

Deploying Software in the Cloud with CI/CD Pipelines

Ramesh Ghimire

 Bachelor’s Thesis

 Degree Programme in

 Business Information Technology

 2020

Abstract

 September 2020

Author(s)
Ramesh Ghimire

Degree programme
Business Information Technology

Report/thesis title
Deploying Software in the Cloud with CI/CD Pipelines

Number of pages
and appendix pages
42+ 6

This thesis deals with the practice of software deployment using Continuous Integration

and Continuous Delivery pipelines. It introduces modern practices related to System De-

velopment Life Cycle such as version control, testing, delivery and deployment of software

in the cloud managed under Agile framework and demonstrates an example which can be

picked up by any software developer without a hassle.

Emergence of cloud service providers and ever-growing usage of their offerings have

shifted the information technology landscape and created more opportunities for software

developers and usage of CICD Pipelines have become a standard industry practice. There

are different approaches to CICD in the industrial settings and different companies have

different tools and workflow set up to run this process. Some companies have dedicated

departments for example, DevOps engineers are those technicians who configure the dif-

ferent moving parts of CICD pipeline. However, any small development team can operate

with DevOps mentality themselves using the available tools and technology and DevOps

principle promotes this. This thesis demonstrates the concepts and example implementa-

tion of CI/CD pipelines and the emphasis is given to deploying the software in the cloud us-

ing as less tools as possible so that it integrates well with the workflow of software devel-

opers and small companies as well as does not incur additional large sum of costs.

To do so, theoretical background as well as different approaches and possibilities of the

CI/CD Pipeline implementations for software deployment in the cloud are explored from

available academic sources. This includes examining the diversity of technology and

choices for a software developer, followed by implementing an example solution. And for

the purpose of this implementation, AWS cloud and Bitbucket git repository are used. AWS

provides a wide range of cloud services for different purposes including software deploy-

ment and Bitbucket provides git version control services in the cloud. Git is a technology

used for software version control by developers. These tools are not the only ones availa-

ble for software developers and the demonstrated approach can easily be adapted to any

other alternative tools of choice.

Keywords
Continuous Integration, Continuous Delivery, Pipeline, Cloud, Software

Table of contents

Abbreviations Used .. 1

1. Introduction .. 2

1.1. Purpose of this Work .. 4

1.2. Structure of this Work ... 4

2. Theoretical Framework ... 5

2.1. Early era of Computing ... 5

2.1.1. Physical Limitation of Computing Resources ... 6

2.1.2. Virtualisation Technology .. 6

2.1.3. Cloud Computing ... 7

2.1.4. The Docker Container ... 7

2.2. System Development Life Cycle .. 9

2.3. Agile Methodology .. 9

2.4. Deploying Software in the Cloud .. 12

2.4.1. Version Control with Git ... 12

2.4.2. Continuous Integration .. 13

2.4.3. Continuous Integration as a development process 13

2.4.4. Continuous Delivery .. 15

2.4.5. Continuous Deployment .. 16

2.4.6. Continuous Delivery vs Continuous Deployment 16

2.4.7. Automated CICD Pipelines.. 17

2.4.8. Advantages of automated CICD Pipelines ... 18

2.5. Containerised Deployment ... 18

3. Proof of Concept ... 19

3.1. Short Introduction of the Technology in Use .. 19

3.2. Process Outline... 21

3.3. The Architecture.. 22

3.4. Implementation Details ... 22

3.4.1. Development Environment .. 23

3.4.2. Git Repository and the CICD Pipeline ... 23

3.4.3. Production Environment .. 24

3.4.4. IAM instance profile Configuration .. 25

3.4.5. EC2 Instance Creation .. 26

3.4.6. S3 Storage Configuration .. 27

3.4.7. CodeDeploy Service Configuration ... 27

3.4.8. Configuring EC2 instance as production server ... 28

3.4.9. Environment Variable Configuration in Bitbucket Pipelines 29

3.4.10. Adding features to the CICD pipeline .. 30

3.4.11. Pipeline optimisation ... 32

4. Conclusion ... 37

5. Afterword and Recommendations... 38

5.1. CICD Pipeline Adoption Strategies .. 38

5.1.1. Bespoke Solution ... 39

5.1.2. DevOps Department .. 39

5.1.3. Temporary Hire .. 39

5.1.4. Inhouse Setup ... 39

5.2. Commercial and Free CICD Pipeline Providers ... 40

Appendices... 43

Appendix 2. Images and screenshots ... 44

1

Abbreviations Used

Abbreviation Meaning

AMI Amazon Machine Image

API Application Programming Interface

ARN Amazon Resource Name

AWS Amazon Web Services

CD Continuous Delivery (also Continuous Deployment)

CI Continuous Integration

DevOps Development Operations

EU European Union

FTP File Transfer Protocol

FTPS File Transfer Protocol with Transport Layer Security support

GCP Google Cloud Platform

GNU Gnu IS NOT UNIX

HDD Hard Disk Drives

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

IAM Identity and Access Management

ICT Information and Communication Technology

IDE Integrated Development Environment

SDLC System Development Life Cycle

SN Serial Number

SSH Secure Shell

URL Uniform Resource Locator

VIM VI Improved

2

1. Introduction

There are many steps involved between a developer’s text editor where the code is writ-

ten to the end users’ machine where the software runs. The process of making a software

ready for usage for end users, as well as for beta-testers and other intermediary stake-

holders, is called deployment or delivery. These steps collectively form the part of SDLC.

Various stages in the SDLC mandate relevant tasks to be performed in those stages. Be-

cause managing those stages without a clear standard or industry practice often is ex-

ceedingly difficult for most of the projects, there are different practices in use to success-

fully manage the SDLC. These practices are referred to as methodologies or frameworks.

Two of the most common methodologies which are in use are Waterfall and Agile. In this

work the focus will be mostly given to Agile methodology.

“Software methodologies now focus on developing software applications that are highly

adaptable and can be changed easily over time, resulting in less of a need for rigid, up-

front planning.” (Ingeno, 2018)

“Agile is a set of methods and methodologies that are optimized to help with specific prob-

lems that software teams run into and kept simple so they’re relatively straightforward to

implement. These methods and methodologies address all of the areas of traditional soft-

ware engineering, including project management, software design and architecture, and

process improvement. Each of those methods and methodologies consists of practices

that are streamlined and optimized to make them as easy as possible to adopt.” (Stellman

& Greene, 2017)

As referenced above, agile is a framework that emphasizes on repetitive development in

small incremental well-defined chunks. Agile has been gaining popularity in recent years

and it is proven to be remarkably effective in handling extraordinarily complex to simple

software development projects. Because Agile methodology emphasises on feedback, it

allows improvement of in the overall workflow by gathering and applying the knowledge of

limitations, benefits, or any other issues, roadblocks etc. related to the work set up and

supplies a chance to continuously improve the process itself. Administrative tasks related

to the software development requires mandatory participation of developers and other

technicians in Agile methodology which often results in clear specifications and very well-

defined road map of the software development.

The various stages of the SDLC and the tasks involved there need to be somehow inte-

grated well to make sense and deliver a product. Some of the most common tasks except

3

the administrative tasks in the SDLC are writing code, maintaining the code-base in a re-

pository, testing the code, testing the functionality of the software, building the software

with build tools, adding features to the software, fixing bugs, realising new versions and

managing versions, maintaining the infrastructure, moving to different infrastructure etc.

These tasks are separate tasks and all of them are particularly important for a successful

software development project. Managing these tasks manually is very time consuming

and resource intensive and is often prone to errors. Hence, we need automated system

which takes care of connecting these tasks and running them based on the defined set of

rules. This system is analogous to an automated Continuous Integration and Continuous

Delivery (and Continuous Deployment) pipeline.

A practice which simplifies the process of performing the development tasks of SDLC and

focuses on quality assurance and successful release of the product is called Continuous

Integration and Continuous Delivery (and Continuous Deployment). As the name sug-

gests, it is a continuous process and a part of the overall software development project. A

set of tasks which are well defined and are automatically triggered based on the defined

rules and correspond to the CICD practices is a CICD pipeline. The practice of Continu-

ous Integration and Continuous Delivery (and Continuous Deployment) is perfectly com-

patible with Agile methodology of software development project management.

“Continuous Integration, Delivery, and Deployment are relatively new development prac-

tices that have gained a lot of popularity in the past few years. Continuous Integration is

all about validating software as soon as it's checked in to source control, more or less

guaranteeing that software works and continues to work after new code has been written.

Continuous Delivery succeeds Continuous Integration and makes software just a click

away from deployment. Continuous Deployment then succeeds Continuous Delivery and

automates the entire process of deploying software to your customers (or your own serv-

ers).” (Sander Rossel, 2017)

One important purpose of adopting a CICD pipeline in the industrial scene is to effectively

integrate code changes, effortlessly perform the tests and reducing the time for the soft-

ware delivery into production so that the new features are available for the end users in

the earliest manner and the company stays ahead of the competition. For the software de-

velopers, adoption of CICD practices frees them from mundane repetitive tasks and sup-

plies them more time to focus on developing new features at the same time reduces the

risk of introducing many bugs and misconfiguring the infrastructure.

4

1.1. Purpose of this Work

The purpose of the work is to present the opportunities presented by the CICD pipelines

and DevOps practices for software developers and small development teams. Since the

practice of DevOps, along with adoption of CICD pipelines and deployment in the cloud, is

an emerging trend, not only big organisations but individual developers and small organi-

sations should also adopt the practices and leverage the technology for high quality soft-

ware production. Once the DevOps mindset is in place, setting up the pipeline and using it

can be remarkably simple and easily integrate with the existing workflow.

This work goes through the theoretical background and demonstrates an implementation

of a fully automated CICD pipeline which is capable of integration, delivery, and deploy-

ment of software. In order to demonstrate that any software developer or a small team can

easily implement such technology, a bare minimum number of tools are used, and the

setup is done in a fashion that does not incur too much extra cost and can be spun up

very quickly. Hence, the intention behind example implementation of the discussed ideas

is to demonstrate how easily, quickly, and cost-effectively a CICD pipeline can be created

and integrated in the workflow of individual developers and small teams.

The type of research conducted for this work is qualitative research where contextual phe-

nomenon are described in a narrative and explorative fashion and the scope of the inquiry

revolves around the thematic concerns of the topic. Existing literature on the topic are the

primary source of information that are considered in order to establish the theoretical

knowledge base. The theoretical background thus established are explained in the follow-

ing chapter. Moreover, third party publications and research papers, developer surveys,

official documentations from service providers etc. are extensively referred and cited in

the reference page.

1.2. Structure of this Work

Theoretical background is first established by the next section titled that is followed by

other sections which probe into discourse on conceptualisation and an implementation as

the proof of concept, further discussions, conclusion, and foreword. The next section, The-

oretical Framework, gives a short presentation of the technology and establishes ground

for the implementation of the theory which will be presented in the subsequent sections.

An example software is written in flask framework and delivered using an automated

CICD pipeline which is described in the section 3. Code samples of the software, design

diagrams and other specifications, the usefulness of the software and the discussion on

5

architecture of the software design, however, is out of scope of this work. Chapter 4 fol-

lows with general discussion and ends with few take away ideas for the reader.

2. Theoretical Framework

Information Technology landscape has been changing exponentially by introducing con-

temporary trends and technologies every year. However, we still need to write code, test

code, deploy the code and deliver the software. This task was vastly different than how it

is today during the pre-agile era of software development.

2.1. Early era of Computing

During early era of computing before the advent of Personal Computers, computing

mostly happened using terminals which would connect to the mainframe computers. It

was very limiting, and the computing was still a scientific equipment accessible to some

elite group of people. Information Technology industry was ridiculously small and industry

practices were in the early stage of evolution. Then came the era of personal computing

and revolutionised everything. Computers became personal and the golden era of Infor-

mation Technology started.

“However, mainframes were not suitable for all workloads, or for all budgets, and a new

set of competitors began to grow up around smaller, cheaper systems that were within the

reach of smaller organisations. These midicomputers vendors included companies such

as DEC (Digital Equipment Corporation), Texas Instruments, Hewlett Packard (HP) and

Data General, along with many others. These systems were good for single workloads:

they could be tuned individually to carry a single workload, or, in many cases, several sim-

ilar workloads. Utilisation levels were still reasonable but tended to be around half, or less,

of those of mainframes.” (Clive Longbottom, 2017)

When computers became personal, and popular, the industry expanded with wide range

of services and infrastructures started relying on the Information Technology. Invention of

the Internet took it to the next level and business processes started relying on the internet.

Until this point in time we relied solely on Client – Server infrastructure with one server ap-

plication serving many clients. Although the application would not need all the resources

available on the server, it would just occupy it which was expensive and restrictive was of

doing things. And organisations often need multitude of applications running on multitude

of corresponding servers. Also, these servers were physical devices which required effec-

tive storage, maintenance, and security.

6

2.1.1. Physical Limitation of Computing Resources

During the 80s and early 90s the scalability in large scale applications had the physical

limitation of hardware scaling, which often took a lot of time, resources and caused low la-

tency and multiple ser-vice breaks. Scalability of applications relied on physical availability

and configuration of, mainly:

1. Processing (Compute)

2. Storage (HDDs)

3. Networking (bridges, routers etc.)

Industry standard of the time and the technology in use was not very efficient for global-

ised ICT industry. As a result of that innovative technologies started to appear and we en-

tered the era of virtualisation. IBM and VMware were among the first ones who invented

and used the virtualisation technology.

2.1.2. Virtualisation Technology

Using virtualisation technology, not only, hardware resources can be sliced, added, dis-

tributed, merged etc. as per requirement and on the fly, but also these operations can all

be managed from the application layer without a need of having to configure the hard-

ware. This presented with new opportunities for the software developers who can now

fully focus on the software development and forget about all the hardware configurations

while being able treat infrastructure as a program or code. “Virtualization is a disruptive

technology, shattering the status quo of how physical computers are handled, services are

delivered, and budgets are allocated.” (Portnoy, 2012)

In recent years, the price of infrastructure has gone down significantly due to virtualisation.

Also, the credit for making cloud computing happen goes to the virtualisation technology.

companies now could sell IaaS offerings (e.g. Google Cloud, Microsoft Azure, Amazon

AWS etc.) which could be bought and used as if it were the real hardware without even

having to know where the real hardware lies. Virtualisation also brought an opportunity to

build and deploy software in a whatever hard-ware configuration needed for a very afford-

able price which led to subsequent decrease in infrastructure costs for application devel-

opments.

7

2.1.3. Cloud Computing

Reduced costs of infrastructure, Virtualisation technology that enabled virtualisation of not

only the compute resources but storage, networking, and services as well, helped in the

emergence of the Cloud. The cloud is a service, where IT infrastructure is provided in sub-

scription basis where these infrastructures are usually virtualised hardware resources.

This service may include, without limitations, storage, network, memory etc. upon which

any kind of software services may be built.

These cloud services are used by individuals and organisations for various purposes. Us-

ing the cloud liberates organisations from setting up and supporting the infrastructure

themselves which in turn reduces the business costs and increases profitability. Big tech

giants such as Google, Amazon, Microsoft, and IBM provide their commercial public cloud

offerings which have a wide

range of services for commercial use.

The industry trend now is shifting towards containerised deployments of software in the

cloud. This means that a virtualised infrastructure resource in the cloud can be shared by

many applications running in their own private environments. This also addresses the limi-

tation that we would otherwise have for implementing Service Oriented Architecture. A

Service Oriented Architecture is a pattern of software design where application compo-

nents are built around their functionality and inter-networked. Details on Service Oriented

Architecture and Microservices pattern is not in the scope of this work.

There are quite a few tools and technologies a developer can leverage for containerised

deployments of software. The most common technology, which is used in the example im-

plementation of a CICD Pipeline for the purpose of this work, is Docker. Other similar

technologies include Podman, Vagrant, CoreOS rkt, Mesos, LXC, OpenVZ etc.

2.1.4. The Docker Container

Docker can be defined as the technology that enables developers to encapsulate code,

it’s dependencies and other environment variables into a package called an image that

can be used to instantiate the application as a container.

“Developers use Docker containers to package their applications, frameworks, and libraries

into them, and then they ship those containers to the testers or operations engineers. To

testers and operations engineers, a container is just a black box. It is a standardized black

8

box, though. All containers, no matter what application runs inside them, can be treated

equally. The engineers know that, if any container runs on their servers, then any other

containers should run too. And this is actually true, apart from some edge cases, which al-

ways exist.” (Schenker, 2020)

Figure 1: Containerised Applications with Docker

“A container is a standard unit of software that packages up code and all its dependen-

cies, so the application runs quickly and reliably from one computing environment to an-

other. A Docker container image is a lightweight, standalone, executable package of soft-

ware that includes everything needed to run an application: code, runtime, system tools,

system libraries and settings.” (Docker Inc., 2013)

“Docker provides an abstraction. Abstractions allow you to work with complicated things in

simplified terms. So, in the case of Docker, instead of focusing on all the complexities and

specifics associated with installing an application, all we need to consider is what software

we’d like to install.” (Nickoloff et al., 2019)

Using the docker technology, multiple containers can be run on top of an infrastructure

and the resource can be shared. This also adds the benefit of portability as these images

can be easily transferred to various locations and new containers can be spawned from

these. Which makes it whole lot easier to migrate and replicate infrastructures and soft-

ware, as well as allows us to save the state of an application as snapshots. Figure 6 rep-

resents a simplified version of containerised deployment implementing the Docker tech-

nology.

“Innovation in many domains is creating compound effects, given the shared platforms of

PCs, smartphones, and the Internet. Looking briefly at a range of technologies as re-

sources for innovation should help drive further breakthroughs.” (Jordan, 2012)

9

2.2. System Development Life Cycle

Like the construction of real-world objects, information systems are conceptualised, com-

missioned, planned, designed, built, tested, implemented, and maintained. This process is

true for every information system and only varies in internal stages and diversity of tools,

technology and frameworks applied there. This process is commonly referred to as the

System Development Life Cycle. A project may be made up of a single completion of cy-

cle, multiple cycles or confined in one or multiple stages of a life cycle.

Most common stages of SDLC which most of the projects consist of are: Initiation, Re-

quirement Analysis, Design, Development, Testing, Implementation and Maintenance. In

agile framework, these stages occur often and are applied repetitively to small chunks of

work called Scrum in small periods called Sprint rather than the whole project. DevOps of-

ten incorporates the agile way of working, however, in modern technology landscape

there are challenges that a DevOps team faces such as:

I. Regular integration needs more resources.

II. Regular testing also requires more resources.

III. Regular integration and maintenance require more resources.

IV. Development work may slow down during testing and maintenances.

V. System interruption / failures become frequent.

VI. Task switching and reassignment may lower developer morale.

These issues are effectively solved by the practice of Continuous Integration and Continu-

ous Delivery which is described in later chapters.

2.3. Agile Methodology

Agile methodology introduced several practices such as incremental development, repeti-

tive testing, flexibility, increased feedback loops and customer focus etc. which organised

the development more effectively than its predecessor frameworks at the same time pre-

sented us with challenges of needing frequent releases, frequent tests, and frequent de-

ployments.

10

Figure 2: A typical system (software) development process under Agile framework.

Figure 2 above represents Agile framework applied to software development project with

six most common stages repeating in cycles. The multiple releases can be different ver-

sions of the software or new features and bug fixes. This is an over simplified representa-

tion of actual software development process which often may include many more different

intermediary stages, several types of tests and releases etc.

Moreover, emergence of cloud technologies, reduction in infrastructure costs, architecture

designs including service federation, and organisations adopting newer way of working

such as adoption of DevOps practices etc. mandate automation of repetitive tasks for ef-

fective and efficient project management. As a result of that, automated CICD pipelines

are being developed and adopted by software development teams. As represented by the

following figure, already over 50% companies are shifting towards adopting DevOps prac-

tices, including agile framework for software development project management, and

adopting CICD pipelines for the development automation. And this trend is increasing

every year.

As represented by the exhibit bellow, DevOps practices are becoming the industry norm:

11

Figure 2.1: Exhibit extracted from 2020 DevOps Trends Survey by Atlassian & CITE Re-

search

CICD pipelines are becoming increasingly commonplace in companies which want to au-

tomate the software development process nowadays. In a quite common and emerging

DevOps practice, pipelines supported by dedicated technicians. The main principle behind

the DevOps practice is to incorporate the development and operation process in a mean-

ingful way and reduce barriers between the development and operation. DevOps related

practices including design and maintenance of CICD pipelines are particularly important

skill to gain as a developer as well because many small companies may not have a dedi-

cated system administrator or DevOps engineers dedicated to creating and supporting the

continuous integration and continuous deployment pipelines.

“DevOps—derived from Development Operations — culture came in to being to increase

collaboration between development and operations. Organizations built DevOps teams

with engineers from development and operations backgrounds to eliminate the communi-

cation barrier between these groups. Besides, many practices and tools are implemented

to increase automation and decrease the delivery times and minimize the risks. Eventu-

ally, this culture shift in organizations fostered quality and reliability with reduced lead

times. In these new teams, developers acknowledged operational knowledge such as

cloud providers and customer environments.” (Onur Yilmaz, 2018)

“We’ve seen how DevOps has grown from a term only familiar to technical teams to be-

coming part of the C-suite vocabulary. Practices like CI/CD and automation have become

12

the norm in every engineering organization.” (2020 DevOps Trends Survey, Atlassian &

CITE Research)

2.4. Deploying Software in the Cloud

Various stages of operation such as development, version control, Continuous Integration,

Continuous Delivery, and Continuous Deployment collectively form the CICD pipeline. The

pipeline is used to deploy software in the cloud. Continuous Integration is the first stage of

the pipeline which helps developers to integrate then code into the repository often. Con-

tinuous Delivery on the other hand, as the name suggests, is the process of making the

code ready for deployment into production and Continuous Deployment takes care of au-

tomatic deployment of ready code. The whole pipeline can be triggered by pre-defined set

of rules and developers can work on their code and the integration, delivery and deploy-

ment can happen as often as required.

“By creating fast feedback loops at every step of the process, everyone can immediately

see the effects of their actions. Whenever changes are committed into version control, fast

automated tests are run in production-like environments, giving continual assurance that

the code and environments operate as designed and are always in a secure and deploya-

ble state.” (Kim et al., 2017)

2.4.1. Version Control with Git

Version Control is the technology that allows tracking and managing changes to the code,

enables developers to collaborate on a common code base, supplies details insights on

code changes and makes it possible to roll back to the earlier state effortlessly.

“As the name implies, Version Control is about the management of multiple versions of a

project. To manage a version, each change (addition, edition, or removal) to the files in a

project must be tracked. Version Control records each change made to a file (or a group

of files) and offers a way to undo or roll back each change.” (Mariot Tsitoara, 2020)

It is almost unimaginable for developers nowadays not to make use of a version control

technology. Every developer teams work with version control systems. There are several

types of version control systems and Git is the most popular one. According to the Stacko-

verflow’s Developer Survey, 90% of the developers use Git version control system.

13

2.4.2. Continuous Integration

Continuous Integration is the practice of continuously integrating code into the repository.

A software repository is where all the code written by every developer is stored and main-

tained. Often a repository contains many temporary sub-repositories which are called

branches. Branches can be formed based on the developer where each developer works

on a dedicated branch, or on a feature where every feature is developed on its own

branch or according to the development convention of the team. The primary repository

from where these branching off is done is called the master branch. Practice of Continu-

ous Integration means that the branches are merged into the master branch often. This

can happen even multiple times a day.

Figure 3: Simplified Representation of Continuous Integration in Practice.

When developers perform integration often, or when the integration happens frequently,

the integration cost is reduced. A small chunk of code is easy to integrate, test and debug

than a large codebase. Doing so, conflicts between the code, unexpected behaviours, un-

intended side-effects etc of the integrating code can be easily and early caught and re-

solved.

2.4.3. Continuous Integration as a development process

Figure 3 above represents a typical Continuous Integration process in a simplified way

running tests, conflict resolution etc. are not included for the sake of simplicity. Main

branch represents the master branch in Figure 3. In the typical practical scenario, codes

are tested with defined tests, checked against conflicts with existing code in the master

branch and pull requests are created before merging with the master branch. Figure 4 be-

low demonstrates some control measures such as running tests and resolving conflicts

before merging.

14

Figure 4: Running Tests and Resolving Conflicts before Merge in CI Process.

Often development teams may integrate code review and check against the quality control

measures in the CI process. Details on quality control measures, types of tests and repos-

itory practices etc. are not in the scope of this work.

“A CI scenario starts with the developer committing source code to the repository. On a

typical project, people in many project roles may commit changes that trigger a CI cycle:

Developers change source code, database administrators (DBAs) change table defini-

tions, build and deployment teams change configuration files, interface teams change

DTD/XSD specifications, and so on.” (Duvall et al., 2007)

In the Book Continuous integration: improving software quality and reducing risk, Steve

Matyas, Paul M. Duvall and Andrew Glover explain the typical process of CI as:

1. First, a developer commits code to the version control repository. Meanwhile, the

CI server on the integration build machine is polling this repository for changes

(e.g., every few minutes).

2. Soon after a commit occurs, the CI server detects that changes have occurred in the

version control repository, so the CI server retrieves the latest copy of the code

from the repository and then executes a build script, which integrates the software.

3. The CI server generates feedback by e-mailing build results to specified project

members.

4. The CI server continues to poll for changes in the version control repository.

15

Hence, Continuous Integration starts from developers’ initiative and is easily integrated

with their existing workflow. Adoption of CI not only makes developers more efficient but

also increases the quality of the code and aids in the overall project management.

2.4.4. Continuous Delivery

Continuation Integration is extended by the Continuous Delivery process which includes

the automation of the software delivery process. This means that the software is ready for

deployment into production any time. Some companies prefer to manually deploy the soft-

ware into production, however, the next stage in the pipeline Continuous Deployment ena-

bles us to deploy the software automatically if we chose to do so. Continuous Delivery

benefits developers by reducing the deployment failure risk and smaller deployable soft-

ware means frequent feedback from the customer which subsequently increases the qual-

ity of the software.

“Continuous Delivery is a set of technical practices that allow delivery teams to radically

accelerate the pace at which they deliver value to their users. The core tenet of Continu-

ous Delivery is keeping your codebase in a state where it can be shipped to production at

any time. By working in this way, you can quicken the tempo of production changes, going

from infrequent, big, and risky deployments to deployments that are frequent, small, and

safe.” (Hodgson, 2020)

Figure 5: A Typical Continuous Delivery Process

A typical Continuous Delivery process replicates the environment that is close or identical

to the production environment and builds the software. Like Continuous Integration, this

happens in small chunks repeatedly over time. This enables software developers to al-

ways be certain that their code is always deployable in the production environment. Con-

tinuous Delivery usually contains test suites which are run against the build, and deploy-

ment processes. Figure 5 above depicts a typical Continuous Delivery process.

16

2.4.5. Continuous Deployment

Continues Deployment is the process of automatically deploying to the production envi-

ronment when the software is built successfully by preceding Continuous Delivery process

and all the tests are passed. Some organisations may decide to not use the Continuous

Deployment because they may want to deploy manually based on their deployment

schedule. However, there is a huge benefit in adopting the Continuous Deployment pro-

cess because it enables organisations to reach the users, fix bugs, release new versions

faster.

Figure 6: Simplified Representation of Continuous Deployment Process

2.4.6. Continuous Delivery vs Continuous Deployment

Figure 5 above depicts the Continuous Deployment process being triggered after suc-

cessful build from Continuous Delivery stage of the pipeline. Continuous Deployment, if

implemented, also happens repetitively in small chunks. In typical deployment scenario,

Continuous Deployment process gets triggered as soon as the Continuous Delivery pro-

cess is complete, and the software is ready for the deployment. This process takes care of

moving the code into the production environment, often server infrastructure in the cloud

in modern organisations, and making the new software available for the users.

A typical difference between Continuous Delivery and Continuous Deployment often,

hence, is about how the software makes its way into production. This means that not all

steps of the pipeline are automated and some, especially deployment into production, is

handled manually by man intervention. Depending on the situation, this may give more

control to the developers, but at the same time add some overhead and interruption to the

complete process. “However, most of the organizations that I talked with avoid full-on

Continuous Deployment. Instead, they institute some sort of manual gate, requiring an en-

gineer to explicitly promote their changes into production from a preproduction environ-

ment. This wouldn’t be considered Continuous Deployment, but it is still a form of Continu-

ous Delivery.” (Hodgson, 2020)

17

Although often confused, Continuous Delivery and Continuous Deployment are two sepa-

rate processes. Sometimes these two steps are combined into one as a part of an auto-

mated pipeline and the explicit distinction may not exist. However, they both are important

processes and commonly complete the CICD Pipeline.

2.4.7. Automated CICD Pipelines

An automated CICD pipeline is formed by creating a single system which combines Con-

tinuous Integration, Continuous Delivery and Continuous Deployment into one and is fully

automated so that it does not require much human intervention when it is triggered. Lever-

aging an automated CICD pipeline can reduce costs and eliminate human errors. It may

also provide important feedbacks about the code, checkpoint for passing the quality code,

quick reach to the end users and opportunity for developers to focus on writing good soft-

ware.

In their book titled Continuous Delivery, Jez Humble and David Farley argue that the man-

ual deployment of software is an antipattern and must be avoided. They point out that this

may lead to many human errors but also acknowledge that it is, however, common across

organisations. Moreover, they mention that:

Most modern applications of any size are complex to deploy, involving many

moving parts. Many organizations release software manually. By this we

mean that the steps required to deploy such an application are treated as

separate and atomic, each performed by an individual or team. Judgments

must be made within these steps, leaving them prone to human error. Even

if this is not the case, differences in the ordering and timing of these steps

can lead to different outcomes. These differences are rarely good.

Furthermore, they go on and emphasize that the software deployment should be an auto-

mated process:

Over time, deployments should tend towards being fully automated. There should be

two tasks for a human being to perform to deploy software into a development, test,

or production environment: to pick the version and environment and to press the

“deploy” button.

18

2.4.8. Advantages of automated CICD Pipelines

Adoption of an automated CICD Pipeline changes the development, testing and deploy-

ment process completely. Workflow are highly optimised, and errors are significantly re-

duced this is made possible because the code must go through the defined stages of the

pipeline subjected to automated tests which ensure errors are caught and rolled back be-

fore they ever reach production.

It is estimated that the usage of such pipelines will only increase. The major advantages

of adopting such a pipeline can be outlined as:

i. More Efficient Development

ii. Frequent Deployments

iii. Quick and Efficient Testing

iv. Less Bugs

v. Better Developer Experience

vi. Reduced Costs

vii. Standardised Process

viii. Better Software Quality

2.5. Containerised Deployment

Containerised Deployment means to deploy software in their own private environments

called containers. These containers often are minimal version of operating systems with

added software needed to run the deployed software. Combined with virtualised servers in

the cloud, it created immense possibilities for the developers and organisations. To under-

stand the technology behind containers and containerisation, it is mandated to look at the

development of the Information Technology itself.

19

3. Proof of Concept

This project implements the theoretical framework established in the previous chapters.

The implementation contains a software, a fully automated CICD pipeline, an instance of a

production environment in the cloud. Since this work is focussed on the cloud, most of the

tools used are cloud based except the text editor an IDE and local environment for writing

the code. There are unlimited possibilities of tools and technology, the following are the

tools and technologies that are used considering the ease of integration with existing tools

for developers, pricing and difficulty of set up:

− Flask Framework.

− Local Environment:
o A GNU/Linux Operating System with VIM for the text editor and PyCharm

for the IDE.
o Git Verson Control System.

− Cloud Software Repository:
o Bitbucket (URL: https://bitbucket.org)

− CICD Pipeline
o Bitbucket Pipelines
o AWS CodeDeploy
o AWS S3
o Docker

− Production Server
o AWS EC2

3.1. Short Introduction of the Technology in Use

Flask is a Python framework used to build web services and applications. In this imple-

mentation, flask is used to create a backend API. This implementation can be tweaked to

be used for any other software framework and programming language.

This implementation is system agnostic with respect to the operating system even though

GNU/Linux is used solely because of the availability and familiarity. GNU/Linux is free and

open-source software with many derivatives.

VIM is a free and open-source text editor available for many operating system, however,

popular among Unix-like operating systems such as UNIX, GNU/Linux and macOS.

20

Git version control system is the most popular software version control system. Git is a

free and open-source software. There are other version control systems, however not as

much in use nowadays, such as Subversion (SVN), Mercurial, GNU Bazaar etc. Git is

used exclusively in this implementation.

Bitbucket is a cloud-based Git repository by Atlassian. There are other popular, if not

more, Git repositories as well such as GitHub, Gitlab, opendesktop.org’s Projects etc. This

implementation is based on bitbucket and pipeline feature of it is also used.

AWS is a cloud service that provides enterprise cloud services including server instances,

storage, networking services, Content Delivery Network Services, Email Services, Reposi-

tory Services etc. For the purpose of this implementation Elastic Compute Service (EC2)

is used as our main production environment, CodeDeploy as Continuous Deployment part

of the pipeline and S3 for the storage of artifacts (artifacts are objects which are created

as part of the pipeline). An Amazon EC2 instance, where EC stands for Elastic Compute,

is a virtual computing environment which can be used as a virtual server and can be

scaled resource wise according to the need.

There are alternatives to AWS as well as such as Microsoft Azure (also Azure Cloud Plat-

form), Google Cloud Platform (GCP), Alibaba Cloud, IBM Cloud etc. Among these ser-

vices, the most popular ones now of this writing are AWS, Azure and GCP followed by

IBM cloud. Since cloud services industry is booking now, there are new offerings coming

up all the time and the popularity might change soon in the future. Services provided by

AWS are generally available in GCP and Azure as well. Azure DevOps from Azure cloud

is also quite popular and GCP is credited for invention of Kubernates.

These cloud service providers, including AWS, also provide the complete pipeline solution

including the code repository, CI tools, Delivery Tools, Deployment Tools, Test Tools and

Container Services etc. which often are very tightly integrated and setting up a CICD pipe-

line can be done following their instruction documentations. Some of these cloud services

also provide training and certifications regarding DevOps practices using their tools and

technology, not to mention general usage of their platform. These are often quite useful

for companies and the industry trend shows that large organisations often tend to invest in

such services and use the tools offered by them.

Docker is a virtualisation technology that can be used to generate an environment based

on the Operating System level virtualisation. For this implementation, the software is de-

ployed in containerised environment inside the docker platform in the EC2 instance.

21

Docker also has alternatives, as mentioned in the Containerised Deployments section

above, and there are some utility tools which can leverage the Docker’s container technol-

ogy without using its interface as well. However, Docker is the most popular technology

for containers as of now.

Other minor tools and technology used is explained later contextually as they appear.

3.2. Process Outline

The following steps are decided in order to create the necessary components of this im-

plementation:

− Creating a simple software project locally on the computer.

− Testing and selecting a cloud software repository for the project: Bitbucket is selected.

− Selecting a cloud service provider and a virtual machine instance for software deploy-
ment: AWS and EC2 are selected.

− Creating an initial version of the CI/CD Pipeline connecting the local code, the reposi-
tory, and the cloud service provider.

− Using a testing framework and write tests for the software: Pytest is selected as the
testing framework.

− Re-implementing the pipeline with the integrated testing.

− Configuring the cloud services needed for the pipeline such as artifact repository, de-
ployment service etc: S3 and CodeDeploy are configured.

− Adding a containerization capability to the pipeline.

− Adding the containerization capability to the cloud virtual machine instance.

− Using the pipeline to run automated tests and deployments in the cloud.

− Deploying using containerized environment within the cloud virtual machine.

− Testing the software as a user.

The following architecture is constructed implementing these steps and the Implementa-

tion details are explained in the following Implementation sections.

22

3.3. The Architecture

The following diagram illustrates the architecture of the pipeline:

Figure 7: Architecture of the Implemented CICD Pipeline

As illustrated in the figure 7 above, the entry point of the pipeline is the local environment

which is connected to the bitbucket git repository. The repository contains a master

branch and other branches. A branch b1 is denoted in the picture as the working branch

where the code locally produced are pushed into.

Depending on the requirement or convention followed a merge request can be made to

the master branch and this triggers the Pipeline. As the pipeline is triggered, predefined

sets of tests are run, and all tests must pass. After the tests are run, a build process is

triggered and further integration tests and building process is carried out inside a tempo-

rarily spawned container.

When all the tests and build tasks are successfully completed, a merge is made. Comple-

tion of this step further triggers the CodeDeploy service which pulls the code runs integra-

tions tests and builds the software. Finally, the artifacts generated are stored in the S3

storage and the software is deployed into the production inside a dockerised environment

in EC2 instance.

3.4. Implementation Details

As outlined in the process outline above the implementation is carried out in the following

way:

23

3.4.1. Development Environment

There is not strict rules or guidelines how the Development Environment should be config-

ured and there are countless possibilities. In this example, simplicity and ease of duplica-

tion is given priority rather than establishing or following conventions.

First a directory named CICD is created inside Project directory. The CICD directory con-

tains two directories inside it, Credentials where all the credentials such as ssh keys and

user info are stored and project_root where all the application and configuration files ex-

ist.

The project_root directory contains bitbucket-pipelines.yml file, README.md file and

app directory as shown in the figure below. Our main pipeline configuration file is bit-

bucket-pipelines.yml and app is the directory where our application exists. The directory

app is renamed to apps later when the pipeline is developed further to support multiple

applications. The file README.md is where information and instruction for the users of

the pipeline is written.

Figure 8: The main working directory in the local environment.

The pipeline configuration file, bitbucket-pipelines.yml is written with the initial configura-

tion (Appendix 1) that has three steps, Build, Upload to S3 and Deploy with Cod-

eDeploy.

Finally, the local git repository is initialised by running command:

git init

This command initialises the whole directory under git version control system.

3.4.2. Git Repository and the CICD Pipeline

Since Bitbucket repository is selected for the project’s git repository, a new project called

Thesis is created in the bitbucket repository and an empty repository called project_root

is created. The project can be called anything, and it is not needed to call the repository

project_root but it is done to keep things simple.

24

The repository URL (shown as $REPOSITORY_URL below) of the new repository (Bit-

bucket) is copied and the new repository is connected to the local depository using the git

command:

git remote add origin $REPOSITORY_URL

Finally, the content of the local project_root directory is pushed to the remote pro-

ject_root (bitbucket) using the following git commands:

• Add all files for git to track : git add .

• Commit the files : git commit –m ‘Initial Bitbucket Pipeline con-
figuration’

• Push the files : git push –u origin –all

Lastly, Bitbucket automatically recognises the configuration file when the pipeline feature

is enabled in the repository settings. The pipeline gets triggered at this point and fails be-

cause the production environment which is already a part of the pipeline is not setup yet.

Figure 9: Pipeline failing

The next step is to setup the Production environment and connect the missing link to the

pipeline.

3.4.3. Production Environment

This is probably the most important piece of the puzzle. The earlier two steps are more or

less familiar with developers and development teams even if they have never used a

CICD pipeline (exception can be the pipeline feature of the Bitbucket repository) because

version control technology and different environment set up are common practices of soft-

ware development.

The configuration starts from spinning up (allocating and starting) an EC2 instance in

AWS cloud. To do so, AWS account is first created and logged in to the console using the

25

root username and password. A console or AWS Management Console is the UI that al-

lows to start using different services offered by the AWS cloud.

Figures 10 (left) and Figure 11 (right): AWS Sign in page and AWS Management Console

Some resources are created in the production environment for use such as the deploy-

ment server, services which handle different parts of the deployment process and stor-

ages for artifacts. These resources are configured in a way that these can function auton-

omously with defined set of rules. The details of creating and configuring these services

are explained in the next sections.

3.4.4. IAM instance profile Configuration

After successfully logged in, an IAM profile and EC2 instance is created. IAM instance

profile is required to work with CodeDeploy, which is the deployer service, and EC2 in-

stance where the application gets deployed. During the configuration of the IAM instance

profile it is required to set up a policy for the profile with sufficient privileges. The policy is

configured using a JSON file and a sample policy looks like:

{"Version": "2012-10-17",

 "Statement": [{"Action": ["s3:Get*","s3:List*"],

 "Effect": "Allow",

 "Resource": "*"}]

}

26

Where Resources must contain ARN of Amazon S3 buckets your Amazon EC2 instances

must access. During the creation of the IAM instance profile, a role also must be attached

to the profile where the role defines the use case, here EC2. After the policy is attached to

the instance, the IAM instance is then attached to the EC2 instance during configuration.

The IAM instance profile is used by CodeDeploy and therefore it needs to be configured to

have a programmatic access to resources allocated. During the process of creating the

IAM instance profile, the user’s (instance profile) credentials are also created. These cre-

dentials are used in the pipeline setup as the environment variables.

3.4.5. EC2 Instance Creation

When creating the EC2 instance, there are many choices of images to select from such as

Amazon Linux, Red Hat Enterprise Linux, Ubuntu etc., and most of them work just fine

with the set up. However, for this implementation an Amazon Linux AMI is chosen.

Figures 12: Choosing AMI for EC2 instance.

For simple use cases such as this implementation and small web projects, a free tier plan

can be sufficient. Hence, a free tier plan is chosen in the next screen following the previ-

ous process when creating an EC2 instance as shown in Figure 13 below. In the figure,

the t2 micro plan, which is the free tier plan, is highlighted with red and additionally

marked with number 1 and the button that takes to the next step, which is the configura-

tion step, is also highlighted and marked with number 2:

27

Figure 13: Choosing a free tier plan for EC2 instance.

Following along the configuration steps as guided by the UI creates an EC2 instance. One

specific step that must not be avoided in the creation process is to attach the IAM role for

CodeDeploy on the EC2 instance. The IAM role must have a policy attached to access S3

storage. EC2 instance thus created needs to be accessed later for configuration hence

the SSH key is downloaded and stored in the secure location for using later during the

configuration (later explained in section 3.4.8).

3.4.6. S3 Storage Configuration

As S3 storage with versioning enabled is created to be used as the storage for artifacts.

Since, this storage does not need to be accessed publicly and only be accessed program-

matically by the CodeDeploy service, it is configured to reflect these properties. During the

creation of the S3 storage it is very important to create it in the same region where the

EC2 instance is created. For this implementation EU-North-1 (Stockholm) is the chosen

region.

3.4.7. CodeDeploy Service Configuration

A deployer application is created under the CodeDeploy service for the deployment tasks.

The deployer service needs the deployment group set up for the deployments. The de-

ployer configuration also needs other certain options set up such as the compute platform,

in this case EC2, deployment type and the environment configuration. This is a very well

guided process that enables connecting the deployer with EC2 instance.

28

3.4.8. Configuring EC2 instance as production server

A secure connection is made from the local terminal to the EC2 instance using the SSH

key. After the successful connection, the first step that is takes is the updating of the sys-

tem. This is not a required step, but it is recommended as a good practice.

After the system update, a few utility software packages are installed because these soft-

ware packages are needed by the code deploy agent that is installed later. These soft-

ware packages are: Ruby, a programming language, and wget a GNU software utility that

is widely used to retrieve files via HTTP, HTTPS, FTP and FTPS protocols.

These steps are carried out with issuing the following commands:

sudo yum update

sudo yum install ruby

sudo yum install wget

cd /home/ec2-user

wget https://artifacts-storage-itp.s3.eu-north-1.amazonaws.com/la-

test/install

Where artifacts-storage-itp is the name of the S3 storage unit, also called bucket, and eu-

north-1 is the region name where the resources including EC2 and S3 are configured. Af-

ter the last line is executed, the file that is needed for installing the code deploy agent is

downloaded. An execute permission that is required for this file is given by the following

command:

chmod +x ./install

Finally, the following command will install the code deploy agent application:

sudo ./install auto

The code deploy agent must be running automatically after the installation, however, to be

extra certain that it is running the following commands is executed:

sudo service codedeploy-agent start

29

3.4.9. Environment Variable Configuration in Bitbucket Pipelines

The next step is to set up the environment variables in the bitbucket pipeline settings. The

pipeline settings can be found inside the repository settings option and Repository varia-

bles is where the environment variables are configured. Figure: 14 shows the location of

the Repository variables in the Bitbucket repository settings and Figure 15: shows the var-

iables that are configured.

Figure 14: Environment variable settings location for Bitbucket Pipelines.

Clicking the Repository variables option presents the environment variable setup screen

where the information about user and its credential to access AWS resources are added.

This information must be in the exact format that is received during the resource's setup

process within AWS console.

30

Figure 15: Setting up environment variables.

As shown in the Figure: 15, the name of the environment variables is in uppercase letters

and they correspond the resources in the AWS cloud which are already configured such

as the deployer application, deployment group, S3 bucket information, the IAM user profile

etc. This information is basically needed for the deployment part of the CICD pipeline

which happens in the production environment in the AWS cloud. This concludes the first

complete set up of the CICD pipeline and the next step is to add functionalities in the pipe-

line such as tests, deployment as containerised deployments with Docker and ability to

use the pipeline for multiple application.

3.4.10. Adding features to the CICD pipeline

To test if the pipeline executes successfully with the configuration thus made an empty file

called emptyfile is added to the project_root directory which is the working directory for

this project and the pipeline executes successfully as shown in the Figure 17. The pipeline

is configured to run every time there is a code push on the remote branch of the reposi-

tory. Figure 16 shows the commands executed in the local development environment to,

sequentially, navigate to the working directory, list the existing files, create the emptyfile,

check the version control status, add the emptyfile to the version control system, commit

the file and push the file to the remote branch hence triggering the pipeline execution.

31

Figure 16: Triggering the pipeline execution by pushing an empty file to the remote reposi-

tory.

Figure 17: Successful pipeline execution

The pipeline is now configured and works. It can be used as it is, but it is limited to one
application and there are no testing and containerised deployments. To make it more fea-
tureful and usable, the following additional improvements are necessary:

− Restructuring the pipeline to support multiple applications.

− Adding a pre-build test suite to the pipeline.

− Deploying in docker containers.

The next sections explain how these can be built into the pipeline.

32

3.4.11. Pipeline optimisation

Currently pipeline just gets triggered whenever any change is pushed to the remote repos-

itory, then it builds the software and deploys the application to the production environ-

ment. This is not very practical since it forces developers to test the software locally be-

fore pushing to the remote repository, because of which the two repositories may never in

synchronisation while a work is incomplete. This can be handled simply by enhancing the

pipeline setup a little and make it only get triggered when intended, usually when we want

to test and deploy the software.

Instead of triggering the pipeline on every push, we can modify it so that it triggers on

every pull request to the master branch of the remote repository. This way any incomplete

development work can be carried out in related branches and when the software is ready

for testing and deployment, a pull request to the master branch can be created and the

branches can optionally be merged. The pipeline is then triggered only on such events.

Also, instead of one application, the pipeline must support multiple applications.

The current bitbucket-pipelines.yml file looks like the following:

image: atlassian/default-image:2

pipelines:

 default:

 - step:

 name: Build

 script:

 - cd app && zip -r ../myapp.zip *

 artifacts:

 - myapp.zip

 - step:

 name: Upload to S3

 services:

 - docker

 script:

 - pipe: atlassian/aws-code-deploy:0.2.10

 variables:

 AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}

 AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_AC-

CESS_KEY}

 AWS_DEFAULT_REGION: ${AWS_DEFAULT_REGION}

33

 COMMAND: 'upload'

 APPLICATION_NAME: ${APPLICATION_NAME}

 ZIP_FILE: 'myapp.zip'

 S3_BUCKET: ${S3_BUCKET}

 - step:

 name: Deploy with CodeDeploy

 deployment: production

 services:

 - docker

 script:

 - pipe: atlassian/aws-code-deploy:0.2.10

 variables:

 AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}

 AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_AC-

CESS_KEY}

 AWS_DEFAULT_REGION: ${AWS_DEFAULT_REGION}

 COMMAND: 'deploy'

 APPLICATION_NAME: ${APPLICATION_NAME}

 DEPLOYMENT_GROUP: ${DEPLOYMENT_GROUP}

 IGNORE_APPLICATION_STOP_FAILURES: 'true'

 FILE_EXISTS_BEHAVIOR: 'OVERWRITE'

 WAIT: 'true'

 S3_BUCKET: ${S3_BUCKET}

First, before defining the steps of the pipeline, the information about which branch this

pipeline should run on is defined by simply adding:

branches:

 master:

The next step is to add a testing suite for the software. Since the intended software in this

case are flask applications, pytest framework can be integrated in the pipeline to run the

tests using it. Also, to support multiple applications, the app directory is renamed apps.

Now the first 11 lines of the bitbucket-pipelines.yml file looks like:

image: atlassian/default-image:2

pipelines:

34

 branches:

 master:

 - step:

 name: Testing

 image: python:3.5.1

 script:

 - apt-get update

 - pip install -U pytest

 - pytest apps/*/tests/*.py

This also enforces all the tests to be written inside the tests directory under for and long

with every software. All the python files inside the tests directory is executed with pytest

command. The test suite integration part is now complete.

Now the next step of the pipeline, which is the build step will not happen if all the tests are

not passed. But if the pipeline is run in the current state it will fail nevertheless because

our working directory structure does not reflect the changes. So, the following changes

must be made to our working directory:

• The app directory is renamed to apps

• The scripts directory is moved to the project_root directory.

• The appspec.yml is moved to the project_root directory.

• A dockerise.sh file is created inside the scripts directory with the following content
(The destination directory for the deployment is /opt/app directory, not to be con-
fused with local apps directory):

#!/bin/bash

cd /opt/app

sudo docker-compose up -d --build

• The appspec.yml is modified with the added containerisation step (dockerise):

version: 0.0

os: linux

files:

 - source: /apps

 destination: /opt/app

hooks:

 AfterInstall:

 - location: scripts/dockerise.sh

 timeout: 300

35

 ApplicationStart:

 - location: scripts/start_server.sh

 timeout: 300

 runas: root

 ApplicationStop:

 - location: scripts/stop_server.sh

 timeout: 300

 runas: root

• The dockerise.sh will be looking for docker configuration files needed for contain-
erisation so the apps directory must have a docker-compose.yml file that looks like
the following:

version: '3'

services:

 testapp:

 build: ./testapp

 network_mode: bridge

The testapp is the name of the software in the code above. All the software in the apps

directory must be defined in this file as services. Additionally, a file named Dockerfile must

be present inside the individual software directory. The Dockerfile looks like:

python version to use

FROM python:3.7.6

set up the work directory

WORKDIR /app

#copy the required files to the app folder

COPY main.py ./

CMD ["python3", "main.py"]

On the code above, main.py is the main file of the flask application. Details on docker con-

figuration files and related technology is not in the scope of this literature. Figure 18 below

shows the final directory structure after all the modifications:

Figure 18: The final directory structure of the implemented CICD Pipeline.

36

This concludes the implementation of an automated CICD pipeline that is capable sup-

porting unlimited number of software projects, running pre-build tests, running builds, stor-

ing artifacts to S3, moving files to the production environment, dockerising and deploying

in containers.

37

4. Conclusion

The concept of this thesis work originated because of an observation made by the re-

searcher in his circle of contacts in the software development community. The researcher

has seen the growing trend of DevOps practices and commercial CICD offerings. The re-

searcher has also seen that there is a fear of unknown amongst many software develop-

ers who have not yet made a leap towards the DevOps mentality. As a result, a tremen-

dously beneficial practice such as adoption of automated CICD pipelines is not adopted

as much as it should be. One of the goals of this thesis, along with others as explained in

detail in earlier chapters, was also to demonstrate that this leap is not so hard to make.

The researcher has also gained more in-depth insight on the topic during this research.

The implementation explained in the previous chapters is a complete CICD pipeline which

requires a minimal setup, integrates well with existing tools and technology of the most

common software development practices, supports multiple software or a software with

multiple components, runs tests automatically before building, stores different versions in

the artifact storage, containerises the software and deploys in the defined production envi-

ronment.

From the theoretical background established in this thesis and the implementation of the

idea as a proof of concept, it is now fairly clear that any software developer or a develop-

ment team can simply create a minimalistic, cost-effective and efficient Continuous Inte-

gration and Continuous Delivery / Deployment pipelines with existing knowledge and

skills. As demonstrated by the implementation above the CICD pipeline creation and im-

plementation is not so difficult and provides with a lot of benefits. Practice of setting up

and using such automated pipelines is compatible with Agile way of working and DevOps

mentality of software development as discussed in the earlier chapters.

However, since all software development work is different and there are differences in

preferences of tools and technology used among developers themselves, the architecture

of a potential CICD pipeline must be carefully thought of. Also, a CICD pipeline can be

simpler, if the project does not require all the aspect of the pipeline, or quite complex if the

project requires many steps and iterations and involved a lot of intermediary processes.

Often, a simple CICD setup can sufficiently work as a starting point for a beginning of the

software development project, and as the team grows and / or the development work ad-

vances forward, more components can easily be added and the pipeline can be modified.

38

Some of the components of the CICD pipeline such as deployment in a containerised en-

vironment may not even be necessary for a single software development project. Also, all

the tools used have their alternatives which may have certain benefits over the tools used

in this implementation. Specifically, our choice of version control system GIT can be easily

replaced by SVN (However not so popular), Bitbucket can easily be replaced by GitHub,

Gitlab or other cloud repository providers, AWS can easily be replaced by Azure, GCP or

some other etc. The choice is, and always should be, upon the developer, depending on

the requirement specifications, to decide what kind of tools and technology should be

used.

Working with DevOps mentality, adopting Agile way of working and using CICD pipelines,

hence, has clear benefits and improves the quality of not only the software but the soft-

ware development process as well. It is financially beneficial for companies to adopt these

practices and encourage their developers to use automated CICD pipelines. It has also

been clear from this research that the automated CICD pipelines can reduce the risk of

project failure, create more feedback loop enhancing the communication and keep in-

crease the overall efficiency of software development teams.

5. Afterword and Recommendations

For aspiring software developers, development teams or any enthusiasts who want to

start using CICD pipelines to deploy software in the cloud, the researcher would like to

make some recommendations. If a company or team has not adopted a CICD pipeline for

their projects yet, it can be done in various ways. For the purpose of simplicity these differ-

ent ways are regarded as strategies here.

5.1. CICD Pipeline Adoption Strategies

First, the adoption strategy depends on the project or the company commissioning or run-

ning the project. The strategy for adopting a CICD pipelines can be, but not limited to, for

example:

• Bespoke Solution from a Solution Provider

• Formation of a DevOps department

• Temporarily hiring an expert for the set-up

• Inhouse set up from existing developers

39

Which strategy to adopt depends on a few factors such as the size of the company and

the budget allocation, size and complexity of the software project, expertise in the team,

requirement specification, complexity of the pipeline etc.

5.1.1. Bespoke Solution

This strategy may be suitable for medium to large size companies which may require
complex solution with many moving parts, the setting up such solution would take time
and resources and they lack inhouse expertise. Often these companies may not want to
go through recruitment process to hire expertise for the CICD setup because the recruit-
ment process is time consuming and costly.

This is not a very preferable solution because this solution will work but there are some
caveats such as the developers will need trainings and the maintenance and support from
the solution provider may be required for a while. However, it is the researcher’s recom-
mendation that the companies adopting this strategy should look for establishing their own
DevOps department in the long run.

5.1.2. DevOps Department

A dedicated DevOps department maybe suitable for a medium to large size companies

which can allocate a budget and have corporate will for such a set-up and restructuring.

This maybe a prescribed strategy in many situations such as when developers are in-

volved in multiple projects and there are multiple number of software in different stages at

a given time. Since, restructuring of companies (setting up new departments) takes time,

this solution is only recommended for companies which do have such time for implemen-

tation of CICD pipelines.

5.1.3. Temporary Hire

Temporarily hiring an expert is also a good strategy for companies which may not have

budget for a persistent department but want to use such practices. A temporary DevOps

engineer can then set up the CICD system, train existing developers and help the adopt-

ing company transition towards DevOps practices.

5.1.4. Inhouse Setup

This is a prescribed strategy for small companies and teams as this strategy involves the

software developers own learning which in turn enhances the capabilities of the adopting

company or team. This strategy is suitable for simple setup requirements and companies

with a few software development projects going on at a given time. Adoption of this strat-

egy also means learning and setting up the CICD pipeline and practicing DevOps related

practices for individual developers.

40

5.2. Commercial and Free CICD Pipeline Providers

There are magnitudes of possibilities for CICD pipelines with so many different commer-

cial, as well as free, CICD solutions available. Often, these solutions are specialised in

special stage or set of tasks. There are also suites of applications provided by cloud ser-

vice providers such as Amazon AWS, Microsoft Azure, Google Cloud Platform etc. An ex-

ample of such suites is Azure DevOps Solution (using GitHub, Jenkins, Azure Container

and Azure Web App), AWS CICD Pipeline (using CodeCommit, CodeDeploy, Beanstalk,

ECS/ECR) etc.

There are also individual CI solutions such as Travis, Jenkins, GitLab, BitBucket Pipe-

lines, CircleCI, Bamboo etc which are specialised in the integration and testing part of the

pipeline. However, most of these can be configured to use continuous Delivery and Con-

tinuous Deployment and made into a full-fledged pipeline. What kind of tools to use and

what kind of set-up to perform is and always should be developers’ choice based on the

requirements of projects and business interests.

41

References

Atlassian Corporation Plc, CITE Research. (2020). 2020 DevOps Trends Survey. Atlas-

sian Corporation Plc.

Clive Longbottom. (2017). Evolution of cloud computing - how to plan for change. Bcs

Learning & Development Lim.

Docker Inc. (2013). What is a Container? Docker. https://www.docker.com/re-

sources/what-container

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration : improving software

quality and reducing risk. Addison-Wesley.

Hodgson, P. (2020). Continuous Delivery in the Wild. O’Reilly Media, Inc.

Ingeno, J. (2018). Softward architect’s handbook : become a successful software architect

by implementing effective architecture concepts. Packt Publishing Ltd.

Jez Humble, & Farley, D. (2011). Continuous delivery. Addison-Wesley.

Jordan, J. M. (2012). Information, technology, and innovation : resources for growth in a

connected world. Wiley.

Kim, G., Debois, P., Willis, J., Humble, J., & Allspaw, J. (2017). The DevOps handbook :

how to create world-class agility, reliability, and security in technology organiza-

tions. It Revolution Press, Llc.

Mariot Tsitoara. (2020). BEGINNING GIT AND GITHUB : a comprehensive guide to ver-

sion control, project management, and... teamwork for the new developer. Apress.

Nickoloff, J., Kuenzli, S., & Fisher, B. (2019). Docker in action. Manning Publications Co.

Onur Yilmaz. (2018). CLOUD-NATIVE CONTINUOUS INTEGRATION AND DELIVERY :

discover how you can efficiently build, deploy ... and test your own cloud-native ap-

plications. Packt Publishing.

Portnoy, M. (2012). Virtualization essentials. Wiley/Sybex.

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

42

Sander Rossel. (2017). Continuous Integration, Delivery And Deployment. Packt Publish-

ing Limited.

Schenker, G. N. (2020). Learn Docker : fundamentals of Docker 19.x : build, test, ship,

and run containers with Docker and Kubernetes. Packt Publishing.

Stack Exchange, Inc. (2020). Stackoverflow Developer Survey 2020. In Stackoverflow.

https://insights.stackoverflow.com/survey/2020#overview

Stellman, A., & Greene, J. (2017). Head First Agile : a brain-friendly guide to Agile and the

PMI-ACP certification. Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo O’reilly

September.

https://insights.stackoverflow.com/survey/2020#overview

43

Appendices

Appendix 1. Software codes snippets

I. Policy for IAM Role

{ "Version": "2012-10-17", "Statement": [{ "Effect":

"Allow", "Action":

["s3:Get*", "s3:List*"], "Resource":

["arn:aws:s3:::artifacts-storage-

itp/*", "arn:aws:s3:::aws-codedeploy-eu-north-

1/*""] }]}

II. Optimised and cleaned up Bitbucket-pipelines.yml file

pipelines:

 branches:

 master:

 - step:

 name: Testing

 image: python:3.5.1

 script:

 - apt-get update

 - pip install -U pytest

 - pytest apps/*/tests/*.py

 - step:

 name: Deployment

 image: python:3.5.1

 script:

 - apt-get update

 - apt-get install -y zip

 - pip install boto3==1.3.0

 - zip -r /tmp/artifact.zip *

 - python codedeploy_deploy.py

III. CodeDeploy script (codedeploy_deploy.py used by the bitbucker-pipelines.yml file)

44

Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights

Reserved.

Licensed under the Apache License, Version 2.0 (the "License").

You may not use this file

except in compliance with the License. A copy of the License is

located at

http://aws.amazon.com/apache2.0/

or in the "license" file accompanying this file. This file is

distributed on an "AS IS"

BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-

press or implied. See the

License for the specific language governing permissions and li-

mitations under the License.

"""

A BitBucket Builds template for deploying an application revision

to AWS CodeDeploy

narshiva@amazon.com

v1.0.0

"""

from __future__ import print_function

import os

import sys

import json

from time import strftime, sleep

import boto3

from botocore.exceptions import ClientError

VERSION_LABEL = strftime("%Y%m%d%H%M%S")

BUCKET_KEY = os.getenv('APPLICATION_NAME') + '/' + VERSION_LABEL +

\

 '-bitbucket_builds.zip'

def upload_to_s3(artifact):

 """

 Uploads an artifact to Amazon S3

45

 """

 try:

 client = boto3.client('s3')

 except ClientError as err:

 print("Failed to create boto3 client.\n" + str(err))

 return False

 try:

 client.put_object(

 Body=open(artifact, 'rb'),

 Bucket=os.getenv('S3_BUCKET'),

 Key=BUCKET_KEY

)

 except ClientError as err:

 print("Failed to upload artifact to S3.\n" + str(err))

 return False

 except IOError as err:

 print("Failed to access artifact.zip in this directory.\n"

+ str(err))

 return False

 return True

def deploy_new_revision():

 """

 Deploy a new application revision to AWS CodeDeploy Deployment

Group

 """

 try:

 client = boto3.client('codedeploy')

 print("created boto3 client")

 except ClientError as err:

 print("Failed to create boto3 client.\n" + str(err))

 return False

 try:

 response = client.create_deployment(

 applicationName=str(os.getenv('APPLICATION_NAME')),

 deploymentGroupName=str(os.getenv('DEPLO-

YMENT_GROUP_NAME')),

46

 revision={

 'revisionType': 'S3',

 's3Location': {

 'bucket': os.getenv('S3_BUCKET'),

 'key': BUCKET_KEY,

 'bundleType': 'zip'

 }

 },

 deploymentConfigName=str(os.getenv('DEPLOYMENT_CON-

FIG')),

 description='New deployment from BitBucket',

 ignoreApplicationStopFailures=True

)

 print("response obj create successful")

 except ClientError as err:

 print("Failed to deploy application revision.\n" +

str(err))

 return False

 """

 Wait for deployment to complete

 """

 while 1:

 try:

 deploymentResponse = client.get_deployment(

 deploymentId=str(response['deploymentId'])

)

 deployment_status_detail = "".join([str(k)+":

"+str(v)+"\n" for k, v in deploymentResponse['deploymentIn-

fo'].items()])

 deploymentStatus=deploymentResponse['deploymentIn-

fo']['status']

 if deploymentStatus == 'Succeeded':

 print ("Deployment Succeeded")

 return True

 elif deploymentStatus == 'Failed':

 print("Deployment Failed\n"+deployment_status_de-

tail)

47

 return False

 elif deploymentStatus == 'Stopped':

 print("Deployment stopped")

 return False

 elif (deploymentStatus == 'InProgress') or (deplo-

ymentStatus == 'Queued') or (deploymentStatus == 'Created'):

 continue

 except ClientError as err:

 print("Failed to deploy application revision.\n" +

str(err))

 return False

 return True

def main():

 if not upload_to_s3('/tmp/artifact.zip'):

 sys.exit(1)

 if not deploy_new_revision():

 sys.exit(1)

if __name__ == "__main__":

 main()

IV. Flask Application main file

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/')

def hello_world():

 return {"api_v": 1, "api_type": "Mult_14", "api_description":

"Multiply by 14"}

@app.route('/mul14', methods=['POST'])

def run_analysis():

48

 assignment_data = request.json

 data_to_multiply = assignment_data["parameters"].items()

 if data_to_multiply:

 return jsonify({"multiplied": {w: (x * 14) for w, x in

data_to_multiply}})

 else:

 return "No data to multiply"

if __name__ == '__main__':

 app.run(debug=False, port=5010)

