

Learning experiences of Haaga-Helia’s BITe students re-

garding JavaScript and its libraries and frameworks in

2019

Claudio Rodríguez

 Bachelor’s Thesis

Degree Programme in Business

Information Technology

 2020

Abstract

 Date 17.05.2020

Author
Claudio Rodríguez

Degree programme
Business Information Technology

Report/thesis title
Learning experiences of Haaga-Helia’s BITe students regarding
JavaScript and its libraries and frameworks in 2019

Number of pages
and appendix pages
47 + 5

The advancements of technology and easy access to internet across the world has

accelerated the changes and improvements of programming tremendously. Nowadays

there are big communities of people contributing to the further development of

programming languages. JavaScript has abruptly managed to make programming accessi-

ble and become one of the most popular programming languages nowadays.

Nonetheless the current fast pace at which technologies evolve has also increased the

speed at which some programming languages and their environments must change and

adapt. This brings new features and extra complexity to these technologies and therefore,

developers and IT students must constantly continue learning the use new tools and meth-

ods, which can be quite demanding and possibly lead to stressful experiences.

The goal of this thesis was to investigate the learning experiences of Haaga-Helia’s Busi-

ness Information Technology students regarding JavaScript, its libraries and frameworks

and their feelings towards these technologies. Also, another objective was to find out which

aspects of the teaching of JavaScript in Haaga-Helia has been most useful to their leaning

path and which aspects of the teaching they feel that could be improved.

In order to gather data for this research an electronic survey was conducted were the stu-

dents could give background information about their JavaScript related studies at Haaga-

Helia and their feelings regarding the use of these technologies. Additionally, a couple of

semi-structured interviews were carried out on soon to graduate students who had already

some working experience as developers, which helped to find what had been most useful

from their learning experience at Haaga-Helia and possible improvement suggestions.

Keywords
JavaScript, Programming Learning, JavaScript Frameworks, JavaScript Libraries, ECMAS-
cript.

Table of contents

1 Introduction ... 1

1.1 Target group ... 1

1.2 Research questions, objectives and scope ... 2

2 Theoretical framework ... 3

2.1 Computers and programming .. 3

2.2 Learning to program .. 4

2.2.1 MOOCs and other tools as programming learning sources 5

2.3 Programming languages ... 6

2.4 JavaScript ... 7

2.4.1 Why JavaScript? .. 9

2.4.2 JavaScript and ECMA standard versions ... 10

2.4.3 Browser compatibility ... 11

2.5 Current popular JavaScript frameworks & libraries .. 13

2.5.1 React ... 13

2.5.2 Angular & Vue.js .. 14

2.5.3 jQuery .. 16

2.6 Memes and what they can reveal to us ... 17

3 Research Method .. 18

3.1 Electronic surveys ... 18

3.2 Semi-structured interviews .. 20

4 Results .. 21

4.1 Survey .. 21

4.1.1 Background Information section results .. 21

4.1.2 Students’ learning experiences of JavaScript ... 25

4.1.3 Meme & closing sections’ results ... 30

4.2 Semi-structured interview results .. 37

5 Discussion ... 40

5.1 Comparison to initial assumptions and research questions 40

5.1.1 Question 1: Are BITe students discouraged in any way to continue learning

and developing professionally in JavaScript related fields? 40

5.1.2 Question 2: What are BITe students’ feelings regarding JavaScript, its

frameworks and libraries? ... 41

5.1.3 Question 3: What possible improvements there could be on the JavaScript

teaching methods in Haaga-Helia for BITe students?.. 42

5.2 New information and final conclusions .. 43

References .. 45

Appendices .. 48

Appendix 1. Survey Questions .. 48

Appendix 2. Prize winner selection (Code snippet) .. 50

Appendix 3. Survey transcripts (Confidential) .. 51

Appendix 4. Semi-structured interview scripts (Confidential) 52

1

1 Introduction

The topic for this thesis is inspired by personal observations throughout my studies at

Haaga-Helia of fellow classmates and myself. I have observed changes in confidence and

motivation, feelings of fear of failure and uncertainty, as we, the students, progressed

deeper into our programming studies.

These observations made me wonder which factors were affecting IT students and their

learning curve when it comes to programming and learning new programming tools and

methods. I wanted to find out how much of what I had observed during my studies was

simply my own personal perceptions or if there were any generalized issues in the way we

were taught and learned. Uncovering the world of programming (particularly JavaScript in

the case of this thesis) can be challenging and discouraging at times but through further

exploration of these issues, some light can be shed on possible ways to reduce the chal-

lenges of learning to program.

1.1 Target group

In order to avoid excessive generalization, acquire data that could be easier to analyse

and narrow down the size of this research, the target group of this research is limited to

the Business Information Technology (BITe) students of Haaga-Helia University of Applied

Sciences. Information Technology (IT) students from other Universities and Institutions, as

well as Haaga-Helia students of the Finnish language (TIKO) equivalent to BITe, are ex-

cluded from the study also. This is because there are differences in the course offerings

among degree programmes and I want to focus on the BITe students because I have ex-

perienced the studies at BITe degree programme myself.

The BITe students included in this study consist of Haaga-Helia students that have started

their BITe studies between 2015 and 2019. Although the results of this study can be more

useful for students at the start of their degree programme, students at the end of their

studies are also targeted. Their wider experience of the studies and their possible aca-

demic experience can prove extremely valuable, as they can provide useful insight of the

different stages of their studies in the BITe programme and of how they have been able to

apply their studies in working life.

2

1.2 Research questions, objectives and scope

This research aims to explore and answer the following questions:

− Are BITe students discouraged in any way to continue learning and developing profes-
sionally in JavaScript related fields?

− What are BITe students’ feelings regarding JavaScript, its frameworks and libraries?

− What possible improvements there could be on the JavaScript teaching methods in
Haaga-Helia for BITe students?

This project’s objective is mainly to get information from Haaga-Helia’s English IT degree

programme students regarding their learning of JavaScript (JS), including what challenges

they might have faced and what kind of feelings they have experienced when further

learning the language, its libraries and frameworks (L&F). In addition to that, the objective

of this thesis is to find possible inefficiencies on the way JavaScript has been and is intro-

duced to students (from their perspective), as well as what aspects of the teaching that

have been helpful and valuable, but also finding out what the students wish could be done

differently.

In order to get qualitative data information, surveys will be sent to Haaga-Helia’s BITe stu-

dents, who have initiated their studies at different years. In addition to that, semi-struc-

tured interviews will be carried out to a couple of students who are already working on the

IT field and preferably still working with JavaScript in some form.

This thesis will provide information based on the students reflections in 2019 about their

learning path and the effects that learning JavaScript with its libraries and frameworks has

had on them, along with possible areas of improvement on how these topics could be in-

troduced and taught to students in the future.

Languages other than JavaScript will be kept out of the scope, in order to narrow down

the scope and to avoid unnecessarily overcomplicating the research. Another motive to

concentrate purely on JavaScript is that there are many BITe courses based on JavaS-

cript and consequently it is the language I have most knowledge and interest of myself. In

addition, I chose to focus on JavaScript since it is one of the most, if not the most, popular

programming languages globally. For the above-mentioned reasons, frameworks and li-

braries from languages other than JavaScript are also kept out of the scope of this thesis.

3

2 Theoretical framework

As technology and automation keep evolving, there is a resurging and increasing fear of

machines replacing jobs in a wide range of industries. Although it is an understandable

fear, there is great potential for a bright future as labour-savings and process innovations,

should in turn decrease prices and help create a new kind of labour demand (Piva & Viva-

relli 2018). As technology keeps evolving and spreading to different areas, there will be

great need of people to carry out these changes. An example of this is the need to pro-

gram and maintain these new technological innovations as their use keeps increasing.

In the future people will be increasingly taught about programming earlier in life. Already in

the present, there are different resources to accomplish such feat. This future situation is

emphasised on Bryson Payne’s introduction to his book “Teach Your Kids to Code”:

“Computer programming, or coding, is a crucial skill every child should be

learning.” (Payne 2015)

Being introduced to the basics of computer science and programming from an early age,

could make it easier to understand more complicated concepts and methodologies for fu-

ture programmers. But not only that, as it could also make future generations less afraid of

experimenting with their code and that way, develop a better intuition when it comes to

programming.

In contrast, many of us who have learned about programming as adults or late-adoles-

cents, might have a harder time learning more advanced programming concepts. But for-

tunately, there are different ways to learn new concepts and skills, independent of the per-

son’s age and the same holds true for programming.

2.1 Computers and programming

Merriam-Webster defines computers as “a programmable usually electronic device that

can store, retrieve, and process data” (Merriam-Webster Online 2019), a definition with

only a few key elements that combined have an immense power to lead our society’s

prosperity.

Humans have excelled at making their working processes more efficient and improving

the results of their actions. Eventually we developed machines to help us create greater

output with a smaller input, up to the point we were able to manipulate energy sources

4

other than human or animal power. We revolutionized the world with the development of

steam powered machines, electrical devices and specially when computers came around.

Although the development of computers starting secretly during the horrific World War II

(Piva & Vivarelli 2018), its use and purpose was diversified to unimaginable extents, being

now essential in the normal functioning of our current society.

Programming allows humans to interact with computers and other electronic devices,

such as phones, smart watches, smart door locks, irrigation systems, thermostats, etc.

This is done by writing instructions (code) that the computer needs to interpret in order to

carry out the desired action. Although it might sound simple, it really is not, and great

amounts of work and research has led to the simplicity of today’s computer interaction.

Nowadays the average person uses programs to interact with computers or other smart

devices. These programs in turn, have been programmed with the use of logic and pro-

gramming languages so the users can easily interact with them. As the role of computers

keeps being more entangled with humanity’s daily life, it becomes more important for peo-

ple to learn about the world of computers, as they are also a useful tool for varied disci-

plines. Future generations will be expected to be trained in Computer Science from an

early age and that way become better productive members of society. (Wakil, Khdir, Sabir

& Nawzad 2019)

2.2 Learning to program

As the widespread of computers is fairly new, competences such as Computational Think-

ing have not been greatly developed by older generations, but the interest and need to

learn programming are not exclusive for new generations either. However, people of var-

ied age groups and backgrounds may have varied cognitive abilities when learning to pro-

gram, thus the same teaching methods won’t be the best for every individual. (Hsu, Chang

& Hung 2018)

Mark Guzdial’s ‘What’s the Best Way to Teach Computer Science to Beginners?’ article

questions the effectivity of traditional programming teaching methods to newcomers.

Teaching theory to students and having them trying to program and figure things out on

their own has not been the most effective way to teach people with no previous experi-

ence. Some studies have found that students who were first shown how a programming

problem has been solved, were more successful when it was their turn to try on their own.

(Guzdial 2015)

5

This issue is also reflected in a case, where in an effort to make Android programming in-

troduction easier to newcomers, the easy to use software App Inventor for app creation

was introduced to students. App Inventor was easily adopted by the students, but its sim-

plicity made some students work automatically, without properly thinking about their tasks

and learning. In this case it was also emphasized how there is simply no tool or method

that would satisfy everyone’s needs at once. (Robertson 2014)

Project-based, problem-based, game-based and cooperative learning are some ways in

which computer science can be taught (Hsu, Chang & Hung 2018), but regardless of the

option, there is no single option that can be the best way of teaching it on its own. It is for

that reason that a mixed approach could bring more positive results.

2.2.1 MOOCs and other tools as programming learning sources

In contrast to some decades ago, where access to computers was limited to few individu-

als and only experts with great knowledge of computers’ assembly and use, in the present

the scenery has changed completely. During the last decades people went from learning

about computers and programming through military and few academic institutions (Piva &

Vivarelli 2018), to having a plethora of learning sources available to them. The way of

learning about programming expanded from lessons in classrooms or computer laborato-

ries and textbooks, to easily access a myriad of learning material of all kinds, thanks to the

internet. This way regardless of your physical location or the presence of an instructor

learning is easier than ever.

The emergence of Massive Online Open Courses (MOOCs) in 2012, became a great op-

portunity not only to add other learning sources to be used at a personal pace, but even to

be used without going alongside a traditional university degree. Although, what constitutes

a MOOC is not officially defined. They are commonly known as online courses that can be

available for a great amount of people. They might be open courses in terms of being free

of charge or having little to no barriers to join the course (such as prerequisites). Another

of their characteristics is usually having their own community of students or users, were

members can discuss subjects or ask or provide support in the learning process. (Haber

2014)

Thanks to the easy access to computers and the internet, there are plenty of useful free

resources available. Instead of joining a MOOC, one can look for a small specific subject

instead. In many cases, YouTube can easily provide a wide range of tutorials of varied

lengths, where instructors can also advertise more complete versions of their tutorials

6

hosted in sites like Udemy or may recommend other sources like, Medium articles,

freeCodeCamp or Zenva, etc.

Obviously, each approach has its limitations as I have come to experience during my own

studies. In educational institutions there could be a teacher who’s teaching method

doesn’t match with one’s most optimal learning style, which could cause one to lose inter-

est in an otherwise interesting or useful subject. On the other hand, using free tutorials,

can give one more freedom to choose a more suitable learning style, but can pose a big-

ger risk of being outdated with current practices, lack of feedback with the instructor or

even acquiring bad practices straight from the instructor.

Paid tutorial of the likes found in Frontend Masters, Udemy, freeCodeCamp, among oth-

ers, may bring some accountability or greater chance of receiving feedback or interacting

with a community. But in some cases, the progress through the course could be at such

irregular intervals that you may never complete some courses, or it may become outdated

over time. Some of these courses may stay updated with current standards and practices,

but for some others a new course may be created instead, which you would have to pay in

order to access.

2.3 Programming languages

Without programming languages, programs would have had to be written in binary form

(computer language), but thanks to programming languages, we can write programs in a

way that is more easily understandable and achievable to successfully create, for humans

writing the code and the ones maintaining it, in the future.

Although the code written in conventional programming languages, will still need to be

transpired into computer language, it is still significantly less time consuming and error

prone.

No matter which programming language you use, the need of algorithms is imperative for

us to tell a computer what to do and how. Each program can have their own set of rules

and limitations, but they all need the use of logic to function.

Merriam-Webster defines algorithm as “broadly: a step-by-step procedure for solving a

problem or accomplishing some end” (Merriam-Webster Online 2019). This broad defini-

tion ties closely to the core purpose of programming.

7

Programming languages can be classified and distinguished from one another, through

their features in what is referred as programming paradigms. The two most common pro-

gramming paradigms are imperative and declarative programming. Imperative program-

ming characterizes itself by instructing the machines how to change their state, while de-

clarative programming by only the properties of the desired result, but not the way it will

be computed. (Nørmark 2019)

A programming language does not need to be restricted to one programming paradigm, in

fact many of the most common programming languages have become multi-paradigm.

Such is the case of JavaScript, that can belong to functional (declarative sub-category), as

well as object-oriented programming (imperative sub-category). (Wikipedia 2020)

2.4 JavaScript

JavaScript was developed in 1995 at Netscape Communications, in an effort to bring

more flexibility and dynamism to the web, since html on its own was too narrow. This way

Netscape got a competitive advantage over other web browser competitors. Netscape

employed Brendan Eich to develop this new language and he wrote its first prototype on

ten days. The first version was initially code-named Mocha, but its official name became

LiveScript. This name would not last long, as in a strategic move it was decided to take

advantage of Java’s great growth and popularity, resulting in yet another name change to

what is now known as JavaScript. (Rauschmayer 2014)

Whether or not that name strategy was the best choice, JavaScript’s present popularity is

undeniable, as shown in Figures 1 and 2, with the results of 2019’s Stack Overflow Devel-

oper Survey.

Figure 1. 2019’s Stack Overflow Developer Survey - Most popular languages, for

all reponses (87354 responses).

8

While Figure 1 collects Stack Overflow users’ preferences, without distinction of them be-

ing professionals or not, Figure 2 only regards the answers of professional developers.

For both categories, JavaScript leads the statistics with almost 80% of the respondents

declaring to use JavaScript. Even though the use of Stack Overflow is not imperative for

developers or to be able to know JavaScript, resorting to Stack Overflow is an extremely

popular practice on the field of programming and consequently a good source to represent

JavaScript global popularity and use.

Another good source for verifying JavaScript’s popularity is GitHub’s recent State of the

Octoverse and more specifically their top languages section shown on Figure 3. GitHub is

widely used by developers around the globe to share and manage code, for professional

purposes and personal projects. The ‘Top languages’ ranking on the State of the Octo-

verse (Figure 3), shows once again the clear dominance of JavaScript and its use over

the years, while other languages have been experiencing changes in their popularity.

From this ranking it is also worth noting TypeScript’s growth, which is tightly related to Ja-

vaScript, since TypeScript is a ‘typed superset of JavaScript that compiles to plain JavaS-

cript’ (Typescript 2020), which only supports JavaScript dominance.

Figure 2. 2019’s Stack Overflow Developer Survey - Most popular languages, for pro-

fessional developers (72525 responses).

9

Figure 3. Top languages in GitHub by repository contributions from 2019’s The State of

the Octoverse.

2.4.1 Why JavaScript?

With the massification of the internet, JavaScript became an easy choice to teach pro-

gramming language to newcomers. Unlike other programming languages, if you want to

run JavaScript code, you only need a computer, an internet connection and a web

browser. Other programming languages require a program that compiles the human code,

into computer code, which may require tedious configuration and extra knowledge. In con-

trast JavaScript has the advantage in its ability to run code on a web browser’s console

through its internal engines. This feature rids users of configuration hurdles and allows

them to easily start learning the basics of programming.

While JavaScript was only able to be used on the Frontend programming, the arrival of

JavaScript’s Node on 2009 expanded JavaScript’s use to the Backend programming. This

way knowing JavaScript was enough to run code on the server and on the client’s side of

the web, instead of switching from one language to the other in order to work on frontend

10

or backend (Brown 2016). This allowed JavaScript’s popularity and support to increase

and along with that bring new libraries and frameworks, which eventually became very

popular. It is perhaps for that reason that some important programming courses in Haaga-

Helia have been focused on JavaScript technologies, such as in Frontend, Mobile Pro-

gramming or Software Project courses.

2.4.2 JavaScript and ECMA standard versions

The European Computer Manufacturers Association (ECMA) was officially former in 1961,

in order to respond to the increasing need for standardization that the continuous growth

of computer use created. This brought together the mayor computer related companies at

the time, such as IBM, in order to cooperate and define the best possible standardization

and allow compatibility throughout different countries and manufacturers. (ECMA Interna-

tional 2020)

In a strategic move to keep competitors at bay, Netscape decided to standardize JavaS-

cript via ECMA, as seen in Table 1. This came into fruition through the ECMA-262 stand-

ard, with the first these standardized versions commencing in 1996, allowing the varied

browser vendors to implement JavaScript and thus letting the language be a viable option

to the browser market. Due to Oracle (previously Sun) owning rights to term JavaScript,

the official name used for the language had to be officially referred as ECMAScript, but re-

gardless of this situation, the language keeps being known to people as JavaScript and

perhaps with many of them unaware of ECMAScript being its official name, rather than

just a version release name. (Rauschmayer 2014)

Table 1. ECMAScript versions so far (ECMAScript 2019 Language Specification, 2020).

Version Official Name Other
Names

Release
Year

Extra information

1st ECMAScript 1st
ed.

 1997 Started on June 1996
Adopted on June 1997

2nd ECMAScript 2nd
ed.

 1998 Editorial changes to keep it aligned
with
ISO/IEC 16262

3rd ECMAScript 3rd
ed.

 1999 Adds regular expressions and
try/catch exception handling
Published as ISO/IEC 16262:2002
in June 2002

4th ECMAScript 4th
ed.

ES4 Unre-
leased

The significant work on this edition
was incomplete and unpublished
Useful parts of it were further de-
veloped and implemented on the
6th ed.

11

5th ECMAScript 5th
ed.

ES5 2009 Includes JSON support, strict
mode, additional array manipula-
tion
functions, among others.

5.1 ECMAScript 5.1 2011 Minor corrections

6th ECMAScript 6th
ed.

ECMAScript
2015
ES6

2015 Its development started in 2009
Mayor enhancements for the lan-
guages
Adds let and const

7th ECMAScript 7th
ed.

ECMAScript
2016

2016 Further development entirely on
GitHub
Adds new exponentiation operator
(**) and Array.prototype.includes

8th ECMAScript 8th
ed.

ECMAScript
2017

2017 Small language and library en-
hancements, bug fixes and edito-
rial updates
Adds Async functions, among oth-
ers

9th ECMAScript 9th
ed.

ECMAScript
2018

2018 Support for Asynchronous iteration
Four new regular expression fea-
tures
Rest parameter and spread opera-
tor support for object properties

10th ECMAScript 10th
ed.

ECMAScript
2019

2019 Few new built-in functions
Minor updates to syntax and se-
mantics

2.4.3 Browser compatibility

Netscape was the first company to recognise the great potential of the internet and take

advantage of it by being the first to provide a great quality browser ‘Navigator’, which in-

cluded more useful features and better user experience. This allowed Netscape to reach

an 87% share of the browser market by 1996 and as Netscape’s Navigator took the lead

by a great margin, in 1995 Microsoft began its strategy to catch “The Internet Tidal Wave”.

(Spinello 2005)

Microsoft took advantage and even abused their Windows operating system’s dominance

and relations to other services in such a way that in time gave the browser Internet Ex-

plorer (IE) an 80% of the browser market share by December 1999. Microsoft’s questiona-

ble tactics were however put to a halt when facing an antitrust lawsuit by the U.S. govern-

ment. This lawsuit made it more difficult for Microsoft to block its competitors advancing in

the middleware market of web browsers. (Spinello 2005)

12

The fact that there are different web browser options, means that each browser develop-

ing team must find their own way to enable new features of JavaScript to run on their

browser’s engine. Browser engines are the ones responsible of turning human language

into computer code through programming language. It is for that reason that support for a

newer ECMAScript’s version may take time to implement on each browser.

When developing or maintaining globally popular internet services, it is imperative to keep

browser compatibility in mind before refactoring code or implementing JavaScript’s newest

feature. This is because a considerable number of customers of such services could be

using outdated browser versions that don’t support some newer features. Failure to en-

sure the support of new features could threaten revenue and customer loyalty, instead of

taking full advantage of such features.

A good practice for developers is checking if a desired JavaScript feature has browser

support. Services such as Can I Use, give information about the current feature support

(support tables) for varied web technologies across different browser options (latest ver-

sions). Figures 4 and 5, depict ES5 and ES6 support, as of May 2019, where green, lime

and red colours boxes indicate support, partial support and no support respectively.

Figure 4. ECMAScript 5 (ES5) browser compatibility status on May 2019 by Can I Use.

https://caniuse.com/

13

Figure 5. ECMAScript 2015 (ES6) browser compatibility status on May 2019 by Can I

Use.

2.5 Current popular JavaScript frameworks & libraries

As there are a plethora of ways to write code that execute the same action, a mix of

knowledge, creativity and luck contribute to writing code in the most efficient way. This

feat is not always so easy or evident to achieve, even for people possessing strong coding

skills. Time is also a valuable resource that needs to be optimized as much as possible.

For that reason, libraries and frameworks emerged and allowed developers to focus on

the task at hand, rather than reinventing the wheel.

With the help of libraries and frameworks, developers can use other developer’s code, in

order to satisfy their needs. The most popular libraries and frameworks specially are con-

stantly reviewed, improved and maintained by big organizations like Google or Facebook

or groups of developers. This way their security and efficiency are mostly stable or im-

proved and therefore, so could be the code of those who use them.

2.5.1 React

Although React is many times referred to as a framework, it is instead a very useful and

popular JavaScript library. As React’s official page states in its title React is in simple terms

“A JavaScript library for building user interfaces” (React 2020). This library has been devel-

oped and maintained by Facebook since its release in 2013 and was created in response

to solving the challenges of handling larger and data-driven applications (Banks & Porcello

2017). React’s usefulness expanded beyond the confines of Facebook having become an

https://caniuse.com/
https://caniuse.com/

14

extremely popular option for many developers, as seen in Figure 6, with over 3 million re-

positories using React and close to 150 thousand GitHub users giving a star to React’s

official GitHub repository.

Figure 6. React GitHub page (January 2020).

React’s way of organizing applications by components, has made it easier to keep a DRY

(Don’t Repeat Yourself) way of coding and allowed developers to create faster and more

efficient user interfaces by isolating and reusing code and manipulating only necessary

parts of the DOM to avoid full re-rendering of the whole UI. (Rascia 2018)

Another good aspect of React, is being able to experience its benefits on other platforms,

as Facebook took advantage of React’s success and implemented it to mobile applications

through React Native. Although coding in React Native is not exactly the same as coding in

React, it has many similarities and familiar concepts that are easy to grasp when knowing

React, providing a convenient advantage for targeting Android and iOS platforms. With the

use of one language (JavaScript) developers have the opportunity to cover web and mobile

development instead of relying on two different ones (such as Java and Swift respectively).

This way knowledge of React makes it easier to expand and compete in mobile platforms.

(Boduch 2017)

2.5.2 Angular & Vue.js

Together with React two of the other most popular JavaScript frameworks are Angular and

Vue.js. Even though React is a library and not a framework per se, it is still constantly put

alongside frameworks. Angular has been developed and maintained by Google to this day,

while Vue has been developed by one of Google’s former employees, Evan You (尤雨溪)

while he was still working at Google. (Honeypot 2020)

15

Angular was released at the end of 2010 as AngularJS (Angular 2020) and at the time, it

brought unfamiliar concepts such as data binding, separation of concerns and dependency

injection, which eventually let it become a trend setter across emerging frameworks. Even-

tually AngularJS renewed itself to the core in order to adapt to a new era of web develop-

ment, but this new change would turn Angular into a completely new version of itself (initially

called Angular 2.0, but currently referred as Angular). Although it was a necessary change,

it was a drastic one and not backwards compatible, which consequently harmed Angular’s

popularity and frustrated an important part of its followers.

Although Angular is not as popular as React on GitHub repositories, Figure 7 shows that

Angular is still very popular with 57 thousand starts given by GitHub’s users and 3.2 thou-

sand followers, while Angular’s previous mayor version AngularJS has 900 hundred more

followers. This situation could perhaps be attributed to Angular’s drastic change and the

attractiveness of newer emerging JavaScript frameworks.

Figure 7. AngularJS and Angular GitHub pages.

Vue on the other hand was released in 2014 with the intention of combining the best fea-

tures of React and Angular and has since continued to gain popularity over the years, be-

ing backed by a strong community (Macrae 2018). As seen in Figure 8, Vue has been

used in 1.2 million repositories in GitHub and starred by 156 thousand users by January

2020 becoming even more popular than React and Angular on GitHub but used only by

almost half of repositories than React on GitHub.

Figure 8. Vue.js GitHub page.

16

2.5.3 jQuery

For people that are just starting to learn about programming (particularly in JavaScript),

the mention of jQuery may sound alien or simply as something they heard somewhere but

without much knowledge about it. At times when Internet Explorer had dominion over the

browser market, browser compatibility was at its worse and DOM manipulation was diffi-

cult to achieve, but then jQuery came to the rescue. (Henry 2017)

jQuery at the time (circa 2010), provided the benefits of DOM manipulation, event han-

dling and HTTP requests, but most importantly it was consistent. At the time jQuery was

the best way of ensuring the proper working of code across different browsers, but as it

was so well developed to solve the issues of its own era, jQuery was incapable of adjust-

ing to a new era of web development. Figure 9 shows the clear decline of jQuery as it was

around 2017 when JSX and React began to take off towards leadership and jQuery to its

demise. (Henry 2017)

Figure 9. Stack Overflow question trends by language.

17

2.6 Memes and what they can reveal to us

Nowadays memes are associated with ridiculous humour driven edited pictures or text,

whose subjects vary from widespread political issues to subcultural themes, such as par-

ticular tv shows, music or even related to your closest group of friends. Memes can range

from clever subtle humour, to completely ridiculous or politically incorrect, they can be

carefully elaborated and edited on a professional level or just be of the poorest quality

where the lack of effort is evident. But they all have something in common, as they are a

representation of cultural phenomena that people experience and have in common with

others.

To the surprise of many, the term meme has its roots in nothing related to the internet. In

fact, it was biologist Richard Dawkins who in 1976 used the term in his book The Selfish

Gene, to represent people’s transmission of culture by means of copying or imitation. Ex-

amples of such description can be found for example in the way we use phrases we hear

from others, fashion trends or even religious beliefs. Dawkins used the word meme as a

shorter version of the Greek term mimema, which means “something which is imitated”,

and that way connecting it to the word gene. (Shifman 2012)

As a way to transmit and share cultural phenomena, memes can be easily taken and

changed according to our own views and interpretations, just as a single phrase that goes

from ear to ear and coming back as a completely different phrase to the person that

started it. The difference with the popular current use of memes is that all these versions

of cultural phenomena can stay on the internet and resurface back to people’s attention

over time.

Limor Shifman states “While memes are seemingly trivial and mundane artifacts, they ac-

tually reflect deep social and cultural structures.” (Shifman 2012). Such depth can be ob-

served in other subcultures, such as the programming culture. Computer science related

memes can serve as a window to a programmers’ views and experiences regarding the

lifestyle, challenges and misconceptions, experienced by the people involved in this line of

work. The fact that these memes can circulate the internet are proof that people are able

to relate to them in some degree, otherwise they simply would not spread around.

18

3 Research Method

In order to answer the research questions for this thesis, nonexperimental methods of re-

search were carried out instead of performing experiments, since they would require a lot

more resources and time. Therefore, the measuring of this study was carried out without

altering the conditions in which students learned at Haaga-Helia. (Hoy 2012)

The research questions were based on the students’ experiences throughout their BITe

programming studies. In order to best answer these questions a mix of qualitative and

quantitative methods were used. The quantitative aspect of the research served to test the

validity of my research questions against data provided by students, while the qualitative

aspects of the research helped the understanding of the student’s thoughts and feelings

towards JavaScript, shedding light into new ideas to improve their learning. (Hoy 2012)

In order to answer the first two research questions “Are BITe students discouraged in any

way to continue learning and developing professionally in JavaScript related fields?” and

“What are BITe students’ feelings regarding JavaScript, its frameworks and libraries?”,

data was gathered quantitatively through an electronic-survey, while in order to answer

the last question “What possible improvements there could be on the JavaScript teaching

methods in Haaga-Helia for BITe students?” data was gathered mostly qualitatively

through semi-structured interviews. (Saunders, Lewis & Thornhill 2009)

The data that was collected will help primarily to determine how Haaga-Helia’s BITe stu-

dents have experienced their learning path of JavaScript and its libraries and frameworks.

Additionally, the analysis of this data showed if the students’ experiences and motivation

to learn JavaScript changed as they progressed in their studies. The results can give the

opportunity to pinpoint areas of improvement in the way JavaScript is taught in Haaga-He-

lia BITe degree programme.

3.1 Electronic surveys

To gather the data for this research, an electronic survey was sent to BITe students. The

survey consisted of questions regarding the students’ JavaScript related studies at

Haaga-Helia and their feelings and attitudes towards the use of these technologies.

Instead of survey methods like post mail or telephone interview methods, I chose to con-

duct an electronic survey through Webropol software, for which Haaga-Helia has a licence

19

available for students. Online surveys have the advantage of being low cost, fast and effi-

cient, as well as having effective contingency questions and direct data entry, which fits

better for this research and its target group. Even though electronic surveys have some

potential disadvantages, as for example possibility of coverage bias, reliance on software

and overload of digital surveys, the benefits of conducting such survey outnumbers its

drawbacks. (Sue & Ritter 2012)

To reach all the relevant groups for this study and mitigate chances of coverage bias, I

used the help of our BITe programme academic advisor Riitta Blomster, as she has ac-

cess to the WhatsApp chats of different student groups. Riitta’s help allowed me to share

the survey link along with a short descriptive message and send a reminder about it after

a few days.

An additional way of reaching all relevant groups, was giving all the respondents the

chance to participate in a lottery and win movie tickets. The respondents could participate

in the lottery if they provided some basic contact information at the end of the survey,

which was managed separately from their answers in order to keep their anonymity. The

winners were then selected at random using JavaScript code on a browser’s console,

which can be found on Appendix 2. This lottery hopefully helped to receive more answers

and motivate the respondents to not abandon the survey halfway through.

The survey was divided in three sections, basic background information, the students’

learning experiences of JavaScript and memes and their representing of the students’

feelings about JavaScript (survey questions available on Appendix 1). The first section

aimed to gather some general information such as age range, gender, interest in BITe

programming courses, etc. Secondly, the JavaScript section aimed to pinpoint personal

impressions and feelings towards JavaScript and the way it is taught. Finally, the meme

section present coding-related memes and the participants were asked how much they

agree with the situations the memes are showcasing and if they feel represented by them.

20

Even when the survey was done anony-

mously, some answers might have been

given without a 100% honesty, since

consciously or not, some people may try

to present a better image of themselves

and avoid showing ignorance. In general

people use humour to deal with stress

and difficulties, which is what the memes

shown in the survey represent, as seen

in Figure 10.

The answers on the different sections

were analysed together, which enabled

to point out any inconsistencies through-

out all the responses.

3.2 Semi-structured interviews

Since the electronic surveys are targeted to all BITe students, the survey questions had to

be planned in a way that satisfies most respondents independent of their programming or

JavaScript experience and skills. For that reason, a couple of semi-structured interviews

were carried out, where I had the chance to ask more complex questions and allow on the

spot follow-up questions. (Sue & Ritter 2012)

These interviews were conducted with BITe students that were already done with or fin-

ishing their internships. The aim was to gather information from students with enough ex-

perience of working in the field, while still having a fresh experience of their studies. Data

from these interviews provided additional information about the students’ experiences,

both positive and negative, about their studies in Haaga-Helia and the teaching methods

of JavaScript and programming in general, along with possible development suggestions.

Figure 10. Meme sample.

21

4 Results

4.1 Survey

4.1.1 Background Information section results

The total number of respondents was 54 of which 57.41% were male and 42.59%, but

none considered themselves to be in other gender categories. The great majority of re-

spondents were Russian, Vietnamese or Finnish, while the remaining 54% of respondents

represent 23 other countries as seen in Figure 11.

Figure 11. Survey respondents’ nationalities.

The age range of the respondents, as shown in Figure 12 was between 20–42 years old,

while no participant was under 20 or over 42. The most dominant age group was 20–25

years, which shows that 48% of the participants was born by the time Windows 95 came

to the market. Therefore, half of the participants grew up around computers, while the

other half was born when access to computers wasn’t as common.

0

1

2

3

4

5

6

7

8

9

10

Survey respondent's nationalities

22

Figure 12. Respondents' age.

Figure 13 shows the participants’ start of studies by year. The starting year of studies was

somewhat evenly distributed between 2016–2019, while only one person started their

BITe studies in 2015.

Figure 14 shows whether an IT degree was a priority for the participants before starting

their BITe studies. As seen from Figure 14, an IT degree was indeed a priority for more

than half of the respondents. For the remaining 35% it simply was not a priority, while the

48%

37%

15%

Respondent's age

20 - 25

26 - 32

33 - 42

2%

28%

31%

15%

24%

Respondent's start of studies by year

2015

2016

2017

2018

2019

Figure 13. Respondent’s start of studies by year.

23

other 11% was not sure. While this might not be a clear indication about their initial willing-

ness to learn programming, one can assume that their initial interest in programming won’t

be as strong as for the people who had an IT career as a priority.

The participants were also asked if they pay for their studies at Haaga-Helia. Only three of

them pay for their studies so this does not have a great impact on the results of this study.

Figure 15 shows the students’ interest in BITe’s programming courses at the start of their

studies, where the great majority chose positively.

54%35%

11%

Priority of IT degree prior to BITe

Yes

No

Not sure

90.74%

9.26%

Student’s initial interest in BITe's
programming courses

Yes

No

Figure 14. Priority of IT degree prior to BITe.

Figure 15. Student’s initial interest in BITe's programming courses.

24

Figure 16 on the other hand shows the results of the students’ interest on BITe’s program-

ming courses at the time of answering the survey, where 82.7 per cent of them had either

completed those courses or was still interested in them.

34 resp | 65.39%

1 resp | 1.92%

9 resp | 17.31% 8 resp | 15.38%

0%

20%

40%

60%

80%

100%

Student’s interest in BITe's programming courses at the time of
answering the survey

Yes No Already finished them Not sure

Figure 16. Student’s interest in BITe's programming courses at the time of answering

the survey.

25

4.1.2 Students’ learning experiences of JavaScript

Figure 17 shows that a bit more than a quarter of the responders did know JavaScript be-

fore their studies at Haaga-Helia, while one third of them knew nothing about it and 37%

were only familiar with its name. This shows that 70% of these students had the chance of

learning JavaScript for the first time during their studies at Haaga-Helia.

Figure 17. Students’ prior knowledge of JavaScript before their BITe studies.

Figure 18 shows that the great majority of the survey respondents had already partici-

pated or were still participating in a JavaScript related course arranged by Haaga-Helia.

Although 17% of them (nine respondents) had not participated on any BITe’s JavaScript

related courses, it did not specifically mean they didn’t know JavaScript.

As seen previously on Figure 17 two respondents had previous JavaScript knowledge

prior to their BITe studies, which could allow them to fast track some JavaScript related

2 resp | 3.70%

14 resp | 25.93%

20 resp | 37.04%

18 resp | 33.33%

0%

10%

20%

30%

40%

50%

Yes (a lot) Yes (a bit) The name was familiar Nothing at all

Students’ prior knowledge of JavaScript before their BITe
studies

83%

17%

Student’s participation on BITe's JS
courses

Yes

No

Figure 18. Student’s participation on BITe's JS courses.

26

courses. Also, all new BITe students have an Orientation to Programming course, in

which they learn the basics of JavaScript, but some respondents might not have been

aware of that it when answering the survey.

The survey respondents were also asked about their confidence on their own JavaScript

skills, as well as their skills to use JavaScript’s frameworks & libraries, as depicted on Fig-

ure 19. From this information we can see that in general, the students have a lower confi-

dence on their skills when using libraries & frameworks, but there was no case of a zero

level of confidence on their skill for either category.

Figure 19. Students’ confidence on their JavaScript v/s libraries & frameworks skills.

Table 2 shows that at the time of answering the survey, the respondents possessed an

average medium level of confidence on their skills both categories, with a slightly higher

level for the JavaScript category when answering the survey.

Table 2. Respondents' confidence on their skills (JavaScript v/s libraries & frameworks).

Skill confidence Min value Max value Average Median Standard
Deviation

JavaScript 1 10 5.06 5 2.5

Libraries & frameworks 1 10 4.44 4 2.79

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Confidence level

Students’ confidence on their JavaScript v/s libraries &
frameworks skills

JS skills JS' libraries & framework skills

27

As the JavaScript environment is in constant improvement and evolution, the surveyed

students were asked about their ability to keep up with the changes of JavaScript’s tech-

nologies (more specifically its libraries and frameworks). The results are shown in Figure

20 where a confidence level of 1 out of 10 got the highest concentration of answers.

Figure 20. Students’ ability to keep track of JS F&L's changes and updates.

Table 3, shows that fortunately the average of all responses had a bit higher level of confi-

dence level of 3.57, even though some respondents had strong confidence in their ability

to stay up to date with those JavaScript tools.

Table 3. Respondents ability to keep track of JS F&L's changes and updates.

Min value Max value Average Median Standard Deviation

0 10 3.57 3 2.6

The surveyed students were also asked how often they use these technologies and as

shown on Figure 21, only 37% use them always, while another 37% only when necessary

and 13% for both using them sometimes and not at all.

2.27%

27.27%

13.64% 13.64% 13.64%

2.27%

13.64%

4.54%

2.27%

4.55%

2.27%

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Confidence level

Students’ ability to keep track of JS F&L's changes and updates

28

Figure 21. Students' use of JavaScript libraries & frameworks.

Figure 22 shows the results to the respondents’ understanding of the popular JavaScript

library React as it is used on important BITe programming courses. Figure 22 shows that

the majority of their answers are on a positive nature, as even when 26% does not have a

good grasp on React they do plan on becoming better at it.

Figure 22. Have the respondents been able to get a good grasp of React?

As in BITe there are no courses were the students can learn other popular and emerging

JavaScript frameworks like Angular or Vue, the students were asked about their interest in

exploring such technologies. Figure 23 shows that half of them are interested, while 9%

already have explored them, 24% not sure and only a few not knowing about them or not

interested at all.

37%

37%

13%

13%

Students' use of JavaScript libraries &
frameworks

Always

When needed

Sometimes

No

26%

30%

26%

4% 5%

9%

Have the respondents been able to get a good grasp of
React?

Yes, I'm good at it

Just enough grasp on it

No, but I'm planning to

No, and I have no interest on it

No, but I have to

Not sure

29

Figure 23. Students' interest to explore other popular frameworks like Angular or Vue.

Figure 24 shows the results regarding the students fear of spending too much of their free

time to programming, with the great majority choosing a fear level of 1 out of 10.

Figure 24. Students' fear regarding their use of free time to programming.

In Table 4 below the average and median, show a low level of fear on this matter, alt-

hough for four people the fear was to the highest level, as seen above on Figure 24.

Table 4. Respondents' fear regarding their use of free time to programming.

Min value Max value Average Median Standard Deviation

0 10 3.24 2 3.02

9%

50%
9%

24%

8%

Students' interest to explore other popular frameworks like
Angular or Vue

Already have

Yes

No

Not sure

I don't know about them

14.81%

33.33%

5.56%

1.85%

11.11%
9.26% 9.26%

5.56%

1.85%
0%

7.41%

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Fear level

Students' fear regarding their use of free time to programming

30

4.1.3 Meme & closing sections’ results

When presented with the following memes, respondents were asked, how much they

agreed with the different situations they represent about programmers’ experiences.

These memes represented comically amusing and frustrating experiences of a devel-

oper’s life and the data from these answers were further linked to the students’ thoughts

and feelings towards JavaScript technologies and their interest in the language.

Meme 1 represents how for many develop-

ers it is not expected to get your code

working on first try to run it. This implies

that it is part of the job to be constantly

dealing with trial and error situations, which

might be a frustrating way of working.

Figure 25 shows how the majority agree with the meme above with 27.78% completely

agreeing with it.

Figure 25. Answers for the 1st meme.

Table 5 below shows the average of student’s responses are on a 7.06 level of agreement

with the statement of being surprised when their code works on the first try.

Table 5. Extra data for the 1st meme’s answers.

Min value Max value Average Median Standard Deviation

0 10 7.06 7 2.74

1.85% 1.85%
3.70% 3.70%

5.56%

14.82%

7.41%

12.96%

7.41%

12.96%

27.78%

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Level of agreement

Meme 1. Surprise if code works on first try.

31

Meme 2 on the other hand, while

being a sarcastic exaggeration,

shows how for many being a de-

veloper is a stressing venture. This

can lead to some students to re-

consider perusing this career if the

most they get from it is stress.

Unlike the first meme, Figure 26 shows that more people disagree with this second meme

although these answers show a greater tendency towards being neutral regarding the

idea that being a developer has the intrinsic consequence of it being a stressful undertak-

ing.

Figure 26. Answers for the 2nd meme.

Table 6 shows a bit lower average from the responses regarding the stress of being a de-

veloper when compared to the previous meme.

Table 6. Extra data for the 2nd meme’s answers.

Min value Max value Average Median Standard Deviation

1 10 6.33 7 2.66

0%

1.85%

12.96%

1.85%

5.56%

20.37%

5.56%

9.26%

20.37%

7.41%

14.81%

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

R
e
e
s
p
o
n
d
e
n
ts

Level of agreement

Meme 2. The stress of being a developer.

32

While somewhat related to Meme 1, Meme 3

shows the recurrent confusion of many developers

whenever their code works or not, instead of focus-

ing on the surprise when it works. This meme

shows how often developers code without com-

plete certainty on how their code will behave,

which can be due to not knowing the language, us-

ing code snippets found on the internet, reviewing

someone else’s code or simply coding in an impro-

vised manner without much planning or structure

beforehand.

When asked how much the students felt represented by this meme, as it happened with

the first meme, the highest level of representation (level 10) was the most popular answer

for 29.63% as seen on Figure 27, with the other 2 most popular answers being for levels 9

and 8.

Figure 27. Answers for the 3rd meme.

Table 7 shows that most respondents felt quite represented by the situation depicted on

the meme

Table 7. Extra data for 3rd meme's answers.

Min value Max value Average Median Standard Deviation

1 10 7.37 8 2.9

0%

9.26%

1.85%
3.70%

1.85%

5.55%
7.41%

5.56%

18.52%
16.67%

29.63%

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Level of representation

Meme 3. Confusion when code

works or doesn't work.

33

Meme 4 helps to test the idea of the

great effort it can take to have code to

work as intended and the notion that

developers can spend more time look-

ing at the screen trying to find the er-

rors in the code than actually writing

code.

Once again, from Figure 28 is easy to see how little the students disagree with the meme

and the results continue to show agreement level 10 as the student’s most popular an-

swer.

Figure 28. Answers for the 4th meme.

Table 8 shows that the average of responses for this meme highly agree with the situation

depicted on it.

Table 8. Extra data for 4th meme's answers.

Min value Max value Average Median Standard Deviation

1 10 7.46 8 2.47

0%

3.70%
1.85%

5.55%

0%

7.41%
9.26%

16.67%

12.96%

16.67%

25.93%

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Level of agreement

Meme 4. Greater time and effort to fix bugs than

to write code.

34

Meme 5 represents the idea of con-

stantly having to search extra infor-

mation in Google, in order to accom-

plish a desired goal when coding.

This situation can be either due to be-

ing stuck with no results for too long,

or simply being in a rush to deliver

those results. Regardless of the rea-

son, knowing how to Google and ad-

justing the findings to your needs, is

an extremely valuable skill to have,

as it can be difficult to achieve it effi-

ciently and without breaking other

parts of your code.

It is perhaps for that reason when the respondents were asked if they Google often while

coding 40.48% chose a level 10 as Figure 29. However, this question in particular, unlike

all previous ones, had only 42 answers, out of the 54 that answered the survey. The rea-

son for such situation is unknown, but although these results not being the greatest for

comparison purposes 17 picks of level 10 remains a high choice concentration.

Figure 29. Answers for the 5th meme.

Table 9 shows that while not being able to represent the maximum possible of respond-

ents the answers for this meme got the highest average and median of agreement level of

all the presented memes.

0% 0% 0% 0% 0%

9.52%
7.14%

14.29%
11.90%

16.67%

40.48%

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Level of agreement

Meme 5. Googling when coding.

35

Table 9. Extra data for 5th meme's answers.

Min value Max value Average Median Standard Deviation

5 10 8.4 9 1.73

Finally, Meme 6 tested the idea of how

the students’ evolution as programmers

can be strikingly surprising and being

able to recognize your own progress,

can be a great encouragement and mo-

tivation in times of professional hard-

ship.

When students were asked if they are able to realise how much their skills have improved

when reviewing old code, most of them replied positively with answers between level 5

and 10 as seen on Figure 30. Even though this question didn’t receive the maximum pos-

sible of answers either, it did get more than the previous one, with 47 answers out of 54.

Figure 30. Answers for the 6th meme.

0%

4.25%

6.38%

2.13%

0%

21.28%

10.64%

17.02%

12.77%

6.38%

19.15%

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
d
e
n
ts

Level of agreement

Meme 6. Recognizing your progress when

reading your old code.

36

Table 10 shows the average of responses passes the middle point with 6.64 and a me-

dian of 7 on the level of agreement.

Table 10. Extra data for 6th meme's answers.

Min value Max value Average Median Standard Deviation

1 10 6.64 7 2.56

To finalize the survey, the students were asked three more questions in order to

strengthen the results and allow the respondents to rethink their previous postures after

being exposed to all the previous questions and ideas on the survey.

The first one of these questions concerned the respondents’ opinions about the memes

shown on the survey being able to represent the life of developers in general. The stu-

dents were given five answers to choose from and they were able to pick as many as they

wished. Figure 31 shows the results based on the amount of selected options, where out

of all the selections made by respondents 47% were for the option Yes with 33 picks.

Overall, option Yes was was chosen by 61% of all 54 respondents.

Figure 31. Percentage of selected opinions regarding memes representing the life of de-

velopers or not.

Then the students were asked if JavaScript frameworks & libraries have ever made them

feel like the memes seen on the survey. In a similar fashion as the previous question, the

respondents could choose one or more of the options given to them and although the

great majority thought memes represented the life of developers, when put in contrast to

their own experience with JavaScript, they felt slightly less represented less than the pre-

vious question with 43.3 % of the respondents selecting the Yes option as seen on Figure

32.

47%

38%

7%

8%

0%

Yes

To some extent

Only at specific moments

They are just exaggerations to
make us laugh

Not at all

37

Figure 32. Students being represented by memes when using JavaScript L&F.

To conclude the survey the respondents were asked to describe in one word if possible,

how using JavaScript libraries and frameworks makes them feel. The answers were var-

ied and not all in one word, but all 54 students gave their answer as seen on the list below

this paragraph.

Lost | Assistant | Exciting | Anxious | A learning process and a systematic approach |

Comfortable | Chaotic | Makes it easier | JS frameworks make life easier in large projects

but for small static sites its an overkill | Smooth | Intimidating! | Uncertain | Productive |

Magic | Suicidal | annoyed? :D i dunno i dont do much of js anymore | I dont use them |

Convenient | Confused | Ok | Frustrated | Not used | I don't know about them yet... | Im-

portant | Haven't used them yet as far as I know | Confused | lost | Weird | Nice | Incom-

petent | Good | Effective | Professional | Sick | Empty | Easier and faster in making web

application | Efficient | Efficient | Alright | Well , I will learn all this things next semester, I

am studding Programming 2 now | Useless | Happy | good | Confident | Stressed | Sad |

Smart | Dead inside | comfortable | They simplify things. | coding cat on a planet where

the language is the same in a hardly recognizable dialect | Challenged | comme ci comme

ça | Like a noob.

List 1. Respondents feelings towards JavaScript libraries and frameworks

4.2 Semi-structured interview results

For this research semi-structured interviews were carried out on two BITe students who

were close to graduate at the time of the interviews and for simplicity and keep the inter-

viewees’ anonymity, they will be referred as A and B.

43%

35%

12%

5%
5%

Students being represented by memes when using JS L&F

Yes

Sometimes

Only when I started learning about
these concepts

Not in such extreme way as the
memes

No

38

At the time of each interview, both persons had been working as consultant developers for

about 8 months on their respective companies. While A has been working with JavaScript

technologies an estimated 80% of the time while working as developer, B had not been

working much with JavaScript at his workplace. When asked about their use of libraries

and frameworks at work, A was excitedly mentioning React, React Native and Loadash as

the “three biggest ones”, while B had mostly worked with JavaScript on testing frame-

works at the time of the interview.

With both interviewees having a considerable amount of working experience in the IT

field, they could have a better understanding of which things would have been helpful to

know before starting their careers. When asked about this in relation to JavaScript, librar-

ies and frameworks, A replied with great ease TypeScript, because it was something

learned at work and which was expected to be known from the start. In B’s opinion, devel-

opers are constantly needing to learn new things and for that reason that B wished having

known better methods for constant learning and particularly learning a “framework for

learning frameworks”. In B’s experience, that issue has been one of the most difficult

tasks to deal with on the path to become a developer.

Afterwards the interviewees were asked to share something learned during their BITe

studies that they initially undervalued and learn to appreciate while working as profes-

sional developers. For interviewee A one thing taught at school and that they appreciated

more during working life was the use of Git, as A is constantly involved on projects were

the use of Git within a team is an essential daily tool. For B, debugging is something

wished that had been taken more seriously at school, because it is also something devel-

opers have to constantly deal with.

When asked about their thoughts on how JavaScript, libraries & frameworks are taught

during the BITe programme, both had several observations and recognized the value of

the practical and theoretical teaching they received at BITe. A also said that most things

taught at Haaga-Helia were quite useful, specially learning modern technologies, but

would have liked having a course dedicated to JavaScript after being introduced to it in

Orientation to Programming course, as it would be very useful and allow easier an easier

transition to frontend and mobile development courses.

While replying the same question, B confessed not being personally satisfied with the way

those technologies were taught during at BITe. While slightly hinting difficulties to learn

with from some teachers, B also recognizes that “some teachers are better than others for

39

some people” and that the material provided by some teachers is of great quality which

can be revisited to this date. In addition, B mentioned about the difficulty of learning newer

EcmaScript concepts while starting to learn React at the same time, which is perhaps the

reason of B desiring having had a second follow-up React course at BITe.

To finalize the interview A and B were asked to suggest possible improvements to the

teaching of such concepts at Haaga-Helia, to which A made recommends to keep prac-

tising the combination of learning theory and applying the theory in practice, along with

giving more focus use of numbers in JavaScript as it is in fact not that simple and has

been “tricky” to deal with in A’s professional experience. Regarding this matter B put great

emphasis on the importance of improving the quality of the learning material, provided

during the studies. B suggests funnelling more resources to material creation and getting

it to be peered reviewed (and perhaps even the teaching itself), that way there can be

more consistency and higher quality of the learning experience.

40

5 Discussion

5.1 Comparison to initial assumptions and research questions

5.1.1 Question 1: Are BITe students discouraged in any way to continue learning

and developing professionally in JavaScript related fields?

This thesis started with the assumption that BITe students might experience some level of

discouragement from further learning of JavaScript and pursuing a programming career

as they progressed in their BITe studies and were faced with more advanced and complex

concepts of JavaScript. The data gathered on the survey showed that although there are

reasons to believe that students could be discouraged from continuing their professional

growth in JavaScript, those factors have not been enough to deter their interest in it. The

students ability to keep track of the changes within JavaScript, libraries and frameworks

scored a low average level of 3.57, but regardless only one person was not interested in

BITe’s JavaScript courses, in fact, 82.7% of the respondents were still interested in them

or had already completed them all, with only few unsure about their interest in such

courses.

Also, even with the increasing complexity of the language as more advanced topics are

uncovered or the frequency of changes that JavaScript or its libraries and frameworks

have faced in the last years, the survey respondents’ confidence on their skills to work

with such technologies remains on good levels as seen on Figures 33 and 34.

The high levels of agreement with memes 3 and 4, representing some of the hurdles of

being a developer, show that students recognise the complexity and effort involved in the

Figure 33. Respondents level of confidence

on their JavaScript skills.

30%

50.01%

20.36%

Libraries & frameworks

Low

Medium

High

Figure 34. Respondents confidence on their

libraries and frameworks skills.

19%

64.81%

16.67%

JavaScript

Low (0 - 2)

Medium (3 - 7)

High (8 - 10)

41

work of developers. However, the mixed responses for meme 2 regarding the intense

stress of being a developer, show that the challenges involved on this line of work, are not

enough to discourage them. This idea is further supported by how little respondents fear

dedicating too much of their free time to programming, with an average of 3.24 points out

of ten. Even if that low average was due to their good coding or organizational skills or

even deciding not sacrificing their free time at the expense of their progress, the data

shows that using free time for programming is not an issue the respondents.

5.1.2 Question 2: What are BITe students’ feelings regarding JavaScript, its frame-

works and libraries?

The results regarding respondents’ feelings towards JavaScript, libraries and frameworks,

varied in length and not all represented a feeling as it was asked. While most answers

represented feelings, nine of the answer were adjectives to describe the technology in

question, while one other answer was not possible be categorized.

Figure 35 shows the results to the above mentioned respondents’ feelings when catego-

rized as positive, neutral, negative or unclear. The results show a clear mix of positive and

negative responses, with a slight preference for positive ones. Among the neutral replies

four of them were categorized as such, because of students answering not having used

use those technologies yet, which has a potential for becoming a positive or negative feel-

ing once they get to experience working with such JavaScript technologies.

Figure 35. Feelings and descriptive adjectives of students towards JavaScript L&F.

The mix of feeling JavaScript libraries and frameworks have on the surveyed students can

be further backed up considering that the level of agreement to all memes shown to the

46%

39%

13%

2%

Feelings and descriptive adjectives of
students towards JS L&F

Positive

Negative

Neutral

Unclear

42

students had averages and medians above 6 and 7 respectively, therefore recognizing the

feelings of surprise, confusion or a sense of growth as depicted on some of the memes.

5.1.3 Question 3: What possible improvements there could be on the JavaScript

teaching methods in Haaga-Helia for BITe students?

Although the data gathered in this research showed that the students still have interest in

developing further in JavaScript, regardless of the difficulties they might encounter and

mix feelings they have towards this language and its environment, there are ways to im-

prove the students’ learning and engagement.

Figure 17 showed that the students have a mix of prior knowledge of JavaScript at the

start of their studies in Business Information Technology programme at Haaga-Helia, but

the great majority of them got to properly learn the language at BITe. While the electronic

survey had no question asking students to give suggestions to improve their learning,

Haaga-Helia asks student feedback at the end of each course they provide in order to im-

prove and monitor the teaching and learning at the school. Nonetheless survey data

showed that students have difficulties keeping track of JavaScript F&L changes (Figure

20), while at the same time a great portion of them considers using those tools in their

projects (Figure 21) and even exploring other popular frameworks that have not been

taught at school (Figure 23).

The interviews made during this study provided some light on possible improvements, as

their experience of learning at BITe was still fresh and they had been putting their learn-

ings and experiences from Haaga-Helia in a professional environment for long enough

time, to provide rich insights. While the mix of theory and practical learning exercised at

BITe has been a great asset, the inclusion of extra courses for JavaScript and React, can

allow the students to better absorb deeper concepts within these technologies, allowing a

better implementation of them on more complicated projects or across different frame-

works or languages. As it was mentioned by interviewee B, providing stronger theory and

methods to learn new concepts and technologies can greatly benefit students’ progress

and ability to adapt to each new subject even after graduation. Something that can also

greatly benefit such goals, is putting more effort and resources into the quality of learning

material, which in the long run can also benefit teachers as their teaching will become

more effective and engaging.

43

5.2 New information and final conclusions

The data gathered in this study revealed that although students can easily identify them-

selves with the hardships and situations depicted in coding memes, they are not discour-

aged enough to not pursue JavaScript related career. Based on the data gathered, the

students do have varied and sometimes conflicting feelings towards JavaScript and its li-

braries and frameworks, but they remain engaged and intrigued with its technology.

It could be said that even when participating in several JavaScript related courses, it

doesn’t necessarily mean that the students will absorb enough knowledge to feel greatly

confident in their skills or properly understand the greater depths of the learnt concepts. A

higher standard in learning material can greatly influence students’ development but also

adding advanced level courses for important subjects like JavaScript and React, can fur-

ther help students absorb and apply deeper and richer knowledge. Even if the presence of

mixed feelings towards the JavaScript environment persist, the skill level of the students

can be increased through greater quality in their learning processes and tools.

The data showed a considerable interest of students towards different JavaScript technol-

ogies, that could be better taken advantage of. As time passes some technologies sud-

denly become obsolete or replaced and offering an extra course on emergent technolo-

gies can help decrease the backlash of sudden changes in the IT field.

As with any study, there are things that could have improved the quality of results if in-

cluded or been presented differently. In an attempt to not guide the survey responses to

specific answers, respondents were given freedom to write as much as they wished re-

garding their feelings towards JavaScript libraries and frameworks, but as shown previ-

ously, the replies varied in length and clarity. Perhaps a better approach for future investi-

gations can be to give a pool of options, where the respondents could choose the three

words that best represent their feelings towards such technologies. Additionally, some-

thing similar could be done in regard to what they think about those technologies, which

can serve to show their appreciation towards them.

Also, since the research questions of this thesis were directed towards BITe students, it

could have been convenient to ask all research questions directly on the survey and back

up those answers with the additional questions on it. With that in mind, it is also important

to note how the use of memes could facilitate could help the students to reflect about the

issues surrounding the life of developers and their own experience towards becoming pro-

fessionals on the field. The memes could also help give students a much needed comic

44

and mental relief after replying several possibly serious and tiring questions, through stim-

ulating visual humour that could also serve a practical investigation purposes.

Perhaps conducting more interviews to students that have had the opportunity to be work-

ing as developers for some months, could help better trace which factors remain constant

for different interviewees (such as being satisfied with the mix of theoretical and practical

learning during studies) and which factors are completely different for each person (such

as undervaluing something learned at school or learning to appreciate what they have

learned in professional life).

This research is focused on JavaScript libraries and frameworks, but similar studies could

be done with other subjects or technologies, such as Java, Linux, Cloud services, mobile

development, etc. Similar kinds of research can help evaluate the students’ perceptions of

such subjects and help improve their learning and confidence in their skills, as well as fur-

ther improve the quality of teaching provided by Haaga-Helia, even if it is already in good

shape. This study has shown that even if sometimes students have negative feelings to-

wards a subject, facing its challenges and conquering them can be more rewarding than

the frustrations in between. It is for that reason that it’s important to keep supporting and

improving the students’ learning process and maximize their potential as future profes-

sionals.

45

References

Angular. (2020). AngularJS Releases. Retrieved January 2020, from

https://github.com/angular/angular.js/releases?after=v0.9.4

Banks, A. & Porcello E . 2017. Learning React. 1st ed. O’Reilly, pp. 1. Sebastopol, CA.

Boduch, A. 2017. React and React Native. Packt Publishing, pp. 210. Birmingham, UK.

Brown, E. 2016. Learning JavaScript. 3rd ed. O’Reilly, pp. 265. Sebastopol, CA.

Cerruzi, P. 2012. Computing: A Concise History. The MIT Press Essential Knowledge Se-

ries. Cambridge.

ECMA International. History of Ecma, pp 2-3. Retrieved January 2020, from

https://www.ecma-international.org/memento/history.htm

GitHub. (2019). The State of the Octoverse. Retrieved January 2020, from https://octo-

verse.github.com/

Guzdial, M. (2015). What's the best way to teach computer science to beginners? Com-

munications of the ACM, 58(2), pp. 12-13. doi:10.1145/2714488

Haber, J. 2014. MOOCS. The MIT Press Essential Knowledge Series. Cambridge.

Henry, K. (2017). The Rise & Fall of jQuery. Retrieved February 2020, from

https://keithhenry.github.io/jsmeetup-jquery-rise-fall/

Honeypot. (2020). Vue.js: The Documentary. Retrieved May 2020, from

https://www.youtube.com/watch?v=OrxmtDw4pVI

Hoy, W. K. (2010). Quantitative research in education: A primer, pp. 2, 14. Los Angeles,

[Calif.] ; London.

Hsu, T., Chang, S. & Hung, Y. (2018). How to learn and how to teach computational think-

ing: Suggestions based on a review of the literature. Computers & Education, 126, pp.

296-310. doi:10.1016/j.compedu.2018.07.004

https://github.com/angular/angular.js/releases?after=v0.9.4
https://www.ecma-international.org/memento/history.htm
https://octoverse.github.com/
https://octoverse.github.com/
https://keithhenry.github.io/jsmeetup-jquery-rise-fall/
https://www.youtube.com/watch?v=OrxmtDw4pVI

46

Macrae, C. 2018. Vue.js: Up and Running. 1st ed. O’Reilly, pp. 136. Sebastopol, CA.

Merriam-Webster Online. (2019). Algorithm. Retrieved April 2019, from https://www.mer-

riam-webster.com/dictionary/algorithm

Merriam-Webster Online. (2019). Computer. Retrieved April 2019, from https://www.mer-

riam-webster.com/dictionary/computer

Nørmark, K. (2011). Overview of the four main programming paradigms.

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-over-

view-section.html

Payne, B. 2015. Teach Your Kids to Code. 1st ed. No Starch Press, p. xxi. San Francisco,

CA.

Piva, M., & Vivarelli, M. 2018. Is innovation destroying jobs? firm-level evidence from the

EU. Sustainability, 10(4), 1279, pp. 2. doi:http://dx.doi.org.ezproxy.haaga-he-

lia.fi:2048/10.3390/su10041279

Rascia, T. (2018). Getting Started with React - An Overview and Walkthrough Tutorial.

Retrieved January 2020, from https://www.taniarascia.com/getting-started-with-react/

Rauschmayer, A. (2014). Speaking JavaScript, chapter 4, 5 . Retrieved January 2020,

from http://speakingjs.com/es5

React. (2020). A JavaScript library for building user interfaces. Retrieved January 2020,

from https://reactjs.org/

Robertson, J. (2014). Rethinking how to teach programming to newcomers. Communica-

tions of the ACM, 57(5), pp. 18-19. doi:10.1145/2591203

Saunders, M. N. K. k., Lewis, P. & Thornhill, A. (2019). Research methods for business

students (Eighth edition.), pp. 175. Harlow, England: Pearson.

Seshadri, S. 2018. Angular: Up and Running. 1st ed. O’Reilly. Sebastopol, CA.

Shifman, L. 2014. MEMES in digital culture. The MIT Press Essential Knowledge Series,

pp. 9, 15. Cambridge.

https://www.merriam-webster.com/dictionary/algorithm
https://www.merriam-webster.com/dictionary/algorithm
https://www.merriam-webster.com/dictionary/computer
https://www.merriam-webster.com/dictionary/computer
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
https://www.taniarascia.com/getting-started-with-react/
http://speakingjs.com/es5
https://reactjs.org/

47

Spinello, R. (2005). Competing Fairly in the New Economy: Lessons from the Browser

Wars. Journal Of Business Ethics, 57(4), pp. 343-361. doi:10.1007/s10551-005-1832-6

Stack Overflow. (2019). Stack Overflow Developer Survey Results 2019. Retrieved May

2019, from https://insights.stackoverflow.com/survey/2019#technology

Sue, V. M. & Ritter, L. A. (2016). Conducting online surveys (Second edition.). Los Ange-

les: SAGE.

Terlson B., Farias B., Harband J. (2019). ECMAScript 2019 Language Specification, Re-

trieved January 2020, from https://www.ecma-international.org/ecma-262/10.0/in-

dex.html#Title

TypeScript. (2020). TypeScript - JavaScript that scales. Retrieved April 2020, from

https://www.typescriptlang.org/

Wakil, K., Khdir, S., Sabir, L. & Nawzad, L. (2019). Student Ability for Learning Computer

Programming Languages in Primary Schools. International e-Journal of Educational Stud-

ies, 3(6), pp. 109-115. doi:10.31458/iejes.591938

Wikipedia. (2020). Programming paradigm. Retrieved in May 2020, from https://en.wikipe-

dia.org/wiki/Programming_paradigm

https://insights.stackoverflow.com/survey/2019#technology
https://www.ecma-international.org/ecma-262/10.0/index.html#Title
https://www.ecma-international.org/ecma-262/10.0/index.html#Title
https://www.typescriptlang.org/
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm

48

Appendices

Appendix 1. Survey Questions

BACKGROUND INFORMATION

n° Question Answer Type Additional Information

1 Which option identifies you? Selection Gender information

2 Nationality Text Field

3 Age Range Selection

4 Start of studies at BITe (Business In-
formation Technology at Haaga-He-
lia)

Text Field (Ex. Fall 2017)

5 Was an IT degree your priority before
coming to Haaga-Helia’s BITe?

Selection Yes | No | Not sure

6 Do you pay for your studies at
Haaga-Helia?

Selection Yes | No

7 Have you always been interested of
participating in BITe’s programming
courses?

Selection Yes | No

8 Are you still interested in BITe’s pro-
gramming courses?

Selection Yes | No | Not sure | Already
finish them

JAVASCRIPT

n° Question Answer Type Additional Information

9 Did you know anything about JavaS-
cript, before studying at Haaga-He-
lia?

Selection Yes (a lot) | Yes (a bit) | The
name was familiar | Nothing
at all

10 Have you started or completed any
JS related course at Haaga-Helia?

Selection Yes | No

11 How confident do you feel about your
JS skills?

Slider Range 0 – 10 (Not confident - Very
confident)

12 How confident do you feel about us-
ing JS libraries & frameworks?

Slider Range 0 – 10 (Not confident - Very
confident)

13 When working with JS libraries &
frameworks, are you able to keep
track of the changes or lack of update
of them? (such as security updates or
changes in their usage)

Slider Range 0 – 10 (No – Yes)

14 Do you use or consider using libraries
on your projects?

Selection Always | When needed |
Sometimes | No

15 Have you been able to get a good
grasp of React?

Selection Yes | No, but I’m planning to
| No and I have no interest in
it | Not sure

49

16 Are you planning to explore frame-
works such as Angular or Vue?

Selection Yes | No | Not sure

17 Do you fear needing to dedicate too
much of your free time to program-
ming?

Slider Range 0 – 10 (No – Yes)

MEMES

n° Question Answer Type Additional Information

18 Do you usually feel surprised if your
code works on the first try? as de-
picted on this meme

Slider Range No – Yes

19 Do you often feel stressed coding? Slider Range No – Yes

20 Do you often feel represented by this
meme?

Slider Range Not knowing why your code
works or does not work

21 Does this happen to you? Slider Range Meme depicting using 4
times the amount of time to
fix bugs than to write initial
the code

22 Do you google often when coding? Slider Range Never – When necessary –
All the time

23 Do you ever realise how much your
skills have improved (or how bad
they were) after reviewing your old
code?

Slider Range No – Sometimes – Yes

CLOSING QUESTIONS

n° Question Answer Type Additional Information

24 Do the previous memes represent
life of developers in general?

Multi-selection Yes | To some extent | Only
at specific moments | They
are just exaggerations to
make us laugh | Not at all

25 Have the use JS frameworks & li-
braries ever made you feel like what
those memes depicted?

Multi-selection Yes | Sometimes | Only
when I started learning about
these concepts | Not in such
extreme way as the memes |
No

26 Please tell (in one word if possible),
how using JavaScript frameworks &
libraries make you feel.

Text field

50

Appendix 2. Prize winner selection (Code snippet)

1. function randomizer() {
2. return Math.floor(Math.random()*51) + 1;
3. }
4.
5. winner_1 = randomizer();
6. winner_2 = randomizer();
7.
8. do {
9. winner_2 = randomizer();
10. } while (winner_1 == winner_2);

11.

12. console.log(`\nOut of 51 participants, the winners are:

13. %ccontestant n°${winner_1} with 2 movie tickets

14. contestant n°${winner_2} with 2 movie tickets`,

15. "color: coral; font-size: 20px;");

51

Appendix 3. Survey transcripts (Confidential)

52

Appendix 4. Semi-structured interview scripts (Confidential)

	1 Introduction
	1.1 Target group
	1.2 Research questions, objectives and scope

	2 Theoretical framework
	2.1 Computers and programming
	2.2 Learning to program
	2.2.1 MOOCs and other tools as programming learning sources

	2.3 Programming languages
	2.4 JavaScript
	2.4.1 Why JavaScript?
	2.4.2 JavaScript and ECMA standard versions
	2.4.3 Browser compatibility

	2.5 Current popular JavaScript frameworks & libraries
	2.5.1 React
	2.5.2 Angular & Vue.js
	2.5.3 jQuery

	2.6 Memes and what they can reveal to us

	3 Research Method
	3.1 Electronic surveys
	3.2 Semi-structured interviews

	4 Results
	4.1 Survey
	4.1.1 Background Information section results
	4.1.2 Students’ learning experiences of JavaScript
	4.1.3 Meme & closing sections’ results

	4.2 Semi-structured interview results

	5 Discussion
	5.1 Comparison to initial assumptions and research questions
	5.1.1 Question 1: Are BITe students discouraged in any way to continue learning and developing professionally in JavaScript related fields?
	5.1.2 Question 2: What are BITe students’ feelings regarding JavaScript, its frameworks and libraries?
	5.1.3 Question 3: What possible improvements there could be on the JavaScript teaching methods in Haaga-Helia for BITe students?

	5.2 New information and final conclusions

	References
	Appendices
	Appendix 1. Survey Questions
	Appendix 2. Prize winner selection (Code snippet)
	Appendix 3. Survey transcripts (Confidential)
	Appendix 4. Semi-structured interview scripts (Confidential)

