

Juha Vuokko

Accuracy in Tracking of Location of
Mobile Device

Metropolia University of Applied Sciences

Bachelor of Engineering

Mobile Solutions

Bachelor’s Thesis

27 October 2020

 Abstract

Author
Title

Number of Pages
Date

Juha Vuokko
Accuracy in Tracking of Location of Mobile Device

28 pages + 2 appendices
27 October 2020

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major Mobile Solutions

Instructor

Patrick Ausderau, Senior Lecturer

When collecting locations to track walking path, collected data can be inaccurate. If track-
ing paths are an important feature of application, this reduces the sense of quality of the
application. This thesis studies, how errors in tracked paths can be corrected.

In this thesis the accuracy of locations given by mobile device is studied as well as how
this accuracy can be increased using filtering algorithms. An Android application using Ko-
tlin is developed for this purpose. The application has a service that can run as foreground
service collecting locations. The application has a live map that shows recent locations.
These locations are stored in the SQLite-database using Room. After saving all the loca-
tions in the database, this data can be viewed. The map used is OpenStreetMap.

Four different algorithms are compared. Three of these can be manually tuned by chang-
ing variables. The algorithms include Kalman filter, Ramer-Douglas-Peucker, removal of
most inaccurate locations and running average. The algorithms are compared visually to
find the best solution used in walking route mapping for different projects. The algorithms
can be compared for one route and they can be drawn in a map together with accuracies
and bearings.

The solution does not need to be complicated, an algorithm that removes the most inaccu-
rate points works with random errors in pathway that are not too plentiful. If the locations
are collected frequently, the running average can smooth the path. This algorithm could be
used even when collecting the locations and save just the averages to the database. This
could be developed in a later project.

Keywords Android, Kotlin, GPS, map application

Tekijä
Otsikko

Sivumäärä
Aika

Juha Vuokko
Mobiililaitteille tallennettujen sijaintitietojen tarkkuus

28 sivua + 2 liitettä
27.10.2020

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Mobile Solutions

Ohjaaja

Lehtori Patrick Ausderau

Kerättäessä mobiililaitteella sijaintitietoja kulkureitiltä kerätyissä sijainneissa esiintyy epä-
tarkkuuksia. Jos kulkureitin tallentaminen on olennainen osa sovelluksen toimintaa, liian
epämääräisesti tallentunut reitti laskee sovelluksen laadun tuntua huomattavasti. Insinööri-
työssä tutkittiin, miten sijaintitiedoista muodostetun reitin oikeellisuuteen voi vaikuttaa.

Työssä selvitettiin mobiililaitteiden tallentamien sijaintitietojen tarkkuutta ja sitä, miten tätä
tarkkuutta voidaan parantaa käyttämällä suodatusalgoritmeja. Tätä varten kehitettiin
Android-laitteelle sovellus käyttäen ohjelmointikielenä Kotlinia. Sovellus käyttää taustapal-
velua, jonka tarkoitus on kerätä sijaintitiedot. Kerätyt sijaintitiedot tallennetaan SQLite-tieto-
kantaan käyttäen Room-tietokantakirjastoa. Tietokantaan kerättyjä sijainteja voi tarkastella
omassa karttanäkymässään. Karttapohjana toimii OpenStreetMap.

Työssä vertailtiin neljää eri algoritmia, joista kolmea voi hienosäätää sovelluksessa. Käyte-
tyt algoritmit olivat Ramer-Douglas-Peucker, Kalman-suodin, epätarkimpien sijaintien pois-
taminen ja juokseva keskiarvo. Näitä algoritmeja vertailtiin sovelluksessa visuaalisesti,
jotta saatiin selville, millä algoritmilla reitti näyttää parhaiten noudattavan todellista reittiä.
Samassa karttanäkymässä voidaan esittää niin alkuperäinen reitti kuin myös valituilla algo-
ritmeilla muokatut reitit. Tässä näkymässä voidaan esittää sijaintien tarkkuus ja niiden yh-
teydessä tallennettu kompassisuunta.

Vertailussa ilmeni, että sijaintitietojen tarkkuuta saadaan parannettua käyttämällä algorit-
meja. Kaikissa algoritmeissa on puolensa. Epätarkimpien sijaintien poistaminen voi riittää
hyvien tuloksien saamiseen. Jatkossa täytyy tutkia vielä juoksevan keskiarvon käyttöä jo
sijaintitietojen keräysvaiheessa.

Avainsanat Android, Kotlin, GPS, karttasovellus

 Contents

List of Abbreviations

1 Introduction 1

2 Technologies 3

2.1 Android and Kotlin 3

2.2 Global Positioning System 5

2.3 Ramer-Douglas-Peucker and Kalman filter algorithms 7

3 Practical work 9

3.1 Application basics 9

3.2 Classes and activities used in the project 10

3.3 Database structure 14

3.4 Working with asynchronous data 15

3.5 Using filtering algorithms 16

4 Discussion 18

4.1 Filter technics and algorithms 18

4.2 Known bugs and further development ideas 23

5 Conclusion 25

References 26

Appendices

Appendix 1. Code for Ramer-Douglas-Peucker algorithm

Appendix 2. Code for Kalman Filter

List of Abbreviations

A-GPS Assisted Global Positioning System

API Application Programming Interface

BDS BeiDou Navigation Satellite System

GLONASS Global Navigation System (Russian)

GNSS Global Navigation Satellite System

GPS Global Positioning System

CSV Comma Separated Values

HAL Hardware Abstraction Layer

Json JavaScript Object Notation

KTX Kotlin extensions

MSA Mobile Station Assisted

NPS Network Positioning System

SoC System on chip

USB Universal Serial Bus

WLAN Wireless Local Area Network

 1

1 Introduction

When tracking a walking path with mobile device, the accuracy of obtained coordinates

varies as demonstrated in figure 1. The drawn paths do not always follow the road that

was walked on. The goal of this thesis is to study the accuracy of the locations and how

to improve it. One way of improving the accuracy is filtering the most inaccurate Global

Positioning system (GPS)-locations away. The focus of this thesis will be in finding and

comparing filtering algorithms. Other methods than filtering to adjust the pathway do ex-

ist. With some algorithm new estimates of locations are calculated using measured lo-

cations together with additional information such as speed and bearings.

Figure 1. Map base is OpenStreetMap. The blue drawn line represents the actual path taken
while the black path is obtained by GPS. The red circles show the worst deviations from path,
the yellow ones show slight deviations while the green one show locations accurate enough.

In an application specially made for tracking path walked, sudden peaks in tracked path

are not tolerable. One solution could be to let the user manually trim the walking route.

This is also completely doable and possible solution to the problem. The possibility to

modify walking route leads to problems too. This can be considered as extra inconven-

ience, and this makes it possible for user to change the route in a way that it does not

correspond the actual route. That is why different kind of solutions are tested and the

 2

different algorithms for correcting inaccuracies in path are compared. This makes it pos-

sible to develop better applications using location data.

To study the accuracy of tracking, the application to Android devices is made using Ko-

tlin. In this application one can track walking routes and different correction algorithms

can be studied visually. The earlier application was used as basis in designing and im-

plementing the new application. The basic concepts of how to record locations and how

to store them into database are the same, but the layouts and functionalities differ. The

application uses local database and all calculations are conducted locally. This removes

the need for an external server and makes the application easier to test while moving

outdoors. For user of applications the local database is a better option, because in that

way the user’s private information stays local and under user’s control.

Programming is conducted using Android Studio as integrated development environ-

ment. Testing of code is carried out both with emulator and real Android device. Location

data will be gathered by using the program in real device while walking or cycling. Git is

used for version control. The code is stored in GitHub repository1. As this is a personal

project there is no company made rules about what can be published and what not and

that is the reason GitHub repository is made public.

1 https://github.com/juhavuo/TrackingAccuracy

 3

2 Technologies

2.1 Android and Kotlin

Android is an open source operating system mainly for mobile devices. It is owned by

Open Handset Alliance and Google has a major role in its development. [1] Android Inc

was founded in 2003 in Palo Alto, California and it was originally going to work with

operating systems of digital cameras. Soon they moved to developing operating systems

to mobile phones, because the market for digital cameras was declining. Google bought

Android in year 2005. The first Android phone was launched in 2008. It was T-Mobile G1

with a physical keyboard. [2]

The Android architecture is shown in schematics in figure 2. It displays selected details

of Android software stack. Android has Linux Kernel in its core that has power manage-

ment and drivers such as driver for Bluetooth and camera. Linux kernel takes care of

security features, process management, memory management and multitasking. [3] This

Linux Kernel is heavily modified by Google, system on chip (SoC) manufacturer and

manufacturer of Android device. The basis Linux kernel is not typically getting any up-

dates and it stays the same from the start of the development of new device. This means

that a new Android device can have a two-year old Linux kernel, because all the modifi-

cations made by manufacturers the different devices have different kind of kernels. [4]

Hardware Abstraction Layer (HAL) handles communication between software and hard-

ware. In different devices different setups of hardware made by various companies can

be found. In HAL there are interfaces for these different components such as camera,

Universal Serial Bus (USB) and Bluetooth. Vendors can design and implement drivers

and HAL just as they like as long as the interface is following specifications. [5]

In native C/C++ libraries there are libraries such as SQLite, that is responsible for data-

base. Because the SQL database is readily available the application uses SQLite with

Room Library. Other examples of these native libraries are WebKit for browser support

and FreeType for font support. [6] Most of these native libraries are open source libraries.

[2]

 4

Figure 2. Android Software Stack[8]

Java API framework is what is used to build Java applications. It is written in Java. This

framework includes View System that can be used to build user interfaces, Resource

Manager for non-code resources such as layout files, Notification Manager for alerts is

shown in status bar. It also includes Activity Manager and Content Providers. Activity

manager starts the application when an icon of that application is clicked. It takes care

of activity lifecycle management, activity stacks and creating of threads for activities. [7]

Content Providers can be used to share data between applications. System apps are

core apps that are included in Android. These are no different than applications down-

loaded by user of Android device. These applications can be used separately but they

can be utilised as providers in an application to be developed. [8]

The application to be developed for this thesis is going to use AndroidX namespace. This

removes problems with updating libraries. In earlier projects updating one library typically

leads to errors and a situation, where the application would not load, because all Support

Libraries were not using the same version. AndroidX packages can be updated inde-

pendently without worries. AndroidX-packages needed for project are appcompat, core,

recyclerview, preference and libraries for possible unit testing.[9]

 5

Kotlin as a programming language dates back to year 2011. First it was used only by the

company that developed it, JetBrains. Kotlin was published a year later with Apache

open source license. Kotlin become an officially supported language for Android in 2017.

[10] In May 2019 Google announced that Kotlin will become the primary language for

Android instead of Java. It means that many new features for Android come to Kotlin first

and it is also recommended to use Kotlin in an Android project. Kotlin was already pop-

ular at that time: more than 50 percent of professional developers make Android appli-

cations using Kotlin. [11]

Reason for JetBrains starting to develop Kotlin was that they needed a more modern

language that was completely compatible with Java. This compatibility with Java was

important, because they have old Java projects that they wanted to continue. Other re-

quirements for the language besides interoperability with Java was that it must be fast,

and its code compact and expressive. [10] This interoperability means that Java code

can be called from Kotlin, so Java libraries can be used directly with Kotlin, like ArrayList

from java.util. Kotlin can use its own types instead of types of Java. These are mapped

to Kotlin types. These include Object in Java that corresponds to Any in Kotlin. Instead

of java.lang.String Kotlin has own kotlin.String. Kotlin differs from Java in that it does not

use primitive types directly as Java does, but as objects. This means that all Java types

map to Kotlin types such as int to kotlin.Int. [12]

Because Kotlin is the primary language for Android, Kotlin extensions (KTX) is included

in Android libraries. This affects the existing Android Application programming interfaces

(API) by bringing the Kotlin features such as extension functions and lambdas to these

APIs. Android KTX has multiple packages. Examples of these are Fragment KTX and

Collections KTX. [13]

2.2 Global Positioning System

GPS system has at least 24 available satellites orbiting round the earth 20000 kilometers

above the sea level. They all have synchronized atomic clocks and they are sending

information that is read by receivers. A receiver also gets the synchronized time read-

ings. The location coordinates are obtained by calculating how much time it took for radio

waves to travel between satellites and receiver. As radio waves travel at speed of light

 6

the distance can be calculated. One needs distance measurements from multiple satel-

lites to be able to measure location precisely. [14] Satellites send new time stamp signal

in 30 second intervals [15].

The altitude measured by GPS system is not from ocean level but reference ellipsoid

that is approximation of Earth’s surface. The difference between these altitudes can be

tens of meters. It depends on the model, what value of altitude the GPS receivers are

given. Some models directly give the GPS altitude, some calculate the estimate of alti-

tude from ocean surface. [16]

Scientists at Johns Hopkins University were able to track satellite Sputnik’s path by stud-

ying signal it sent in 1958. This led to the idea of using a satellite to track down their own

position. The first system of this kind was Transit that was operational in 1964. It was

able to track position in two dimensions and with 25-meter accuracy. Before that the

project for tracking position in three dimensions was studied. This was under project

name 621B. After series of tests and studies the first operational GPS satellite was

launched in 1978. [17] During this study period they had several problems to solve.

Atomic clocks had been available since 1950s, but they were not directly suitable for

conditions in satellites orbiting the Earth. The problematic issues were radiation and

changes of temperature. Furthermore, the locations of satellites in orbit must be able to

predict for times they are out of sight of upload stations in United States. Multiple phe-

nomena must be considered, such as general and special relativity, solar radiation and

Earth tides, when satellites are orbiting the Earth. One thing to take into consideration

was also the durability of satellites. At all the times there were to be 24 operational sat-

ellites. The satellites were designed in a way that they would be operational for as long

as possible. The average age reached by first 10 satellites was 7.6 years. [18]

A typical Android device uses Assisted Global Positioning System (A-GPS) as a receiver

for radio waves sent by Global Navigation Satellite System (GNSS) satellites. Different

GNSS systems other than GPS exist. These systems include Galileo from Europe,

Global Navigation Satellite system (Глобальная навигационная спутниковая система,

GLONASS) from Russia and BeiDou Navigation Satellite System (北斗卫星导航系统,

BDS) from China [19]. A-GPS is not only relying on GPS satellites, it also uses cellular

location data. The location can be calculated by triangulating using locations of three or

 7

more cell towers. Using solely GPS in continuous location tracking takes a lot of battery

power and when GPS data is used, it can take up to one minute to get the location. GPS

receiver uses cellular location data as raw location and finetunes that with position infor-

mation obtained from satellites. [20] An Android device not only gets the location data

from A-GPS but also from Network Positioning System (NPS). NPS uses signal strengths

of transmitters in nearby area whether it is wireless local area network (WLAN) or cellu-

lar. [21]

A-GPS can be Mobile Station Based. In this case data is obtained from a remote server

such as time and course location and this data is used together with GPS signal to cal-

culate the position. Another possibility is Mobile Station Assisted (MSA) where a mobile

device sends data obtained from GPS satellite to a server and the server sends back the

calculated location information. [21] Android devices contain a built-in GPS chip that

does the communications with the satellites. This chip is controlled by GPS driver. [22]

GPS locations can be far off for multiple reasons. The accuracy of GPS is depending on

how many satellites is within reach of GPS receiver. Pure GPS receiver needs at least

three satellite readings to be able to give a location. It takes seven or eight satellites to

get accuracies of 10 meters, if the amount is less than this, accuracy is poorer. Different

kind of obstacles can prevent for satellite signals to reach the receiver. These can be

buildings, trees or even clothing. To get good accuracy GPS receiver needs open skies

above it. Signals can be bounced by walls of tall buildings. This can be a source of inac-

curacy. [23] Movement speed of receiver affects the accuracy of GPS measurements.

When moving faster, the receiver has to make new connections to satellites, and this

causes jumpiness in locations [15]. To get altitude readings from GPS, data at least from

four different satellites is needed and for good accuracy one of them needs to be above

the receiver, so altitude readings are typically inaccurate without any alternative source

of data. [24]

2.3 Ramer-Douglas-Peucker and Kalman filter algorithms

With Ramer-Douglas-Peucker algorithm paths can be simplified and clean noise out of

them. Algorithm is explained in figure 3. First the end points are selected, then a point

farthest away from the line connecting these points is searched. These end points are

 8

always kept. The distance from this point to the line connecting start and end points is

compared to epsilon value, which is a threshold distance that can be given freely. If it is

larger, the new segments are created, from that point to start point and to the end point.

In second part of figure 3, the new line from point to start point is shown. Again, the

distance from line is compared, but this time it is shorter. This means that all points be-

tween these points are removed as is shown in third part. This iterative process is re-

peated until there are no points to select between the endpoints. This process is done to

whole route. [25]

Figure 3. Ramen-Douglas-Pecker explanation

Kalman filter can be used in systems with noise. Using it is iterative process. It has two

stages. They are prediction and update. Using Kalman filter starts with building a model.

From the initial estimate prediction is calculated, from prediction the correction and after

that it just loops between prediction and correction. General form of Kalman equations

are presented in formulas 3 and 4.

 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1 (3)

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (4)

In equations 3 and 4 A, B and H are typically matrices, but they also can reduce to single

number. x is marking the signal values, u is for control signal, which can be nonextinct,

w is noise as well as v. [26]

 9

3 Practical work

3.1 Application basics

Practical work is started with making the basis of measuring application. At first locations

must be able to be recorded and stored to database. Locations and their inaccuracies

must also be able to show in a view. In this stage it would be preferable if numerical data

of locations and their accuracies could be transferred from mobile device to laptop to

further analysis.

When recording walking route, it would be preferable to put the mobile phone to pocket

and focus on walking or jogging rather than carry the device in hand all the time. On the

other hand, it would be interesting to see mapping process live while walking. There can

even be a difference in accuracy of measured locations whether the mobile device is

kept in pocket or it is kept in hand out in the open. To get most accurate location meas-

urements, device must have open sky above it.

To be able to track locations, when device is in pocket, service running in the foreground

must be used. Service must bind to activity in activity’s onStart()-method and unbind

in activity’s onStop()-method to make the live view work. onStart()-method is called,

when activity becomes visible to the user. From this point activity needs to get updates

from the service to draw the locations to map. onStop() is being called, when activity

is no longer visible to the user: At this stage activity needs no more updates from service,

so service can unbind.

The problem that needs to be solved is how location data can be sent from service to

the activity. Service is bound to activity when activity is visible. For at least the first ver-

sion uses interface in service class called CallbackForService and Live-

MappingActivity implements it. Service takes reference of that activity class in a nul-

lable variable, when activity loads and makes it null, when activity goes to onStop().

This prevents from using the activity variable when service is not bound to that activity.

When service is not bound, it means that activity is not visible and there might not be

that activity class running. Using reference to that activity, when it is not running, could

crash the application.

 10

In the live map only raw locations are shown without any additional information such as

accuracies and bearings. No algorithms are used to location data at this stage. In the

live map recorded locations can be shown using markers, which is readily usable class

in osmdroid-package. Markers can have icon set by user. In map view, in which the

gathered data is compared to location calculated using filtering algorithms, the routes

are shown using polyline. In polyline the locations of the route are connected with lines.

Accuracies of measured values can be shown using polygons. In the polygon class there

is a static method pointsAsCircle() that takes center of geopoint and accuracy in

meters as parameters and gives circle’s circumference as list of geopoints. The polygon

can be constructed from these geopoints and drawn on the map.

Bearings can be shown in a map too. A bearing is a direction of traveling and it does not

depend on orientation of device. It is an angle between 0° and 360°, where north is zero

and east is 90°. These bearings can be drawn by using polylines with two locations. The

one is the measured GPS location and the other one must be calculated. It can be cal-

culated in the same way as cartesian coordinates are calculated from polar coordinates.

The difference in rotation directions and the zero points must be taken into consideration.

3.2 Classes and activities used in the project

All activities of the project application are shown in figure 4. MainActivity has simple

layout. Buttons are main component of layout. By pressing new route button, Start-

MapingActivity opens, where name and description to the route must be added, be-

fore pressing start-button. Pressing start button leads to TrackingMapActivity. Ser-

vice for location tracking starts immediately and binds to that activity. Pressing back-

button leads to MainActivity. This is done by overriding function onBackPressed().

If service is still running, first button shows text return to live map and pressing that leads

straight to TrackingMapActivity. This is possible, because in LocationService-

class companion object contains a Boolean variable isServiceStarted. This variable

can be read all the time from the MainActivity and it describes the state of the service,

is it running or not.

 11

Figure 4. Activities of application and their relations

From MainActivity can be accessed to activity that lists tracked routes. The list is

shown using RecyclerView. This RecyclerView needs separate Adapter-class,

where the logic of view is placed. Order of the routes can be selected by choosing sort

by date or sort by name from drop down list. This sorting can be accomplished by using

Kotlin’s sortWith()-function for collections. This sortWith()-function can take com-

parator as parameter. Objects can be sorted out using this comparator. It can be given,

by which objects field the comparison is done. An example of this is shown in code of

listing 1. In function organizeByName() the names are compared as lower case strings

and the compared feature is, which string comes first in alphabetic order.

 12

fun organizeByName(alphabetic: Boolean){

 items.sortWith(kotlin.Comparator<Route>{ p0,p1->

 when{

 p0.name.toLowerCase(Locale.ROOT) > p1.name.toLowerCase(

 Locale.ROOT) -> 1

 p0.name.toLowerCase(Locale.ROOT) == p1.name.toLowerCase(

 Locale.ROOT) -> 0

 else -> -1

 }

 })

 if(!alphabetic)

 items.reverse()

 }

Listing 1. The sorting algorithm for ordering routes with their names either alphabetically or in
reversed order depending on Boolean parameter reverseAlpabetic.

Tapping of one route in list leads to DataViewingActivity, that uses fragments. The

screenshots of these fragments are shown in figure 5. The first is MapFragment, where

data of route can be viewed in map. In this fragment the lengths of all routes, the meas-

ured one as well as calculated ones, are shown. The length of the route is obtained by

calculating all the distances between adjacent locations and summing these distances.

The distance between two locations can be obtained by using distanceBetween()-

function in Android’s Location class. It takes latitudes and longitudes of two locations

without need to use Location objects themselves.

The second one is GraphFragment, where data is shown in different graphs. The graph

to show in view can be selected from drop down list. GraphFragment currently contains

three different graphs to choose from. These graphs are made from measured location

data. These are unfiltered and are shown just as they are with all the uncertainties. The

graphs are distance-time, speed-time and altitude-distance graphs. These graphs are

made using Androidplot library, which is under Apache 2.0 license.

 13

Figure 5. Screenshots of fragments of DataViewingActivity

The third one is NumericalFragment, that shows data in numerical format. This cur-

rently lists the main info of measured locations, which entails bearings and accuracies

related to the coordinates. Fragment uses RecyclerView and the rows are divided to

equally wide portions to simulate data sheet. This is not suitable as universal solution,

because the cell size depends on the dimensions of Android device used. For a more

 14

general solution cells with predefined widths need to be inside scroll view. This way the

widths stay always as intended.

The fourth fragment, MenuFragment, is related to MapFragment. It shows the menu of

viewing options for the map. Here one can select, which calculated routes are shown on

a map together with a measured route as well as what kind of other information is shown

on the map, such as accuracies and bearings related to measured locations. The viewing

references are stored in shared preferences. Class MapPreferencesHandler is han-

dling the shared preferences. It stores and fetches the values of the preferences. The

algorithms for removing the inaccuracies in locations is in a separate class named

DataAnalyzer.

3.3 Database structure

Location data is stored locally in SQL-database using Room. Database has currently two

tables. These tables are shown in figure 6. One lists all routes and the other lists meas-

ured locations of these routes. From the locations table all the locations of one route can

be queried by using id of that route. If additional information such as heart rate can be

obtained, then it will be stored in a separate table.

Figure 6. Room database structure

The Route table entries has stored ID of the route, name and description given to the

route and starting and stopping times. These times are taken from devices own time.

MeasuredLocation table entries have location IDs, latitudes, longitudes, timestamps

 15

related to location data and ID of route as foreign key. Database contains additional data

such as accuracy, altitude, speed, bearing and accuracy related to bearing. The altitude

that GPS gives is not measured from sea level but is from refence ellipsoid. At first this

value is used directly. In later stages this can change.

3.4 Working with asynchronous data

Loading data from database takes some time. The exact time, when the data is ready to

use, is not certain beforehand. This leads to problems, when an activity uses fragments

and the first fragment needs to show that data from database immediately it is loaded.

This happens with DataViewingActivity and MapFragment. The ID of tapped route

is passed with intent from RoutesListingActivity to DataViewingActivity and

with this ID all related measured locations are fetched from database. These locations

are needed in DataAnalyzer-class to use different filters with this data to obtain more

accurate route. The original measured locations and results of calculations are shown in

MapFragment as soon as everything is ready. The fragment life cycle related to activi-

ties life cycle can cause issues. The components of fragment can be used after its on-

CreateView()-method. Calling the component before this leads to crash.

Operations that may take long time such as database operations must be done in sepa-

rate thread than main thread. That is because blocking main thread that handles user

interface would lead to unresponsiveness of application. Multithreading is carried out by

writing the code inside Thread objects. It must be noticed that code immediately after the

launch of second thread can happen before all code from that started thread is executed.

If in that other thread the biggest route ID is fetched and to this id one is added to get the

ID of new route, these operations are not executed, when the code in main thread, that

comes right after, is executed. If this id is put in intent and other activity is launched, the

id is not going to be the right one and this leads to problems, when that ID is used in

database operations. Solution is simply to put the sending of that intent to database han-

dling thread. This ensures, that the ID is right.

 16

3.5 Using filtering algorithms

Multiple ready-made examples for filtering algorithms and other solutions are available

with codes. Packages are ready to be downloaded and used in the project. These give

an easy starting point in application development. At first it is possible to take the code

as it is and then study, how well those algorithms work and analyse the results. After this

early study possible adjustments can be made to the algorithms or other kind of solutions

can be searched, if the already used algorithms totally fail.

The first filtering algorithm is Ramer-Douglas-Pecker. The code for it is in appendix 1.

The first version of this uses code from Rosettacode2 The epsilon value that defines how

much details are omitted, is how this algorithm can be adjusted. The seek bar is added

for adjustments in MenuFragment. The first solution is to save epsilon value to the

shared preferences although most suitable value differs from route to route. The second

algorithm is Kalman filter and it’s code in in appendix 2. The first implementation of Kal-

man filter is based on an example code in Stackoverflow and it is originally written with

Java. It has been modified to Kotlin.3 For Kalman filter separate class KalmanFil-

ter.kt is used This class takes care of iterations needed to calculate new locations.

2 https://rosettacode.org/wiki/Ramer-Douglas-Peucker_line_simplification#Kotlin
3 https://stackoverflow.com/questions/1134579/smooth-gps-data

 17

fun getRemainingLocations(threshold_accuracy: Float): ArrayList<GeoPoint> {

 val geoPoints: ArrayList<GeoPoint> = ArrayList()

 for (mlocation in measuredLocations) {

 if (mlocation.accuracy <= threshold_accuracy) {

 geoPoints.add(GeoPoint(mlocation.latitude,

 mlocation.longitude))

 }

 }

 return geoPoints

}

Listing 2. Algorithm for removing least accurate locations. Accuracy is in meters, measured-

Locations is ArrayList of MeasuredLocation objects.

In the third tested algorithm the most inaccurate measured locations are deleted. The

code for the algorithm can be seen in listing 2. The threshold can be changed from one

extreme to the other. The extreme values of accuracies of certain route must be

searched from all the locations of that route and use these values to programmatically

adjust the extremes of slider in a way that slider minimum value represents the smallest

radius and maximum the largest radius of the accuracy. The fourth one is moving aver-

age. In this algorithm the new values are calculated by counting averages of latitudes

and longitudes separately from selected amount of adjacent locations. The code for this

can be seen in listing 3. The averages are calculated from two to ten different locations.

It can be selected if those averages are weighted using reciprocal of accuracy value.

private fun movingAverage(list: List<Double>, amount: Int): ArrayList<Double>

{

 val averages: ArrayList<Double> = ArrayList()

 for (index in amount..list.size) {

 averages.add(list.subList(index - amount, index).average())

 }

 return averages

}

private fun movingAverageWithWeigths(list: List<Double>, amount: Int,

 weights: List<Float>): ArrayList<Double> {

 val averages: ArrayList<Double> = ArrayList()

 for (i in amount..list.size) {

 var weighedSum: Double = 0.0

 var sumOfWeights: Float = 0f

 for (j in i - amount until i) {

 weighedSum += weights[j] * list[j]

 sumOfWeights += weights[j]

 }

 averages.add(weighedSum / sumOfWeights)

 }

 return averages

}

Listing 3. Algorithms for both calculating moving average and moving average with weights. List
is whole list of latitudes or longitudes and the amount is from how many numbers the
average is calculated. Weights are given as a list movingAverageWithWeights()-

function.

 18

4 Discussion

4.1 Filter technics and algorithms

The effect of sky access in locations can be seen in figure 7. When carrying a phone in

a bag or in pocket the path has inaccuracies and path differs from actual walking route

along the streets. When carrying phone in hand, the path follows streets much more

precisely, but there can still be parts, where locations are systematically wrong. Walking

with a phone in hand all the time becomes tedious. A better option is to use some other

device tied to wrist that records locations.

Figure 7. Same route walked multiple times.

Simple filtering methods can be very effective, if they are manually tuned. Even removing

the most inaccurate locations can increase accuracy of a path significantly. If this is car-

ried out automatically, this can lead to drastic changes, unless it is done carefully. Itera-

tion would be possible to use to be able to find optimal threshold accuracy and eliminate

all more inaccurate locations. The total length is one parameter to investigate. Total

length must not change too drastically. It must be noticed that all inaccurate locations

can be in same area and by removing these locations the path can change noticeable

although the total length of route changes only a little. The full route could be divided into

smaller sections and measure the change in route length of these smaller segments

separately. This method can remove locations from start or end and not leaving first and

last location in place. This can lead to drastic shortening of route. On the other hand, the

first locations can be very inaccurate. It could be reasonable to remove the first few

 19

locations anyway, if the location recording speed is high. The last location would still be

beneficial to keep no matter what.

The example of the removal of the least accurate locations is shown in figure 8. Here

locations can be removed quite drastically and still the route stays nearly the same alt-

hough the overall length of the route drops also significantly. This is mainly due to inac-

curacies in the beginning of the route, which is not shown here.

Figure 8. Effects of eliminating least accurate values.

By using moving averages, the path can be smoothed as shown in figure 9. This does

not remove the effects of the most inaccurate measurements. They change the averages

noticeably and as a result there is still a deviation from the pathway left. The more points

are used to calculate one average the more measured locations are needed. The

weighting has very little effect on accuracy of route. Another way of using means is also

 20

possible. If the locations are measured very frequently, it could be possible to take aver-

ages and store these average values to database.

Figure 9. Effects of using running averages. Averages using 2, 6 and 10 values are compared.

Ramer-Douglas-Pecker algorithm is one way of smoothing the pathway. If extreme val-

ues are wrong, also the corrected path will be wrong, but it still can remove excess zig-

zagging from routes. The variable epsilon defines how much smoothing is done. The

effects of different values of epsilon can be seen in figure 10. If the epsilon is too small,

the algorithm has no effect, if it is too large, the calculated route cuts through corners.

 21

Figure 10. The significance of epsilon value to Ramer-Douglas-Pecker algorithm. The epsilon is
the smallest on the left side and the biggest on the right side

Kalman filtering differs from the other filtering methods in that it does not remove inac-

curate values. It rather calculates the more probable positions for these locations. Kal-

man filter tried in this study did not use data from external source for verification of loca-

tions, but it has some effects as is shown in figure 11. Kalman filter can smooth the

pathway but it can also cut too much from corners.

Figure 11. Effects of Kalman filtering, black is the original path and green is the filtered one.

 22

Filtering methods can also be combined. First the most inaccurate locations could be

removed and after this some other kind of filtering to further reduce the inaccuracies in

route can be used.

Bearings can be used in faster speeds in some kind location verification algorithm. Bear-

ings are more accurate at faster speeds, but they seem to give somewhat reasonable

results in walking speeds as can be seen in figure 12. This shows that at walking speeds

bearings follow walking path lazily. When walking straight they show to walking direction,

but when turning they gradually change to new walking direction. When staying at the

same location, the values of bearings get random values. The bearing accuracies could

be utilised in location verification calculations. This is only for driving speeds or cycling

speeds. They are not available in normal walking speeds; they all are recorded as zeros

instead. Testing the bearing accuracies in faster speeds is possible future study subject.

Figure 12. Bearings are shown here with red lines. The one on the left is recorded while sitting
on a park bench. The one on the right is recorded while walking.

There are still multiple ideas that can be tested. From location data the extras could be

saved in database in String form and their content could be analyzed. These extras in-

clude how much satellites are used to calculate the location and other technical details.

The amount of satellites compared to accuracy could be interesting to study.

 23

Another possible solution would be to match the route to the features of the map. Road

coordinates could be found for certain maps, but it is not a universally feasible solution.

If the moving is only done in vehicle such as a car, then this could work out, but move-

ment on foot does not need to follow roads: It can be wandering in the forest or in the

park and these paths cannot combine with certain map features.

4.2 Known bugs and further development ideas

Bugs are resolved as they come by. For now, all major bugs have been resolved. One

of the worst bugs was the bug that prevents collecting location information, when service

for that was unbound from the TrackingMapActivity. This was because erroneously

the request for updates was inside if-block that was executed only when service was

bounded.

In the current state only one route can be investigated at the same time. It would be

interesting to combine results of walking same route multiple times. This way it would be

easy to analyze how accuracies depend on location and how much there is random var-

iation. RouteListingActivity needs to be changed in a way, that multiple routes

can be selected. This can be acquired by using checkboxes for each routes and separate

button for moving to DataViewingActivity. In MapFragment different routes would

need differ visually from each other. Now different colors are used for measured routes

and routes formed using different algorithms. For different routes different kind of line

types could be used, like continuous, dashed or dotted lines. Different line thicknesses

could be one option. Lines could made partially transparent, then lines top of each other

could be recognized better.

GraphFragment could show multiple lines in same time. Legend needs to be added,

where could be possible to select, what of those routes to be compared are shown and

what kind of line they are represented. In case of different routes graphs showing these

routes together does not make sense, but it is up to user to interpret meanings. Numer-

icalFragment needs redesigning in a way that it is possible to choose what numerical

data is shown. This fragment could be redesigned completely, since viewing just the lists

of numerical values of all route locations is not useful. All kind of averages and variances

would give user much more relevant information.

 24

More options are needed for viewing live locations. An option to show accuracies and

bearings is needed. A menu for choosing which kind of information is shown could be

added. Data in numerical format could be added, at least information of how many loca-

tions are already stored in database. The application can be used in different ways and

that is why different options for viewing are needed. When using the application while

sitting in a tram, it could be interesting to follow what kind of information is obtained but

when walking it is best to focus on surroundings and not to the screen of the mobile

device.

One option could be to add an easy way to take screenshots from both map showing live

locations and map showing locations from database. Of course, other ways to take

screenshots exist but this way screenshots could be tailored to include only certain fea-

tures and the dimensions can be adjusted. What to include in a screenshot could be

selected. The screenshot could get descriptive name. There could be an option to share

these screenshots to social media or to Google drive.

In this stage data from database can be downloaded as JavaScript object notation

(Json). For now, this is not used anywhere and to fully utilise data in Json, another pro-

gram should be developed. It would be easier to use the data if it were in comma sepa-

rated values (csv), because then the data could be inserted into spreadsheet such as

Microsoft Excel. An option to make a backup of the whole database as it is and restore

the database from that backup is needed. Database needs further development. For

different routes optimal variables for different algorithms could fit to Route-table. First

these values could be nulls and these could be saved when optimal values are found by

visual inspection.

In the current state the description of the route is not used in any way and it can not be

modified after it is first saved. There can be reasons for modification of the description

after the locations of the route have been recorded, because something unexpected

might happen during gathering of the location data. The walking route can end up being

different than planned. The live data might show that the location data suddenly becomes

completely inaccurate and wrong. These notes would be nice to add to the description

as this would help sort the routes at the time of analyzing the data.

 25

5 Conclusion

The application made for this project collects location data and saves it to the local da-

tabase. This can be used to collect locations from a walking route. This collecting is done

by service. This service can be bound to an activity that shows location on the map or it

can run as foreground service. The already collected routes can be viewed in map and

this original route data can be compared with routes obtained by using four different

filtering algorithms.

The compared algorithms are Ramer-Douglas-Peucker, Kalman filter, removal of least

accurate locations and moving average. Ramer-Douglas-Peucker does not depend on

accuracies. It just searches the extremes and smoothens the paths between extreme

locations. This means that pathways become straighter but if those extremes are erro-

neous, those errors will remain. Kalman filter iterates through the locations and can use

external data for calculating the new estimates. The test algorithm used in this thesis did

show that Kalman filter smoothens the pathway. This algorithm can be further developed

to include a better way of estimating the correctness of locations. Kalman filter involves

complicated mathematics and the developing of algorithm is hard. Other filtering meth-

ods are less complicated. Filtering can be done as simple as removing the most inaccu-

rate locations. If the threshold is set correctly this can lead to a good enough solution.

Running average smoothens the path and removes the separate values deviated from

the path.

Representation of data is what needs to be developed further. The goal for this is to

make comparison of algorithms better by increasing the options for the user of the appli-

cation. This means the option to select multiple routes to compare them in the map and

other means. The altitudes need filtering so that the most inaccurate ones are removed.

Tracking of altitudes and representing the altitudes of a whole route in this application

needs to be studied more to be able to use this altitude information in other applications

in the future.

 26

References

1. Gargenta, Marko & Nakamura, Masumi. 2014 Learning Android E-book. O’Reilly

Media

2. Callaham, John, 2019. The history of Android OS: its name, origin and more.

Webpage. Android Authority. <https://www.androidauthority.com/history-an-

droid-os-name-789433/> Visited: 5.6.2020

3. Dataflair Team, 2020. Android Architecture – 5 Components of Android Architec-

ture. <https://data-flair.training/blogs/android-architecture/> Visited: 5.6.2020

4. Amadeo, Ron, 2019. Google outlines plans for mainline Linux kernel support in

Android. Webpage. <https://arstechnica.com/gadgets/2019/11/google-outlines-

plans-for-mainline-linux-kernel-support-in-android/> Visited 5.6.2020

5. Ye, Roger. 2017. Android System Programming . E-book. Packt Publishing

6. Android Architecture. Webpage. Javatpoint. <https://www.javatpoint.com/an-

droid-software-stack > Visited: 5.6.2020

7. Jain, Ayusch. Android Internals 101: How Android OS Starts You Application.

Webpage. <https://www.droidcon.com/news-detail?content-id=/repository/col-

laboration/Groups/spaces/droidcon_hq/Documents/public/news/android-

news/Android Internals 101 - How Android OS Starts You Application> Visited

30.7.2020

8. Platform Architecture. Webpage. googledevelopers. <https://developer.an-

droid.com/guide/platform > Visited: 5.6.2020

9. Android Jetpack, Webpage. googledevelopers. <https://developer.an-

droid.com/jetpack > Visited 5.6.2020

 27

10. Tillu, Jay. 2019. Why JetBrains create Kotlin? The Inside story of Kotlin creation.

Webpage. <https://dev.to/jay_tillu/why-jetbrains-create-kotlin-the-inside-story-of-

kotlin-creation-1135> Visited: 5.6.2020

11. Lardinois, Frederic, 2019. Kotlin is now Google’s preferred language for Android

app development. Webpage. < https://techcrunch.com/2019/05/07/kotlin-is-now-

googles-preferred-language-for-android-app-development/?guccounter=1 > Vis-

ited: 5.6.2020

12. Kotlin. Calling Java code from Kotlin. Webpage < https://kotlinlang.org/docs/ref-

erence/java-interop.html > Visited: 5.6.2020

13. Meija, Arturo. 2018. Android KTX Tutorial: Getting Started. Webpage. <

https://www.raywenderlich.com/5576-android-ktx-tutorial-getting-started > Vis-

ited: 5.6.2020

14. Doberstein, Dan. 2012. Fundamentals of GPS Receivers. E-book, Chapter 1.

Springer-Verlag.

15. NexGenDesign. “Lost in Tracking” or why mobile GPS is inaccurate?

<http://www.nexgendesign.com/lost-in-tracking-mobile-gps> Visited: 6.6.2020

16. ArcUser Online. 2003 Mean Sea Level, GPS, and the Geoid. Webpage.

<https://www.esri.com/news/arcuser/0703/geoid2of3.html> Visited: 6.6.2020

17. GPS World Staff. 2010. Part 1: The Origins of GPS, and the Pioneers Who

Launched the System. Webpage. <https://www.gpsworld.com/origins-gps-part-

1/> Visited: 6.6.2020

18. GPS World Staff, 2010. Part 2: The Origins of GPS, Fighting to Survive.

Webpage. <https://www.gpsworld.com/origins-gps-part-2-fighting-survive/> Vis-

ited: 6.6.2020

 28

19. European Global Navigation Satellite Systems Agency. What is GNSS?

Webpage. < https://www.gsa.europa.eu/european-gnss/what-gnss > Visited:

6.6.2020

20. Hidenbrand, Jerry, 2018. How does GPS work on my phone? Webpage.

<https://www.androidcentral.com/how-does-gps-work-my-phone> Visited:

6.6.2020

21. Vallina-Rodriuez, Narseo, Crowcroft, Jon, Finamore, Alessndro, Grunenberger,

Yan, Papagiannaki, Konstantina 2013. When assistance becomes dependence:

characterizing the costs and inefficiencies of A-GPS, Webpage.

<https://dl.acm.org/doi/10.1145/2557968.2557970> Visited: 6.6.2020

22. manhbt. 2018. Understanding Android GPS Architecture. Webpage.

<https://manhbt.wordpress.com/2018/01/02/understanding-android-gps-archi-

tecture/> Visited: 6.6.2020

23. Meg. 2019. Why is GPS data sometimes inaccurate? Webpage. <https://sup-

port.strava.com/hc/en-us/articles/216917917-Why-is-GPS-data-sometimes-in-

accurate> Visited: 6.6.2020

24. Singh, Ishveena, 2017. How accurate is the altimeter in a GPS watch? Webpage.

<https://geoawesomeness.com/accurate-altimeter-gps-watch/> Visited:

6.6.2020

25. Bryan, Michael F., 2020. Line Simplification with Ramer–Douglas–Peucker.

Webpage <http://adventures.michaelfbryan.com/posts/line-simplification/> Vis-

ited: 6.6.2020

26. Esme, Bilgin, 2009. Kalman Filter For Dummies. Webpage. <http://bil-

gin.esme.org/BitsAndBytes/KalmanFilterforDummies#> Visited: 6.6.2020

Appendix 1

 1 (2)

Code for Ramer-Douglas-Peucker algorithm

//ttps://rosettacode.org/wiki/Ramer-Douglas-Peucker_line_simplification#Kotlin

private fun perpendicularDistance(location: MeasuredLocation,

 startLocation: MeasuredLocation, endLocation: MeasuredLocation

): Double {

 var dx = endLocation.longitude - startLocation.longitude

 var dy = endLocation.latitude - startLocation.latitude

 val pointList = measuredLocations

 val mag = hypot(dx, dy)

 if (mag > 0.0) {

 dx /= mag

 dy /= mag

 }

 val pvx = location.longitude - startLocation.longitude

 val pvy = location.latitude - startLocation.latitude

 val pvdot = dx * pvx + dy * pvy

 val ax = pvx - pvdot * dx

 val ay = pvy - pvdot * dy

 return hypot(ax, ay)

}

fun ramerDouglasPeucker(pointList: List<MeasuredLocation>,epsilon: Double,

 out: MutableList<MeasuredLocation>

): Boolean {

 if (pointList.size < 2) {

 return false

 }

 // Obtain the point with the maximum distance from line between start

 //and end

 var dmax = 0.0

 var index = 0

 val end = pointList.size - 1

 for (i in 1 until end) {

 val d = perpendicularDistance(pointList[i], pointList[0],

 pointList[end])

 if (d > dmax) {

 index = i; dmax = d

 }

 }

 // If max distance is greater than epsilon, recursively simplify

 if (dmax > epsilon) {

 val recResults1 = mutableListOf<MeasuredLocation>()

 val recResults2 = mutableListOf<MeasuredLocation>()

 val firstLine = pointList.take(index + 1)

 val lastLine = pointList.drop(index)

 ramerDouglasPeucker(firstLine, epsilon, recResults1)

 ramerDouglasPeucker(lastLine, epsilon, recResults2)

Appendix 1

 2 (2)

// formulate result list

 out.addAll(recResults1.take(recResults1.size - 1))

 out.addAll(recResults2)

 if (out.size < 2) {

 return false

 }

 } else {

 // Just return start and end points

 out.clear()

 out.add(pointList.first())

 out.add(pointList.last())

 }

 return true

 }

 /**

 * for algorithm 1: Ramer-Douglas-Pecker

 */

 fun getAlgorithm1GeoPoints(epsilon: Double): ArrayList<GeoPoint> {

 val locations: ArrayList<MeasuredLocation> = ArrayList()

 val success = ramerDouglasPeucker(measuredLocations, epsilon, loca-

tions)

 if (!success) {

 locations.clear()

 }

 return getMeasuredLocationsAsGeoPoints(locations)

}

Appendix 2

 1 (2)

Code for Kalman Filter

KalmanFilter.kt

package fi.metropolia.juhavuo.trackingaccuracy

import kotlin.math.pow

import kotlin.math.sqrt

//https://stackoverflow.com/questions/1134579/smooth-gps-data, Stochastical-

ly's aswer (in Java)

class KalmanFilter(speed: Float){

 private val minAccuracy = 1f

 private var meanSpeed = speed

 var lat = 0.0

 private set

 var lng = 0.0

 private set

 var variance = -1f

 private set

 var ts = 0L

 private set

 fun getAccuracy(): Float = sqrt(variance)

 fun setState(latitude: Double, longitude: Double, accuracy: Float,

timestamp: Long){

 lat = latitude

 lng = longitude

 variance = accuracy.pow(2)

 ts = timestamp

 }

 fun process(measured_lat: Double, measured_lng: Double, me_acc: Float,

timestamp: Long){

 var measured_acc = me_acc

 if(measured_acc<minAccuracy){

 measured_acc = minAccuracy

 }

 if(variance<0){

 setState(measured_lat,measured_lng,measured_acc,timestamp)

 }else{

 val timeBetween = timestamp - ts

 if(timeBetween> 0){

 variance += timeBetween*meanSpeed.pow(2)/1000

 ts = timestamp

 }

 }

 val k = variance/(variance+measured_acc.pow(2))

 lat += k*(measured_lat-lat)

 lng += k*(measured_lng-lng)

 variance *= (1 - k)

 }

Appendix 2

 2 (2)

In DataAnalyzer.kt class:

fun getKalmanFilteredGeoPoints(): ArrayList<GeoPoint> {

 val kalmanGeoPoints: ArrayList<GeoPoint> = ArrayList()

 var speed = getSpeedMeanValue()

 speed *= 1.2f //this can be changed, for better values

 if (speed < 3f) {

 speed = 3f

 }

 val kalmanFilter = KalmanFilter(speed)

 kalmanFilter.setState(

 measuredLocations[0].latitude,

 measuredLocations[0].longitude,

 measuredLocations[0].accuracy,

 measuredLocations[0].timestamp

)

 for (index in 1 until measuredLocations.size) {

 kalmanFilter.process(

 measuredLocations[index].latitude

 , measuredLocations[index].longitude

 , measuredLocations[index].accuracy

 , measuredLocations[index].timestamp

)

 kalmanGeoPoints.add(GeoPoint(kalmanFilter.lat, kalmanFilter.lng))

 }

 return kalmanGeoPoints

}

	1 Introduction
	2 Technologies
	2.1 Android and Kotlin
	2.2 Global Positioning System
	2.3 Ramer-Douglas-Peucker and Kalman filter algorithms

	3 Practical work
	3.1 Application basics
	3.2 Classes and activities used in the project
	3.3 Database structure
	3.4 Working with asynchronous data
	3.5 Using filtering algorithms

	4 Discussion
	4.1 Filter technics and algorithms
	4.2 Known bugs and further development ideas

	5 Conclusion
	References

