

Danh Nguyen

Introduction to Industry 4.0 and Data
Visualization in Embedded IoT System

Metropolia University of Applied Sciences

Bachelor of Engineering

Electronics

Bachelor’s Thesis

September 2020

 Abstract

Author

Title

Number of Pages

Date

Danh Nguyen

Introduction to Industry 4.0 and Data Visualization in Embedded
IoT system

48 pages + 2 appendices

4 October 2020

Degree Bachelor of Engineering

Degree Programme Electronics

Professional Major

Instructors

Janne Mäntykoski, Senior Lecturer

The project goal concerns designing an IoT system for Industrial Management and Smart
Home Application, which acquires various sensors’ data, such as temperature, humidity,
and pressure, visualizes them on the line chart, stores them in MySQL database of the web
server domain, and sends email alert based on the control limit.

At first, a local web server was hosted by the ESP32 which displayed the current tempera-
ture readings from a DS18B20 sensor, allowed the users to input the upper, lower temper-
ature threshold, and the particular person’s email which is responsible to ensure that the
temperature is in the normal range. If the current temperature went to the dangerous field,
an email would be sent. Moreover, the user can turn off the email function by checking the
radio button on the web server.

Secondly, the above design is enhanced to run on the user’s specific web server domain
provided by a free web hosting service to have some more useful and efficient functions.
First of all, one extra sensor module was added to this project - the BME280 sensor kit which
gains the humidity, temperature, and pressure data. Then, this system will send an email
whenever the temperature, humidity, and pressure exceeds the control limit. Subsequently,
the data from the sensors will be stored to the SQL database of the server and visualized in
line chart and table forms in the web browsers which can be seen on all devices connected
to the Internet from anywhere in the world. These two websites for this design are attached
to the appendix 2 of this report.

Based on the theoretical knowledge of the IoT Industry requirement, sensor module, this
web server project is developed for a better understanding of the Industry 4.0 and IoT data
visualization as a result of an embedded IoT system operating on a web server domain.

Keywords Industry 4.0, ESP32, Internet of Things, MySQL, PHP

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical Study 2

2.1 Industry 4.0 and the Development of IoT. 2

2.1.1 The First Industrial Revolution and the Second Industrial Revolution 2

2.1.2 The Third Industrial Revolution 3

2.1.3 Industry 4.0 3

2.2 IoT and Industrial IoT 5

2.2.1 IoT Development in the Industry 5

2.2.2 IoT Architecture 6

2.2.3 IoT Data Visualization 9

2.3 The Requirement for IoT Sensor 13

2.3.1 Durability 13

2.3.2 Accuracy 13

2.3.3 Versatility 14

2.3.4 Power Consumption 14

2.3.5 Cost 14

3 Introduction to the Hardware 14

3.1 ESP32 and ESP32 Development Board 14

3.1.1 Ultra-Low-Power Solution 15

3.1.2 Integration Method 15

3.2 Specification of ESP32 board 15

3.2.1 Wifi Connectivity 15

3.2.2 CPU and Memory 15

3.2.3 Peripherals, and Pinout Guide 17

3.3 Sensor Units 18

3.3.1 BME 280 18

3.3.2 DS18B20 22

4 Introduction to Software 23

4.1 Web Host Service 23

4.2 PHPMyAdmin 24

4.3 MySQL 24

4.4 Arduino Software 25

5 Introduction to the Programming Part 26

5.1 Local Web Server 26

5.2 Web Server with a Free Domain. 31

5.2.1 Programmed in the Arduino Software 33

5.2.2 Programmed by PHP Scripts. 34

6 Results 39

6.1 Local Web Server Control for the First Project. 39

6.1.1 Description 39

6.1.2 Flow Specification 40

6.2 The Final Web Server with Data Visualization 41

6.2.1 Description 41

6.2.2 Flow Specification 45

7 Conclusion 47

References 49

Appendices

Appendix 1. Local web server prototype for the first project whose name is “first_pro-

ject.ino”.

Appendix 2. Second project prototypes for the web’s server domain.

List of Abbreviations

API Application Programming Interface

BI Business Intelligence

°C Degree Celsius

DBMS Database management system.

°F Degree Fahrenheit

GPIO General Purpose Input and Output

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IoT Internet of Things

IT Information Technology

I2C Inter-Integrated Circuit

ms millisecond

MOSI Master Output/Slave Input

MISO Master Input/Slave Output

SCLK Clock

SCL Serial Clock

SDA Serial Data

SS/CS Slave Select/Chip Select

SoftAP Software Enabled Access Point

SPI Serial Peripheral Interface

SQL Structured Query Language

 1

1 Introduction

The first industrial revolution occurred when people started using water and steam power

to operate machines in production, and then the use of electricity in wide manufacturing

triggered the second industrial transformation. After that, the third industrial revolution

occurred when automatic operation appeared with the help of modern computer and

electrical automation software. The most recent transformation is Industry 4.0 which is

the combination of all technologies including Science, Technology, Physics, and Biology.

The development of Industry 4.0 focuses mainly on four main areas which are Infor-

mation Technology, Engineering, Biotechnology, and Physics. In the field of Engineering,

artificial technology, big data, and IoTs are mostly targeted by industrial companies. The

theoretical background of this project is based on the development of Industry 4.0, the

architecture, and the requirements when designing an Industrial IoT system.

There are two practical parts in this project. The first one is to establish a local web server

that includes the ESP32 connect to the DS18B20 sensor to display the current temper-

ature data and allows the user to input two temperature thresholds and the Gmail's ac-

count. In addition, these input fields are required to send an alert email when the current

temperature is too low or too high. The second part is to generate an IoT system with

the writer’s web domain administered by a free web host service. The web server will

display several sensors data from BME280 and DS18B20 which are connected to the

ESP32 and visualize them on the control line chart and in table form. When the humidity,

temperature, and pressure data exceeds the normal range, the web service will send

numerous emails to specific people until the sensor’s data become normal. Owing to that

system, users can manage information on websites with numerous mobile devices con-

nected to the internet from all over the world.

Overall, through this project, various sensor data such as temperature, humidity, and

pressure can be got via only one small IoT platform. It helps save a lot of space in some

factories, and be more convenient for the employees, especially in manufacturing engi-

neering to check the condition of the industrial environment more effectively. The sensor

 2

data which is collected from the electronic device is not only in the number format, but

also in the line chart form in order to improve in data visualization and analysis.

2 Theoretical Study

2.1 Industry 4.0 and the Development of IoT.

Figure one provides a brief introduction of four distinct industrial revolutions that the world

has experienced until today.

Figure 1. The Development of the Industry. [1]

2.1.1 The First Industrial Revolution and the Second Industrial Revolution

From the 1700s to the early 1800s [1], production transformed from concentrating on

manual labor operated by individuals to the application of steam-powered engines, and

other machine tools.

 3

Consequently, between the late 19th and the early 20th century, the introduction of steel,

electricity, gas, and oil in the factories enabled the abilities to construct the electrical

assembly line for mass production in manufacturing to boost efficiency and increase

productivity.

2.1.2 The Third Industrial Revolution

From the second half of the 20th century, as a result of the development of electronics,

computers, and telecommunications, the industry had changed from putting less empha-

sis on mechanical technology to automating in production. In this transformation, there

were two essential inventions which are Programmable Logic Controllers (PLCs) and

high-level electrical automation Robots. [2].

2.1.3 Industry 4.0

The term Industry 4.0 was first created in Hannover Industrial Workshop in Germany in

2011 and mainly concentrates on digital technology with the help of the Internet of Things

and cyber-physical systems for real-time data. In this way, products, machines, and pro-

cesses can ‘communicate’ with manufacturers and engineer through intelligent network-

ing. Figure 2 defines all the current trends in manufacturing technologies of the Industry

4.0.

 4

Figure 2. Main trends of the Industry 4.0 [1]

Industry 4.0 combines the latest scenarios of production and business processes from

product life cycle to sales, quality, maintenance, and customer services. In particular,

first of all, it improves the productivity and efficiency in manufacturing by decreasing the

downtime and automated or semi-automated decision making with the assembly lines.

Secondly, it increases the collaboration between your team members, departments, op-

erators, and managers to fully control real-time data and ideas to acquire the most ap-

propriate decisions. Thirdly, one of the most important advantages of industry 4.0 is the

ability of the company to handle hidden problems which can become worse in the future.

With the help of data predictive analytics and internet-connected machinery, manufac-

turers can predict the specific issues happening in the production or supply chain pro-

cess. Finally, customers also gain a huge benefit from these “smart” factories as less

machine and production line downtime comes with less overall operating costs. Further-

more, by combining technology and business, customers will have more high-quality and

innovative products.

 5

2.2 IoT and Industrial IoT

IoT is the use of the Internet for network-connected devices that are embedded in the

physical environment. Besides, Industrial IoT is the application of IoT technology in man-

ufacturing by controlling sensors and devices through cloud technology, or wireless au-

tomation [3]. These IoT applications provide some best features in the industry such as

improving the speed of production through the high-efficient machine, enabling compa-

nies to take into consideration the health and safety of their employees, especially with

those who work in a hazardous environment.

2.2.1 IoT Development in the Industry

Figure 3 demonstrates the global market spending on the Industrial IoT system for man-

ufacturing. The trend of this manufacturing is supposed to rise dramatically from $1.670B

in 2018 to approximately $12.44B in 2024. In a nutshell, in seven years, the average of

the compound annual growth rate is roughly 40%.

Figure 3. IoT Platforms for Manufacturing – Market Overview [4]

 6

2.2.2 IoT Architecture

In general, to execute or design an efficient IoT system design, the architecture of IoT is

required to be considered primarily. Figure 4 is the pictorial representation of the four

main stages in IoT architecture

Figure 4. Four stages of IoT solutions Architecture [5]

2.2.2.1 Connected Devices

Sensors can convert the electrical signals into information or data that can be analyzed,

while actuators can operate automatically based on the data from them. These devices

are in the first stage of the IoT architecture to continuously collect data from numerous

regions and then send them to the following layer. In particular, some popular sensors in

the IoT system now are temperature, pressure, humidity, and RFID tags sensors. They

 7

sent data to the server through some low power wireless networks which are Wi-Fi,

ZigBee, Bluetooth, etc. whose logos are indicated in figure 5 below.

Figure 5. Low Power Wireless Network [6]

2.2.2.2 Internet Gateway/Data Acquisition System

The IoT gateway has two main functions. The first one is to control the bidirectional data

between network and protocol, and the second is to translate these protocols to ensure

the interoperability of the multiple sensors and electrical equipment. Furthermore, a cer-

tain degree of security is provided by the gateway to transmit data from one system to

others with high encryption techniques [6]. In other words, it is a middle protection layer

that prevents data sent to the cloud from detrimental and illegal access.

This acquisition system is mandatory to collect, filter, and transfer data to the next layer

which is edge and cloud-based infrastructure. In particular, there are various IoT devices

in this system which connected to the sensors to transform the electrical signal to the

data signal before transferring to the next step, such as Microchip AVR-IoT WG devel-

opment board, the low-cost board TI CC3220, and Arm-based IoT Kit for Cloud IoT Core-

Raspberry BI.

2.2.2.3 Edge IT Data Processing

This stage is considered as a significant part of large-scale IoT projects while a huge

amount of data is transferred from the sensors to the IoT Cloud [7]. In particular, the edge

system includes the service, hardware, and software to analyze and pre-process the

 8

information before sending it to the cloud [8]. Besides, edge computing prevents trans-

ferring raw data to the cloud by carrying out data cleaning, aggregation, and analysis on

the device itself [9], and this will result in reducing bandwidth costs, traffic delays, and

quicker response times in the system

When determining the appropriate IoT edge system, three main criteria are based on the

ability to connect to modern and new cybersecurity technology, adapt to numerous leg-

acy assets, and work on a variety of edge-cloud hybrid environments [10].

2.2.2.4 Analysis, Storing and Visualizing Data

One of the essential advantages of a modern IoT system is real-time data analysis which

is extremely useful for system management and maintenance. In particular, the organi-

zations can predict the tendencies of their production to invent new, innovative, and suc-

cessful implementation.

To execute data analysis, the first required process is storing the data. Because of the

requirement to accumulate and manage massive data efficiently in real-time, the IoT

cloud has been used as a high-performance network to store data from different servers.

However, one challenge in storing data on the cloud is security issues. Figure 6 below is

one of the most comprehensive samples of IoT architecture for data protection.

Figure 6. Common IoT Architecture for data protection [11]

In the above-proposed diagram, various data and information can be acquired by the IoT

devices and if there is no internet connection, an intermediate gateway is used to provide

 9

the important connection between the device and cloud. For security reasons, the ad-

ministrator of the system will define appropriate roles for individuals in the organization

according to their job functionalities to access data on the cloud. Besides, information

from IoT equipment is in the encrypted format which allows only specific persons to ac-

cess [11]. Two types of cryptography algorithms that can be used in the IoT system are

symmetric and asymmetric algorithms. The first one encrypts and decrypts the data with

the same secret key, while the second allows two keys for encryption and decryption

separately. One of the most essential parts of the IoT cloud is the database management

system. For example, SQL Server Management is widely used in some businesses now-

adays to collect, analyze, and administer data.

The second stage to prepare for data analysis is data visualization. All the data gener-

ated from different IoT devices are quite complicated and impractical to analyze and

control. However, for this reason, data in the IoT system is necessary to present in visual

language. Data visualization helps businesses to realize hidden patterns and discover

customers’ current trends which change dramatically nowadays, based on real-time data

analysis. Therefore, companies can get the appropriate messages from the customers

conveniently and quickly to determine their adaptive methods and plans for revenue

growth [12]. Some common data visualization tools in IoT systems nowadays are Power

BI for real-time data visualization, Grafana for metrics visualization, and Kibana for Logs

Visualization.

2.2.3 IoT Data Visualization

In the era of the Internet of Things, data visualization is one of the most significant chal-

lenges and barriers for numerous industrial companies to transform their ways of manu-

facturing to adapt to Industry 4.0. In particular, when a huge amount of raw data from

several electronic devices needed to be visualized, not only does the company require

plentiful competences from their employees, but also considers the benefits of this trans-

formation, especially in the overall costs. In a small company, since a small amount of

data and few customers’ requirements are needed, data visualization can be executed

in some simple tools such as Microsoft Excel or used some sample programming librar-

 10

ies such as the Plotly, Matplotlib Python library. However, in a medium-size, some pow-

erful data visualization tools such as Tableau and Power BI are required to use because

of two essential reasons.

Firstly, these tools provide different functional protocols for the company to adapt to the

customer requirements which change hastily nowadays. For example, there is a variety

of functions for the users to calculate the total benefits of each month, year, and week,

and the protocol to predict the device’s condition based on the sensors’ statistics. Sec-

ondly, to utilize all the advantages of data visualization, large companies require to hire

numerous skillful specialists with a large amount of money since these competencies are

still not quite prominent at present. In addition, when using programming languages in

data visualization, it will be extremely difficult for the companies to insert new functions,

or maintain if these languages are not compatible with the requirements of higher ver-

sions of the wireless protocols, or new and modern electronic devices. Therefore, these

visualization tools are widely used by mid-sized companies for IoT designs because they

always develop to adapt to customer’s requirements, and they are also cost-effective for

a large IoT system.

This report will summarize the use of Power BI as an example of the use of powerful

software in IoT data visualization. The practical part of this thesis also uses Google Chart

Libraries to visualize the data from the ESP32.

2.2.3.1 Power BI

It is a popular Business Intelligence Tool created by Microsoft to provide detailed analysis

reports for large Enterprises. There are three products included in a Power BI suite which

are Power BI Desktop, Power BI Services to design and publish specific reports into the

Web Service, and an app on the mobile devices to manage the reports and dashboards.

[12]

Power BI first gets the data from various sources such as Facebook, Google Analytics,

Azure Cloud, SQL Server, Excel, etc. and then the raw data is transformed into power

query data to use for visualizing and analyzing. Once the report is developed, it can be

published to an internal web portal for security reasons. It means that only certain groups

 11

of people with the web link can access to read, modify, or export the report in any pre-

ferred format such as pdf, excel, tables, etc. These groups can also create some different

features for Power Bi reports, such as refreshing updated data based on minutes, hours,

days, months, etc. for real-time analysis and calculating some basic features of the busi-

ness such as total sales, average salary per employee, and so on. Figure 7 describes

the general workflow of Power BI.

Figure 7. General workflow of Power BI service [13]

Although Power Bi Suite is a paid service, it has a lot of highlights compared to other BI

tools. Firstly, it is comparatively cheaper than other data visualization tools and it also

offers various free services up to 1GB storage. Figure 8 below demonstrates all the free

services of Power BI. Secondly, it can analyze big data in both streaming and static way,

and thirdly, it has rich data graphs templates. For example, the library includes the bar,

line, donut, column, map (online and filled map) charts, and developers may write Python

code or use the R scripting language to design the chart much easier, especially when

uploading into the internal web server. Finally, Power BI has a short learning curve with

the use of power query natural language. Everyone who has used Microsoft Office before

can learn Power BI quickly.

 12

Figure 8.Main components of Power BI [13]

2.2.3.2 Google Visualization

In this thesis project, Google chart tools are used to visualize the various sensors’ data

from ESP32 because of numerous reasons. First of all, although it is a free software

compared to Power BI, it provides numerous chart galleries from the simple pie chart,

line chart, and bar chart to complex hierarchical treemaps. Figure 9 below demonstrates

the sample dashboard of Google Chart.

Figure 9. Example of Google Charts' Dashboard [14]

 13

Secondly, the Google Charts can be embedded in the writer’s web page with the help of

JavaScript which is one of the fastest-growing and most common web programming lan-

guages for a junior developer to learn. Thirdly, thanks to the high interaction, these charts

can create events that enable the programmer to create complex dashboards and other

experiences such as sending an email, sorting, modifying, and filtering data integrated

with the webpages [15]. At last, by applying the HTML5 technology which provides cross-

browser compatibility to iPhones, Ipads, and Android, these charts are more convenient

for the users to observe and control the data from their devices from all over the world.

2.3 The Requirement for IoT Sensor

The location of the IoT sensor and device depends mostly on human interaction. They

can be placed in a remote location or embedded in a system, where people cannot ac-

cess it. In general, the IoT sensors’ selecting process is depending on five factors which

are durability, accuracy, versatility, power consumption, and cost.

2.3.1 Durability

It is essential to ensure that the IoT device can operate for a certain period without caus-

ing unnecessary costs. For example, a water-resistant temperature sensor can be used

for a remote weather station, but it is unable to use to control water temperature in a pool

because it is not waterproof.

2.3.2 Accuracy

Accuracy is depending on mostly the environment in which the IoT device is used. For

example, when designing a remote medical device system, the medical temperature

sensor requires to have accuracy from approximately +/-0.2 degrees while for smart

home applications, the sensor can be accurate with a +/-1 degree error [16].

 14

2.3.3 Versatility

In the IoT network, it is essential to have sensors that can operate in different variations

of the environment. For example, in remote weather stations for a country which have

four seasons, it is significant to find some sensors which be capable of operating in ex-

tremes temperatures in summer and winter.

2.3.4 Power Consumption

For an efficient-power IoT system, a low-power, high-power, or even very low-power

devices must be selected based on different conditions. For example, a sensor or device

powered by solar-charged batteries may need to spend a great portion of its life in sleep

mode to prolong battery life during low-light times. It may also require fast wake-up times

to capture data appropriately even when small solar energy is provided.

2.3.5 Cost

Cost is considered one of the most important impacts when designing an IoT system

because, in this network, there are hundreds or even thousands of sensors and devices.

These costs involve more than just the price of the sensor because some considerations

must be given to the cost of placement, maintenance, reliability, etc.

3 Introduction to the Hardware

3.1 ESP32 and ESP32 Development Board

In this thesis, the ESP32 DEVKIT DOIT board was mainly used which demonstrates

numerous features of one IoT kit for junior developers. In particular, two main features

of this board are the ultra-low-power and complete integration solution.

 15

3.1.1 Ultra-Low-Power Solution

Thanks to the characteristics of low-power chips, the ESP32 has been used widely in

the IoT system and some other wearable electronic mobile applications. To reduce the

amount of energy used by the chip to a minimum, it is mandatory to modify the duty cycle

to a low value [17]. In addition, the adjustability characteristic of the power amplifier’s

output can create an efficient optimal trade-off among the communication range, data

rate, and power consumption. From the ESP32 datasheet [18], the minimum power sup-

ply voltage for the ESP32 is 3.0V.

3.1.2 Integration Method

ESP32 has approximately twenty external components, some of them are antenna

switch, filters, power amplifier, and the power management modules. However, these

parts can be handled in a small Printed Circuit Board, and those also make the ESP32

module has a high-integrated solution, especially in Wifi, and Bluetooth.

3.2 Specification of ESP32 board

3.2.1 Wifi Connectivity

ESP32 implements Wifi at a 150.0 Mbps data rate and supports software that enables a

computer to become a router or a wireless access point and some other basic service

set under numerous distributed control functions [19].

3.2.2 CPU and Memory

ESP32’s processor integrates a Tensilica Xtensa Dual-Core 32-bit LX6 microprocessor,

running at 240 MHz (in the DOIT development board). In addition, it has 448KB Rom,

520kB SRAM, and 4MB of the flash memory to execute a program.

Table 1 and Table 2 below demonstrate the similarities and differences in using ROM,

Flash, and RAM which includes two types-DRAM and SRAM memory.

 16

Table 1. Difference between ROM and Flash Memory [20]

Difference between ROM and Flash Memory

ROM FLASH

Data stored in are nonvolatile which will not be removed when there is no power

supply.

- It is read-only memory, so data cannot

be written or modified.

- The data can be read and write.

- The data cannot be removed by any

electronic devices.

- The data can be erased or written by

electronic devices or by applying the

electrical field to the chip.

- Higher read speed. - Slower read speeds compared to

ROM/RAM.

Table 2. Difference between SRAM and DRAM Memory [21]

Difference between SRAM and DRAM Memory

SRAM DRAM

Data stored in are volatile which means that it is lost when power is removed

- SRAM has better performance in

terms of speed of operation because

of the lower access time.

- DRAM has lower performance be-

cause of the higher access time.

- Transistors and latches are mainly

used in SRAM.

- Capacitors are mainly used in DRAM,

with few or no transistors.

- SRAM needs a constant power sup-

ply, so it consumes more power.

- DRAM can store the information in the

capacitor, so it reduces power con-

sumption.

- SRAM’s form is on-chip memory. - DRAM’s form is off-chip memory.

 17

3.2.3 Peripherals, and Pinout Guide

Two essential components of the microcontroller are the processor and peripherals. The

core of the integrated circuit in the microcontroller is called the processor which performs

various functions such as controlling and communicating with other electronic devices.

Nevertheless, this core requires some other parts to finish executing specific tasks.

Therefore, some other external or internal peripherals have been soldered in the bread-

board to help the microcontroller interface directly or indirectly with other systems such

as relays, motor controller, keypad, seven-segment display, and electronic and electrical

sensors.

ESP32 was used in this project which has numerous peripherals indicated in table 3

below.

Table 3. ESP32 In General [22]

ESP32

Digital Input/Output Pins 25

Analog Input Pins 6

Analog Outputs Pins 2

UARTs 3

SPIs 2

In order to select specific pins for different functions of the ESP32, figure 10 below is one

of the most essential parts for the developers to consider carefully when designing an

appropriate program. In particular, to use the I2C communication of the ESP32, two pins

are needed which are GPIO22 and GPIO21.

 18

Figure 10. ESP32 Pinout Guide [23]

3.3 Sensor Units

3.3.1 BME 280

In this project, the Adafruit BME280 breakout has been used to get the humidity, pres-

sure, and barometric data from the environment. Figure 11 below is the real picture of

the original Adafruit BME280 from the electronic market.

Figure 11. BME280 Module

The BME280 chip manufactured by Bosch is located in the heart of this module which is

demonstrated in figure 12 below [24]. This is the next-generation digital temperature,

 19

humidity, and pressure sensor and a successor to sensors like BMP180, BMP085, or

BMP183.

Figure 12. BME280 Bosch Chip [24]

This module can measure the relative humidity, pressure, altitude, and temperature with

the precision indicated in figure 13 below.

Figure 13. BME280's precision [24]

Regarding the power requirement, this module can be used without problems with the

3.3V or 5V logic microcontroller such as the Arduino board, and it consumes less than 1

mA during continuous measurements.

3.3.1.1 BME280 Sensor Pinout

Figure 14 demonstrates the pinout guide of BME280.

 20

Figure 14. BME280 Pinout Guide [24]

Furthermore, the BME280 module features a simple two-wire I2C or SPI interface to

communicate with the microcontroller. However, only the I2C communication protocol

will be used in this project.

3.3.1.2 BME280’s communication protocol

BME280 provides two efficient communication protocols which are the SPI and I2C. This

part will cover some basic introductions of these protocols to explain why the I2C was

used in this project for the ESP32 to receive and transmit data from the BME280 sensor

module.

In electronic communication, there are two types of communication which are serial and

parallel interfaces. While the serial communication requires that one bit is sent continu-

ously via a single wire, the parallel protocol allows that all data bits are transmitted con-

currently through different wires. Figure 15 below demonstrates the differences between

the serial and parallel communication protocols.

 21

Figure 15. Difference between serial and parallel communication protocols [25]

SPI is the serial master-slave communication interface that requires three or four wires

to operate efficiently for different purposes. In SPI, a master can control and connect with

one or multiple slaves, but only one master is allowed to use. Furthermore, compared

with I2C, the data in SPI is transmitted at a higher rate with the maximum data rate up to

10 Mbps [25]. However, it requires four lines which are MOSI, MISO, SCLK, SS. To be

more specific, MOSI and MISO are the signals from the master to slave and reverse

respectively. The data is sent based on the SCLK clock signal created by the master. If

multiple slaves are used, the CC and SS wire will be used for the Master to check for the

appropriate slave.

I2C is also a serial interface which requires two wire for the clock and data signal. These

two wires’ symbols are SDA and SCL. Compared to the SPI, I2C can transfer and receive

data between multiple masters and slaves [26]. Particularly, in I2C, based on the start

condition, a message was sent to the address defined in the address frame. After that, if

the message was sent successfully, the acknowledge bit would be returned. At the final

stage, If the stop condition was sent from the master, the data transmission would be

stopped. The disadvantage of I2C is that it has a slow data rate whose maximum full

speed is 400 kbit/s. However, it is widely used since it has only two wires and its simple

setup in the programming parts.

 22

3.3.2 DS18B20

The DS18B20 is a one-wire digital temperature sensor that needs only one line to send

or receive data with another micro-controller [27]. Figure 16 below describes the pinout

of this sensor, the left sensor in the picture is the waterproof version of DS18B20.

Figure 16. Two types of DS18B20 and pinout guide [28]

In this project, the DS18B20 Digital temperature Sensor (TO-92) from Dallas Semicon-

ductor will be applied, which includes in figure 17. The power supply of this sensor ranges

from 3.0V to 5.5V and temperatures can be calibrated between -55°C and +125°C. Com-

pared to other temperature sensors such as BME280, the accuracy of this sensor is

higher which is ±0.5°C accuracy from -10°C to +85°C. In addition, it reads thermometer

data from 9 to 12-bit in a maximum of 750 ms to convert to a digital word [29]. To be

more specific, figure 17 below demonstrates the pin description of the DS18B20 TO-92

package.

 23

Figure 17. Dallas DS18B20's pin description.

4 Introduction to Software

4.1 Web Host Service

The goal of this thesis was to design the writer’s web domain name which indicates in

the appendices and a global hosting account that enables users to save sensors’ infor-

mation from the ESP32 and visualize them on the web browser. However, building its

web server domain requires various things such as paying a huge amount of money

every month, registering the website based on each country’s rule, encrypting the web-

site with a high-security password in order not to be hacked or stolen data by numerous

anonymous organizations. Therefore, in this project, a hosting service has been used.

Compared to other services, such as Bluehost, Digital Ocean, the 000webhost has some

specific features which are providing the user to have one free website with 300 MB disk

space, and create one database on MySQL using the PHPMyAdmin software. Figure 18

below is the logo icon of the 000webhost service.

 24

Figure 18. 000webhost logo. [30]

4.2 PHPMyAdmin

PhpMyAdmin, which is also called hypertext preprocessor my admin, is a free software

tool developed in PHP programming language to design the web interface and operate

on the MySQL database. In particular, it supports a huge range of operations on MySQL

such as browsing, creating, updating, and dropping databases, tables, and managing all

users' accesses and stored procedures. In addition, PHPMyAdmin on the web server

can create some functions to send emails, and connecting to the data of the IoT module.

Figure 19 below is the logo of the phpMyAdmin tool.

Figure 19. PHPMyAdmin software. [31]

4.3 MySQL

SQL stands for Structured Query Language is a database accessing and manipulating

language. In general, each database requires one or more distinct APIs for creating,

searching, managing, and replacing the data it holds. In order to execute SQL, and use

the database’s API, PHPMyAdmin is a fast, open-source license, and easy-to-use rela-

tion database management system software. Figure 20 below demonstrates the use of

 25

SQL query on the PHPMyAdmin platform to create “ThesisSensorData” table which in-

cludes two columns of character types which are “sensor” and “temperaturedata”.

Figure 20. SQL Query on PHPMyAdmin.

4.4 Arduino Software

This project uses Arduino 1.8.13 software which is the latest version to operate with the

ESP32 and connect to the web’s database. However, to execute these thesis projects,

it is essential to install numerous libraries into this platform. Figure 21 demonstrates the

use of the Arduino version 1.8.13 to program the practical parts of this thesis.

Figure 21. The Arduino Platform.

 26

5 Introduction to the Programming Part

5.1 Local Web Server

In this part, only one file executed in Arduino CC software has been used which is named

first_project.ino and attached in appendix 1 of this report. However, before starting writ-

ing code into the IDE, there are numerous steps needed to be executed. These tasks

are summarized in figure 22 below.

Figure 22. First project's preparing steps.

In the preparation process, a Gmail account should be created to enable the option “Al-

low less secure app” for the ESP32 to login and send the emails. This stage is indicated

in figure 23 below.

Figure 23. Less secure app access in Gmail.

 27

In addition, to communicate with the DS18B20 temperature sensor, One Wire by Paul

Stoffregen and Dallas Temperature libraries have to be installed. To create an asynchro-

nous web server and send email alerts, the ESPAsyncWeb server, AsyncTCP, and the

Mail Client libraries are also instituted. These libraries are indicated in figure 24 below.

Figure 24. First project's necessary libraries.

Regarding the programming part, the first step is to write the code for the setting of the

simple mail transfer protocol which comprises the email account’s name, password,

email subject, and Gmail’s SMTP port. Then it is essential to define some variables to

store the default receiver’s email address, the minimum, and maximum temperature

thresholds. Figure 25 describes the code for all these settings.

 28

Figure 25. SMTP protocol, default receiver, and threshold variables' declaration.

In the second stage, the AsyncWeb server protocol has been used in this project to build

the front end characteristic of the webpage and assign the data input from the webserver

to all the appropriate variables in the code. Particularly, the layout of the webpage is

programmed in HTML and CSS code, stored in an array, and sent by the HTTP request

function to the local web server. These codes are also constituted the preprocessor var-

iables which are the users’ inputs from the website. The coding for this part is demon-

strated in figure 26.

 29

Figure 26. Front-end characteristic of the first project.

After that, the processor function replaces all the input values from the users with the

software variables, such as lastTemperature, inputMessage, enableEmailChecked, in-

putMessage3 (for the low threshold), inputMessage4 (for the high threshold), lowthresh-

olddevice, and maxthresholddevice variables. The preprocessor function is indicated in

figure 27.

 30

Figure 27. Processor function of the first project.

Then some pointer variables are used to check whether HTTP GET request was sent,

for example, if(request->hasParam(PARAM_INPUT_3)) condition to verify if the user in-

putted the value low threshold temperature. When the request contains input parame-

ters, they will be assigned to the variables, and those which have no request will remain

their previous values. In the loop() function, the timer of the ESP32 is used to acquire

new temperature readings every five seconds, and another protocol is to set up the con-

ditions to send the email alerts.

In this project, the email alert will be sent only in these three conditions. First of all, the

current temperature is above, or below the threshold. Secondly, the checkbox of enabling

the email notifications is ticked on the web page, and at last, the email has not been sent

yet based on the boolean variable emailSent.

 31

5.2 Web Server with a Free Domain.

Compared to the first project, this design introduces numerous good features. First of all,

the users can get more data such as temperature, humidity, pressure from the BME280

sensor module, and the DateTime value when updating the number to the table “Sen-

sorData1” of the database. Secondly, this server uses the HTTP POST request to publish

all the sensor data from the ESP32 to the web domain, and these statistics will be stored

in the SQL database for further analysis, such as for predictive maintenance and quality

management. Thirdly, one issue is that this project requires a long time to execute all the

above functions, so the time interval between its post is thirty seconds while the response

period in the first project is just only five seconds. Lastly, this project will comprise two

websites for visualizing the data in the table format and line chart form, and they can be

seen by using all devices connected to the Internet globally through the web browser.

Before starting to program this second design, there are numerous essential preparation

processes. Firstly, equivalent to the first project, the Arduino platform required to install

all the important libraries which are One Wire by Paul Stoffregen, Dallas Temperature

for the DS18B20, the Wifi, HTTP clients to send and receive requests to the web server,

and the Adafruit_Sensor for the BME280 sensor. In addition, a Gmail account which

allows the less secure app access should be created. After that, the breadboard should

be connected based on the circuit and schematic diagram in figure 28 and 29 below.

 32

Figure 28. Circuit Diagram

Figure 29. Circuit Schematic

In a real experiment, the breadboard with all essential connections should present equiv-

alent to figure 30.

 33

Figure 30. Circuit breadboard

5.2.1 Programmed in the Arduino Software

For the Arduino software file name “second_project.ino” to deliver data from the ESP32

to the web server domain, all these steps must be followed. First of all, the network user

id and password required to be given in the code for the ESP32 to connect to the Internet

and then used the array pointers to put the name of the website which is “https://danhthe-

sis.000webhostapp.com/thesis/post-esp-data.php” for the ESP32 to send all its readings

to. Secondly, this code would provide a random and characteristic string variable

apiKeyValue which was the security key to protect the main database from being read

and written by other anonymous users. Thirdly, the protocol to send the HTTP request

to store the data from the ESP32 to the specific columns of the web’s database was

indicated in figure 31 below.

 34

Figure 31. Request to store the data in the second project.

5.2.2 Programmed by PHP Scripts.

To design the writer’s domain provided by the web host service, three PHP script files

are required to store in the web’s file managers. In particular, one file is to connect and

store the data sending from the Arduino software (which are connected to the ESP32)

into the specific database of the server, and the others are visualizing those data in the

table and line chart forms. The guides to design these PHP scripts are summarized ap-

parently in figure 32 below.

 35

Figure 32. PHP scripts in brief.

The beginning file‘s name is post-esp-data.php whose main functions are accumulating

the data from ESP32 to the server’s database and sending emails. There are numerous

defined variables such as the database’s name, the username, and the password of the

server to connect to the database. In addition, the API key value is the most essential

one to accomplish the requirement of acquiring data from the Arduino platform. The

stage to check if the API key and all the required parameters are similar to the others in

the Arduino platform is demonstrated in figure 33 below.

Figure 33. Save the data from the ESP32 to the web's database.

 36

After that, the stage to use the SQL query INSERT INTO to send all the data from the

ESP32 to the web database is indicated in figure 34 below.

Figure 34. SQL query to store data from the ESP32 to the web's database.

In addition, this PHP also includes other functions and conditions to send the email alerts,

based on defined temperature, pressure, and humidity threshold. This characteristic is

indicated in figure 35 below.

Figure 35. Email conditions in PHP script.

The second file name is esp-data.php to present the data from the server’s database in

table form using the <table> tag in HTML and CSS code. The table header is defined as

<th> in the code which texts are bold and center, while the <td> tags are the name of

each column in the table cell whose texts are left-aligned. At first, there are some HTML

and CSS codes to design the table. This protocol is demonstrated in figure 36.

 37

Figure 36. Design table form.

After that, in the ”esp-data.php”, there are also some SQL queries to insert data from the

web’s database to the table and organize the data based on descending increment ID

numbers. Therefore, the latest data which has the highest ID number is on the top row

of the table. These tasks are indicated in figure 37.

Figure 37. Insert Data into the table of the web server.

The last PHP script file is esp32_line_chart.php to represent the data from the ESP32 in

the form of line charts using the Google Chart library. Firstly, to use this library, some

Javascript codes are required to be embedded in this PHP file which demonstrates in

figure 38.

 38

Figure 38. Sample code to use the Google Chart's libraries.

After that, the function “drawChart” is used three times to visualize the sensor data in the

line chart forms. Figure 39 is the sample code to visualize humidity sensor data on the

line chart.

Figure 39. Sample code for the line chart of humidity sensor data.

All in all, these files above are stored in the file managers of the web domain which

indicates in figure 40.

Figure 40. File Manager on Web Domain.

 39

To protect two web pages that visualize sensor data in table and line chart forms, it is

essential to enable the secure protection of the web server. Particularly, two files “.htac-

cess” and “.htpasswd” are required to add some additional codes which are demon-

strated in figure 41 below.

Figure 41. Programming for web's secure protection

6 Results

6.1 Local Web Server Control for the First Project.

6.1.1 Description

In this part, a local web server has been designed as demonstrated in figure 42. This

web server will display the current temperature data from the DS18B20 and allow users

to input an appropriate email address for alerts. Furthermore, two relays will be turned

on if the temperature goes out the max and min temperature threshold. For example, the

red led is turned on when the temperature is too high or the green one will be turned on

when the temperature is too low, and both will be turned off just after the temperature

becomes normal. The last function is sending an email which content includes the dan-

gerous current temperature, and a message indicates that this data is upper or lower the

control threshold which is dedicated in figure 43.

 40

Figure 42. First project's local web server.

Figure 43. Emails were sent when the temperature went out the normal range.

6.1.2 Flow Specification

There are several steps to design this local web server, and they can be divided into

three main essential tasks. The first task is to insert some mandatory libraries into the

Arduino IDE environment, and the next one is to create and program the “first_pro-

ject.ino” inside the coding IDE. The final goal is to flash the program file into the ESP32.

Figure 44 below demonstrates the step-by-step flow chart of these processes.

 41

Figure 44. Programming flow chart of the first project.

After flashing the software into the ESP32, this system can run continuously to check

whether the temperature is in the normal range or not, turn on specific relays defined by

the thresholds, and send email alerts. In addition, the system stops working only when

disconnecting the ESP32 from the power supply, and the web server, and alert function

will not work when ESP32 cannot connect to the wifi. Therefore, in the smart home ap-

plication, when powering and flashing the ESP32, users can know when the temperature

in a specific area is too high or too low without the need to stay inside this region thanks

to this system.

6.2 The Final Web Server with Data Visualization

6.2.1 Description

The earlier project has two issues in the wireless network and data storage. Specifically,

the first issue is that it works only in the local domain which means that the ESP32 and

the computer need to connect to the same wireless network. Secondly, the temperature

information will always update every five second and the old information was deleted.

Therefore, to connect to the website through the global Internet network and save all

sensor’s data, a global web domain has been used where the writer can upload all the

 42

sensor data from the ESP32 to its database and visualize these statistics in table or line

charts form from two different links which are demonstrated in figure 45 and 46 respec-

tively.

Figure 45. Data visualization in table form.

Figure 46. Data Visualization in Line Chart form.

 43

However, for data privacy secure protection, to access to the above web pages, it is

essential for the user to input the appropriate user name and password. If wrong creden-

tial information is inputted, the secure authentication will present continuously which is

demonstrated in figure 47 below.

Figure 47. Web page's authentication

There are numerous reasons why storing the sensor data of the ESP32 to the web server

database is essential. First of all, if only the latest temperature information is acquired

like what already did in the first project, users cannot check if the previous data is wrong

or not without the alert email function. Secondly, when all the information is saved, they

can be used to predict different trends for further maintenance service or to handle some

problems related to the sensors’ data in the industrial environment. Lastly, when using

in a big system or manufacturing, every single data needs to be stored and used for

further analysis and research to improve the efficiencies and outcomes.

The table form helps users quickly observe the data from the sensor, as the data has

been programmed to display the latest data on the first row of the table, with a specific

ID. Besides, the line chart form improves the visualization of the user to control data,

especially in the wide range of data. For example, based on the graph, users can know

if the temperature rises consistently or unsteadily, and find out the solution for a specific

purpose. Therefore, these forms are quite useful and convenient for the industrial com-

pany to manage the tendency of their sensors’ data and determine appropriate predictive

maintenance.

 44

Particularly, based on the defined threshold of different parameters and data in the web’s

database, this design can send the alarm messages to an appropriate person when the

temperature, humidity, and pressure exceed the normal range by using the PHP scripts.

Figure 48 demonstrates the data which got from the ESP32 on the web server’s data-

base management software-PHPMyAdmin.

Figure 48. Web server's database management

Figure 49 below indicates the email alerts sent from the web server with the help of php

scrip file “post-esp-data.php”.

 45

Figure 49. Email Alert from Web Server using PHP script

6.2.2 Flow Specification

Compared to the first project, this web server requires more steps which are summarized

into four main tasks. The first and the second tasks are to prepare the breadboard of the

ESP32 and the code “second_project.ino” in the Arduino IDE environment. The third step

is working with the webserver domain to create a database, table, and including three

PHP scripts to save the data from the Arduino code to the database, and visualize all the

sensor information in the table and line chart form. The final step is to flash the program

in the IDE to the main breadboard and start the IoT system. Figure 50 below is the de-

scriptive diagram for the second project’s programming flow.

 46

Figure 50. Programming flow chart of the second project

After flashing the software to the ESP32, this system will work continuously to send the

data from the ESP32 to the web database, and if the ESP32 cannot connect to the Wifi

or the power supply, the system will stop. In addition, while the web server of the first

project can be accessed via the devices connecting to the local internet, this project

allows users to open the web pages via any internet connection.

 47

7 Conclusion

The main goal of this thesis work was to introduce the overview of the development of

the industry from the very beginning to the Industry 4.0 revolution in different aspects,

especially in the field of the Internet of Things with various evidence such as the intelli-

gent car, automatic home, self-regulating supply chain, electronic industrial alert system.

Although this evolution brought numerous significant requirements and challenges when

designing the IoT and embedded system, the benefits of it are undeniable in humans’

lives.

There are two practical parts in this thesis to demonstrate the evolution of the IoT and

embedded software in the field of smart home and industrial management. These two

parts all use the low-power SoC design of the ESP32 connected to the industrial sensors

such as BME280, and DS18B20 (non-water-resistant version). The first prototype is to

create a local web server to control the temperature data and send email alerts. Then

the second project has been developed to visualize sensor data and send emails based

on specific thresholds by the global web server domain.

In general, the first project is a stepping stone for the second one because of two main

reasons. Firstly, the ESP32’s old data required to be deleted before using the HTTP GET

request to prevent memory shortage. Therefore, it is not possible to save the data from

the ESP32 to its memory or visualize them on the local web server. Secondly, it is more

convenient for the users to access the database even when they are outside or living

very far from their local server. Consequently, the second project has been established

to maintain all the data from the ESP32 by saving them to the SQL database on the free

web domain and visualize these statistics for further analysis. As a result of visualizing

data on the graphs, it is more comfortable for the engineer, managers, or employees to

predict the tendency of the process and execute some immediate actions to handle the

serious problems or generating some innovative steps for predictive maintenance. Be-

sides, using free domain made the statistics accessible all over the world, and it is ex-

tremely helpful in the smart home applications.

Lastly, there are still some improvements needed in these projects. First of all, it still uses

a free web domain from the third service, so it is not securable for data protection. In the

 48

future, it can be easily changed when a new domain is bought, as they still have the

same setup as this project. The user just needs to attach all the coding files below to

their own web server database and execute some modifications such as network cre-

dentials, database’s username, passwords, and the API key. Secondly, in the real indus-

try, these embedded systems are always used in their local web server for security rea-

sons. However, it requires a lot of competences to build a full embedded local security

web server, because it needs to make a lot of encryptions which dedicates in the above

sections, and huge data will need to store and visualize. Therefore, Power BI has been

dedicated in this project to demonstrate one of the most powerful tools for the factory to

visualize the data, execute filtering, and calculate the total revenue in the business field,

because it is quite simple to use with many incredible available functions and sample

code, compared to program hardly to get various sensors’ data in the factory. However,

the Power BI tool was not free and costed a lot for some small factories, and individuals

to use. Therefore, this project is quite useful for some small businesses and personal

users to implement. Finally, the project can add more modern and convenient compo-

nents and devices, such as sensors, and relays or use with other IoT kits, such as Rasp-

berry BI, Mongoose OS IoT kit, so it can give more precise data from different electrical

equipment in numerous areas.

 49

References

References

[1] "Industry 4.0: the fourth industrial revolution – a guide to Industry 4.0," [Online].

Available: https://www.i-scoop.eu/industry-4-0/. [Accessed 10 June 2020].

[2] K. Pouspourika, "The Four Industrial Revolutions," Institute of Entrepreneurship

Development, 30 June 2019. [Online]. Available: https://ied.eu/project-updates/the-4-

industrial-revolutions/. [Accessed 12 August 2020].

[3] "Why is IoT so important," [Online]. Available: https://www.oracle.com/internet-of-

things/what-is-iot.html. [Accessed 12 June 2020].

[4] L. Columbus, "Seven Things You Need To Know About IIoT In Manufacturing," 9 June

2019. [Online]. Available: https://www.enterpriseirregulars.com/138763/seven-things-

you-need-to-know-about-iiot-in-manufacturing/. [Accessed 12 June 2020].

[5] M. Sharma, "Stages of “Internet of Things” Architecture," 19 September 2019. [Online].

Available: https://www.marlabs.com/blog-stages-of-iot-architecture/. [Accessed 12

June 2020].

[6] Rajiv, "What are the major components of the Internet of Things," 10 January 2018.

[Online]. Available: https://www.rfpage.com/what-are-the-major-components-of-

internet-of-things/. [Accessed 16 June 2020].

[7] "What is IoT Architecture," 11 May 2020. [Online]. Available:

https://www.avsystem.com/blog/what-is-iot-architecture/. [Accessed 12 August 2020].

[8] "IOTArchitecture," 2020. [Online]. Available: https://www.javatpoint.com/iot-

architecture-models. [Accessed 13 August 2020].

[9] A. O'neill, "What is IoT Edge," 16 April 2020. [Online]. Available: https://www.c-

sharpcorner.com/article/what-is-iot-edge/. [Accessed 13 August 2020].

 50

[10] "Choosing the best edge platform – IoT edge platform selection criteria and advice," I-

Scoop, [Online]. Available: https://www.i-scoop.eu/internet-of-things-guide/iot-

platform-market-2017-2025/iot-edge-platform-selection/. [Accessed 9 June 2020].

[11] A. S. P. A. D. G. Jayant D.Bokefode, "Developing A Secure Cloud Storage System for

Storing IoT Data by Applying Role Based Encryption," 22 August 2016. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S1877050916310729.

[Accessed 17 June 2020].

[12] "Powerful Data Visualization Tools for IoT Applications," 5 September 2019. [Online].

Available: https://www.iotforall.com/data-visualization-tools-iot-applications/.

[Accessed 16 June 2020].

[13] V. Padghan, "Power BI Tutorial: Visualizing Data Like Never Before With Power BI

Desktop," Edureka, 19 May 2020. [Online]. Available:

https://www.edureka.co/blog/power-bi-tutorial/. [Accessed 1 June 2020].

[14] K. T. L. Trinh, "Tap Chi Lap Trinh," Kien Thuc Lap Trinh, 13 February 2020. [Online].

Available: https://tapchilaptrinh.vn/2020/02/13/ve-bieu-do-chart-cho-trang-web-bang-

html-va-google-charts/. [Accessed 19 July 2020].

[15] "Using Google Charts," Google, [Online]. Available:

https://developers.google.com/chart/interactive/docs. [Accessed 19 July 2020].

[16] S. C. Mukhopadhyay, Internet of Things: Challenges and Opportunities, 2014.

[17] E. Systems, "ESP32 Series Datasheet," 2020. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

[Accessed 25 July 2020].

[18] E. Systems, "ESP32-WROOM-32 Datasheet," 2019. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-

32_datasheet_en.pdf. [Accessed 20 July 2020].

[19] "SoftAP," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/SoftAP.

[Accessed 13 August 2020].

 51

[20] "RAM, ROM, and Flash Memory," [Online]. Available:

https://www.dummies.com/computers/computer-networking/networking-

components/ram-rom-and-flash-memory/. [Accessed 13 August 2020].

[21] S. v. D. K. t. Difference. [Online]. Available: https://www.guru99.com/sram-vs-dram-

difference.html. [Accessed 13 August 2020].

[22] Zerynth, "DOIT ESP32 DEVKITv1," [Online]. Available:

https://docs.zerynth.com/latest/official/board.zerynth.doit_esp32/docs/index.html.

[Accessed 22 July 2020].

[23] R. Santos, "Getting started with ESP32," [Online]. Available:

https://randomnerdtutorials.com/getting-started-with-esp32/. [Accessed 22 July 2020].

[24] L. M. Engineers, "Interface BME280 Temperature, Humidity & Pressure Sensor with

Arduino," [Online]. Available: https://lastminuteengineers.com/bme280-arduino-

tutorial/. [Accessed 20 July 2020].

[25] "BASICS OF THE SPI COMMUNICATION PROTOCOL," Circuit Basics, [Online].

Available: https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/.

[Accessed 1 July 2020].

[26] "BASICS OF THE I2C COMMUNICATION PROTOCOL," Circuit Basics, [Online].

Available: https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/.

[Accessed 2 July 2020].

[27] R. Santos, "Random Nerd Tutorials," [Online]. Available:

https://randomnerdtutorials.com/esp32-email-alert-temperature-threshold/. [Accessed

19 June 2020].

[28] "DS18B20 Temperature Sensor," 7 May 2018. [Online]. Available:

https://components101.com/sensors/ds18b20-temperature-sensor. [Accessed 19 July

2020].

[29] D. Semiconductor, "DS18B20 Programmable Resolution One Wire Digital

Thermometer Datasheet," [Online]. Available:

 52

https://pdf1.alldatasheet.com/datasheet-pdf/view/58557/DALLAS/DS18B20.html.

[Accessed 20 July 2020].

[30] "000webhost," Hostinger, [Online]. Available: https://www.000webhost.com/#feature-

table. [Accessed 20 July 2020].

[31] PHPMyAdmin, "PHPMyAdmin," [Online]. Available: https://www.phpmyadmin.net/.

[Accessed 20 July 2020].

Appendix 1

 1 (6)

Appendix 1. Local webserver prototype for the first project whose name is

“first_project.ino”

#include <WiFi.h>

#include <AsyncTCP.h>

#include <ESPAsyncWebServer.h>

#include <OneWire.h>

#include <DallasTemperature.h>

#include "ESP32_MailClient.h"

//NETWORK USER ID AND PASSWORD

const char* ssid = ""; // writer’s confidential information

const char* password = ""; // writer’s confidential information

// Output state will store in these variable

String defaultStateoutput26 = "off";

String defaultStateoutput27 = "off";

// Define pins for output parts

const int relayoutput1 = 26;

const int relayoutput2 = 27;

// Using Gmail Account

#define emailSenderAccount "danwin1802@gmail.com"

#define emailSenderPassword "danh18021991."

#define smtpServer "smtp.gmail.com"

#define smtpServerPort 465

#define emailSubject "[Urgent Alert] Alert ESP32's temperature is

outside the threshold "

// Default Responsible Email Alert Address

String EmailAddress = "caodanh1802@gmail.com";

String enableAlertEmail = "checked";

String EnableInput = "true";

// Default Temperature threshold data

String lowthreshold = "26.0"; //low threshold

String maxthreshold = "30.0"; //max threshold

String lastTemperature;

//Control threshold device

String lowthresholddevice = "false";

String maxthresholddevice = "false";

// HTML web page

const char web_index_code[] PROGMEM = R"rawliteral(

<!DOCTYPE HTML><html><head>

 <title>Email Notification with Temperature</title>

 <meta name="viewport" content="width=device-width, initial-scale=1">

 </head>

 <style>html { font-family: Helvetica;display: inline-block; margin: 0px

auto; text-align: center;}

 form {

 display: inline-block;

 width: fit-content;

 height: fit-content;

 background-color: rgb(218, 165, 32, 0.5);

 }

 </style>

Appendix 1

 2 (6)

 <body>

 <h2>First Project in Temperature Control</h2>

 <h3>%temperaturedata% °C</h3>

 <h2>ESP32 Alert Email</h2>

 <form action="/get">

 Input Receiver's Address <input type="email" name="email_input"

value="%EMAIL_INPUT%" required>

 Allow Email Alert <input type="checkbox" name="enable_email_input"

value="true" %ENABLE_EMAIL%>

 Input Low Threshold <input type="number" step="0.1" name="in-

put_low_threshold" value="%LOW%" required>

 Input Max Threshold <input type="number" step="0.1" name="in-

put_max_threshold" value="%MAX%" required>

 Turn off minimum threshold device <input type="checkbox" name="low_thresh-

old_device" value="true" %TURN_OFF_LOWTHRESHOLD%>

 Turn off maximum threshold device <input type="checkbox" name="max_thresh-

old_device" value="true" %TURN_OFF_MAXTHRESHOLD%>

 <input type="submit" value="Submit">

 </form>

</body></html>)rawliteral";

void notFound(AsyncWebServerRequest *request) {

 request->send(404, "text/plain", "Not found");

}

AsyncWebServer server(80);

// Save the variable of the web server to the data of the ESP32

String processor(const String& var){

 if(var == "temperaturedata"){

 return lastestemperature;

 }

 else if(var == "EMAIL_INPUT"){

 return InputEmailAddress;

 }

 else if(var == "ENABLE_EMAIL"){

 return enableAlertEmail;

 }

 else if(var == "LOW"){

 return lowthreshold;

 }

 else if(var == "MAX"){

 return maxthreshold;

 }

 else if (var == "TURN_OFF_LOWTHRESHOLD"){

 return lowthresholddevice;

 }

 else if (var == "TURN_OFF_MAXTHRESHOLD"){

 return maxthresholddevice;

 }

 return String();

}

// Using flag variable to keep track if email notification was sent or not,

and set the output state

bool emailSent = false;

String minimum = "false";

String maximum = "false";

const char* paraminput1 = "emailaddress_input";

const char* paraminput2 = "email_alert_enable";

const char* paraminput3 = "input_low_threshold";

Appendix 1

 3 (6)

const char* paraminput4 = "input_max_threshold";

const char* paraminput5 = "low_threshold_device";

const char* paraminput6 = "max_threshold_device";

// Time to read sensor data

unsigned long starttime = 0;

const long timelength = 5000;

// PIN OF DS18B20

const int oneWireBus = 4;

OneWire oneWire(oneWireBus);

DallasTemperature sensors(&oneWire);

SMTPData smtpData;

void setup() {

 Serial.begin(115200);

 pinMode(relayoutput1, OUTPUT);

 pinMode(relayoutput2, OUTPUT);

 digitalWrite(relayoutput1, LOW);

 digitalWrite(relayoutput2, LOW);

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, password);

 if (WiFi.waitForConnectResult() != WL_CONNECTED) {

 Serial.println("WiFi Failed!"); // Check if the wifi is connected on the

local machine

 return;

 }

 Serial.println();

 Serial.print("ESP IP Address: http://");

 Serial.println(WiFi.localIP());

 // Start reading the data from DS18B20 sensor

 sensors.begin();

 // Send web page to client

 server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

 request->send_P(200, "text/html", web_index_code, processor);

 });

 // Receive an HTTP GET request at <ESP_IP>/get?emailaddress_input=<In-

putEmailAddress>&email_alert_enable=<EnableInput>&threshold_input=<lowthresh-

old>

 server.on("/get", HTTP_GET, [] (AsyncWebServerRequest *request) {

 if (request->hasParam(paraminput1)) {

 InputEmailAddress = request->getParam(paraminput1)->value();

 if (request->hasParam(paraminput2)) {

 EnableInput = request->getParam(paraminput2)->value();

 enableAlertEmail = "checked";

 }

 else {

 EnableInput = "false";

 enableAlertEmail = "";

 }

Appendix 1

 4 (6)

 if (request->hasParam(paraminput3)) {

 lowthreshold = request->getParam(paraminput3)->value();

 }

 if (request->hasParam(paraminput4)) {

 maxthreshold = request->getParam(paraminput4)->value();

 }

 if (request->hasParam(paraminput5)) {

 lowthresholddevice = request->getParam(paraminput5)->value();

 }

 if (request->hasParam(paraminput6)) {

 maxthresholddevice = request->getParam(paraminput6)->value();

 }

 }

 else {

 InputEmailAddress = "Cannot send the Message";

 }

 Serial.println("Admin input to web-page");

 Serial.println(InputEmailAddress);

 Serial.println(EnableInput);

 Serial.println(lowthreshold);

 Serial.println(maxthreshold);

 Serial.println(lowthresholddevice);

 Serial.println(maxthresholddevice);

 if (lowthresholddevice=="true") {minimum = "true";} else minimum="false";

 if (maxthresholddevice=="true") {maximum = "true";} else maximum="false";

 request->send(200, "text/html", "HTTP GET request sent to your ESP.
Return to Home Page");

 });

 server.onNotFound(notFound);

 server.begin();

}

void loop() {

 unsigned long currentMillis = millis();

 if (currentMillis - starttime >= timelength) {

 starttime = currentMillis;

 sensors.requestTemperatures();

 float temperature = sensors.getTempCByIndex(0);

 Serial.println("Current Temperature is");

 Serial.print(temperature);

 Serial.println(" *C");

 lastestemperature = String(temperature);

 // Check if temperature is above threshold and if it needs to send the

Email alert

 if(temperature > maxthreshold.toFloat() && !emailSent){

 String emailMessage = String("Temperature above threshold. Current tem-

pera-ture: ") +

 String(temperature) + String("C");

 Serial.println("Current temperature is above threshold");

 digitalWrite(relayoutput1, HIGH);

 digitalWrite(relayoutput2, LOW);

 Serial.println(maximum);

 if (maximum == "true") {

 digitalWrite(relayoutput1, LOW);

 }

 if(EnableInput == "true"){

 if(sendEmailNotification(emailMessage)) {

Appendix 1

 5 (6)

 Serial.println(emailMessage);

 emailSent = true;

 }

 else {

 Serial.println("Email failed to send");

 }

 }

 }

 // Check if temperature is below threshold and if it needs to send the

Email alert

 else if((temperature < lowthreshold.toFloat()) && !emailSent) {

 String emailMessage = String("Temperature below threshold. Current tem-

pera-ture: ") +

 String(temperature) + String(" C");

 Serial.println("Current temperature is below threshold");

 digitalWrite(relayoutput2, HIGH);

 digitalWrite(relayoutput1, LOW);

 Serial.println(minimum);

 if(minimum == "true"){

 digitalWrite(relayoutput2, LOW);

 }

 if (EnableInput == "true"){

 if(sendEmailNotification(emailMessage)) {

 Serial.println(emailMessage);

 emailSent = true;

 }

 else {

 Serial.println("Email failed to send");

 }

 }

 }

 // In Normal range input 3 is low threshold, input 4 is high threshold

 else if((temperature > lowthreshold.toFloat()) && (temperature < inputMes-

sage4.toFloat())) {

 Serial.println("In Normal range");

 digitalWrite(relayoutput2, LOW);

 digitalWrite(relayoutput1, LOW);

 }

 else {

 emailSent= false;

 }

 }

 lowthresholddevice = "false";

 maxthresholddevice = "false";

}

bool sendEmailNotification(String emailMessage){

 // Set the SMTP Server Email host, port, account and password

 smtpData.setLogin(smtpServer, smtpServerPort, emailSenderAccount,

emailSenderPassword);

 // Set the sender name and Email

 smtpData.setSender("ESP32", emailSenderAccount);

 // Set Email priority or importance High, Normal, Low or 1 to 5 (1 is high-

est)

 smtpData.setPriority("High");

Appendix 1

 6 (6)

 // Set the subject

 smtpData.setSubject(emailSubject);

 // Set the message with HTML format

 smtpData.setMessage(emailMessage, true);

 // Add recipients

 smtpData.addRecipient(InputEmailAddress);

 smtpData.setSendCallback(sendCallback);

 // Start sending Email

 if (!MailClient.sendMail(smtpData)) {

 Serial.println("Error sending Email, " + MailClient.smtpErrorReason());

 return false;

 }

 // Clear all data from Email object to free memory

 smtpData.empty();

 return true;

}

// Callback function to get the Email sending status

void sendCallback(SendStatus msg) {

 // Print the current status of email sending

 Serial.println(msg.info());

 // Do something when complete sending the email

 if (msg.success()) {

 Serial.println("----------------");

 }

}

Appendix 2

 1 (9)

Appendix 2. Second project prototypes for the web’s server domain.

File in the Arduino CC Software: “second-project.ino”.

#include <Wire.h>

#include <HTTPClient.h>

#include <WiFi.h>

#include <OneWire.h>

#include <Adafruit_BME280.h>

#include <Adafruit_Sensor.h>

#include <DallasTemperature.h>

// User ID and Password of the Wifi

const char* ssid = "";

const char* password = "";

// Writer's domain name

const char* serverName = "https://danhthesis.000webhostapp.com/thesis/post-

esp-data.php";

// Key to protect the data

String apiKeyValue = ""; //Own API key must be filled

String sensorName = "BME280/DS18B20";

String sensorLocation = "Home";

#define SEALEVELPRESSURE_HPA (1013.25)

Adafruit_BME280 bme; // I2C

// Variables to store the current output state

String Staterelay26 = "off";

String Staterelay27 = "off";

// Relay variable pins

const int relay26 = 26;

const int relay27 = 27;

const int oneWireBus = 4;

OneWire oneWire(oneWireBus);

DallasTemperature sensors(&oneWire);

void setup() {

 Serial.begin(115200);

 pinMode(relay26, OUTPUT);

 pinMode(relay27, OUTPUT);

 digitalWrite(relay26, LOW);

 digitalWrite(relay27, LOW);

 WiFi.begin(ssid, password);

 Serial.println("Connecting");

 while(WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.print("Connected to WiFi network with IP Address: ");

 Serial.println(WiFi.localIP());

Appendix 2

 2 (9)

sensors.begin();

bool status = bme.begin(0x76);

 if (!status) {

 Serial.println("BME280 could not be found or wrong address could be pro-

vided");

 while (1);

 }

}

void loop() {

 unsigned long currentMillis = millis();

 sensors.requestTemperatures();

 // DS18B20 Temperature in Celsius Degree

 float temperature = sensors.getTempCByIndex(0);

 Serial.print(temperature);

 Serial.println(" *C");

 // Below threshole

 if (temperature < 30){

 digitalWrite(relay26, HIGH);

 digitalWrite(relay27, LOW);

 }

 else if (temperature >35){

 digitalWrite(relay27, HIGH);

 digitalWrite(relay26, LOW);

 }

 else{

 digitalWrite(relay26, LOW);

 digitalWrite(relay27, LOW);

 }

 if(WiFi.status()== WL_CONNECTED){

 HTTPClient http;

 // Begin HTTPClient Server

 http.begin(serverName);

 // Header is defined

 http.addHeader("Content-Type", "application/x-www-form-urlencoded");

 // HTTP Post is defined to send the data to the web server's database

 String httpRequestData = "api_key=" + apiKeyValue + "&sensor=" + sensor-

Name

 + "&location=" + sensorLocation + "&temperature1=" +

String(bme.readTemperature())+ "&humidity=" + String(bme.readHumidity()) +

"&pressure=" + String(bme.readPressure()/100.0F)+ "&temperature2="+String(tem-

perature)

 + "";

 Serial.print("httpRequestData: ");

 Serial.println(httpRequestData);

 // Request is being sent to post the data from the ESP32 to the database

 int httpResponseCode = http.POST(httpRequestData);

 if (httpResponseCode>0) {

 Serial.print("HTTP Response code: ");

 Serial.println(httpResponseCode);

 }

 else {

Appendix 2

 3 (9)

 Serial.print("There are some errors, the codes are ");

 Serial.println(httpResponseCode);

 }

 // Resources of the HTTPClient is being free

 http.end();

 }

 else {

 Serial.println("There is no connected WIFI")

 }

 //HTTP POST is sent every 30 seconds

 delay(30000);

}

File on the web’s file manager: “post-esp-data.php”.

<?php

$servername = "localhost";

// Own Database's confidential

$dbname = "";

$username = "";

$password = "";

$api_key_value = ""; //Key value must be the same with Arduino code

$email_address = "caodanh1802@gmail.com"; // email address to send alerts

$api_key= $sensor = $location = $temperature1 = $humidity = $pressure = $tem-

pera-ture2 = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $api_key = test_input($_POST["api_key"]);

 if($api_key == $api_key_value) {

 $sensor = test_input($_POST["sensor"]);

 $location = test_input($_POST["location"]);

 $temperature1 = test_input($_POST["temperature1"]);

 $humidity = test_input($_POST["humidity"]);

 $pressure = test_input($_POST["pressure"]);

 $temperature2 = test_input($_POST["temperature2"]);

 // Email message

 $email_msg = "Temperature in the house is: " . $temperature1 . " de-

gree Celsius. ". "This is below Threshold\n";

 $email_msg1 = "Temperature in the house is: " . $temperature1 . "de-

gree Celsius. " ."This is above threshold\n";

 $email_msg2 = "Temperature in the garden is: " . $temperature2 . " de-

gree Celsius. ". "This is below Threshold\n";

 $email_msg3 = "Temperature in the garden is: " . $temperature2 . "de-

gree Celsius. " ."This is above threshold\n";

 $email_msg4 = "Pressure in the house is: " . $pressure . " hPa. ".

"This is below Threshold\n";

 $email_msg5 = "Pressure in the house is: " . $pressure . " hPa. "

."This is above threshold\n";

 $email_msg6 = "Humidity in the house is: " . $humidity . " m. ". "This

is below Threshold\n";

 $email_msg7 = "Humidity in the house is: " . $humidity . " m. " ."this

is above threshold\n";

Appendix 2

 4 (9)

 $email_msg = wordwrap($email_msg, 70);

 //Setting temperature threshold for the BME280, as it places inside

the house

 if($temperature1 < 25.0){

 mail($email_address, "Alert Temperature in the house is below

Thresh-old", $email_msg);

 echo "Email sent";

 }

 if($temperature1 > 31.0){

 mail($email_address, "Alert Temperature in the house is Above

Thresh-old", $email_msg1);

 echo "Email sent";

 }

 //Setting temperature threshold for the DS18B20, as it places outside

the house as it also has a water-proof version

 if($temperature2 < 30.0){

 mail($email_address, "Alert Temperature in the garden is below

Threshold", $email_msg2);

 echo "Email sent";

 }

 if($temperature2 > 34.0){

 mail($email_address, "Alert Temperature in the garden is Above

Threshold", $email_msg3);

 echo "Email sent";

 }

 //Setting pressure threshold for the BME280

 if($pressure < 1008.0){

 mail($email_address, "Alert Pressurein the house is below Thresh-

old", $email_msg4);

 echo "Email sent";

 }

 if($pressure > 1010.0){

 mail($email_address, "Alert Pressure in the house is Above Thresh-

old", $email_msg5);

 echo "Email sent";

 }

 // Setting humidity threshold for the BME280

 if($humidity < 70.0){

 mail($email_address, "Alert Humidity in the house is below Thresh-

old", $email_msg6);

 echo "Email sent";

 }

 if($humidity > 77.0){

 mail($email_address, "Alert Humidity in the house is Above Thresh-

old", $email_msg7);

 echo "Email sent";

 }

Appendix 2

 5 (9)

 // send emails with mail(receiver email address, email subject, email mes-

sage)

 // Connect with the mysql server database

 $conn = new mysqli($servername, $username, $password, $dbname);

 // Condition to ensure that the database has been connected

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 $sql = "INSERT INTO SensorData1 (sensor, location, temperature1, hu-

midi-ty, pressure, temperature2) // Replace with your table in the database

 VALUES ('" . $sensor . "', '" . $location . "', '" . $temperature1 .

"', '" . $humidity . "', '" . $pressure . "', '" . $temperature2 . "')";

 if ($conn->query($sql) === TRUE) {

 echo "Data from the BME280 and DS18B20 are stored successfully";

 }

 else {

 echo "Connection Error with specific code: " . $sql . "
" .

$conn->error;

 }

 $conn->close();

 }

 else {

 echo "API key needs to be provided as same as the own user's key";

 }

}

else {

 echo "There is no data in the server database";

}

function test_input($data) {

 $data = trim($data);

 $data = stripslashes($data);

 $data = htmlspecialchars($data);

 return $data;

}

File on the web’s file manager: “esp-data.php”(data in table format).

<!DOCTYPE html>

<html><body style="

 background-image: url('https://metropoliawebsitetalks.files.word-

press.com/2019/04/1-6.jpg');

 background-size: 100% 100%;

 width: 100%;

 height: 100%;

 display: flex;

 justify-content: center;

 align-items: center;

 ">

<?php

$servername = "localhost";

Own database's confidential

$dbname = "";

Appendix 2

 6 (9)

$username = "";

$password = "";

// Design the connection between the database and the table chart form

$conn = new mysqli($servername, $username, $password, $dbname);

// Condition to ensure that the connection is successful

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// Replace with your table’s information such as name of the column, id.

$sql = "SELECT id, sensor, location, temperature1, humidity, pressure, tem-

pera-ture2, reading_time FROM SensorData1 ORDER BY id DESC";

echo '<table cellspacing="5" cellpadding="5"

 style="

 background-color: rgba(240, 246, 240, 0.883);

 border: 1px solid black;

 " >>

 <tr>

 <td>ID</td>

 <td>Sensor</td>

 <td>Location</td>

 <td>Temperature 1</td>

 <td>Humidity</td>

 <td>Pressure</td>

 <td>Temperature 2</td>

 <td>Timestamp</td>

 </tr>';

if ($result = $conn->query($sql)) {

 while ($row = $result->fetch_assoc()) {

 $row_id = $row["id"];

 $row_sensor = $row["sensor"];

 $row_location = $row["location"];

 $row_temperature1 = $row["temperature1"];

 $row_humidity = $row["humidity"];

 $row_pressure = $row["pressure"];

 $row_temperature2 = $row["temperature2"];

 $row_reading_time = $row["reading_time"];

 //Define specific time zone for each region

 $row_reading_time = date("Y-m-d H:i:s", strtotime("$row_reading_time +

7 hours"));

 echo '<tr>

 <td>' . $row_id . '</td>

 <td>' . $row_sensor . '</td>

 <td>' . $row_location . '</td>

 <td>' . $row_temperature1 . '</td>

 <td>' . $row_humidity . '</td>

 <td>' . $row_pressure . '</td>

 <td>' . $row_temperature2 . '</td>

 <td>' . $row_reading_time . '</td>

 </tr>';

 }

 $result->free();

}

$conn->close();

Appendix 2

 7 (9)

?>

</table>

</body>

</html>

File on the web’s file manager: “esp32_line_chart.php”(data drawn in three-line charts).

<?php

$servername="localhost";

// Own database's confidential

$username="";

$password="";

$dbname="";

$conn=new mysqli("$servername","$username","$password","$dbname");

if($conn){

}else{

 echo "Connection Failed";

}

?>

<html>

 <head>

 <script type="text/javascript"

 src="https://www.gstatic.com/charts/loader.js"></script>

 <script type="text/javascript">

 google.charts.load('current', {'packages':['corechart']});

 google.charts.setOnLoadCallback(drawChart);

 function drawChart() {

 var data = google.visualization.arrayToDataTable([

 ['reading_time', 'temperature1', 'temperature2'],

 //PHP Code to get the temperature data from your table’s name

 <?php

 $query="select * from SensorData1";

 $res=mysqli_query($conn,$query);

 while($data=mysqli_fetch_array($res)){

 $reading_time=$data['reading_time'];

 $temperature1=$data['temperature1'];

 $temperature2=$data['temperature2'];

 ?>

 ['<?php echo $reading_time;?>',<?php echo $temperature1;?>,

<?php echo $temperature2;?>],

 <?php

 }

 ?>

]);

 var options = {

 title: 'ESP32 Temperature Chart',

 curveType: 'function',

 legend: { position: 'bottom' },

 colors:['green','red'],

 };

Appendix 2

 8 (9)

 var chart = new google.visualization.LineChart

(document.getElementById('curve_chart'));

 chart.draw(data, options);

 }

 google.charts.setOnLoadCallback(drawChart1);

 function drawChart1() {

 var data1 = google.visualization.arrayToDataTable([

 ['reading_time', 'humidity'],

 //PHP Code to get the humidity from your table sensordata

 <?php

 $query="select * from SensorData1";

 $res=mysqli_query($conn,$query);

 while($data=mysqli_fetch_array($res)){

 $reading_time=$data['reading_time'];

 $humidity=$data['humidity'];

 ?>

 ['<?php echo $reading_time;?>',<?php echo $humidity;?>],

 <?php

 }

 ?>

]);

 var options1 = {

 title: 'ESP32 Humidity Chart',

 curveType: 'function',

 legend: { position: 'bottom' }

 };

 var chart1 = new google.visualization.LineChart

(document.getElementById('curve_chart1'));

 chart1.draw(data1, options1);

 }

 google.charts.setOnLoadCallback(drawChart2);

 function drawChart2() {

 var data2 = google.visualization.arrayToDataTable([

 ['reading_time', 'pressure'],

 //PHP Code to get the sensor data from your table

 <?php

 $query="select * from SensorData1";

 $res=mysqli_query($conn,$query);

 while($data=mysqli_fetch_array($res)){

 $reading_time=$data['reading_time'];

 $pressure=$data['pressure'];

 ?>

 ['<?php echo $reading_time;?>',<?php echo $pressure;?>],

 <?php

 }

 ?>

]);

Appendix 2

 9 (9)

 var options2 = {

 title: 'ESP32 Pressure Chart',

 curveType: 'function',

 legend: { position: 'bottom' },

 colors:['purple']

 };

 var chart2 = new google.visualization.LineChart

(document.getElementById('curve_chart2'));

 chart2.draw(data2, options2);

 }

 </script>

 </head>

 <body style="display:flex; flex-direction: column; margin: 0; padding: 0;

width: 97%; height:97%">

 <div style="display: flex; justify-content: center; align-items:center;

font-style: bold;font-size: 35px; color:red;padding-bottom: 0!important">ESP32

Data Visualization</div>

 <div

 style="

 margin: 0;

 padding: 0;

 display: flex;

 justify-content: flex-start;

 align-items: center;

 width: 100%;

 height: 100%;

 "

 >

<div id="curve_chart" style="width: 100%; height: 100%"></div>

<div id="curve_chart1" style="width: 100%; height: 100%"></div>

<div id="curve_chart2" style="width: 100%; height: 100%"></div>

 </div>

 </body>

</html>

	1 Introduction
	2 Theoretical Study
	2.1 Industry 4.0 and the Development of IoT.
	2.1.1 The First Industrial Revolution and the Second Industrial Revolution
	2.1.2 The Third Industrial Revolution
	2.1.3 Industry 4.0

	2.2 IoT and Industrial IoT
	2.2.1 IoT Development in the Industry
	2.2.2 IoT Architecture
	2.2.2.1 Connected Devices
	2.2.2.2 Internet Gateway/Data Acquisition System
	2.2.2.3 Edge IT Data Processing
	2.2.2.4 Analysis, Storing and Visualizing Data

	2.2.3 IoT Data Visualization
	2.2.3.1 Power BI
	2.2.3.2 Google Visualization

	2.3 The Requirement for IoT Sensor
	2.3.1 Durability
	2.3.2 Accuracy
	2.3.3 Versatility
	2.3.4 Power Consumption
	2.3.5 Cost

	3 Introduction to the Hardware
	3.1 ESP32 and ESP32 Development Board
	3.1.1 Ultra-Low-Power Solution
	3.1.2 Integration Method

	3.2 Specification of ESP32 board
	3.2.1 Wifi Connectivity
	3.2.2 CPU and Memory
	3.2.3 Peripherals, and Pinout Guide

	3.3 Sensor Units
	3.3.1 BME 280
	3.3.1.1 BME280 Sensor Pinout
	3.3.1.2 BME280’s communication protocol

	3.3.2 DS18B20

	4 Introduction to Software
	4.1 Web Host Service
	4.2 PHPMyAdmin
	4.3 MySQL
	4.4 Arduino Software

	5 Introduction to the Programming Part
	5.1 Local Web Server
	5.2 Web Server with a Free Domain.
	5.2.1 Programmed in the Arduino Software
	5.2.2 Programmed by PHP Scripts.

	6 Results
	6.1 Local Web Server Control for the First Project.
	6.1.1 Description
	6.1.2 Flow Specification

	6.2 The Final Web Server with Data Visualization
	6.2.1 Description
	6.2.2 Flow Specification

	7 Conclusion
	References

