

Soyhan Yazgan

Developing a Virtual Reality
Application for Realistic
Architectural Visualizations

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

26 June 2020

 Abstract

Author
Title

Number of Pages
Date

Soyhan Yazgan
Developing a Virtual Reality Application for Realistic
Architectural Visualizations
30 pages
26 June 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Supervisor

The aim of this thesis is to understand how Virtual Reality works, what are its weaknesses
and how to improve on them. It also tries to make use of Virtual Reality for architects.

In this thesis, problems and limitations of Virtual Reality are discussed, how Virtual Reality
can be used for architecture, how realistic graphics can be made and how Unreal Engine 4,
a game development engine, can be used as a creation tool.

As a result, an application was made to be used with both a Virtual Reality kit and with
regular PC with keyboard and mouse. This application is a virtual tour of an apartment where
furniture can be moved around, and their materials can be changed in real-time.

Keywords virtual reality, architecture, visualization, render

Contents

List of Abbreviations

1 Introduction 1

2 Background Information 3

2.1 Virtual Reality 3

2.1.1 What is VR 3

2.1.2 Stereoscopic View 3

2.1.3 HTC Vive 4

2.1.4 Future Improvements 5

2.1.5 Uses of VR 6

2.2 Architectural Visualization 6

2.2.1 3D Models 6

2.2.2 Still 3D Renders 7

2.2.3 3D Animations 7

2.2.4 Real-Time Rendering 8

2.2.5 Virtual Tour 8

2.3 Design Steps 9

2.3.1 Pre-Design 9

2.3.2 Schematic Design 9

2.3.3 Design Development 9

2.4 Autodesk Revit 10

3 Unreal Engine 4 11

3.1 Project Settings 13

3.2 Importing to Unreal Engine 4 13

3.3 Post Process Volume 14

3.4 Materials 14

3.5 Texture Optimization 17

3.6 Lighting Mobility 18

3.7 Lighting Types 20

3.8 Reflections 21

3.8.1 Ray Traced Reflections 21

3.8.2 Screen Space Reflections (SSR) 22

3.8.3 Reflection Capture Actor 23

3.8.4 Planar Reflections 23

3.9 Programming 24

3.9.1 Regular Map 24

3.9.2 VR Map 25

4 Conclusion 26

References 27

List of Abbreviations

2D 2-Dimensional

3D 3-Dimensional

AR Augmented Reality

BIM Building Information Modelling

CAD Computer-Aided Design

CGI Computer Generated Imagery

CPU Central Processing Unit

FPS Frames per Second

GPU Graphics Processing Unity

HMD Head Mounted Display

MR, XR Mixed-Reality

PBR Physically Based Rendering

PC Personal Computer

RT Ray Tracing

SSR Screen Space Reflections

UE4 Unreal Engine 4

UI User Interface

UMG Unreal Motion Graphics

VR Virtual Reality

1

1 Introduction

Architecture has existed for thousands of years. Ever since humans started living in

caves, and using stones, wood, bricks and any other material usable for making a shel-

ter, the need of architecture has existed. The need will continue to exist forever. Archi-

tecture is like a living being; it changes, and it evolves. Architecture is made by architects.

Thus, the need for architects will exist as well. An architect designs and creates a struc-

ture. He uses and designs space, and he does this 3 dimensionally. Eventually when his

design is finished, either to demonstrate it, showcase it, explain it or build it, he will need

to have a presentation technique. This can be done by drawing plans on a paper, building

a 3-dimensional (3D) models or use computers to render the finished look. In 21st cen-

tury, there is a new tool that can be used to present a design, and this tool is virtual reality

(VR) (concept seen in figure 1). [1]

Figure 1. Concept of Virtual Reality used for architectural presentations.

Architecture may have existed for centuries. Computers however, are the invention of

20th century. Like many events that changed and defined ages in human history, in the

future we will look back and mark invention of computer as the event that started The

Digital Age. People of today do not need to leave their house to do regular life events

such as; studying, working, socializing, being entertained and they can even order food

and groceries delivered to their home. [2]

2

One can argue the digitalization and not leaving home is making people unsocial and

introvert. But in 2020 when this thesis is being written, an epidemic is happening all

around the world which is caused by The Coronavirus (COVID-19 or SARS Cov-2), a

contagious flu. The way to fight this epidemic has been staying home as much as possi-

ble and working/studying from home. In a world where overpopulation is increasingly

becoming a problem, also is creating other problems such as traffic, working and study-

ing from home helps with time and saving travel expenses. In this kind of world digitali-

zation is definitely needed. Through a computer with internet, a person can reach all the

information he needs within seconds. He can also travel the world without spending any

money or travelling without any cars or planes. When VR is added to the picture, it is

possible to be in the same room with other people anywhere in the world and interact

(example in image 1). It is very possible for future to have schools in a completely virtual

environment. Coronavirus epidemic clearly proved that the future will be lived in the vir-

tual world and VR development is going to take big part of it. [3]

Image 1. A virtual reality online meeting scenario

In this thesis, the concept of virtual reality, its uses and limitations and current state of

hyper-realistic computer-generated imagery (CGI) will be discussed and steps for devel-

oping a VR program for architects to use as a presentation technique will be explained.

3

2 Background Information

2.1 Virtual Reality

2.1.1 What is VR

Virtual Reality Society defines virtual reality as an emulation to trick senses in order to

reach a near-reality experience. The concept virtual reality might sound new to some but

tricking our mind to be somewhere else when we are not, is not a new concept. Seeing,

in other words, using eyes for visual sense is the strongest sense of existence in a space.

If a person is in a room; the easiest way for him to know it, is by simply looking around.

Hearing, smelling and touching are other senses that can enhance this experience, but

they are secondary senses. [4]

2.1.2 Stereoscopic View

One of the important ways the human eye works is the perception of depth, achievable

by two different eyes seeing slightly different perspective and brain interpreting this as

the sense of depth. When a painter paints, or a photographer takes a photo, these im-

ages are in 2-dimension (2D) and will look flat and depthless to our eyes. Even when

perspective is used, our eyes and brain are clever enough to know the difference. How-

ever, if 2 different photos from slightly moved angle is taken and displayed to each cor-

responding eye, the brain is tricked, and concept of depth is better achieved (Illustrated

in figure 2). [5] This method has been in use for over a hundred years. As an example,

a stereoscopic photography card of a view of Boston, taken from 2 different angles used

with a stereoscopic viewing device was already made in 1860. [6]

Figure 2. Illustration of stereoscopic view

4

2.1.3 HTC Vive

Today, with improved technology and fast computers, 3D movies and VR games exist.

HTC and Valve companies together developed a consumer level VR device called HTC

Vive. It consists of a head mounted display (HMD), two controllers, two base stations,

the powered receiver box and cables (as seen in figure 3).

Figure 3. HTC Vive room setup

HMD is a headset with two lenses for stereoscopic view, a stereo headphone connection

cable and head strap. This device then connects to the receiver box which connects to

a computer. At its current stage, HMD is heavy, cables are long and tangling to the user

while in motion and most importantly; head straps, within several minutes of use, create

uncomfortable heat for the user’s head and face. These are currently the main reasons

for users to not want to wear the headset for long sessions. But future versions will battle

these difficulties.

Two base stations send information to HMD and between each other to create the virtual

space. Vive can work with one base station but accuracy of the tracking is not the best

with only one. Yet, it can also work with more than two stations to further improve the

accuracy. [7, a]

5

Two controllers connect with base stations and HMD to give user an input option. Usual

actions with these controllers are grabbing, hitting, pointing and selecting. They also

have haptic feedback which helps when an object comes in contact with the controller in

virtual world. This vibration feedback tries to mimic the sensation of touch. [7, b]

For the remainder of this thesis, HTC Vive will be used as the VR device.

2.1.4 Future Improvements

Vive is still in development and newer versions are to be released. [8] It has its problems

and has a lot of room for improvement, such as resolution, frames per second (FPS),

quality of the image, real-time response, dizziness, focus depth, weight of the HMD and

heating of the straps and long cables. While technology improves, weight of the device

will reduce, cables will be removed for wireless access and the comfort will get better.

But some of the other limitation; such as focus depth may be difficult to solve. Human

eye adjusts its focus on the distance of the object, while this focus can falsely be created

by depth of field effect in a single picture, if the person looks in another object, the focus

changes, and the hardware needs to have ability to detect this and redraw the depth of

field accordingly. Other improvements to more realistic VR such as true 3D spatial audio,

sensation of touch and smell may also one day be implemented to the system. It is not

known what the abilities of VR will be in the future (example in image 2).

Image 2. Ready Player One is a movie about the possibilities of VR in year 2045. [9]

6

2.1.5 Uses of VR

Virtual Reality has so far been used for the following purposes:

• architecture

• gaming

• interactive movies

• medical training

• medical treatments (pain management, PTSD, anxiety...)

• work collaboration

2.2 Architectural Visualization

Architectural visualizations are representations of a planned structure for them to be eas-

ily understood. An architect or an engineer is able to read through floor plans but not

everybody can. The purpose for these visualizations is to present it to everyone, to better

understand the final product, to help with the design, to look for errors or for marketing

purposes. [10]

2.2.1 3D Models

One of the methods to show a finished structure is building a real life, small scale 3D

model. These models are usually around 1:50 to 1:200 scale and built with paper, foam,

wood, laser cut or 3d printed. It is pretty common to see pure white models for its sim-

plicity and clarity. Building these models require good hand skills since it can become

very messy. There are companies that specialize in building them for professional pur-

poses. Even though they are a classic solution for visualization, they are difficult to make,

hard to fix and most importantly they are static. Today, there are more dynamic methods

to display a building. [11]

7

2.2.2 Still 3D Renders

Usually made by a 3D software such as 3ds Max, 3D renders are the most popular ways

to present a building. This type of presentation used to be done with paper and pen by

drawing the finished structure. Today, computers are used. They can be hyper realistic

(as seen in figure 4) or stylized depending on the purpose. With the increasing speed of

the computers and increasing availability of the tools, they are becoming more cost effi-

cient everyday. However, they are still static images. While preparing a scene might take

hours to days, rendering the final image also takes from minutes to hours, for a single

frame. It is usual to have several renders of a building to show different angles and de-

tails, yet once the render is finished, it is not possible to make dramatic changes on it,

such as removing a piece of furniture, changing the colour of a wall or changing the

daytime.

Figure 4. A hyper-realistic interior 3D render (render time: 20 minutes)

2.2.3 3D Animations

Walkthrough animations are yet another way to present a building. While a still render is

static, an animation can have movement. It is possible to have changes in an animation,

show timeline, movement, progress or change sun angle. While these are a step better

than still images, they come with extremely high amount of render times and building the

8

scene effort. It can take a month to make a 3D animation. It is costly. If there is a mistake

on the animation, it takes long time to re-render the animation. Moreover, whatever is

baked in the animation, even though in motion, once baked, is not anymore dynamic. It

is not possible to move the camera on the fly or change the scene however liked.

2.2.4 Real-Time Rendering

With the increasing speed of central processing units (CPU) and graphics processing

units (GPU), it is possible to make real-time renderings. These are another step forward

than animations. Today, gaming engines such as Epic Games Unreal Engine 4 (UE4)

allow hyper-realistic graphics in real-time. Companies started using these engines for

architectural renderings instead of game programming. The advantages of using a game

engine for rendering are:

• speed

• real-time response

• ability to change anything on the fly

• ability to interact

• using programming to add functionality to objects

Abilities of Unreal Engine 4 will be discussed further in upcoming chapters.

2.2.5 Virtual Tour

When real-time rendering is combined with VR, the result is a virtual tour. This method

is the most immersive, most interactive method for architectural visualizations. The user

can experience the environment in stereoscopic 3D, look around in 360 degrees, move

around in 3D, interact with object using the controllers, change the scene however he

likes, hear the ambient voices (if any implemented) and feel how it will feel when the

structure is finished. This method also allows designers to experience their design while

making them. A program can be made for designer to use during the designing process;

such as making walls, adding furniture all within the VR in real-time. [12]

9

2.3 Design Steps

Designing a building is made out of 5 stages:

• pre-design

• schematic design

• design development

• construction drawings

• construction

In the case of this thesis, a medium sized sample apartment will be designed and mod-

elled. The design development phase will be the main step discussed. Last two phases

will be skipped because this project will not come to life but will be only a sample project

to show abilities of a VR application. [13, a]

2.3.1 Pre-Design

Pre-design phase is about analysis, budgeting, scheduling and targeting. In this case,

design is simple, budgeting is zero, scheduling is about one week and since it is not a

real-life scenario, it will be imagined as an apartment floor on a 20-floor building. [13, b]

2.3.2 Schematic Design

This phase includes planning of the floor and spaces, sketching and creating the main

layout. In the case of a medium size apartment, the floor plan will contain a bedroom, a

kitchenette with living room, a bathroom, a toilet and a sauna. The drawings will be made

in Autodesk Revit and then exported to Unreal Engine 4 for programming. [13, c]

2.3.3 Design Development

In this phase visualizations are created. In the case of this thesis programming for VR

functionality will be created. Also, materials will be assigned, furniture will be imported,

and final export of the program will happen. [13, d]

10

2.4 Autodesk Revit

One of the most commonly used computer-aided-design (CAD) program by engineers

and architects is AutoCAD. This program allows precise drawings in vector. Even though

it is easy to learn and draw lines and arcs on AutoCAD, detailing and rearranging the

drawings take time. An example to this is drawing window or roof details. Once the floor

plan is drawn in 2D, it is possible to rotate the plan into 3D and draw vertical lines. Line

by line drawing all these details take long time. Once drawing is done and if a wall needs

to be changed in size, a lot of effort is necessary to redraw all the lines. While AutoCAD

used to be a favourite tool, another tool was developed for better use for architects.

Revit is a program, currently owned and developed by Autodesk, is a building information

modelling (BIM) tool. It extends the functionality of AutoCAD. In AutoCAD lines are

drawn. In Revit, building objects such as walls, windows, doors and roofs are defined

and created. Revit objects exist 3-dimensionally. When a wall is defined, program asks

for length, height, width and also materials, layers and a variety of extra information.

Windows exists within walls. When a wall is modified, windows move with it. Roofs are

generated automatically but can be modified manually. Revit is designed for architects

by architects and usually is intelligent enough to understand what the user is trying to

do. As a BIM tool, it can also work with timed events such as building, containing infor-

mation, wearing and demolition. It also contains performance tools for cost calculating.

These are the reasons why Revit is more preferred over AutoCAD today. [14]

As explained above, Revit works on 3D. A floor plan can be drawn s and can be turned

into a 3D model within minutes. As much intensive detail can be put into a Revit project,

for this thesis, only the walls, windows, doors, floors and ceilings will be created within

Revit. As stated in design development section, the floor plan for this project contains a

bedroom, a kitchenette with living room, a bathroom, a WC and a sauna (as seen in

figure 5).

11

Figure 5. Revit floor plan

3 Unreal Engine 4

Unreal Engine was originally created by Tim Sweeney for the game Unreal in 1998. On

2015, UE4 was released to public for free with a royalty fee of 5% over 3000$ earning.

With the free model, it gained lot of popularity within the indie industry. Small companies

who cannot offer to buy expensive software could freely use UE4.

UE4 has big amount of documentation and help, YouTube tutorials and forum posts. The

community around UE4 is increasing by day. After their own hugely successful game

Fortnite, Epic Games started buying paid resources and set them free on their market-

place for developers to use. Not only UE4 is capable of working with large variety of

asset imports from other sources, but also allows on Epic marketplace content creators

to sell their own assets. [15]

UE4 allows creation of content for not only personal computers (PC) but also consoles

and mobile devices. The engine is used not only by game developers but also for making

movies and architectural visualizations.

12

Here are some of the key features of Unreal Engine 4: [16]

• C++ and Phyton scripting

• Blueprints, Unreal’s visual scripting language

• Datasmith importing tool

• landscape tools

• asset optimization tool

• Animation Blueprints

• Forward Rendering shader optimized for VR

• Physical Based Rendering (PBR) material editor

• real-time Ray Tracing (RT)

• advanced shaders (lit, unlit, transparent, clear-coat, subsurface scattering,
skin, hair, two-sided foliage)

• virtual texturing

• post process effects

• particle, destruction, hair & fur and cloth physics

• Unreal Motion Graphics (UMG) user interface (UI) editor

• AI and navigation

• multiplatform development

• VR, augmented reality (AR) mixed-reality (XR, MR) support

• Marketplace

• source-code available

With this project, there will be two different maps available with same furniture but two

different functionalities. The first version will be controlled with keyboard and mouse and

will be viewed on a regular computer screen. This version will be called Regular Map.

The second version will be for VR and will use VR motion controllers. This version will

be called VR Map.

The main reason two versions needing to be created is performance. VR version has to

have stable 90+ fps, otherwise will cause motion sickness. When current generation

GPU renders two different large resolution screens, with Ray Tracing enabled, it cannot

maintain 90 fps. Details of the differences of the maps will be explained in related chap-

ters.

13

3.1 Project Settings

When a new UE4 project is created, with version 4.25.1 used with this thesis, several

templates will show to choose from. These have starting points for different types of

projects. The “Architecture Template” and “Virtual Reality” template might be useful but

for this thesis, an empty template with blueprints is selected. After the project is open,

some settings need to be changed. First, Ray Tracing and Skin Cache needs to be en-

abled. Then Default RHI needs to be changed to DirectX 12. Datasmith and SteamVR

plugins need to be enabled. Then project is restarted.

With the project having two different maps, the VR Map needs to have different lighting

and reflection techniques setup. Screen Space Reflections will be used as they are sec-

ond best option for reflections after Ray Tracing. Normally, a VR project would be used

with Forward Shader for performance gain. But with this project, Deferred Shader will be

used because Forward Shader does not support Screen Space Reflections. [17]

3.2 Importing to Unreal Engine 4

Unreal Engine 4 comes with an intelligent importing tool called Datasmith. It can read

different modelling app files including Revit. When the modelling in Revit is finished, and

if the Datasmith plugin for Revit is installed, the project will have Add-Ins tab where Ex-

port to Datasmith button is placed. After this, a folder with Datasmith file is created to be

imported to Unreal Engine 4.

Inside UE4, if Datasmith is enabled in plug-ins, the Datasmith import button can be found

on top menu. When the file created earlier is selected, it will ask what to import; such as

models, lights and cameras. After the importing is done, the model as it was created in

Revit will appear in UE4 project folder. None of the objects have materials at this stage.

Walls, floors and windows need to have materials created for them. Their collision set-

tings are set to complex.

One great thing about Datasmith is that, if user wants to edit the original Revit file, a

reimport can be easily done with modified parts and they will fit perfectly on their coordi-

nates on the UE4 project. [18]

14

3.3 Post Process Volume

To be able to change several shader settings, a Post Process Volume needs to be

added. After it is added, inside its settings, the following options are set for the Regular

Map: [19][20]

• Infinite Extend (Unbound): Enabled - Makes Post Process affect the whole
map

• Reflections: Ray Tracing – Realistic real-time calculated reflections

• Ray Tracing Global Illumination: Final Gather – Calculates real-time shad-
ows

• Ray tracing Global Illumination Samples Per Pixel: 24 – Higher is better but
performance heavy, lower will make splotches appear on the screen.

• Translucency Type: Ray Tracing – Realistic real-time calculated transpar-
ent materials

• Bloom Method: Convolution – High quality Bloom effect on bright lights

The VR Map will have the following settings set differently than previous settings:

• Reflections: Screen Space Reflections – Quick reflections but works only
with objects that are visible in the view

• Ray Tracing Global Illumination: Disabled – Global Illumination will be pre-
baked

• Translucency Type: Raster – Non-ray tracing translucency

• Motion Blur: 0 – Motion Blur gives VR users motion sickness

In the future, when faster GPU’s are released, VR version can also have Ray Tracing

enabled. Currently, it is not suitable with today’s GPU’s.

3.4 Materials

When it comes to creating objects and environments, creating materials plays a crucial

role. If for example there is a cube, it has 8 vertices on the corners, 12 edges and 6

faces. These are defined by coordinates and math functions. How they are displayed to

the screen is defined by materials. If the faces are matte, shiny, transparent, has colors,

15

has bumps and deformations; they are defined in material editor. A flat plane can look

like wood floor, a mirror or even ocean waves moving with wind.

In this chapter, how to make realistic looking materials with UE4 will be discussed. How-

ever, equivalent material expressions exist in other 3D software and the concept is sim-

ilar when it comes to static materials; such as Diffuse, Reflection, Roughness, Opacity

and Bump. On UE4, when a new material is created, a material attributes box is seen.

This box has plenty of inputs to manipulate the material in the way wanted. In the sim-

plest way, several maps can be imported and used to create good static material. It can

also be used to create complex, multi functional, real-time manipulatable materials de-

fined with functions and maths. [21]

• Base Color is the first input. A 3-vector RGB node can be forwarded to Base

Color and depending on the RGB parameters, the material will change color.

However, it will look flat and boring. Another method is to use a texture map. PRB

material sets can be downloaded from internet or from Unreal Marketplace which

comes with several maps to use. A wooden floor would have the matte colored

texture of the wood in diffuse channel. This can be forwarded to Base Color. With

only diffuse, the material will look flat, unreflective and unrealistic. It will have the

texture, but it will look like paper. To make it realistic, more expressions are

needed. [22, a]

• Metallic and Specular are similar but different reflection expressions. A single

vector node can be used for these. Metallic gives a mirror like reflection when set

to 1.0 and Specular gives more plastic looking reflections. If a PRB material is

used, a reflection channel will be available as a texture map, that defines which

parts of the surface has more reflections. If reflection can be defined between 0.0

to 1.0, a reflection map with black and white texture translates into numbers be-

tween 0 to 1 on locations needed. In a wooden floor material, the lines and cracks

would be darker, and planks would be lighter. [22, b]

• Roughness is connected to reflections. When Metallic is set to 1.0 and Rough-

ness set to 0.0, the object will be a perfect mirror reflecting the light as is. How-

ever, when Roughness is set to 0.5, the reflection will get blurry and the object

will look like a brushed metal, blurry and shiny. When Roughness is set to 1,

16

reflection will not be too visible anymore because of spread of the blur. Metal-

lic/Specular and Roughness together make big difference when making materials

look cartoonish, fake, 90s looking or hyper-realistic. Roughness also makes big

difference in the performance. When making hyper-realistic looking environ-

ments, it is advisable to use reflection and roughness on every material. [22, c]

• Emissive Color make the object generate light. they can be RGB and have tex-

tures. A light bulb would have Emissive Color in it. [22, d]

• Opacity makes the object transparent. If an object has only its Opacity set close

to 0, it will look faded, like a ghost. A glass on the other hand would have low

Opacity and high Metallic and low Roughness values because it reflects the light.

But it also would need Refraction setup. [22, e]

• Refraction is for a transparent object, to bend the light passing through it. Every

transparent object, including air has a refraction value in real world physics. For

example, vacuum is 1.0, water is 1.33, flint glass is 1.65 and diamond 2.42. If a

glass material is made, Opacity of 0.2, Metallic of 1.0, Roughness of 0.0 and

Refraction of 1.65 should be set. [22, f]

• Normal is a special material expression. (Other programs might refer to it as

height map or bump map, even though they work similar, these maps would look

different but can be convertible between each other.) Normal map is used to de-

termine if the flat object would have non-flat surface, such as dents and

scratches. In a wooden floor, planks and corners of the planks would be different

height, and this is defined by Normal Map texture. If an object is modelled with

all the details and dents on its surfaces, it would have high number of polygons.

This makes the project size high, used memory high and CPU calculations heavy.

But if the object is defined flat but material has bump, the object itself is not ma-

nipulated and lighting shader calculates the dents. It is faster and more practical.

[22, g]

• World Displacement is similar to Normal but there is a difference on how they

work. Normal does not manipulate the object, but Displacement does. It adds and

changes the vertices of an object. A flat plane object with moving wave

17

Displacement map will look like ocean waves. A sphere object with Displacement

can look like a strawberry. A flat plane with noise map as Displacement can look

like grass. Displacement is performance heavy because of new polygon creation

and should be used only when necessary. [22, h]

• Tessellation is used with Displacement. When Tessellation is used, the object is

divided to smaller sized polygons, allowing Displacement map to use more detail.

If the object looks spiky, blocky and low resolution with Displacement, Tessella-

tion will add more polygons to make the object higher resolution and more de-

tailed. UE4 can use an object’s distance from the camera to add more Tessella-

tion to an object when close and reduce when far, which helps with performance.

[22, i]

An example of a realistic looking wooden floor can be seen in image 3 with all necessary

maps attached.

Image 3. Wooden floor material with Diffuse, Normal, Roughness and Metallic maps

3.5 Texture Optimization

A realistic project needs realistic materials with high quality and high-resolution textures.

The largest texture resolution UE4 supports is 8192x8192 pixels. In theory, every object

and material can have this size textures. But, when the number of materials grow high,

18

eventually the computers memory or graphics card’s memory will run out. For this rea-

son, optimization has to be done.

UE4 has a clever method for handling large textures. If a texture is imported and has its

resolution in 2𝑛 x 2𝑛 size (such as 1024 x 2048), Mipmaps are created. UE4 creates

smaller versions of the same texture by making its resolution half and quarter and so on.

As an example, if a 1024x1024 pixel texture is imported, Mipmaps with 512x512,

256x256, 128x128, 64x64 and 32x32 are created. How many Mipmaps created depends

on the setting.

After the Mipmaps are created, when the object with the material using the created tex-

ture is on the screen, how much of the screen space the object is covering is calculated.

After this calculation, the maximum size of texture that fits in this screen size is selected.

In short, if object comes close to camera and gets larger portion of the screen, a higher

resolution texture will be used, and further object will use smaller texture. Combined with

Texture Streaming, a technique to load and unload needed textures on the fly, the

memory issue is solved. [23]

UE4 also recently implemented a new technique called Virtual Texturing. With Virtual

Texturing, when a large texture is used for an object, but only a smaller portion of the

texture is seen and used, UE4 will cut out the needed part and load only that part of the

large texture to save memory. This helps especially with landscape textures. [24]

If a texture does not have its resolution in power of two, Mipmaps are not created and

only the original file is used. For this reason, with every new texture is imported, they

must be checked that their size is on power of two and if not, they should be scaled.

3.6 Lighting Mobility

On UE4 there are 3 settings for mobility of the light. These are; static, stationary and

dynamic.

When a light is added and is set to static, the lighting needs to be built for that light to

work. Pre-built static lights are very easy on the CPU. But they need to be rebuilt every

19

time the scene changes. During the design process, static lights can be let without build-

ing them. When the project is finished, then lighting can be built once for final version.

Depending on the size of the project and quality set for shadows, this might take from

minutes to hours. UE4 builds shadow maps to be applied over the original textures for

showing where shadows are. Pre-built light shadows can be sharp and good quality but

since they are static, the light cannot be changed. It can’t be moved or turned off. How-

ever, if the light will not change during gameplay, it is advisable to set it to static. [25]

Stationary lights are similar to static lights. They need to be built. The difference is, they

can be manipulated during gameplay. They can be turned off; color and brightness can

be changed. However, they have a limitation. No surface on the project can have more

than 4 stationary light affecting it at the same time. This means, if there is a room and

there are 5 lights and their area of effect overlap, one of the lights will not work. (image

4) When using stationary lights, the placement of the lights needs to be arranged so that

they don’t overlap. [26]

Image 4. No more that 4 Stationary lights can overlap

Movable lights are most performance heavy option for lighting the scenario. All the shad-

ows are calculated during gameplay. The advantage of using movable lights is that they

are fully dynamic. They can be modified, moved around and turned off. In a scene where

there is daylight and the sun moves during gameplay, sunlight’s mobility needs to be set

to movable. [27]

20

3.7 Lighting Types

There are different types of lights on UE4: [28]

• Point Light is a sphere-shaped light. The size of the sphere can be
changed.

• Rect Light is a rectangular shaped, one or two-sided light.

• Spot Light have a target location where they point at.

• Directional Lights is an unlimited sized parallel light that come from outside
the project map. It can be used for sunlight.

• Sky Light covers the sky and illuminates from all directions.

Point, Rect and Spot lights can have IES profiles which defines what specific shape these

lights look like. Many IES profiles can be found on the internet for free.

UE4 has a Sky Sphere blueprint in its Starter Content. This blueprint is a combination of

Skylight, a Sun and clouds. Using it is an easy way to make simple sky.

In the project that is documented in this thesis, a Sky Sphere Blueprint is used for illumi-

nation of the sky. A Directional Light is used for illumination from the Sun. In front of the

windows, Rect Light’s are placed for better quality lighting for the interior. Point Light’s

are placed for lamps. Spot Light’s are placed for spot lights on the ceiling (image 5).

Image 5. 1. Directional Sun Light 2. Rect Lights for windows 3. Spot Lights 4. Point Lights

21

All lights for Regular Map are set to Movable because the lighting and shadows are being

handled by Ray Tracing. In VR Map, Sky Sphere, Directional Light and Rect Light’s are

set to Static because they won’t change. Point Light’s and Spot Light’s are set to Sta-

tionary so that they can be turned on and off during gameplay. However, their area of

effect are carefully adjusted so that no more than 4 of Stationary lights are overlapping.

When the project is finished, a final lighting build is performed for the VR Map with its

Lighting Quality setting set to Production.

3.8 Reflections

Reflections are very important for realism. Every surface in real life have some level of

reflection. Most surfaces are rough, meaning their reflection is blurry and spread. While

setting these materials is easy, the amount of needed calculation for GPU is heavy.

There are different ways to battle this on UE4.

3.8.1 Ray Traced Reflections

Ray Traced Reflections are latest and most accurate ways to calculate reflections. Rays

are thrown from the camera and their path is traced. How many rays are thrown, how far

they are traced and how many times they bounce depend on the settings and higher

values require more power from GPU. Static stills can be calculated with very high set-

tings and the amount of time it takes to calculate would not matter too much. However,

in a real-time application, the speed is very crucial. [29] Low quality settings or slow

GPU can produce unwanted visible noise (seen in image 6).

Image 6. Visible noise because of low settings or slow performance

22

With current speed of GPU’s, some level of quality can be produced. But the future will

bring much higher quality with increasing power of newer GPU’s. At the moment, this

technique is in early development and experimental.

In this project, Regular Map will use Ray Traced Reflections.

3.8.2 Screen Space Reflections (SSR)

Screen Space Reflections are default method for UE4 to achieve realistic reflections.

They are medium performance heavy. With them, reflections are somehow blurry and

not sharp. However, they are useful for floors which have blurry reflections. The way

SSR works is that the objects that are in reflections must be themselves on the view. If

there is a flat perfect mirror and the user looks directly to it, the objects that are behind

the user and not in user’s first view, they also won’t be visible in the mirror (seen in image

7). Also, since SSR are not very sharp, a mirror wouldn’t look very realistic. But for blurry

surfaces, SSR are useful. [30]

Image 7. Red cube is not in view of camera, thus also not in the reflection

In this project, VR Map will use SSR for blurry surfaces such as wood.

23

3.8.3 Reflection Capture Actor

Reflection Capture actor is a light performance method for good looking reflections.

When this actor is placed, a build phase is needed. When reflections are built, they are

recorded from the actor’s perspective. The actor is either a sphere or a box.

Reflection Capture actor has its resolution set in the settings. If there are many of this

actor and their resolution is set very high, GPU memory can run out resulting a crash.

While Reflection Capture actors are cheap and easy, their problem is that the reflections

are always from the actor’s perspective, meaning the object that is reflecting will always

have incorrect reflection angle to the user (seen in image 8). For this reason, they are

usually used on places that the reflections are not on a perfect mirror or flat and angle

cannot be visible too clearly. [31]

Image 8. Incorrect reflections from Reflection Capture actor

In this project, on the VR Map, there will be several Reflection Capture actors in the

rooms to hide SSR imperfection on the corners of the view.

3.8.4 Planar Reflections

Planar Reflections are very performance heavy, but they produce very sharp reflections.

UE4 needs to redraw everything a second time to achieve this. The upside is that they

24

are a perfect mirror. A flat mirror in a bathroom can use this type of reflection if there is

no performance issue. Water surface is also a good place to use Planar Reflections. [32]

While Planar Reflections are great for sharp reflections, they cannot make blurry reflec-

tions. Because Planar Reflections are very performance heavy and they cannot make

blurry reflections, they won’t be used for this project.

3.9 Programming

As previously mentioned, because of the different functionality for user operation and

performance issues of VR, two different maps will be created with two different settings

and user inputs.

3.9.1 Regular Map

In Regular Map, keyboard and mouse are used to move around and interact. A player

pawn blueprint is created and named “FirstPersonCharacter”. A GameMode a blueprint

is added, and player is changed to FirstPersonCharacter. In the World Settings, game

mode is set to the new GameMode. In Project Settings on Input tab; keyboard buttons

“E” key is added to Action Mappings as “EditButton”. Mouse input and movement keys

(W, A, S, D and arrow keys) are added to Axis Mappings.

Inside FirstPersonCharacter, a camera is added. Movement inputs that are added to

input list are attached to Add Movement Input nodes. Mouse movement is attached to

Add Controller Pitch and Yaw Input nodes. The FirstPersonCharacter blueprint is added

to level. At this stage, when Play button is pressed, gameplay starts, and player is able

to move around with keyboard and look around with mouse.

An int variable is added. If the int value is set to 0 it is “WalkingMode”. If it’s set to 1 it is

“EditModeEnabled” and if set to 2 then it is “MoveModeEnabled”. When EditButton is

pressed, this int changes its value between 0, 1 and 2. LineTraceByChannel node will

enable the user to select objects. When EditModeEnabled is selected, at FirstPer-

sonCharacter camera location towards forward vector, a line is drawn by UE4 and the

25

object hit is printed to debug. This will later be programmed to allow user to select objects

that have editing possibility and change their attributes.

Before adding functionality to change materials, the apartment’s design need to be fin-

ished first. Either from Marketplace, internet sources or modelling by hand on 3ds Max,

the whole apartment is filled up with furniture with high details and high-quality materials.

Most of the objects have PBR materials with diffuse, metallic, specular, roughness and

normal textures attached. Glass has refraction and opacity. A spinning ceiling fan has

added to express movement of time because most of the objects are still.

For some of the objects such as wood, table and sofa, several materials have been cre-

ated. Inside the FirstPersonCharacter blueprint, a function is added when EditModeEn-

abled is active and player clicks on an object, the object name gets through a Switch

node. If the object name matches with the multiple material available furniture, the furni-

ture gets outlined with a light blue color. This indicates that furniture material is switcha-

ble. A UI layer appears on the screen and shows the available options for material se-

lection. When one of the materials is selected, Change Material node is called, and dif-

ferent material is applied.

When MoveModeEnabled is selected, the user can click on several objects to move their

positions. When mouse is clicked, the object sticks to the position of the mouse and if

mouse wheel is turned, it rotates.

With these functions are added, user is able to walk around, change materials and move

objects. For this project, these are the only functions necessary.

3.9.2 VR Map

When Regular map is finished, it is copied and named VR Map. In this version keyboard

functionality will be switched to VR Controller.

In the VR Starter project, these is a VRController blueprint with pickup and move around

functionalities. This blueprint is migrated and added to VR Map. The buttons for activat-

ing teleport and pickup functions are added to Input Settings. Also, an Edit Mode function

is added to top button.

26

The FirstPersonCharacter blueprint has the editing functions. These functions are copied

to VRController blueprint and modified to be activated by the VR buttons. Moving around

with keyboard buttons function is not copied because VRController already has a tele-

porting function.

When EditModeEnabled is selected and UI node appears on the screen, it is adjusted

for a monitor screen. In VR Map, this node is modified to spawn as a real 3D object in

front of the furniture being modified.

With these changes, VR Map is ready. User can teleport around the apartment, change

materials and pickup objects to move them around.

As final steps, the lighting is built with Production quality is selected. After this is done,

the project is cooked for Windows 64-bit and is able to be run directly from the executable

file.

4 Conclusion

Virtual Reality is a developing and exciting technology. Computers are getting faster

each year. More and more applications are being available to developers. With more

sources available, community around CGI, VR and development is growing. Combined

with other practices such as architecture, realism and functionality of future projects will

only get better.

In this thesis, an example of a realistic looking VR application for an architect to show

his design is created. Problems of VR is discussed. Free community resources are used.

Steps to reach realism are explained. Latest real-time graphics with Ray Tracing is used.

Limitations of performance with VR is solved by using pre-built lighting and Screen Space

Reflections.

This project will be delivered to architecture companies around Finland in order to create

collaborations.

27

References

1 All About Architecture, What is Architecture? 31 July 2018
URL:
Accessed: 06.05.2020

2 RedAlkemi, Pros & Cons of Internet of Things, 7 May 2018
URL: https://www.redalkemi.com/blog/post/pros-cons-of-internet-of-things
Accessed: 06.05.2020

3 WHO, Coronavirus Disease (COVID-19) Advice for the Public, 29 April 2020
URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-
for-public
Accessed: 06.05.2020

4 Virtual Reality Society, What is Virtual Reality?
URL: https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
Accessed: 06.05.2020

5 Vilayanur S. Ramachandran, Diane Rogers-Ramachandran, Two Eyes, Two
Views: Your Brain and Depth Perception, 1 September 2009
URL: https://www.scientificamerican.com/article/two-eyes-two-views/
Accessed: 07.05.2020

6 Antonin Artaud, The Theatre and its Double, Translated by Mary Caroline Rich-
ards, New York: Grove Weidenfeld, 1958

7 David Heaney, How VR Positional Tracking Systems Work, 29 April 2019
URL: https://uploadvr.com/how-vr-tracking-works/
Accessed: 07.05.2020

8 Matt Wales, Eurogamer, HTC Unveils Three New Versions of Its Vive Cosmos
VR Headset, 20 February 2020
URL: https://www.eurogamer.net/articles/2020-02-20-htc-unveils-three-new-
versions-of-its-vive-cosmos-vr-headset
Accessed: 06.05.2020

9 Robbie Collin, Ready Player One Review: Steven Spielberg's White-knuckle Ride
Through a World of Pure Imagination, 29 March 2018
URL: https://www.telegraph.co.uk/films/0/ready-player-one-review-urgent-
message-steven-spielberg-eternal/
Accessed: 06.05.2020

10 Tony Hopkins, Designblendz, What Is Architectural Visualization? 16 August
2018
URL: https://www.designblendz.com/blog/what-is-architectural-visualization
Accessed: 06.05.2020

https://www.redalkemi.com/blog/post/pros-cons-of-internet-of-things
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.scientificamerican.com/article/two-eyes-two-views/
https://uploadvr.com/how-vr-tracking-works/
https://www.eurogamer.net/articles/2020-02-20-htc-unveils-three-new-versions-of-its-vive-cosmos-vr-headset
https://www.eurogamer.net/articles/2020-02-20-htc-unveils-three-new-versions-of-its-vive-cosmos-vr-headset
https://www.designblendz.com/blog/what-is-architectural-visualization

28

11 Arch2o, How to Make an Impressive Architecture Model? Your Complete Guide
URL: https://www.arch2o.com/architecture-model-complete-guide/
Accessed: 06.05.2020

12 TMD Studio LTD, Virtual Reality Uses in Architecture and Design, 21 January
2017
URL: https://medium.com/studiotmd/virtual-reality-uses-in-architecture-and-
design-c5d54b7c1e89
Accessed: 06.05.2020

13 Jorge Fontan AIA, 5 Architecture Phases of Design Explained, 20 March 2016
URL: https://jorgefontan.com/architectural-design-phases/
Accessed: 06.05.2020

14 BIM Service India, What Is Revit Software and Why It Is So Essential to Archi-
tects, Engineers & BIM Professionals? 22 August 2019
URL: https://www.bimservicesindia.com/blog/what-is-revit-software-and-why-it-is-
so-essential-to-architects-engineers-bim-professionals/
Accessed: 06.05.2020

15 Thomas Denham, What is Unreal Engine?
URL: https://conceptartempire.com/what-is-unreal-engine/
Accessed: 07.05.2020

16 Epic Games, Features of Unreal Engine
URL: https://www.unrealengine.com/en-US/features
Accessed: 07.05.2020

17 Real-Time Ray Tracing
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
Accessed: 15.06.2020

18 Datasmith Overview
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Over-
view/index.html
Accessed: 15.06.2020

19 Post Process Effects
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/in-
dex.html
Accessed: 15.06.2020

20 Ray Tracing Features Settings
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/RayTrac-
ingSettings/index.html
Accessed: 15.06.2020

21 Essential Material Concepts
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionTo-
Materials/index.html
Accessed: 15.06.2020

https://www.arch2o.com/architecture-model-complete-guide/
https://jorgefontan.com/architectural-design-phases/
https://www.bimservicesindia.com/blog/what-is-revit-software-and-why-it-is-so-essential-to-architects-engineers-bim-professionals/
https://www.bimservicesindia.com/blog/what-is-revit-software-and-why-it-is-so-essential-to-architects-engineers-bim-professionals/
https://conceptartempire.com/what-is-unreal-engine/
https://www.unrealengine.com/en-US/features
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/RayTracingSettings/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/RayTracingSettings/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/RayTracingSettings/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/RayTracingSettings/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials/index.html

29

22 Material Inputs
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/Materi-
alInputs/index.html
Accessed: 15.06.2020

23 Texture Properties
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Proper-
ties/index.html
Accessed: 15.06.2020

24 Virtual Texturing
https://docs.unrealengine.com/en-US/Engine/Rendering/VirtualTexturing/in-
dex.html
Accessed: 15.06.2020

25 Static Lights
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShad-
ows/LightMobility/StaticLights/index.html
Accessed: 16.06.2020

26 Stationary Lights
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShad-
ows/LightMobility/StationaryLights/index.html
Accessed: 16.06.2020

27 Movable Lights
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShad-
ows/LightMobility/DynamicLights/index.html
Accessed: 16.06.2020

28 Types of Lights
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShad-
ows/LightTypes/index.html
Accessed: 18.06.2020

29 Real-Time Ray Tracing
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
Accessed: 19.06.2020

30 Screen Space Reflections
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEf-
fects/ScreenSpaceReflection/index.html
Accessed: 19.06.2020

31 Reflection Environment
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShad-
ows/ReflectionEnvironment/index.html
Accessed: 19.06.2020

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/MaterialInputs/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/MaterialInputs/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/MaterialInputs/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/MaterialInputs/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Properties/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Properties/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Properties/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Properties/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/VirtualTexturing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/VirtualTexturing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/VirtualTexturing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/VirtualTexturing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StaticLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StaticLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StaticLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StaticLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StationaryLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StationaryLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StationaryLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/StationaryLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightMobility/DynamicLights/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightTypes/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightTypes/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightTypes/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/LightTypes/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/ReflectionEnvironment/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/ReflectionEnvironment/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/ReflectionEnvironment/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/ReflectionEnvironment/index.html

30

32 Planar Reflections
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShad-
ows/PlanarReflections/index.html
Accessed: 19.06.2020

https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/PlanarReflections/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/PlanarReflections/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/PlanarReflections/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/PlanarReflections/index.html

