

Machine Learning and Mobile

Development

Joonas Lauhala

BACHELOR’S THESIS
September 2020

Business Information Systems
Software Development

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tietojenkäsittelyn tutkinto-ohjelma
Ohjelmistotuotanto

LAUHALA, JOONAS:
Machine Learning and Mobile Development

Opinnäytetyö 36 sivua, joista liitteitä 1 sivu
Syyskuu 2020

Viime vuosikymmenen aikana koneoppimisen suosio on kasvanut räjähdysmäi-
sesti. Mahdollisia käyttötarkoituksia koneoppimiselle tutkitaan jatkuvasti monella
eri tieteenalalla ja tämän vuoksi koneoppimista hyödyntävän sovelluskehityksen
perustarpeet kasvavat päivittäin.

Opinnäytetyön toimeksiantajana toimi Piceasoft Oy, joka kehittää sovelluksia
mobiililaitteiden elinkaaren hallintaan. Piceasoftin tuoteportfolioon kuuluu esi-
merkiksi Diagnostics, Verify, Switch, Report, Eraser ja Trade-In. Osana
Piceasoftin jatkuvaa tutkimus- ja -kehitysprosessia kokeillaan koneoppimista
hyödyntäviä sovellusratkaisuja.

Tämän opinnäytetyön tarkoituksena on antaa perustiedot koneoppimista käyttä-
vän mobiilisovelluksen kehityksestä. Opinnäytetyö haki vastausta seuraavanlai-
siin kysymyksiin: ”Kuinka paljon sovelluskehittäjän täytyy tietää koneoppimi-
sesta, jotta voi käyttää sen etuja omissa sovelluksissa?”, ja ”Minkä seikkojen
vuoksi koneoppimis-sovelluskehyksen käyttö on suosittua?”

Opinnäytetyön tuloksena kehitettiin koneoppimis-sovelluskehystä käyttävä mo-
biilisovellus Android- ja iOS-alustoille. Mobiilisovellus luokittelee käyttäjän piirtä-
miä numeroita valmista koneoppimismallia käyttäen.

Keskeisimpänä havaintona todettiin, että koneoppis-sovelluskehyksen käyttö on
tehty helpoksi, ja tämän vuoksi perustiedot koneoppimisesta riittävät hyvin yk-
sinkertaisten mobiilisovellusten luomista varten. Lisäksi työn aikana huomattiin,
että suurinta osaa koneoppimiseen liittyvästä opetusmateriaalista ei ole kirjoi-
tettu sovelluskehittäjää ajatellen.

Asiasanat: koneoppiminen mobiili sovelluskehitys teknologia

ABSTRACT

Tampere University of Applied Sciences
Degree Programme in Business Information Systems
Option of Software Development

LAUHALA, JOONAS:
Machine Learning and Mobile Development

Bachelor’s thesis 36 pages, appendices 1 page
September 2020

The popularity of machine learning technologies has increased exponentially in
the past ten years. In many fields of study, possible use cases for machine
learning are tested continuously. Thus, the basics of developing software that
uses machine learning are becoming more critical by the day.

The client of this Bachelors’ thesis was Piceasoft LLC. Piceasoft is a company,
who develops software to manage the mobile device lifecycle. Piceasoft has
multiple products such as Diagnostics, Verify, Switch, Report, Eraser, and
Trade-In. Machine learning is being tested as a part of the continuous applica-
tion research and development process.

The purpose of this thesis was to increase knowledge of how to develop basic
machine learning applications for mobile platforms. The thesis sought answer to
questions: “As a developer, how much do you need to know about machine
learning to start using it in your applications?” and “Why is the development with
a machine learning framework popular?”

A mobile application for Android and iOS platforms that used a machine learn-
ing framework was developed as a result of this thesis. The application classi-
fies handwritten digits by using an existing machine learning model.

The most significant finding of this thesis was that development with a machine
learning framework is simple. The basics of machine learning are often good
enough to start the mobile application development. Also, it was noted that most
of the existing learning resources for machine learning are not written for soft-
ware developers.

Keywords: machine learning mobile software development technology

4

TABLE OF CONTENTS

1 Introduction ... 7

1.1 Background .. 7

1.2 Client .. 7

1.3 Goal ... 8

2 Machine Learning explained ... 9

2.1 What is Machine Learning? .. 9

2.2 Basic requirements: Learning methods .. 11

2.2.1 Supervised learning .. 11

2.2.2 Unsupervised learning .. 12

2.3 Basic requirements: Models and training 13

2.4 On-device Machine Learning ... 14

3 Popular Machine Learning frameworks for mobile platform 17

3.1 Google: Tensorflow Lite ... 17

3.2 Apple: Core ML .. 17

3.3 Google: ML Kit for Firebase ... 18

4 Applications for Machine Learning .. 20

4.1 General applications .. 20

4.2 Image classification .. 21

4.3 Object detection ... 22

5 Using Machine Learning framework in a project 23

5.1 Foreword and project description ... 23

5.2 Project dependencies and setup .. 23

5.3 The development process in detail ... 24

5.3.1 Android-platform ... 24

5.3.2 iOS-platform ... 27

5.4 Project summary .. 30

6 Conclusion and discussion ... 33

References... 35

Appendices .. 36

Appendix 1. Project source code .. 36

5

ABBREVIATIONS AND TERMS

API

Abbreviation for Application Programming Interface. API is an interface that de-

fines interactions between multiple software intermediaries.

APK

Abbreviation for Android Package. APK is a package that contains all Android

application resources necessary for the distribution.

Dataset

Collection of separate sets of information, being used as a single unit.

IDE

Abbreviation for Integrated Development Environment. IDE is a software appli-

cation that contains all the necessary tools to develop, execute, and build soft-

ware.

Inference function

The real-world equivalent of the reasoning process, but for the computer.

Model

The real-world equivalent of storing past experiences, but for the computer.

SDK

Abbreviation for Software Development Kit. A collection of software develop-

ment tools to ease the development process for a specific platform.

6

Software platform

Significant piece of software like an operating system (Windows, Linux, Mac

OS, iOS, or Android) that hosts smaller applications designed to run in it.

Software framework

Abstraction, in which software providing generic functionality can be selectively

extended by additional user-code.

Android

Linux-based operating system used mostly for mobile devices, such as phones

and tablets, maintained by Google.

iOS

Operating system used for mobile devices manufactured by Apple.

7

1 INTRODUCTION

1.1 Background

The popularity of machine learning has increased exponentially in the past ten

years. In many fields of study such as Computer science, Engineering and Tech-

nology, Economics, and Medicine, possible use cases for machine learning are

tested continuously. Thus, the basics of developing software that uses machine

learning are becoming more critical by the day. Machine learning has potential

that reaches far into the future.

For the reasons mentioned above, this Bachelors’ thesis aims to improve

knowledge on how to develop basic machine learning applications for mobile plat-

forms. The thesis only covers the basics since machine learning is such a com-

plex topic, and it might be too much to comprehend. Machine learning also has a

long history, and what has led to the current state of machine learning technology

being popular is not essential.

The main goal of this thesis is to combine all the necessary information to get

started with machine learning application development. Because software devel-

opment and machine learning are tightly coupled, the secondary goal of the thesis

is to act as a bridge between the complex world of machine learning and software

development. Machine learning terminology requires some simplifications to

make the transition more transparent to the developers. The core concepts of

machine learning technology are explained in a simplified form.

Piceasoft LLC acts as a client of this Bachelors’ thesis. Piceasoft develops soft-

ware solutions to manage the mobile device lifecycle. As more machine learning-

centric products are planned, a primer for the underlying technology can be useful

for most software developers.

1.2 Client

8

Founded in 2012 at Tampere, Finland, Piceasoft LLC is a company that develops

software and applications to manage the mobile device lifecycle. Piceasoft has

multiple products such as Diagnostics, Verify, Switch, Report, Eraser, and Trade-

In. These products offer ways to ease the recycling process and can be used to

solve common issues when reselling mobile devices. Piceasoft customers are

recycling companies, resellers, and telephone operators.

1.3 Goal

The first goal of this thesis is to create an instruction manual of sorts by gathering

everything essential for developing applications, which use machine learning and

available frameworks, including information about machine learning methods,

models, general applications, techniques, suitability, and more.

Secondly, to fully understand the basic concepts of machine learning develop-

ment, a “handwritten digit classifier,” demonstrating the development process, is

an essential factor. The project uses a machine learning framework, which allows

the development process while also showcasing the required setup and depend-

encies when using such a framework. The demo should allow the user to draw

digits by hand and submit them to classification with a press of a button.

The mobile demo application should be implemented on major platforms, in this

case, Android and iOS. The application architecture should remain similar among

both platforms, and the same core functionality should be exposed. The applica-

tion should also use the same machine learning model in both implementations.

The thesis seeks an answer to questions, such as: “As a developer, how much

do you need to know about machine learning to start using it in your applica-

tions?”, “What is the relationship between machine learning and traditional soft-

ware development?” “Are there any major differences when using a machine

learning framework on different platforms?” and “Why is development with a ma-

chine learning framework popular?”

9

2 MACHINE LEARNING EXPLAINED

2.1 What is Machine Learning?

The term “machine learning” is quite self-explanatory. In simple terms, machine

learning (or “ML” for short) is a capability for the computer to start making deci-

sions without being explicitly instructed each time (Ng 2018). Machine learning is

a sub-field of artificial intelligence (or “AI”).

Gopalakrishnan & Venkateswarlu (2018) state that when a computer program

can improve the way that the tasks are performed by using its previous experi-

ence, we can then say that the computer is learning. This scenario is entirely

different from one where a program performs a task based on existing rules, logic,

and information added by a programmer. For example, a chess game where the

programmer implements a winning strategy for the program, illustrates this per-

fectly. The machine learning approach differs from that because it does not have

any clue on how to win the game at first. The programmer only defines a set of

legal moves, and the rest is for the computer to learn. By learning from its mis-

takes, the computer starts to win eventually, but this requires plenty of repetition.

(Gopalakrishnan & Venkateswarlu 2018.)

Machine learning is an iterative process for the computer (Figure 1), meaning that

it takes some time to complete (Gopalakrishnan & Venkateswarlu 2018), just like

the process for humans to learn to ride a bicycle. The process requires much

previous experience, trial, and error to achieve mastery in a specific task.

10

FIGURE 1. Difference between a traditional and a machine learning approach

Machine learning simplifies many everyday tasks that would be tedious for a pro-

grammer to code traditionally. Typical tasks that would otherwise require infinite

lines of code because they do not have a well-defined set of rules, meaning that

they are non-existent or too abstract for the programmer to follow. The infor-

mation processing also takes time, and in real-time applications, a way for the

computer to make assumptions based on previous experiences will reduce the

processing time significantly. (Gopalakrishnan & Venkateswarlu 2018.)

Computers were the first ones to use machine learning, but it is proven that mo-

bile development with machine learning implemented on mobile devices is

trendy. Modern mobile devices show a high productive capacity level that is close

enough to perform appropriate tasks to the degree that modern computers do.

(Gopalakrishnan & Venkateswarlu 2018.)

Generally speaking, any application that does one of the following is using ma-

chine learning in some way:

• Speech recognition

• Computer vision and image classification

11

• Gesture recognition

• Translation from one language into another

• Interactive on-device detection of text

• Autonomous vehicles, drone navigation, and robotics

• Patient-monitoring systems and mobile applications interacting with med-

ical devices

(Gopalakrishnan & Venkateswarlu 2018.)

2.2 Basic requirements: Learning methods

Machine learning can, on a larger scale, be categorized into supervised- and un-

supervised learning methods (Ng 2018). Other methods, like semi-supervised

and reinforced learning (Figure 2), are out-of-scope of this thesis.

FIGURE 2. Different learning methods (Gopalakrishnan & Venkateswarlu 2018)

2.2.1 Supervised learning

The main goal of supervised learning is to create a function that maps inputs to

outputs so well that the unforeseen input (x) can be mapped to output (y) by pre-

dicting where it should belong based on prior knowledge (Ng 2018). A set of sin-

gle-digit numbers is a good example that is also used in the demo project later.

When all ten digits are labeled, and a new image of a number comes in, the model

should be able to predict what number it was (Figure 3).

12

FIGURE 3. Supervised learning method (Loukas 2020, modified)

In supervised learning, if the predicted output is a discrete value, such algorithms

are part of classification algorithms. However, when the predicted output is a con-

tinuous value, such algorithms fall under the umbrella of regression algorithms.

These differences must be taken into consideration when training the model.

(Gopalakrishnan & Venkateswarlu 2018.)

Gopalakrishnan & Venkateswarlu (2018) lists multiple algorithms that are asso-

ciated with the supervised learning, such as K-nearest neighbours, Naive Bayes,

Decision trees, Linear regression, Logistic regression, Support vector machines,

and Random forest. (Gopalakrishnan & Venkateswarlu 2018.)

2.2.2 Unsupervised learning

On the contrary, unsupervised learning does not learn under supervision. The

model learns based on the data that gets fed to it and discovers hidden patterns

in the data (Figure 4). This type is useful when there are enormous amounts of

data, and the patterns we are looking for are unknown. Unsupervised learning

algorithms can, in general, provide useful insights about given data like confirm

what we might already know or, in some cases, predict what is going to happen

next. A suitable example of using unsupervised learning could be customer seg-

mentation. When vast amounts of customer data are available that captures all

customer features, unsupervised learning algorithms could cluster different kinds

13

of customers. This type of information could be precious to the marketing team.

(Gopalakrishnan & Venkateswarlu 2018.)

FIGURE 4. Unsupervised learning method (Loukas 2020, modified)

According to Gopalakrishnan & Venkateswarlu (2018), the following algorithms

belong to unsupervised learning. Clustering algorithms such as Centroid-based

algorithms, Connectivity-based algorithms, Density-based algorithms,

Probabilistic, Dimensionality reduction, Neural networks/deep learning, and

finally, Association rule learning algorithm. (Gopalakrishnan & Venkateswarlu

2018.)

2.3 Basic requirements: Models and training

Machine learning uses models to store past experiences; the models are then

used by the computer to apply the machine learning algorithm to the problem in

hand. Model formats vary between different machine learning frameworks. As a

side-effect, this causes most of the existing model formats to be incompatible with

14

each other. A particular script or program is needed to convert between different

model formats. The model storage space requirements vary greatly too, but usu-

ally, the models optimized for mobile platforms are much smaller than their desk-

top counterparts.

Model training can be done from scratch and can be a tedious, time-consuming

task. Training from scratch can, however, yield more reliable results if done cor-

rectly. One of the prerequisites is that the problem needs to be well-defined.

When the machine learning problem is well-defined, the following conditions are

satisfied: We have the right problem, the right data, and the right criteria for suc-

cess. Sometimes this is the only way to approach a particular issue because ap-

plication data requirements can be precise (Gopalakrishnan & Venkateswarlu

2018).

An alternative way is to use an existing model if a suitable model is available and

retrain it based on application needs. Using the existing model can save valuable

time and resources at the possible cost of model accuracy. That is why the model

used for the basis should be selected very carefully (Gopalakrishnan &

Venkateswarlu 2018).

In both cases, the model requires a useful and extensive dataset, meaning that it

is qualitative but also quantitative. In the end, when training the model, it is all

about following the best practices available. On the list below, there are a few

examples of these best practices.

• Use multiple success metrics

• Use metrics that are easy to understand

• Use metrics that make the model comparisons easier

• Introduce randomness to training data in order to avoid biases

• Reduce useless or redundant training data

2.4 On-device Machine Learning

15

Ng (2018) says that nowadays, people are spending more time with mobile de-

vices, and it makes much sense to run machine learning models on the device

itself instead of storing it in the cloud (Ng 2018).

The most significant advantage of the on-device model is that model is always

available without the need to send information back and forth (Figure 5). Local-

ness is also the reason why using the model is convenient.

FIGURE 5. Relationship between mobile application and local (on-device) model

However, the Cloud model is not useless because the Cloud model can be up-

dated seamlessly, without users ever noticing the difference. The Cloud model is

the way to go if the model file is enormous and would drastically increase the

application size (Figure 6).

FIGURE 6: Relationship between the mobile application and the cloud model

16

TABLE 1. On-device vs. Cloud model (Gopalakrishnan & Venkateswarlu 2018)

On-device model Cloud model

Locally stored Stored in Cloud service

Fast: Almost instantaneous to use Slow: uses requests and responses

Tedious to update quickly for all users Seamless updates to all users

Increases application size Does not affect application size

Platform portability might cause issues Portable between different platforms

Data can be kept private Data can be shared with the third party

Training models on a device has still not risen to popularity, since the computing

power and storage space requirements are quite large (Ng 2018). Mobile is not

the preferred platform to train models, the only exception being tiny datasets. The

retraining phase would also become too complicated. (Gopalakrishnan &

Venkateswarlu 2018.). However, Core ML 3 for iOS allows the developer to lev-

erage this functionality for simple tasks.

17

3 POPULAR MACHINE LEARNING FRAMEWORKS FOR MOBILE PLAT-

FORM

3.1 Google: Tensorflow Lite

Tensorflow Lite by Google is an open-sourced cross-platform machine learning

framework aimed at mobile development. Tensorflow Lite is the lightweight ver-

sion of its big brother, Tensorflow, and is suitable for microcontrollers, mobile,

and embedded devices (such as the Internet of Things). (Khandelwal 2020.)

The newest stable release of Tensorflow Lite is version 2.2.0.

Tensorflow Lite is a popular machine learning framework primarily used in An-

droid applications. Newer versions of Tensorflow Lite can use Android Neural

Network API (NNAPI) to accelerate the inference functionality. The framework

supports a wide variety of different models, but the most common model format

is TFLite-format.

Supported mobile platforms

• Android

• iOS

The usage of Tensorflow Lite on Android and iOS platforms is very straightfor-

ward. Both platforms require the framework as a dependency. The only real dif-

ference is that on iOS, the project must use a CocoaPods dependency man-

ager.

3.2 Apple: Core ML

Core ML is a machine learning framework from Apple. First introduced in the

WWDC 2017 conference, Core ML is suitable for developing machine learning

applications for the iOS platform, includes the support for image analysis, sound

18

analysis, language recognition, and audio-to-text conversion (Wiggers 2018.)

The newest stable release of the Core ML framework is Core ML 3.

Core ML is a popular machine learning framework mainly used on Apple plat-

forms. The framework takes advantage of the hardware components of Apple

devices. Core ML supports only MLModel-format (“.mlmodel”), but various pop-

ular model formats are convertible to MLModel.

Supported mobile platforms

• iOS

iOS SDK contains the Core ML framework by default. The developer must im-

port the API within code before its use.

3.3 Google: ML Kit for Firebase

Firebase ML Kit (or ML Kit for Firebase) is a bundle of machine learning frame-

works by Google. It launched in May 2018. ML Kit SDK packages Google Cloud

Vision API, Tensorflow Lite, and Android Neural Networks API together. ML Kit

can be used to detect faces, scan barcodes, label images, and for other useful

purposes. It supports on-device data models along with cloud data models. (Wig-

gers 2018.)

ML Kit for Firebase is an easy way to use machine learning for common prob-

lems, such as reading the contents of a QR code or detecting and reading a text

from an image. A feature of ML Kit that is not common knowledge allows the

framework to load and use custom Tensorflow Lite models. However, because

ML Kit API is more nuanced towards everyday use cases – it does not allow as

much control over the model as Tensorflow Lite does.

Supported mobile platforms

• Android

19

• iOS

Firebase ML Kit can be used on Android and iOS platforms to a varying degree.

The Android version of the framework requires only a few project dependencies

to function correctly. Some additional steps must be taken when using the ML Kit

on the iOS platform. For example, the iOS project must use a CocoaPods de-

pendency manager, a few API functionalities require a newer version of Xcode

IDE, and some parts of the framework differ between platforms.

20

4 APPLICATIONS FOR MACHINE LEARNING

4.1 General applications

Various features used in existing applications use machine learning. High-level

examples of these features are email spam identification systems, product rec-

ommendations on e-commerce sites, and automatic face tagging functionality on

social media. All formerly mentioned features use machine learning to a varying

extent. (Ng 2018.)

Today, many applications rely heavily on using machine learning frameworks for

specific tasks, but still use traditional solutions for most of their functionality.

Machine learning is not a replacement for conventional ways of developing

software but an extension of it. In many cases, the machine learning approach

can simplify the convoluted logic of specific tasks.

According to Gopalakrishnan & Venkateswarlu (2018), these popular mobile

applications use machine learning.

• Google Maps

• Facebook

• Snapchat

• Netflix

• Tinder

• Uber

(Gopalakrishnan & Venkateswarlu 2018.)

There are many other popular applications not listed that use machine learning

functionality. What comes to using machine learning functionality in viral applica-

tions is a smart move because, firstly, it can massively improve the user experi-

ence and, secondly, provide information with actual business value to the devel-

oper(s) or the company.

21

4.2 Image classification

Image classification is arguably the best-known computer vision technique. The

image classification works by categorizing the images based on their most dom-

inant content (Image 1), and supervised learning algorithms are crucial when

training for this kind of task. The image classification technique is the basis for

the other computer vision techniques and is a critical part when the task has

something to do with images.

IMAGE 1. Image classification of “a banana” with confidence percentage in Ten-

sorflow Lite demo app (Image classification | Tensorflow Lite 2020)

A mobile application demo that is implemented during the last chapters of this

thesis uses the image classification technique to categorize handwritten digits to

their corresponding numbers.

22

4.3 Object detection

Object detection is the second computer vision technique briefly covered in this

thesis. It allows the detection of objects within an image or video feed.

Machine learning can be used to detect objects in images (Image 2). For exam-

ple, pictures that contain devices, toys, furniture, and other items. Object detec-

tion also works as a prerequisite for manipulating images based on their content,

like swapping face with another.

IMAGE 2. Bounding box and confidence percentage of “an apple” and “a banana”

in Tensorflow Lite demo app (Object detection | Tensorflow Lite 2020)

23

5 USING MACHINE LEARNING FRAMEWORK IN A PROJECT

5.1 Foreword and project description

The machine learning framework used in a mobile application project is to show-

case the basic functionality and all the necessary details for the development

process. All project-related source code is available for viewing/downloading on

GitHub (Appendix 1).

Application development with machine learning frameworks does not require in-

depth knowledge of machine learning algorithms, model creation/training, or

other intricacies. Only basic mobile application development skills are necessary.

Developers need to know how to use provided API, import model(s), and go from

there. (Gopalakrishnan & Venkateswarlu 2018.)

This demo application classifies digits as they are drawn to the canvas by the

user and tries to predict the correct number. Both platforms use the same MNIST

model for digit classification. The project (or thesis) does not explain how to

choose the best framework for a specific problem, and it is a discussion of its

own. The most popular and preferable frameworks for the platforms were se-

lected.

1. User must be able to draw digits on the screen

2. The application must be able to classify drawings with machine learning

3. Predicted digit and confidence score should be visible to the user

4. User must be able to clear his/her drawing and start over

5.2 Project dependencies and setup

“Thesis-project” uses the empty template as the basis on both projects. The first

step when setting up the project was to modify the layout of the application that

is visible to the end-user. The application layout was kept similar on both plat-

forms for consistency.

24

An MNIST data set is a subset of NIST, containing a training set of 60 000 and a

test set of 10 000 examples of handwritten digits by 500 different writers. The

numbers are centered, size-normalized, and fixed to 28x28 pixels per image.

Original images from the NIST set are black and white. (LeCun & Cortes & Burges

2013.) The MNIST based machine learning model was used on both platforms.

5.3 The development process in detail

5.3.1 Android-platform

The Android demo application was developed by using the Android Studio IDE

(Image 3). The Android implementation uses the TensorFlow Lite library as its

machine learning framework.

IMAGE 3. Project structure and application layout in Android Studio IDE

The first steps of development on the Android-platform were to create a new pro-

ject with Android Studio from an empty template and define application layout,

along with adding the following dependencies to the app-level Gradle-file. The

Android implementation uses the MNIST in a TFLite format (“*.tflite”).

25

TABLE 2. The most significant dependencies of the Android project

Dependency name Dependency source

Tensorflow Lite org.tensorflow:tensorflow-lite:2.1.0

Tasks com.google.android.gms:play-services-tasks:17.1.0

After including project dependencies, among other things, a class hierarchy was

set. The Android project contains a total of four classes.

TABLE 3. Classes of the Android project

Class name Description

MainActivity The main class of the application (auto-generated)

DrawableView Component class allowing the user to draw into it

DigitClassifier Loads and uses the TFLite model to classify input

Classification Stores predicted digit and confidence

The main activity (MainActivity) opens when the user launches the application.

The main activity loads the application layout and handles user interactions.

While constructing the main activity, a digit classifier (DigitClassifier) will load and

initialize the TFLite-formatted MNIST model in the background (Figure 7). A ref-

erence to the digit classifier (DigitClassifier) is stored in a variable within the main

activity class. Because Android SDK does not provide a built-in view component

to draw lines to the screen, a custom-made drawable view (DrawableView) is

needed to accomplish this task.

26

DigitClassifier(Context context) {
 asyncInit(context);
}

private void asyncInit(Context context) {
 Tasks.call(mExecutorService, () -> {
 try {
 MappedByteBuffer modelData = loadModel(context.getAssets());
 mTfLiteInterpreter = new Interpreter(modelData, mInterpreterOp-

tions);
 } catch(IOException e) {
 throw new IllegalStateException(e);
 }

 return null;
 });
}

FIGURE 7. Sample code of ML model initialization

Each visible component on the application responds to user touch events. For

example, the drawable view component responds to the user given touch coordi-

nates and draws lines inside the view based on those. Under the hood, all buttons

have a click listener (Figure 8), meaning that after the user has pressed the but-

ton, a callback function tied to that specific button gets executed.

public void buttonClickListener(View view) {

 switch(view.getId()) {

 case R.id.clearButton: {

 mDrawableView.reset();

 updateText(null);

 break;

 }

 case R.id.classifyButton: {

 mDigitClassifier.asyncClassify(mDrawableView.getRenderView())

 .addOnSuccessListener(this::classificationFinished)

 .addOnFailureListener(this::classificationFailed);

 break;

 }

 }

}

FIGURE 8. Sample code of a button callback function

The classification process starts with a button click. A copy of the user drawn

bitmap gets transformed to suit the MNIST model requirements. The bitmap then

gets sent to the classifier, which uses the MNIST model inference function that

outputs an array of confidence scores for each number. A data class (Classifica-

tion) gets instantiated with the result array (Figure 9), and the number with the

27

highest confidence score is stored within the object along with its confidence

score.

Task<Classification> asyncClassify(Bitmap bitmap) {

 return Tasks.call(mExecutorService, () -> classify(bitmap));

}

private Classification classify(Bitmap bitmap) {

 if(mTfLiteInterpreter == null) {

 throw new IllegalStateException("Interpreter is not initialized");

 }

 ByteBuffer byteBuffer = createScaledBitmapBuffer(bitmap);

 final float[][] outputData = new float[1][OUTPUT_CLASSES];

 mTfLiteInterpreter.run(byteBuffer, outputData);

 return new Classification(outputData[0]);

}

FIGURE 9. Sample code of image processing and classification

IMAGE 4. An initial view when launching the Android application

5.3.2 iOS-platform

28

The iOS demo application was developed by using the Xcode IDE (Image 5). The

Core ML library is used as an iOS application machine learning framework.

IMAGE 5. Project structure and application layout in Xcode IDE

iOS project development started by generating an empty project structure with

Xcode. The iOS implementation uses the MNIST in an ML model format

(“*.mlmodel”).

Vision (Core ML) is a built-in library and only needs import-statement on top of

the class before use. Just like on Android-platform, a class hierarchy was set

containing a total of five classes.

TABLE 4. Classes of the iOS project

Class name Description

AppDelegate Launcher class (auto-generated)

SceneDelegate Application scene class (auto-generated)

ViewController Main view controller (auto-generated but renamed)

DrawableView Custom component for drawing

DigitClassifier Loads and uses the ML model (in MLmodel format)

29

The AppDelegate class works as the entry point when launching the iOS appli-

cation. The SceneDelegate loads the storyboard (or the layout of the iOS appli-

cation) and hands the control to the ViewController class. The ViewController is

responsible for handling user interaction. In the iOS project, the initialization of

the MNIST model happens when the model gets used for the first time (Figure

10).

private lazy var classificationRequest: VNCoreMLRequest = {

 let model = try! VNCoreMLModel(for: MNISTClassifier().model)

 return VNCoreMLRequest(

 model: model,

 completionHandler: {request, error in

 let classification = Classification(

 (request.results as? [VNClassificationObservation])?.first

)

 self.classificationResultDelegate?

 .OnClassificationReceived(classification: classification)

 }

)

}()

FIGURE 10. Sample code of ML model initialization

All the visible components on the storyboard are linked to the ViewController. The

standard iOS view components do not include a component that would allow the

user to draw to the screen. Because of this, the implementation of a custom draw-

ing component (DrawableView) is required. Each button on the storyboard has a

callback function assigned to it, which gets called when the user presses the but-

ton (Figure 11).

@IBAction func onClassifyClicked(_ sender: Any) {

 if !drawingComponent.isEmptyCanvas() {

 if let image = drawingComponent.getCurrentImage() {

 digitClassifier.classify(

 image: image.applyingFilter("CIColorInvert")

)

 }

 }

}

@IBAction func onClearClicked(_ sender: Any) {

 drawingComponent.image = nil

 OnClassificationReceived(classification: nil)

}

FIGURE 11. Sample code of button callback functions

30

A button press initiates the classification process, which in turn creates a new

classification request with the current drawing (Figure 12). After the classification

request has finished, the delegate class (Classification) will receive the results.

func classify(image: CIImage) {

 DispatchQueue.global(qos:.userInitiated).async {

 let handler = VNImageRequestHandler(

 ciImage: image,

 orientation: CGImagePropertyOrientation.up

)

 do {

 try handler.perform([self.classificationRequest])

 } catch {

 self.classificationResultDelegate?

 .OnClassificationReceived(classification: nil)

 }

 }

}

FIGURE 12. Sample code of image classification

IMAGE 6. An initial view when launching the iOS application

5.4 Project summary

31

As can be seen from the simplicity of the application, creating a basic application

that uses a machine learning framework is not complicated for a developer who

already knows the basics of software development. The application allows users

to draw digits and submit them for classification via a press of a button, as initially

intended. The application displays the classification results to the user in the form

of a text.

Both applications can classify user has drawn single-digit numbers correctly (Im-

age 7 and Image 8), but for some unknown reason, the iOS application can clas-

sify most numbers a bit more reliably. A possible cause is a way that the draw-

ings/images are handled; despite being very similar, the final implementations

differ lightly.

IMAGE 7. All single-digit numbers classified by the Android application

32

IMAGE 8. All single-digit numbers classified by the iOS application

In the case where the user draws a “cross” to the screen (Image 9), the model

seems to think that it is equal to number four after classification. The reason for

this being because the model is not trained to detect any other characters than

numbers. A possible way to mitigate this issue would be to retrain the model and

make it distinguish between single-digit numbers and other characters.

IMAGE 9. Cross (“X”) drawn to the Android and iOS applications

33

6 CONCLUSION AND DISCUSSION

Because almost every field of study is going towards using machine learning in

one way or another, this Bachelors’ thesis concludes that knowing about machine

learning at a basic level is very useful. The existing resources for gathering fun-

damental knowledge include various books and internet articles. However, most

of those resources seem to be written for data scientists and mathematicians who

understand the algorithms behind the machine learning much better than a typical

software developer would. In the case that machine learning was explained in

more detail, the page count of this thesis would have increased drastically.

This Bachelors’ thesis aimed to improve basic knowledge of machine learning-

related processes and techniques. All goals set for this thesis were achieved. A

theoretical part of this thesis answered the questions which were asked in the

beginning. A practical part of the thesis contained a demo project for Android

and iOS platforms, which used a machine learning framework to classify hand-

written digits. Lastly, because Piceasoft keeps researching new possibilities for

machine learning-based products, this thesis should be suitable to act as an in-

struction manual for those who are unfamiliar with the topic.

Machine learning is a complex yet exciting topic. For the most part, machine

learning remains a black box, but developing applications which use machine

learning via a framework is not very difficult. The essential software development

skills are often good enough. In the grand scheme of things, traditional software

development is not going to change much because of machine learning. How-

ever, machine learning will make some tasks more straightforward than ever be-

fore. Although some cross-platform frameworks can require more tweaking when

trying to keep things similar.

The next step would have been to delve deeper into the machine learning terri-

tory. For example, improvements to machine learning related terminology would

be necessary, and the inclusion of more advanced terminology. Supervised and

unsupervised, semi-supervised, and reinforced learning methods must be ex-

34

plained thoroughly. Also, machine learning algorithms should be discussed ex-

tensively. A justification for this extraneous knowledge would be a better under-

standing of the complete (machine learning) process.

A significant improvement to the demo application would have been to retrain the

MNIST model to distinguish between numbers (from zero to nine) but also detect

non-numbers. Another possibility would have been to reduce the number of erro-

neous classifications by disregarding any drawing as non-number if its confi-

dence score is below a threshold value of 55 percent, for example. A final solution

to this problem would have been to build a custom-trained model for classifying

digits. In this particular case, the final solution comes with a huge downside,

which is the time that would need to be used for training the model when consid-

ering that the existing MNIST model is already well-trained with tens of thousands

of samples, building the own model from the ground up is a waste of time.

As a software developer, a personal opinion of machine learning is that it would

require more mathematical background and theoretical thinking to understand

well enough. The referenced books and articles were a great resource, but most

of them dove too deep into the mathematical/theoretical parts of machine learn-

ing. Knowing about the inner-workings of machine learning did not seem benefi-

cial when developing simple applications that use a machine learning framework

as a primary goal.

It is reasonable to think that machine learning development keeps getting more

accessible in the future because device performance keeps increasing, more ma-

chine learning models are shared, and the usability of machine learning frame-

works keep improving. It is only a matter of time before we see more sophisticated

use cases for machine learning applications.

35

References

Gopalakrishnan, R. & Venkateswarlu, A. 2018. Machine learning for mobile:
practical guide to building intelligent mobile applications powered by machine
learning. Birmingham: Packt Publishing.

Image classification | Tensorflow Lite. 2020. Digital article. Modified 4.6.2020.
Read 1.8.2020.
https://www.tensorflow.org/lite/models/image_classification/overview

Khandelwal, R. 2020. A Basic Introduction to TensorFlow Lite. Digital article.
Published 15.6.2020. Read 1.8.2020.
https://towardsdatascience.com/a-basic-introduction-to-tensorflow-lite-
59e480c57292

LeCun Y. & Cortes C. & Burges C. 2013. The MNIST Database of handwritten
digits. Published 14.5.2013. Read 27.8.2020.
http://yann.lecun.com/exdb/mnist/

Loukas, S. 2020. What is Machine Learning: Supervised, Unsupervised, Semi-
Supervised and Reinforcement learning methods. Digital article. Published
10.6.2020. Read 24.8.2020.
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-su-
pervised-unsupervised-semi-supervised-and-aed1573ae9bb

Ng, K. 2018. Machine learning projects for mobile applications: build Android
and IOS applications using TensorFlow Lite and Core ML. Birmingham: Packt
Publishing.

Object detection | Tensorflow Lite. 2020. Digital article. Modified 4.6.2020. Read
1.8.2020.
https://www.tensorflow.org/lite/models/object_detection/overview

Wiggers, K. 2018. Apple’s Core ML 2 vs. Google’s ML Kit: What’s the differ-
ence? Digital article. Published 5.6.2018. Read 1.8.2020.
https://venturebeat.com/2018/06/05/apples-core-ml-2-vs-googles-ml-kit-whats-
the-difference/

https://www.tensorflow.org/lite/models/image_classification/overview
https://towardsdatascience.com/a-basic-introduction-to-tensorflow-lite-59e480c57292
https://towardsdatascience.com/a-basic-introduction-to-tensorflow-lite-59e480c57292
http://yann.lecun.com/exdb/mnist/
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://www.tensorflow.org/lite/models/object_detection/overview
https://venturebeat.com/2018/06/05/apples-core-ml-2-vs-googles-ml-kit-whats-the-difference/
https://venturebeat.com/2018/06/05/apples-core-ml-2-vs-googles-ml-kit-whats-the-difference/

36

Appendices

Appendix 1. Project source code

The complete source code for Android and iOS mobile applications is publicly

available on the GitHub version control service.

Android application source code (written in Java)

https://github.com/Jindetta/Thesis-project-for-Android

iOS application source code (written in Swift)

https://github.com/Jindetta/Thesis-project-for-iOS

https://github.com/Jindetta/Thesis-project-for-Android
https://github.com/Jindetta/Thesis-project-for-iOS

