of voices 

in a composition, as such music complexity consists of the following four categories: (1) 

monophonic, (2) homophonic, (3) polyphonic, and (4) pianoform (Calvo-Zaragoza et al., 

2019).  

The simplest category is monophonic music which consists of one single voice played 

or sung at a time (Calvo-Zaragoza et al., 2019). This means that it includes only one 

melody line with no accompaniment. Monophonic music is relatively easy to recognize, 

thus most of the challenges are related to the recognition of multi-voiced notation (Byrd, 

1984). However, as illustrated in Figure 23, the level of complexity of monophonic music 

varies depending on the qualities of its induvial music symbols and their relationship to 

other symbols. For instance, Paganini’s 24 Caprices are extremely difficult to play on the 

violin, but the excerpt presented in Figure 23 is not so difficult to recognize.  

 

Figure 23. Monophonic notation (Paganini, 1802-17). 

Homophonic music consists of multiple voices which are played at the same time to form 

a chord that is played as a single voice (Calvo-Zaragoza et al., 2019). On the other hand, 

polyphonic music refers to multiple voices appearing on one single stave. This form of 

multi-voiced music is distinctive of the baroque and renaissance periods (Taruskin, 

2006).  

 

Figure 24. A homophonic chord progression. 

From the perspective of OMR, the complexity related to multiple voices on a single stave 

is partly due to the graphical properties of its individual symbols; the stems for the upper 

voices point up and the stems for the lower voices point down, and additional symbols 

such as slurs and ornaments are usually placed outside the stave (Byrd, 1984). Some-

times voices can also cross each other so that a higher voice is momentarily lower on 
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the stave and vice versa (Byrd & Simonsen, 2015). Additionally, overlapping music sym-

bols are commonly found on these types of scores.   

 

Figure 25. Polyphonic notation (Bach, 1720).  

The level of difficulty for OMR increases with scores where there are numerous staves 

from which some staves have two or more voices, and the most complex scores are 

those that additionally involve voices that temporarily cross from one stave to another 

(Byrd, 1984). Therefore, Byrd and Simonsen (2015) also distinguish the pianoform cat-

egory which refers to scores with multiple staves where multiple voices on single staves 

interact with other staves (Calvo-Zaragoza et al., 2019). In addition to multiple voices, 

piano scores must convey the piano’s damper pedal and the sostenuto pedal. Some-

times they may need to be depicted with more than two staves (Gold, 2014).  

 

Figure 26. Multiple staves with multiple voices on each (Liszt, 1850). 

Byrd (2018a) has collected an interesting and extensive list of music scores that contain 

examples of exceptionally complex notation published by well-known mainstream com-

posers such as Ravel, Scriabin, Bartok, Straus, and Verdi, just to mention a few. The 

basic idea is to challenge the thought that CWMN could be taken apart into smaller com-

ponents and mechanical rules for the subsequent hardcoding of the rules with traditional 

methods of computer vision. Nonetheless, this point of view on the complexity of notation 

also questions the capability of deep learning to deal with all the intricacies related to 
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music notation. This being the case, it seems best to concentrate on the areas of com-

puter vision and deep learning that can be researched and advanced at the moment.  

The fifth category of OMR inputs refers to the quality of the input. It can vary on a range 

from flawless documents to extremely degraded historical manuscripts. Recently printed 

documents are usually flawless and the easiest to recognize for the computer. Extremely 

degraded music scores usually consist of old manuscripts with faded ink, stains, or 

bleed-throughs. How the input was acquired also affects the outcome, as such, scanned 

images and photographs can greatly vary in quality. (Calvo-Zaragoza et al., 2019.) 

3.4 OMR outputs 

Calvo-Zaragoza et al. (2019) argue that OMR lacks precise methods and metrics for the 

evaluation of OMR outputs. As the purpose of the recognition defines the output, they 

suggest an evaluation system that is based on the categorization of the music compre-

hension level needed to recognize the input. It is worth observing that the computational 

level of difficulty can be high even in the lowest categories of OMR outputs. They propose 

four categories which are (1) document meta-data extraction, (2) search, (3) replayabil-

ity, and (4) structured encoding. As illustrated in Figure 27, the meta-data extraction cat-

egory requires the least amount of understanding on music notation and the structured 

encoding category requires the highest level of knowledge on music.  

 

Figure 27. OMR output categories categorized by input comprehension level (Calvo-Zaragoza et 
al., 2019). 

The document meta-data extraction category of OMR outputs refers to use-cases that 

involve only a low-level understanding of the music score to be recognized. Useful ap-

plications of this category are, for example, the search of music scores among other 
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types of images, the identification of notation systems, the estimation of the era a score 

was written in, the identification of the writer or composer, and the identification of the 

number of instruments found in a score (Calvo-Zaragoza et al., 2019).  

Even though a vast amount of public domain music scores is becoming available in vir-

tual libraries, there still is a substantial number of images that incorporate scores together 

with other images and text and that have not been researched or made available to the 

public. Bainbridge and Bell (2006) have used methods of computer vision such as the 

Hough transform and the run-length ratios to create search engine filters for the identifi-

cation of scores in images. In the case of music scores, the objects to be identified for 

the classification are staves and bar lines. The run-length ratio method measures the 

ratio of adjacent black and white pixels from vertical scans on an image with the objective 

of finding staves on an image. The run-length ratio filter has been found to be fast and 

works well even with small-sized images. As seen in the previous chapter, subsequent 

research on this area has involved deep convolutional neural networks which has also 

meant successfully identifying music notation from other images (Pacha, 2019). 

The search category of OMR outputs refers to use cases that involve query-based anal-

ysis of collections of music scores from databases such as IMSLP, DIAMM, and CPDL 

(Calvo-Zaragoza et al., 2019). The IMSLP, also known as the Petrucci Music Library, is 

one of the largest virtual music libraries of public-domain music with over 500,000 pub-

lished music scores and over 60,000 recordings from almost 20,000 composers (IMSLP, 

2019). The DIAMM is a virtual image library focused on medieval and early modern pol-

yphonic music manuscripts up until the year 1600 with over 60,000 images and almost 

4,000 manuscripts (DIAMM, 2019). The CPDL is, in turn, a virtual music library focused 

on choral and vocal public domain music with 10,000 scores (CDPL, 2019). It is important 

to notice that music scores are the intellectual property of the composer and the publisher 

defines the permitted use of the notation. Thus, most public databases only share nota-

tion the copyright of which has expired and thus can be freely distributed (Calvo-Zara-

goza et al., 2019).  For example, if the author of a composition died before 1950 and the 

composition was first published before 1925, the composition is always public domain in 

Canada, the United States, the EU, and Russia (IMSLP, 2019).  

The search category involves a deeper level of understanding of notation than the doc-

ument meta-data extraction category. As opposed to the queries in the document meta-
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data extraction category, the search category queries are involved with music semantics 

such as melodic sequences, chord progressions, as well as interval structures from spe-

cific compositions, measures, or even delimited pixel areas (Calvo-Zaragoza et al., 

2019). Most libraries still provide music scores as simple scanned images or PDF files 

which therefore require further treatment in order to transform them into encoded OMR 

outputs. Libraries and communities in charge of digitizing music collections have a grow-

ing need to automate the process of music notation recognition because more than often 

scanning and metadata entering are done manually which is time consuming, expensive 

and prone to errors (Pacha, 2019).  

The replayability category of OMR outputs refer to OMR use-cases that create audio-file 

formats from music scores. This category requires a higher level of music comprehen-

sion than the search category. The parameters that need to be recognized from the score 

are pitch, tempo, rhythm, and dynamics, and depending on the purpose of the output, 

other information presented on the score can possibly be disregarded. Hence, human 

intervention is not necessarily needed in all cases for the conversion of the input data 

into audio format (Calvo-Zaragoza et al., 2019). The most common audio-file format is 

MIDI, which is a standard protocol that connects musical devices such as digital instru-

ments, computers, tablets, and smartphones for recording, playing, and editing music by 

sending instructions from one device to another (MIDI Association, 2019). Given that the 

majority of music still remains in paper-format and has probably never been recorded, 

OMR that would automatically generate MIDI files from historical manuscripts would 

open up new possibilities in quantitative musicological analysis. Additionally, these audio 

files would provide missing accompaniment for practising musicians as well as facilitate 

the understanding of students of more complex music notation. (Calvo-Zaragoza et al., 

2019.) 

The structured encoding category of OMR outputs refers to use-cases that involve the 

full recognition and comprehension of a music score. This is the most challenging cate-

gory because no information should be overlooked or disregarded during the recognition 

process. Unfortunately, at the moment there is no standard computer-readable format 

able to deal with all the information that might be presented on a music score. MusicXML 

and MEI formats are the best available options, but they still need improvement as they 

cannot manage all conditions that can be encountered in music scores. However, both 

formats are continuously being developed. (Calvo-Zaragoza et al., 2019.) 
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MusicXML is a standard open format music interface language based on XML developed 

to represent CWMN. Its main objective is the exchanging of sheet music between appli-

cations intended for music notation, analysis and archival. The current version 3.1 was 

released in 2017, it supports over 240 applications and was created by the W3C Music 

Notation Community Group (MusicXML, 2019). MEI is an open source initiative that aims 

at creating improved definitions for the encoding of music scores into computer-readable 

format. Its definitions are structured in the MEI schema which is a set of instructions for 

the encoding of music notation expressed in an XML schema. MEI and MusicXML are 

similar in the sense that they both encode music notation and express it in XML. How-

ever, MusicXML has been explicitly developed for the exchange of music information 

between applications, whereas MEI in addition to supporting the exchange of information 

also encodes musical intellectual content. Currently MEI supports CWMN, neume nota-

tion from the Middle Ages, mensural notation from the renaissance, string tablature, lyrics 

encoding, and harmony analysis (Music encoding initiative, 2019). 

The main challenges that the structured encoding category face are directly related to 

the fact that at the moment there does not exist a powerful enough encoding system for 

the full representation of music notation in all possible situations (Calvo-Zaragoza et al., 

2019). In order to work properly, the system should even support syntactically incorrect 

scores as composers do not always follow all the rules of music in their work. Addition-

ally, it is worth remembering that music is performed by interpretation which means that 

a composition is often studied by a musician for a long period of time before being per-

formed. This study may include tasks such as learning about the composer’s intentions, 

understanding the composition’s mood and feel, and acknowledging the limits of the in-

struments to be used (Bainbridge and Bell, 2001). Thus, having a computer imitating this 

entire human process has had only very limited success. For this reason, research on 

OMR has started focusing on the idea of making computers learn music notation, theory, 

and interpretation with deep learning approaches (Pacha, 2019).  

OMR systems that attempt to perform structured encoding include software such as 

SmartScore, Capella-Scan and PhotoScore (Rebelo et al., 2012). There is also an open-

source application called Audiveris. The table below lists the most relevant OMR soft-

ware available at the moment. 
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Table 1. The most relevant OMR software listed by their inputs and outputs. 

Software Binarized OMR Input OMR Output 

SmartScore 
PDF, TIFF 

Finale, MIDI, MusicXML, NIFF, MP3, 
PDF 

SharpEye PDF, TIFF, BMP MIDI, MusicXML, NIFF 

PhotoScore PDF, BMP MIDI, MusicXML, NIFF, WAV/AIFF 

Capella-Scan PDF, TIFF, BMP, GIF, PNG, PS Capella, MIDI, MusicXML 

VivaldiScan TIFF, BMP NIFF, MIDI, MusicXML 

Audiveris PDF, TIFF, BMP, GIF, JPG, PNG PDF, MusicXML 

Gamera TIFF, PNG MIDI, XML, GUIDO 

Due to the lack of rigorous standards related to OMR outputs as well as music recogni-

tion methods, the systematic comparison of OMR software is challenging. A proper eval-

uation method should be public, systematically defined and verified, and it should provide 

meaningful results that advance research in OMR (Calvo-Zaragoza et al., 2019). Hence, 

the systematic comparison of OMR software is outside the scope of this thesis. 
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4 Optical music recognition architecture 

4.1 The general framework 

OMR has been researched since the 1960s and a general framework has been estab-

lished and adopted by several authors for the definition and decomposition of problems 

related to OMR. The general framework aims at solving most OMR problems with tradi-

tional methods of computer vision and pattern recognition, but some newer deep learning 

methods are currently being integrated into the model. The framework consists of four 

phases which are (1) image pre-processing, (2) music symbol recognition, (3) music no-

tation reconstruction and (4) final representation construction as indicated in Figure 28. 

The main objective of the framework is to provide the technical means for the recognition 

of a music score, its subsequent analysis and interpretation, as well as its storage in 

machine readable format. (Rebelo et al., 2012.) 

The purpose of this chapter is to provide an overview of relevant computer vision meth-

ods and algorithms available for OMR. The purpose is not, however, to provide an ex-

tensive study of all existing approaches and their intricacies. The idea is more about 

summarizing the most important technical problems and considering possible ways of 

solving some of them especially with approaches related to deep learning. 

 

Figure 28. OMR General framework (Rebelo et al.,2012) 
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4.1.1 Image pre-processing  

The basic idea of the image pre-processing phase is to enhance the original input as 

much as possible by using different image editing techniques such as binarization, con-

trast improvement, noise removal, skew correction, and blurring (Rebelo et al., 2012).  

Binarization is the first task to be carried out and its objective is to transform the pixel 

image into a black and white or binary image and determine which artifacts are part of 

music notation and which ones are not (Novotný & Pokorný, 2015). All irrelevant parts 

such as background noise, steins, and ink bleed-through ought to be disregarded to 

achieve higher computational efficiency (Rebelo et. al, 2012). Noise refers to artifacts in 

an image that prevent the efficient recognition of an image. Noise comes in many forms, 

the most common being random noise which appears as a grainy image texture, salt and 

pepper noise which is encountered in the form of unwanted black and white pixels, and 

coloured noise which results from arbitrary oscillations in the frequencies of an image 

(Kinser, 2019). Thus, binarization does not require any knowledge of music. Its objective 

is the reduction of the amount of information to be processed (Rebelo et al., 2012).  

The most relevant algorithms used for binarization are the global thresholding method 

and the adaptative thresholding method (Rebelo et al., 2012). In computer vision, image 

thresholding refers to changing the colour value of a pixel to either black or white accord-

ing to a threshold value (Kapur, 2017). Global image thresholding is especially suitable 

for images with a uniform background and in this case a global threshold value can be 

applied for the entire image, which enables the algorithm to perform at high speed (No-

votný & Pokorný, 2015). Nonetheless, there are frequently situations when the image 

background is non-uniform. This situation is particularly encountered when working with 

older music manuscripts and low-quality music documents (Rebelo et al., 2012). The 

effective binarization of images with a non-uniform background requires calculating dif-

ferent threshold values for different parts of the image and the process is referred to as 

adaptative thresholding (Kapur, 2017). The disadvantage of the adaptative method is 

that it requires a longer processing time than the global method (Novotný & Pokorný, 

2015). Another common approach to binarization is the Niblack method which uses the 

local mean and standard deviation of the nearest pixel’s intensity values for setting the 

threshold (Rebelo et al., 2012). The binarization of images unfortunately introduces noise 

into the image which can be a problem especially if the original image is of low quality. 

Although it will affect efficiency, this problem could be solved by making higher quality 
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scans from the original OMR input. It is also worth observing that often it is assumed that 

music scores are grayscale or black and white images, but the application of colour in-

formation in the analysis of the image could prove useful, for example, in the context of 

pre-printed staff-paper where staff-lines and hand-written music symbols usually appear 

in a slightly different colour (Novotný & Pokorný, 2015). Historical music manuscripts 

also use colours in music scores as seen, for example, in Guido’s notation system and 

Philippe de Vitry’s mensural form of notation (Kelly, 2019).  

The image pre-processing phase also includes the calculation of staff-line and staff-

space heights which provide a baseline for the comparison of music symbol sizes 

(Rebelo et al., 2012). In essence, the size of music symbols used in the score must be 

identified before starting the recognition of individual symbols (Bainbridge & Bell, 2001).  

Some authors refer to this task as the initiation of segmentation and it is commonly based 

either on RLE or on the horizontal projections method. In RLE, black runs calculate the 

staff-line height and white runs the staff-space height (Novotný and Pokorný, 2015). The 

calculation process assumes that staff-lines cover the largest part of the music score and 

that their height is the smallest shape height found on the score (Bainbridge & Bell, 

2001). Any vertically positioned black run which is twice the height of a staff-line will be 

removed as well as any object that has a width less than the height of the staff-space 

(Rebelo et al., 2012). The horizontal projections method involves the mapping of a two-

dimensional bitmap into a one-dimensional histogram by calculating the number of black 

pixels in each row of the bitmap (Bainbridge & Bell, 2001). As a result, staff-lines appear 

as peaks in the histogram. Horizontal projections are often performed in different angles 

in order to deal with distorted staff-lines (Novotný & Pokorný, 2015). Another model for 

the identification of staff-lines is the application of vertical scan lines which are based on 

line adjacency graphs. This algorithm calculates the sum of two consecutive vertical runs 

and selects the ones that appear most often (Rebelo et al., 2012). Staff-line height recog-

nition problems are often encountered especially in handwritten music scores where 

staff-lines are not completely parallel, or in printed scores where staff-lines appear dis-

torted due to low quality digitization (Rebelo et al., 2012). 

4.1.2 Music symbol recognition  

Music symbol recognition is the second phase of the general framework and it consists 

of three main activities which are (1) staff processing, (2) music object processing, and 
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(3) music object classification (Rebelo et al., 2012). These three activities are further 

divided into sub-tasks as described below.  

The staff processing activity includes subtasks that are staff-line isolation, staff-line de-

tection, and the possible removal of the entire stave with the purpose of getting an image 

containing only individual music symbols (Rebelo et. al, 2012). The idea behind having 

isolated music symbols without the stave is the better recognition of the notation itself. 

Technically, the removal of staff-lines is usually carried out by simply replacing identified 

black staff-line pixels with white pixels (Novotný & Pokorný, 2015). Typically, black pixels 

located at a distance of two pixels from the staff-line are assumed to be music symbols 

and therefore are not removed (Bainbridge & Bell, 2001). Sometimes, also music sym-

bols such slurs and dynamic marking are removed with the same method (Rebelo et. al, 

2012). However, the removal of staff-lines from the binary file is prone to introduce new 

artifacts in the image. These artifacts can for example be encountered as noise or ran-

dom pixel clusters. The staff-line removal may also break the features of some music 

symbols or leave pixel clusters on the image if some staff-line shapes are erroneously 

detected as music symbols. For these reasons, some authors prefer ignoring the stave 

instead having it removed from the file (Novotný & Pokorný, 2015).  

The previously described staff processing activities are followed by music object pro-

cessing and music object classification (Rebelo et al., 2012). These activities are also 

referred to as music symbol segmentation (Novotný & Pokorný, 2015). In computer vi-

sion, segmentation refers to the process of splitting an image into its smaller parts in 

order to understand its content (Kapur, 2017). Similarly, in OMR the main purpose of 

segmentation is the locating, identification, and classification of individual music symbols 

within the score. The intrinsic complexities related to music notation make these activities 

particularly complicated. Especially notation with superimposed and touching symbols 

pose a challenge as they may easily result in non-identifiable artifacts on the image 

(Bainbridge & Bell, 2001). Low quality printing and scanning as well as paper degradation 

pose a big challenge to this stage of process (Rebelo et al., 2012).   

The music object processing activity is based on the isolation of individual music primi-

tives by decomposing the score into separate areas. Music scores are usually divided 

into parts that encompass a single staff (Rebelo et. al, 2012). A common method used 
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for the isolation of music symbols is the hierarchical decomposition algorithm which con-

sists of the analysis, isolation, and extraction of basic music symbols such as noteheads, 

stems, flags, and rests (Novotný & Pokorný, 2015). It is worth noting that during music 

object processing, noteheads, stems, and flags are technically considered as separate 

objects. Thus, at this stage of the recognition process they are not assigned any musical 

meaning (Rebelo et. al, 2012). Depending on the used methods, the segmentation of 

music objects is, however, often performed simultaneously with the classification of mu-

sic objects. Hence, these stages cannot always be explicitly considered separate stages 

of the recognition process (Novotný & Pokorný, 2015). The advantage of simultaneous 

segmentation and classification is that this eliminates the need for keeping track of al-

ready segmented objects that are waiting for the classification step (Rebelo et. al, 2012). 

In vocal music, lyrics are also detected at this stage of the process which adds an extra 

layer of complexity to the recognition. After lyrics have been detected and identified, they 

also need to be linked back to their corresponding notes on the score also taking into 

account their proper syllabification (Rebelo et al., 2012). Lyrics are more than often pre-

sented on music scores in rather unpredictable locations and with inconsistent syllabifi-

cation which makes the use of OCR methods ineffective (Fornés, 2005). Traditional OCR 

is based on language models that include word dictionaries but the need for syllabicated 

dictionaries decreases the amount of languages available and increases the amount of 

unidentified inflections (Burgoyne et al., 2009). Baselines are often calculated for lyrics 

and their corresponding notes by using common computer vision methods such as local 

horizontal projections and vertical run-length encoding (Rebelo et al., 2012).  

The music object classification step aims at recognizing each individual music symbol 

by the extraction of their musical features (Rebelo et al., 2012). Classification is fre-

quently started by the recognition of the simplest primitives, such as noteheads, stems 

and accidentals by using a plethora of pattern recognition techniques such as template 

matching, the Hough transform method, the line adjacency graph method, the character 

profile method, and horizontal projections (Bainbridge & Bell, 2001).  

Template matching is a method used in computer vision for finding the coordinates of 

specific parts of an image by matching a template image to the image to be analysed 

(Rebelo et al., 2012). The Hough transform refers to a general framework that is given 

parametrized equations of shapes such as straight lines, curves, circles or ellipses as 
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input and then it identifies these shapes in an image (Kapur, 2017). The Hough transform 

can easily locate lines of different thickness, orientation, and length (Kinser, 2019). How-

ever, other approaches such as the line adjacency graph method is preferred for the 

detection of curved lines (Rebelo et al., 2012). The disadvantage of the Hough transform 

method is that imperfections on the thickness of a line often result in overlapping curves 

in the image. Therefore, the Hough transform method is suitable for recently printed high 

quality scores. The character profile method which measures the perpendicular distance 

of the object’s outline to reference the axis is used for the identification of accidentals, 

rests, and clefs (Rebelo et al., 2012). Music objects can also be detected by the applica-

tion of projections using features extracted from projection profiles (Novotný & Pokorný, 

2015).  

The music object classification is also the stage of the recognition process where deep 

learning algorithms are becoming increasingly popular and where a clear shift can be 

noticed from traditional computer vision methods to deep learning approaches. It must 

be emphasized, however, that the integration of machine learning and deep learning into 

OMR is still in its early stages and there are no solutions yet available to solve all open 

matters. Some of the approaches that involve deep learning include methods such as 

the k-nearest neighbour rule and the hidden Markov models. The k-nearest neighbour 

rule is used for classification, and the hidden Markov model is used as the classifier by 

labelling a set of music symbols. The set is divided into training sets and test sets from 

which the model will learn from (Rebelo et. al, 2012). The k-nearest neighbour classifier 

is one of the simplest methods used for classification. It simply compares the object in 

question to the labelled objects found on the training set. The k-nearest neighbour clas-

sifier is efficient, but its disadvantage is that it needs the entire training set which can 

slow down the recognition process when using larger training sets (Solem, 2019).  

As deep learning has fostered advances in OMR, several public datasets have been 

made available to facilitate the classification of music symbols. These datasets include 

HOMUS, the Universal Music Symbol Collection, the CVC-MUSCIMA, MUSIMA++, 

DeepScores, PrIMuS and Camera-PrIMuS. Special open source tools such as MU-

SICMarker and MuRET have also been developed for the creation of datasets.  

The Universal Music Symbol dataset is a collection of several datasets that have been 

combined into a collection of 90,000 music symbols from which 74,000 symbols are 
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handwritten and 16,000 are printed (Pacha & Eidenberg, 2017). The CVC-MUSCIMA is 

a dataset designed for writer identification that has 1,000 sheets of handwritten music 

scores written by 50 different musicians (Fornés et. al, 2012). The MUSCIMA++ is a 

dataset designed for handwritten music symbol detection which has over 91,000 music 

symbols of basic music primitives and higher-lever notation objects such as key signa-

tures and time signatures (Hajič & Pecina, 2017). DeepScores is a dataset designed for 

music object classification, semantic segmentation, and object detection that has 

300,000 images of printed music sheets obtained from MuseScore (Tuggener et. al, 

2018). The PrIMuS dataset has been designed for the identification of melodies and it 

has over 87,000 sequences of melodies saved as PNG images, and in the MIDI and MEI 

format (Calvo-Zaragoza & Rizo, 2018). The Camera-PrIMuS dataset contains the same 

sequences of melodies as the PrIMuS dataset, but the PNG images have been distorted 

in order to simulate real life situations (Calvo-Zaragoza & Rizo, 2018). 

The creation of a datasets for training purposes in deep learning is expensive and time 

consuming because of the large amount of data needed for the datasets. The 

MUSCIMA++ dataset was created with a tool called MUSICMarker which is an open 

source application developed in Python that is flexible enough to be applicable for the 

creation of datasets for similar purposes (Hajič & Pecina, 2017). MuRET is also an open 

source tool for music recognition, encoding and transcription developed with Angular and 

Spring Boot which can be used in all phases of the recognition process, including man-

uscript source to encoded OMR output (Calvo-Zaragoza et al., 2018).  

4.1.3 Music notation reconstruction and final representation  

The music notation reconstruction phase consists of two activities which are the (1) the 

combination of music symbol primitives and (2) the application of graphical and syntactic 

rules to the file in order to reproduce its musical meaning. Therefore, this phase encom-

passes the application of music syntax and semantics to recognise music symbols 

(Rebelo et. al, 2012). The activities involved are particularly challenging due to music 

notation’s two dimensionality which, as seen earlier, means that the meaning of music 

symbols depends on their horizontal and vertical location on the stave as well as their 

relationship to other music symbols (Novotný & Pokorný, 2015).  
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The combination of music symbol primitives is performed by interpreting the relationships 

between detected music objects. This has traditionally been performed by hardcoded 

rules that address certain parts and circumstances of music notation (Calvo-Zaragoza et 

al., 2019). These rules are basically related to tonality, accidentals, and tempo which 

means that the identification of the key signature and accidentals is crucial for the correct 

recognition of the music score (Rebelo et al., 2012). A common method for this step of 

the process is the formation of musical features based on the application of music 

knowledge grammars that specify and add meaning to the relationships among music 

symbols (Novotný & Pokorný, 2015). These grammars determine the way music objects 

must be processed, the way musical events should be made, and the way music objects 

should be segmented. A common grammar has been implemented with λProlog also 

known as lambda Prolog which is a logic programming language that has semantic at-

tributes connected to C libraries for pattern recognition and decomposition (λProlog, 

2020). The grammar is developed using DCG techniques of parsing at a graphical and 

at a syntactic level (Rebelo et al., 2012). The parser structure consists of a list of seg-

mented and non-labelled music objects that are connected to music grammars. The pro-

cess starts with the labelling of objects and the detection of errors according to the avail-

able grammar. Another common approach for the combination of music objects and 

grammar rules also uses CDG techniques to specify the relationships between musical 

symbols, but it also uses a system called CANTOR that allows the user to manually 

define the rules for the notation (Rebelo et al., 2012). The disadvantage is that this 

method is time consuming and prone to errors although it leaves room for the user to 

make decisions on needed rules.  

The last phase of the framework is called final representation construction and it consists 

of activities related to the transformation of music scores into machine readable format 

(Rebelo et al., 2012). The techniques used in this phase are greatly determined by the 

OMR output format which can be, for example, MIDI, MusicXML, MEI (Bainbridge & Bell, 

2001). The most significant OMR output formats are described in chapter 3.4. 

A considerable amount of research in OMR has been carried out and many competing 

methods and algorithms have been created to solve OMR’s inherent problems. Even 

though advances have been made in computer vision, most approaches often focus on 

very specific and well-formulated problems that cannot easily be extended to slightly 

different circumstances which is a prerequisite of an OMR system. The outcome is that 
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the selected methods frequently disregard or misinterpret some information presented 

on the music score, which easily results in errors that spread from one phase to the next 

within the framework and eventually lead to an incorrect OMR output. During the past 

years, several methods and algorithms have improved individual steps within the frame-

work, but currently there is still no system that can automatically recognize a large set of 

music notation accurately and effectively and without human intervention. (Pacha, 2019.) 

4.2 Updates on the general framework 

The general framework forms the foundation for the technical understanding of OMR. 

However, it will undoubtedly need updating as new developments emerge in the field of 

computer science and particularly deep learning (Bainbridge & Bell, 2001). Research 

has concluded that many problems found in OMR can be addressed as machine learning 

problems, which can be solved with deep learning (Pacha, 2019). After having introduced 

machine learning into OMR, the technical problems related to recognition have been 

slightly reformulated; however, the general framework remains valid as open issues are 

still related to image pre-processing, object detection, semantic reconstruction, and en-

coding. Recently introduced techniques of deep learning have been able to solve some 

open issues of image pre-processing and music object detection (Pacha, 2019). How-

ever, semantic reconstruction and encoding remain a complete challenge.  It also has to 

be taken into account, that recently introduced techniques may not always be able to 

deal with all kinds of situations until they have matured and knowledge on their limitations 

and proper application has spread within the community.  

Deep learning has been successful in music object detection. For instance, deep learn-

ing models with convolutional neural networks are now able to recognize rather well mu-

sic objects without staff-line removal (Calvo-Zaragoza et al., 2019). Therefore, the staff 

processing step and the music object detection step on the general framework will highly 

likely become obsolete at some point in the future. It is worth emphasizing, however, that 

breakthroughs made in other areas of research such as image classification, speech 

recognition and handwriting recognition are based on neural networks that are only able 

to deal with one-dimensional outputs such as sequences of words (Pacha, 2019). Hence, 

music notation’s two-dimensionality makes it difficult to train optimized models for OMR. 

Currently the recognition process is limited to certain types of music notation such as the 
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recognition of mensural notation with Markov models, and the recognition of printed and 

handwritten monophonic notation with deep neural networks. At present, there is no suit-

able model for more complex music notation such as polyphonic music or grand-piano 

form. Deep learning algorithms are also often based on statistical models that provide 

probabilities over established hypothesis. The determination of musical syntax and se-

mantics by using statistical models could also prove to be an area worth researching 

(Calvo-Zaragoza et al., 2019). 

Thus, traditionally used techniques of computer vision are not to be disregarded in OMR, 

and even though advances have been made in deep learning, a lot of research is still 

needed in order to implement the techniques successfully in the recognition process. 

This means that the transition from traditional techniques to new ones cannot be done 

abruptly and the suitability of each individual method has to be evaluated on a case by 

case basis.  
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5 Discussion and conclusion 

The objective of this thesis is to provide an overview of OMR and address the challenges 

and possibilities related to it. OMR stands for optical music recognition and in the scien-

tific community it has been defined as “the field of research that investigates how to 

computationally read music in documents” (Calvo-Zaragoza et.al, 2019). OMR is closely 

related to other fields of computer science such as computer vision, machine learning 

and deep learning. Altogether, it is also closely related to musicology and music infor-

mation retrieval. It is worth observing that OMR does not, however, advance any of these 

fields, but it uses the knowledge they provide. Nonetheless, OMR focuses on specifying 

what kind of information can be retrieved from music notation, how the retrieval is to be 

designed and executed, and what the constraints related to different forms of notation 

are.   

Advances in the field of OMR contribute especially to the preservation of cultural herit-

age, music education, music composition and practice, as well as research in musicol-

ogy. In practice, OMR facilitates, for instance, the creation of large-scale searchable mu-

sic databases for musicological analysis, the publication of archived music scores, and 

especially the development of software for the automatic recognition of printed and hand-

written music notation as well as the encoding of the output into an appropriate format 

such as MusicXML, MIDI or MEI.   

OMR has been researched for decades but still no computer system is able to overcome 

all the challenges related to music recognition. Research in OMR is confronted with chal-

lenges that are directly related to the complexity of music notation and the lack of effec-

tive methods and algorithms capable of dealing with these problems. Music notation has 

evolved over the centuries into a sophisticated visual language that has its own vocabu-

lary, syntax, and semantics, and as any other language it also has its own practices, 

dialects, and styles. Furthermore, developments in music continuously introduce new 

forms of expression. Music notation also encompasses a vast amount of music symbols 

that are to be interpreted differently depending on the context and circumstance they are 

presented in as well as their relationship to other symbols. Notation is also two-dimen-

sional which means that the assigned meaning depends on their position on the vertical 

and horizontal axis of the stave. The two-dimensional nature of music notation is one of 
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the features that poses the greatest challenge to the recognition process as at the mo-

ment there are no techniques, neither in computer vision nor in deep learning, that can 

deal with it appropriately, accurately and efficiently. Additionally, music is sometimes 

presented on scores ambiguously, at times the composer breaks rules of music deliber-

ately, and every so often information has been disregarded either intentionally or unin-

tentionally. Research in OMR suggests that this is also where the boundaries for OMR 

are to be established as the computer cannot complete missing information that requires 

a sound knowledge of music theory and music history as well as the ability to interpret 

music intuitively. At present, machine learning is uncapable of dealing with such an effort.     

From this perspective OMR should focus on investigating how deep learning could fur-

ther improve music object detection, for example, with convolutional neural networks so 

that all symbols available in SMuFL could be properly be detected and identified. As 

rather large music symbol and notation datasets already exist, it could be valuable to try 

to transfer already trained networks among different datasets. Nonetheless, the mere 

detection of music objects does not suffice the requirements of advanced OMR systems 

which should also be able to assign correct musical semantics to music objects. How-

ever, the semantic reconstruction should be attempted only after music object detection 

has been successfully achieved. Rules cannot simply be applied to objects unless they 

have first been identified. As deep learning algorithms are often based on statistical mod-

els that provide a probability over a set of hypotheses, it could be valuable to investigate 

the possibility of using probabilistic models for the semantic reconstruction of music 

scores. This is an area that is still rather unexplored in OMR. Thus, an advanced end-to-

end OMR system should be flexible enough to let the user verify the outcome of the 

recognition and allow the user to change the interpretation when needed. On the other 

hand, the application of probabilistic models could altogether bring completely new per-

spectives to music analysis and composition. It is also worth observing that there are 

large amounts of archived music manuscripts that have never been investigated and 

made available to public. It would be truly interesting to analyse these scores with ad-

vanced methods of machine learning.  

All in all, an overall OMR is still to be considered a problem to be solved, but advances 

in machine learning together with computer vision are slowly taking it further. Hopefully 

in the years to come, a system that satisfies the requirements of CWMN is successfully 

completed and made available to the public. 
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