

Jere Raassina

DevOps and test automation configu-
ration for an analyzer project

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Software Engineering

Bachelor’s Thesis

31 October 2020

 Abstract

Author
Title

Number of Pages
Date

Jere Raassina
DevOps and test automation configuration for an analyzer pro-
ject

68 pages
31 October 2020

Degree Bachelor of Engineering

Degree Programme Tieto- ja viestintätekniikka / information technology

Professional Major Software engineering

Instructors

Janne Salonen, Head of School (ICT)

The goal of this thesis was to study and investigate different DevOps, software testing, pro-
ject management and test automation subject matters and conduct a related project consist-
ing of designing and implementing a continuous integration and test automation environment
for a medical analyzer project.

The project was mostly completed on an existing development and work management plat-
form that was already in use by the company. It enhanced previous features by introducing
better build and release management and established new functionality such as continuous
integration pipelines, a test automation environment and reporting services.

The goal of implementing a stable DevOps and continuous integration platform as well as
creating a solid basis for the test automation environment was achieved and is available for
further development and the official verification & validation of the automated tests in the
future.

Keywords DevOps, Test automation, Software testing, Robot Frame-
work

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Jere Raassina
DevOps and test automation configuration for an analyzer
project

68 sivua
31.10.2020

Tutkinto insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka / information technology

Ammatillinen pääaine Software engineering

Ohjaajat

Janne Salonen, Tieto- ja viestintätekniikan osaamisaluepääl-
likkö

Insinöörityön tarkoituksena oli tutkia ja tarkastella DevOpsin, ohjelmistotestauksen, projek-
tinhallinnan ja testiautomaation eri osa-alueita sekä toteuttaa aihepiireihin liittyvä projekti.
Projektin tavoitteena oli suunnitella ja kehittää jatkuvan integraation sekä testiautomaation
mahdollistava ympäristö lääketieteelliseen analysaattoriprojektiin.

Suurin osa projektista toteutettiin jo yrityksen ennalta hyödyntämään kehitys- sekä työnhal-
linta ympäristöön ja järjestelmään, jonka aiempaa toiminnallisuutta parannettiin parempien
paketointi- sekä julkaisuominaisuuksien avulla. Tämän lisäksi kehitettiin uusia ominaisuuk-
sia kuten jatkuvan integraation putkia, raportointitoimintoja sekä kokonainen testiautomaa-
tioympäristö.

Varsinaisessa projektityössä hyödynnettiin useita aiheeseen liittyviä työkaluja ja ympäris-
töjä, kuten Azure DevOps Serviceä, Robot Frameworkia, Pythonia sekä PywinAutoa.

Vakaan DevOps ympäristön, jatkuvan integraation perustan sekä yhtenäisen testiauto-
maatioympäristön projektitavoitteet saavutettiin ja näin ollen mahdollistettiin myös niiden
jatkokehitys sekä valmistelu tulevaisuuden virallista verifikaatiota ja validointia varten.

Avainsanat DevOps, Test automation, Software testing, Robot Framework

1

Contents

List of Abbreviations

1 Introduction 5

2 DevOps 6

2.1 Meaning, purpose and flow 7

2.2 Continuous integration 10

2.2.1 Version control 10

2.2.2 Integration pipelines 11

2.3 Continuous delivery 12

2.4 Continuous deployment 13

3 Software testing and project management 15

3.1 Software life cycle and testing models 15

3.1.1 Waterfall model 15

3.1.2 V-model 17

3.1.3 Agile model 18

3.1.4 Iterative model 20

3.1.5 Spiral model 22

3.2 Testing process 25

3.3 Test artifacts 27

3.4 Testing approaches 29

3.4.1 Black box testing 30

3.4.2 White box testing 31

3.4.3 Grey box testing 32

3.4.4 Exploratory testing 32

3.5 Software testing levels, -types and techniques 34

3.5.1 Testing levels 34

3.5.2 Testing types and techniques 35

3.6 Automated testing 37

4 Project tools, requirements, and execution 37

4.1 Requirements and the goal 37

4.2 Servers, services, and other tools 38

4.3 Azure DevOps 40

2

4.3.1 Version control 40

4.3.2 Software agents 41

4.3.3 Continuous integration and deployment pipelines 43

4.3.4 Azure portal, reporting and other features 48

4.4 Automated testing and Robot Framework 50

4.4.1 Environment and prerequisites 51

4.4.2 Test structure 53

4.4.3 Keywords and syntax 55

4.4.4 Libraries and tools 56

4.4.5 Test results and output 58

4.4.6 Automation and other tools 60

5 Results, improvements and conclusion 62

5.1 Alternative tools 63

5.2 Future development ideas 64

References 65

3

List of Abbreviations

IVD In vitro diagnostics. clinical tests that analyze samples taken from the hu-

man body.

V&V Verification and validation. The process of vivificating and validating a cor-

rect product functionality and operation.

SDLC Software development life cycle. A clearly defined process for creating soft-

ware products containing of different phases or stages.

SAFe Scaled Agile Framework. A set of practices and patterns for scaling lean

and agile practices.

ARA Application-release automation. Process of packaging and deploying an

application to production across various environments.

CCA Continuous configuration automation. Process of deploying and configur-

ing the settings and software automatically for virtual and physical targets.

CVS Centralized version control system. Version control system based on the

centralized server ideology.

DVCS Distributed version control system. Version control system based on the

distributed cloning ideology.

STLC Software testing life cycle. A clearly defined process for testing software

products containing of different phases or stages.

AUT Application under test.

UML Unified Modeling Language. Broad-purposed and developmental approach

on a modeling language.

API Application Programming Interface. A computing Interface that defines the

interactions between multiple software emissaries.

4

.NET A Microsoft software framework for Windows platforms.

PAT Personalized Access Token.

GUI Graphical User Interface.

CLI Command-line interface

REST Representational state transfer. A set of architectural constraints used for

creating web services.

PATH An environment variable that defines the directories where executable pro-

grams are located.

HTML Hypertext Markup Language. Markup language standard for documents

displayed in web browser.

COM Component Object Model. The standard binary interface for Microsoft soft-

ware components.

SQL Structured Query Language. A domain specific language for relational da-

tabases.

5

1 Introduction

The subject for this thesis covers a study and investigation on DevOps related topics

such as continuous development practices, software testing and project management

areas as well as a related project in a clinical analyzer project environment. The project

work consists of the study on finding out the suitable tools for the project, planning and

learning the preferred ways of using the tools and implementing and taking the DevOps

related features, continuous integration and the test environment in use. The idea was

to create a good basis for the mentioned services and features that could be easily ex-

panded and developed for further usage.

This study and project work were conducted by and presented to Thermo Fisher Scien-

tific as a part of the Cascadion SM Clinical Analyzer project. The company and the pro-

ject managers introduced a need for a modern Continuous integration and test automa-

tion solutions as other product lines had already started to plan and implement them for

their specific purposes. The testing practices are an important part of the working pro-

cess as the company works in the IVD field and the some of the products are used to

analyze human based samples. The verification and validation or V&V processes being

such significant also means that they tend to often be very time consuming and repetitive

while still maintaining the need of high accuracy. The eventual expectations of the project

would include the increase in DevOps methodology and mentality as well as the official

verification and validation of the test automation environment.

6

2 DevOps

The Agile ways of working have gained remarkable popularity in the past few decades

and many of the companies working in the software field have either completely shifted

or are slowly moving towards this new way of thinking. The Agile methodology focuses

heavily on the new ways and ideologies on how the team works together and acts during

the development process. One of the key driving points is the idea of cross-functional

teams that aim to be as self-organized and community focused as possible. This means

that the team is trying to steer away from the idea of specific roles and manager positions

and make their own decisions by utilizing the Agile ideology and by following the provided

frameworks. [1.] The fundamentals of the Agile workflow can be summarized in the so-

called Agile manifesto defined by The Agile Alliance: Individuals and interactions over

processes and tools, working software over comprehensive documentation, customer

collaboration over contract negotiation and responding to change over following a plan.

[2.]

The so-called Lean thinking is also a big and important part of the Agile culture. Lean

emphasizes the idea of eliminating all unnecessary work and effort by aiming for the

maximum value for customer and the team itself. This is often considered to be best

achievable by experimenting, failing-, starting over- and delivering as fast as possible as

well as learning and optimizing after each working cycle. [3.] Much like in the Agile man-

ifesto, Lean also sums its key values in the list of alleged Lean principles: Eliminate

waste, amplify learning, decide as late as possible, deliver as fast as possible, empower

the team, build integrity in, optimize the whole. [4.]

These two frameworks can be referred as their own ideologies but are often considered

to be very similar and consist of similar values. Both highlight the ideas of fast reaction

and response to problems and the concept of changing over long-term planning. This

leads into a conclusion that accurate and timeboxed planning, real time tracking of the

work items and the smooth development, testing and deployment processes must be

well thought out. The term and concept of DevOps was invented in order to accommo-

date all these requirements and the different parties working with them. [5; 6.]

7

2.1 Meaning, purpose and flow

The term DevOps being a manifestation of the Agile and lean concepts, aims to combine

the collaborative actions to create and manage a successful design, development and

delivery process. The idea is to incorporate teams such as the traditional development

and operations teams that consist of software designers, developers, testers, delivery-

and deployment engineers and other parties that take part in the DevOps process. This

allows a smooth operations cycle without forming traditionally problematic silos and other

historical problems between the participating teams. [5; 6.]

The term DevOps has however gained reputation as a globally undefined buzzword and

has not therefore developed an academically unique definition. This means that multiple

meanings and interpretations can be found and are commonly used for the term. [7, p.

2, p. 5.]

Figure 1. shows an illustration of the typical DevOps toolchain and the flow of the different

phases.

Figure 1. Illustration of the DevOps toolchain. [8.]

8

In order to achieve and maintain the DevOps workflow and unify the working methods,

so called toolchains are commonly used. These toolchains are essential for the modern

DevOps oriented way of software development and provide the fundamental tools for the

concept of automation as well as the more traditional methods. [9; 10.]

The following chart (Table 1) displays a common DevOps toolchain and introduces ex-

amples of the possible tools or ways of working for each phase. The toolchains are usu-

ally defined by the team and can be modified case by case to follow the Software Devel-

opment Life cycle or the SDLC.

Table 1. A common DevOps toolchain with stages and examples. [9; 10]

Phase / stage Purpose Examples and tools

Plan Defining and planning with

preferably the whole

DevOps or project team.

Either a long-term plan or

the use of Agile methods

such as Scrum or SAFe.

Create and develop Software design, develop-

ment and possible unit test-

ing.

Version control such as Git,

Different development envi-

ronments and software

stacks, unit testing tools

suitable for the language

and the environment.

Heavy focus on continuous

integration.

Verify Different testing methods

and phases. Ensuring the

quality of the code and the

functionality of the software.

Integration-, acceptance-,

regression-, security and

system level testing. Test

automation Etc.

9

Package Configuring, packaging and

staging the software for the

release.

Various package manag-

ers.

Release Deploying and releasing the

software to its respectable

target environments. Can

include multiple sub phases

from scheduling and provi-

sioning to more testing fea-

tures.

Various manual or auto-

mated processes across

various environments and

pipelines. Heavy focus on

continuous delivery. Many

application-release auto-

mation (ARA) solutions

available.

Configure Configuration of infrastruc-

ture storage and database,

network and application

provisioning.

Different configuration man-

agement, continuous con-

figuration automation

(CCA) and infrastructure as

code solutions.

Monitor Monitor and identify prob-

lems and analyze how they

affect the end-users. En-

hance methods and ways of

working based on the infor-

mation.

Use cases include perfor-

mance and reliability moni-

toring, user response and

experience feedback and

production metrics and sta-

tistics.

10

2.2 Continuous integration

As the idea of centralized and unified DevOps practices have emphasized the need of

the source code to exist in one robust place and be easily accessible for development or

release purposes, the use of remote source control tools has become commonplace.

The main purpose for continuous integration development practices focus on the ability

for multiple developers to integrate and fetch software code into a shared remote repos-

itory at any time. These integrations are often verified by using automated building and

testing of the software and therefore making it easier to find possible problems or defects

and prepare it for release and delivery. It is common to also automate the deployment of

the software at least on some level and depending on the scale of the project, whether it

is just creating an internal release or preparing it for the official delivery. [11; 16.]

2.2.1 Version control

Whether the codebase needs to be modified by a developer for a new feature or a bug

fix or a build or a patch is needed for a new release, it must be constantly available and

ready for actions. In revision control systems this is done by using a data structure called

repository to store metadata for a directory structure or a set of files. [12; 13]

There are two types of commonly used version control systems that utilize different tech-

nologies to store and distribute the source code and data. Centralized version control

systems follow the principle of having a single centralized repository containing the pro-

ject code stored on a server or on some other hosting service. Every commit made to

the repository is recorded and will automatically update any changed files or change-

sets upon pulling the contents. Some common centralized version control systems in-

clude Subversion, Perforce and CVS. [12; 13.]

Distributed version control systems or DVCS on the other hand apply the concept of

each contributor having their own server and a working copy of the remote repository on

their own workstation or server. This copy includes records of all repository branches

and a complete history of the code allowing local access and the possibility to work with-

out internet connection. The most popular distributed version control solutions include

Git, Mercurial and Bazaar. [12; 13.]

11

Both systems have their pros and cons and are and commonly used in software projects

of all sizes and all around the world, while distributed systems have started to take a lead

in the popularity. DVCS benefit from the ability to work offline, better performance for not

being reliant on fast internet connection to avoid locks or other networking problems,

easier branching and merging with powerful change tracking and not being dependent

on the main server’s performance or stability while retaining the possibility to get a

backup from any development instances. The differences of the version control systems

are displayed in figure 2. [12; 13.]

Figure 2. Graphical illustration of centralized- and distributed version control systems. [12.]

2.2.2 Integration pipelines

The concept of software pipelines was established to make the implementation, func-

tionality and accessibility of the continuous integration development practices as clear

and visible as possible. There are multiple use cases and solutions for the usage of the

pipelines, while most common of them in the sense of continuous integration is the au-

tomation and running of the build and integration processes to test and verify the devel-

opment product after each concrete addition, change or pull request made to the code-

base. [14.]

The pipelines consist of different stages with different jobs based on the purpose of the

pipeline. These stages and jobs are usually fully automated while providing logs and

other possible visualization to the development team. The order of the stages is im-

portant as the tasks are often dependent on each other or on the actions performed in

12

the previous stages, or in some cases even on different pipelines. Every failure or error

situation is recorded during the runtime of the pipeline and an appropriate message or

notification is sent to the responsible persons through various channels such as email,

instant messaging platforms or the continuous integration platform itself. [15.]

The stages of the pipelines are designed to be fully customizable depending on the tool

and the needs of the project but most common software releases that implement the

DevOps practices follow the same common stages of version control, continuous inte-

gration, continuous delivery and continuous deployment as displayed in the figure 3.

2.3 Continuous delivery

Continuous delivery is commonly seen as an extension of continuous integration with

the focus on releasing and delivering the latest changes on the software to the customers

as fast and smoothly as possible. The main thing to be added on top of the basic contin-

uous integration and its automated building and testing is the automation of the release

process. This kind of procedure combined with the passing of the tests in the earlier

phases means that the software product can be deployed at virtually any given time if

the developers so decide. A common practice is to decide on a release schedule that

suits the business requirements and the development cycles of the software project. It is

also advised to keep the deployments small enough and deploy them to production as

early as possible to make the possible troubleshooting easier. [14; 15; 16.] There are

multiple requirements and benefits introduced with the application of continuous delivery.

These are displayed in table 2.

13

Table 2. The requirements and benefits of continuous delivery. [14; 16.]

Requirements Benefits

- Strong continuous integration infra-

structure and large enough test cover-

age.

- Manually triggered automated deploy-

ment without human intervention.

- More dependent on stable release cy-

cles and the sizes of the deployments.

- Features and the development cycles

need more attention so that the in-

complete features do not affect the

production and the customers.

- The software iterations will be faster

due to the lowered risks and decision

making related to small changes.

- Faster test results and customer feed-

back due to the accelerated release

pace.

- Way less time and effort spent on pre-

paring and commencing the software

releases.

- Less dependency on operations with

enhanced security and integrated

compliance.

2.4 Continuous deployment

Continuous deployment is the next extension for continuous delivery and considered to

be the final step of the modern DevOps pipeline structure. At this point all the integration,

testing and release processes have been completely automated, and it is possible to

deploy and deliver the software directly to the customer without any human intervention

or other actions. If the complete process has been designed and implemented well

enough and the tests can be completely trusted, the need for separate release schedules

and procedures become insignificant. Therefore, the focus of the developers can be

completely directed towards developing the software itself, while maintaining the

DevOps practices on the side. A good example is a customer website or a service that

runs through the whole process and is directly updated and the feedback is received

straight away. [16.] The requirements and benefits are introduced in the table 3.

14

Table 3. The requirements and benefits of continuous deployment. [14; 16.]

Requirements Benefits

- The testing solution needs to be com-

plete and as reliable possible since

there is a direct relation to the deploy-

ment of the system.

- Monitoring and planning of the devel-

opment is especially important as all

the passed builds have a direct impact

on the complete system and the cus-

tomer.

- The documenting system other proce-

dures need to be able to keep up with

continuous deployments.

- Faster, smoother and more flexible

development times and processes.

- The automated processes make the

improvements to the DevOps environ-

ment easier in the future.

- The deployments tend to be smaller

and therefore less risky and easier to

fix if needed.

- The continuous results and improve-

ment can be directly seen by both the

customer and the developers.

Figure 3. The complete process of modern DevOps development pipeline. [15.]

15

3 Software testing and project management

From the days of manual testing to the future of ever-increasing number of automated

tests and smart processes, the concrete idea of software testing has remained simple,

yet important. Keeping the quality of the software high by evaluating its performance and

functionality by finding out whether it meets the given specifications and requirements,

while also remaining as bug free as possible has been the main goal since the beginning

of software testing. With the increased value seen in the testing, the development and

release processes of every production or commercial level software company should

and will nowadays incorporate some sort of testing practices in their ways of working.

[17; 18.]

3.1 Software life cycle and testing models

Without going too much in detail with the testing content itself, the project and testing

team usually sets on following a specified testing model and approach depending on the

needs of the current project or other regulations or requirements. These ways of working

are also highly dependable on the higher-level company demands and other entities

such as the development teams. Some fields such as medical, banking or law related

ones require more specific documentation, fulfilment of given standards and other regu-

lations depending on the severity, complexity and the needed deliverables of the product

under development. Each of the common SDLC models has its advantages and disad-

vantages and the more complex and often time-consuming processes may not be as

flexible and are usually harder to change or modify. [17; 18.]

3.1.1 Waterfall model

The waterfall model is often considered the most traditional and basic software develop-

ment- and testing practice. The model is still widely used and consists of a sequence of

different stages or processes which each are dependent on the previous one and there-

fore form the shape of a waterfall flowing down to the goal and the completion of the

project. [18.]

The structure and the different stages of the waterfall model are shown in figure 4.

16

Figure 4. The stages of a software development waterfall model. [18.]

The waterfall model is most suitable for a project with the following conditions:

• Project duration is preferably short.

• Requirements are well defined and there are no undefined or ambiguous
requirements.

• Resources, tools and manpower are available from the beginning in order
to support the project.

• The product definition is stable, and the project is well documented.

• The technology and tool decisions are understood and in place.

Table 4. The advantages and disadvantages of the waterfall model. [18; 19.]

Advantages Disadvantages

 Easy to implement, follow and main-

tain

 Clearly defined stages with specific

deliverables, review processes and

elaborate documentation

 The requirements are clear as the

phases are dependent on each other

and the stages must be completed in

order

 Very strict and quality assurance ori-

ented

 Lack of adaptability across the stages

 High amounts of risk and uncertainty

as there is very little space for errors

and delay

 Very hard to change the original plan

and requirements

 High need for documentation that also

eats other team resources

 Testing period is located quite late in

the waterfall process

 Even small changes in the end prod-

uct can cause a lot of problems

17

3.1.2 V-model

The V-Model is often considered to be a remarkable upgrade or an extension for the

waterfall model and regularly thought to be the solution for the disadvantages of the

previous model. The biggest improvement compared to the waterfall model is the con-

cept of associating each development stage with a corresponding test phase. This is

done to combat the late testing stage and the laborious modification process after testing

in the waterfall model. The V-model is formed by multiple verification and validation

phases that are planned in parallel with the development and executed in a sequential

format. These testing phases can also be directly associated to their counterparts on the

other side of the model diagram, with development being the middle ground like dis-

played on figure 5. [20.]

Even with this approach it is still very much required to have as clear requirements as

possible in the beginning of the project to minimize the possible unwanted or unsched-

uled changes to the final product. [20.]

Figure 5. Visual representation of the V-model and the associations between the verification
and validation stages. [18.]

18

The V-model is most suitable for a project with the following conditions:

• Preferably short project duration.

• Project within a strictly disciplined domain like the medical field.

• Well defined requirements, specifications and documentation similarly to
the waterfall model since it is still not preferable to backtrack and make
changes later in the project.

• The correct personnel and technology to accommodate the more compli-
cated and laborious process.

Table 5. The advantages and disadvantages of the V-model. [17; 20.]

Advantages Disadvantages

 Easy to manage and highly disciplined

due to the step-by-step structure and

the rigidity of the model.

 Specific deliverables and review pro-

cess for each phase.

 Good fit for smaller projects with clear

requirements.

 Good success rate and defect track-

ing due to early planning and constant

testing with multiple test phases.

 Not suitable for complex or long and

ongoing projects.

 Inflexible and difficult to respond to

software or requirement changes dur-

ing the testing phases.

 Higher level of risk and uncertainty

with less precisions.

 Fully working software is produced

only in the later stages and the devel-

opment process is not clear to the cli-

ent.

3.1.3 Agile model

The concept of the Agile Model combines the incremental and iterative processes and

focuses on process adaptability, flexible operations and customer satisfaction. This is

achieved by rapid development, testing and delivery of working software in smaller in-

crements completed in timeboxed iterations. Each iteration commonly lasts from one

week to three weeks depending on the length and complexity of the project as well as

the given resources. The flexible Agile functionality is carried out by using the concept of

cross functional teams working simultaneously on all areas of the project and by com-

prehensively communicating and planning throughout the iterations. [21.] These areas

are displayed in figure 6.

19

Figure 6. The working areas of the Agile focused used in the working iterations. [18.]

The Agile model is most suitable for a project with the following conditions:

• Projects with fixed schedule and the possibility to comply with the settled
length of the iterations.

• Adjustable scope in order to preserve the set schedule.

• Adaptable project and team with cross functional teams.

• Compliant with organizing work into small deliverables.

• Committed to the idea of accepting and adapting to quick changes and
delivering value incrementally over time.

20

Table 6. The advantages and disadvantages of the Agile model. [21.]

Advantages Disadvantages

 Little to no planning required with min-

imal resource requirements.

 Very realistic and suitable for software

projects of multiple sizes, configura-

tions and teams.

 Easy to manage with the ability to pro-

vide flexibility to the cross functional

teams.

 Suitable for fixed or changing require-

ments and steadily developing envi-

ronments.

 Rapid and concurrent development

with the delivery of early functionality

and partly working solutions.

 Makes the handling of complex de-

pendencies hard.

 High individual dependencies and de-

pleted knowledge transfer due to the

minimal documentation and the roles

required to follow the Agile methodol-

ogy.

 Added risk of sustainability, maintain-

ability and extensibility.

 The scope, functionality to be deliv-

ered and the modifications of the pro-

ject are dictated by the strict delivery

management.

 Highly dependent on customer and

stakeholder interaction.

3.1.4 Iterative model

The iterative model is started with a small set of requirements needed for the functional

part of the software which is then enhanced and developed in iterations until the com-

plete system has been implemented and is ready for deployment. Each iteration pro-

duces a separate component or a version of the system which is then added or included

to the earlier version or a specific function. Each of these components goes through all

the iterative phases that include evaluation of the requirements, further design, develop-

ment and implementation and finally the testing stage. The design and execution of the

testing phase is a highly important part of the iterative process, and the meticulous and

accurate verification and validation of the software components must be repeatable and

extended throughout the process. [22.] The iterative process is illustrated in the figure 7.

21

Figure 7. The order of the iterative model phases. [18.]

The Agile model is most suitable for a project with the following conditions:

• The prerequisites and specifications of the complete project are well un-
derstood and defined with minimal changes.

• A new technology is going to be applied and requires learning or configu-
ration during the project.

• A changing need or availability in resources and skill sets based on itera-
tions. For example, the use of contractors or consultants.

• Possible high-risk factors with increased probability of modifications.

• The market constraints are taken in account.

22

Table 7. The advantages and disadvantages of the Iterative model. [22.]

Advantages Disadvantages

 Early production of working function-

ality.

 Easily measurable early and periodi-

cal progress and results with clear

milestones.

 Moderately easy and cheap to make

changes to the requirements or the

scope of the project.

 Very efficient testing, verification and

validation progress that is easily split

into iterations.

 Easier risk management with fast and

early detection, decreasing risk factor

and easy analysis.

 Suitable for larger scale and mission-

critical projects.

 The process may require more project

resources.

 Changing requirements or project

scope are still not recommended even

with the lesser cost.

 Higher attention from the manage-

ment is required.

 Architecture or design problems are

likely if the requirements are not clear

in the beginning.

 Not very suitable for smaller projects.

 The planning and definition of the iter-

ations may require complete

knowledge of the complete system.

 High need for good risk analysis as

the end goal may not be fully clear.

3.1.5 Spiral model

The Spiral model is a combination of the systematic and controlled aspects of the linear

models and the timeboxed approach of the iterative process models. It aims to fuse the

ideas of sequential linear- and the iterative development together by having a high em-

phasis on risk analysis and by allowing the incremental releases and refinement over the

spiral iterations. [23.]

The spiral model consists of four phases that are repeatedly passed through as the

project progresses. The iteration starts with the identification and planning phase where

the initial business requirements are gathered when the baseline spiral is formed for the

first time. The need for prospective subsystem- and unit requirements are identified

during the consecutive spirals and as the project develops. The monitoring and the

understanding of the system requirements are also identified in close communication

with system analysts and the customer. [23.]

23

The next phase focuses on design and risk analysis and outlines the baseline spiral with

the conceptual design of the project and continues architectural design, physical product

design, logical module design and the final design in the following spiral iterations. The

Coding, building and implementation is the third Spiral model stage and starts with a

baseline Proof of Concept that is developed and used to collect feedback for the further

iterations. The later spiral repetitions with higher proof and knowledge of the

requirements and desing are used to perform the actual development and testing. New

build is prepared after each spiral cycle and sent to the customer for futher feedback.

The fourth and final phase is called the evaluation and risk analysis phase where the

estimating, identifying and monitoring of the management and technical risks are

performed. After testing the software the customer actively evaluate the build from the

previous iteration and produce feedback based on it. [23.]

The customer evaluation and feedback plays a huge role in the design and

implementation decisions as the development and testing process moves from iteration

to iteration in a linear fashion and by following the spiral model throughout the software

life cycle as displayed in figure 8. [23.]

Figure 8. Representation of the flow of the spiral model. [18.]

24

The Spiral model is most suitable for a project with the following conditions:

• There is a high expectation of changes in the product during the develop-
ment.

• If the product is new and should be released in phases in order to get
enough feedback from the customers.

• The project requirements or specifications are complicated and need clari-
fication and more evaluation.

• The requirements given are not clear or well enough defined by the cus-
tomer.

• Preferably medium to high-risk projects.

• When budget constrains are probable and risk evaluation is needed.

• High and long-term commitment towards the project due to the possible
changes to economic and other requirements during the execution of the
model.

Table 8. The advantages and disadvantages of the Spiral model. [23.]

Advantages Disadvantages

 Good risk management due to the

possibility to divide the development

cycles into smaller parts and therefore

leaving the riskier parts to be devel-

oped earlier.

 The proof of concept is developed

early and is directly visible to the cus-

tomer.

 Allows prototypes to be used and

evaluated extensively.

 Accurate capturing and tracking of re-

quirements.

 Possibility to accommodate changes

in requirements and specifications.

 The length of the process may be un-

known, and the spiral process may ex-

tend indefinitely.

 Excessive documentation is required

due to the large number of intermedi-

ate project stages.

 Overall complex development and

management processes.

 Unsuitable for small or lower risk pro-

jects due to possible expenses.

25

3.2 Testing process

Much like the bigger picture of the project level software development models, the testing

parts or phases of the project can be sequenced in their own life cycles or STLCs. The

testing models may vary depending on the chosen development model but often follow

similar steps that produce similar output, documentation and deliverables. [24].

The testing life cycle starts with the requirement phase where the software requirements

are analyzed and evaluated in order to find out whether the requirement in question can

be tested or not. The goal is to help identify the scope of the testing needed for a certain

feature or the development phase in question and develop a mitigation strategy for any-

thing untestable. After the requirement phase the life cycle continues to the planning

phase. The goal of this phase is to identify and define the activities and resources as

well as to identify the tracking metrics in order to help meet the wanted testing objectives.

The test strategy and the risk analysis for risk mitigation and management are also cre-

ated during the planning phase. [24.]

The third phase is called the analysis phase that concretely defines what is to be tested.

The test conditions are identified by going through the requirements, risks and other test

bases while retaining the ability to trace the conditions back to the requirements. The

conditions increase the test coverage and should be written with care since they will be

later used as a basis for the test cases. There are multiple factors that affect the identifi-

cation of the test conditions. These include the complexity of the product, the project risk

factors, the development process chosen for the project, the management of the tests,

the team and skill resources, the availability of the stakeholders and finally the overall

depth and levels of testing. [24.]

The previous phase defined what needs to be tested and therefore the fourth stage called

the design phase determines how the tests should be implemented and executed. The

design phase consists of detailing the test conditions and breaking them down to multiple

sub-conditions in order to increase test coverage, getting and identifying the test data,

establishing and setting up the test environment and finally creating the test coverage-

and requirement traceability metrics. After all the identifying and detailing it is time to

create the actual test cases in the fifth phase known as the implementation phase. The

comprehensive test cases are created and prioritized while also identifying which of them

are going to be a part of the regression suite. Specified reviews are then held to ensure

26

the correctness and unity of the finished test cases. The possibility to automate any of

the designed test cases is also evaluated during this phase. [24.]

The sixth phase marks the time to start the execution phase and put the implemented

test cases in use. The tests go through the entry criteria check, the actual running of the

tests, defects logging and other ways of checking any possible discrepancies, while filling

the traceability metrics during the test execution. After the test have been carried out, it

is time to move to the conclusion phase where the exit criteria and other test outcome

are carried out with the help of reporting. The contents and the frequency of the reports

change depending on the recipient of the reports. The direct testing background such as

the managers are usually more interested in the technical details such as the number of

failed or passes test cases and other defects while the stakeholders and other customers

like to hear about the risks and how they are handled or mitigated in the project. The final

phase of the STLC is called the closure phase and is used to conclude the whole testing

process with the means of checking if all the planned and designed tests cases are

properly executed, and if the test outcome is investigated and properly mitigated if

needed. It is important to check whether any sever defects are open and whether every-

thing is ready for the next possible testing process. The phase often includes feedback

meetings and documentation with possible improvement ideas. [24.] The big picture of

the software testing life cycle is illustrated in figure 9.

Figure 9. The progress of the software testing lifecycle. [24.]

27

3.3 Test artifacts

The so-called test artifacts are an important part of software testing and are used to

provide transparency among the team members, clients, stakeholders and other lead

and manager roles by enabling the sharing of requirements, tracking the changes in the

software and following the testing activities in the form of different reports and other de-

liverables. Multiple different test artifacts are prepared and generated during the various

phases of the testing process and life cycle. [25.]

The test strategy is provided in order to create guiding regulations that further enhance

the test design and administer how the testing needs to be executed. Often prepared by

the test manager and made available for anyone in the team, the test strategy mainly

sheds more light on the areas of the testing tools, techniques, infrastructure, communi-

cation and the overall process. Although similar in naming and easily confused with the

test strategy, the test plan differs quite a bit and supplies a different part of requirements

of the software project. It focuses primarily on the approach, objective and the score of

the testing and is mainly used for the formal testing of the software. The test plan sys-

tematically covers the areas of identifying the tested features, the tasks to be performed

during the testing process, the extent of test independence, the techniques for designing

the tests and the usage of the entry and exit criteria. The plan and the focus areas are

highly reliant on the implementation of the used processes, standards and the test man-

agement tools during the course of testing. [25.]

Another important and very practical deliverable is the test case. They are usually re-

garded as the beginning of the test execution and are primarily designed to verify the

correct features, behavior and functionality against the given requirements. A test case

contains a name for the test case, an test case specific unique identifier, a description of

the test case with a reference to a requirement from the design specifications, the flow

of the test execution with preconditions and the needed events, the predicted and the

factual results and outputs as well as other reports and details about the test execution.

In order to perform and report the results of the tests some test data is needed. This is

required and stands for the manual or automatic input that is systematically given to the

tested software. Poor design of tests cases and the input may affect the ability to run all

of the test scenarios and therefore bring down the quality of the testing and the software

itself. [24.]

28

An important part of test artifacts are the table formatted test matrices. The requirement

traceability matrix illustrates the relation between the requirements given by the devel-

opment team, or the client and the requirements used in the validation process. The goal

of this matrix is to make sure that all system requirements are specified and are included

in the test protocol by tracking the requirements against the concrete test cases. Another

essential test matrix is the test coverage matrix that is used to measure the testing vol-

ume and performance of a set of test cases while providing software component data.

The coverage matrix assists the testers on creating test cases that fulfil the test coverage

requirements and helps them to seek for the requirement areas that are not resolved by

the test cases during the testing process. [25.]

Today’s testing conventions emphasize the role of automation and efficiency and have

started to invest more and more resources in these areas. The test script artifacts define

the information and instructions to perform in order to validate the performance of the

software under test. The scripts are an especially important part of automated testing.

[25.]

The reporting phase is as important part of software testing as the designing and running

of the tests themselves. To begin, the test log is used to record all information regarding

the completed tests that can be helpful to the testing team. It includes information such

as the test naming, date and time, execution status and the noted errors. Another report-

ing related artifact is the defect report. It is generated during the software testing process

and is constructed of all encountered errors, defects, bugs or any other divergencies

detected. It is desired to define the found irregularities in a way that they can easily be

reproduced, investigated and fixed by the developer team. The report is used to help the

developers notify and act on the found defects in order to make the quality of the software

better. To summarize the completed testing cycle, a test closure report is assembled.

The report contains the process details such as the activities performed that are then

used to clarify them to the project managers and other stakeholders. The document is

prepared when the exit criteria is fully met and is usually created by the testing team

lead. [25.]

29

3.4 Testing approaches

The testing approaches are regarded as the way of defining how the testing of a project

or a part of it is performed. The commonly used approaches can be divided into static,

dynamic and passive groups of which the static approaches are usually implicit, include

verification and consist of different inspections, reviews and walkthroughs. The dynamic

testing however also includes the validation phase and processes a set of test cases that

are executed during software runs and that are divided into appropriate sections as well

as administered to discrete modules or functions. In some suitable cases the passive

testing is also applied and is carried out without any interaction with the software under

test. The passive nature of this category of testing does not include any testing data but

incorporates the investigation of system logs and other different traces that may reveal

specific patterns or other related behavior to act upon. [33.]

Figure 10. Illustration of the different box model testing approaches. [26.]

30

3.4.1 Black box testing

The black box approach is based on the idea of testing the Application Under Test (AUT)

without any knowledge or specific information about the code structure, internal paths,

connections or other implementation details. The whole testing process relies completely

on requirements and specifications given to the software project and the focus is targeted

towards the inputs and outputs of the Application Under Test. This type of testing is

sometimes also referred as Behavioral Testing. [27; 28.]

The tested application can be pretty much any kind software system such as a website,

a desktop application or a database, since the internals of the application do not need to

be known or accessible and the evaluation is done by comparing the input values with

the output values. The high-level goal of the black box testing is to test the functionality

of the system under test as a whole and is often seen applied to integration-, system-,

regression- and acceptance testing levels as functional or non-functional. Black box test-

ing relies on different testing techniques such as boundary value analysis, state transition

testing, comparison testing, error guessing, decision table testing, equivalence partition-

ing and different graph-based testing methods. [27; 28.] The relevant parts for black box

testing are displayed in figure 10.

Table 9. The advantages and disadvantages of black box testing. [27.]

Advantages Disadvantages

 The knowledge of the software imple-

mentation or related programming

languages are not needed.

 The designing of the test cases can be

started when the specifications are

complete.

 The developer relation and non-objec-

tive perspective can be minimized by

using and independent party to run

the tests.

 The user focused testing and per-

spective helps to discover any dis-

crepancies in the software specifica-

tions.

 The tests can become redundant if the

developers or designers have already

run a specific test case.

 Conflicts can happen if specific test

cases end up requiring knowledge

from the black box.

 There is a limit for testable inputs

meaning that multiple program paths

are going to be left untested.

 The test cases can be difficult to de-

sign due to the unclear nature of the

black box testing specifications.

31

3.4.2 White box testing

White box testing or as sometimes regarded as clear box or glass box testing is a soft-

ware testing method where the inner details of the software under test, such as different

structures, the design and the implementation are known and visible to the tester. It is

usually required for the testers to be familiar and understand the functionality and imple-

mentation of the software as well as to be programmatically adept. The testing is mainly

done by applying inputs that follow the flow and the implementation of the application

and then determining applicable outputs for them. White box testing goes beyond the

provided user interface and much further into the inner details of an open system, hence

being called white box testing displayed in figure 10. [29; 30.]

White box testing is commonly applied to System level-, Integration- and unit testing

levels of which the unit testing usually plays the biggest role. It is associated with testing

techniques such as path-, branch- and statement coverage and extends into areas like

data flow testing, path testing, loop testing and code-, segment-, compound condition

and branch coverages. [29; 30.] The applicable parts for white box testing are included

in figure 10.

Table 10. The advantages and disadvantages of white box testing. [29.]

Advantages Disadvantages

 It is possible to cover most of the test-

ing paths due to the thorough testing

and the transparent structure.

 The readiness and the implementa-

tion of the software does not hinder

the testing and it can be started

sooner.

 The fact that the testing is heavily de-

pendent and bound to the application

under test can lead to some imple-

mentations or platforms being unavail-

able.

 The testing requires good knowledge

of the software implementation and

programming in general.

 Any modifications to the software can

also affect the test scripts or flow and

may require maintenance.

32

3.4.3 Grey box testing

Grey box testing is the middle ground of the black- and white box models. In this model

the testers have limited knowledge and information about the inner functionality of the

software system while still having access to requirements, specifications and other com-

prehensive design documents. Instead of direct access to the codebase and the imple-

mentation, the testers utilize different documents such as UML- and architecture dia-

grams or other state-based models. The most used testing techniques for grey box ap-

proach include regression-, matrix-, pattern- and orthogonal array testing. [31.] The ap-

propriate components for grey box testing can be found in figure 10.

Table 11. The advantages and disadvantages of grey box testing. [31.]

Advantages Disadvantages

 A good middle ground in designing

complex test case scenarios.

 Combines advantages of the black-

and white box models.

 Based on multiple functional specifi-

cations and architectural documents.

 Acts as and helps to define the bound-

ary in between the developers and the

testers.

 The association of defects may prove

difficult when testing specific types of

software configurations, e.g. distrib-

uted systems.

 Some parts of the more specific inter-

nal implementation provided in white

box testing or the simplicity and user

focused basis of black box testing are

never fully reached.

3.4.4 Exploratory testing

Exploratory testing is an alternative for the popular box model approaches and is com-

monly used in Agile models and projects where there is a need for an early iteration,

there is a demanding application or if the testing resources include experienced or com-

pletely new testers. Instead of designing and creating the test cases in advance, the

testers check the system and go through it with minimal previous details or notes. The

approach relies on the concurrent processes of test design and execution and empha-

sizes investigation, analysis, learning and the responsibility and freedom of the testers.

The exploratory testing process often consists of five phases that are also called the

session-based test management cycle. [32.]

33

1. Classify and categorize the common types of faults and bugs from previous or

similar projects and evaluate their root causes while finding possible risks and

noting down related test ideas.

2. Create a small-scale test charter that proposes what to test, how to test and what

needs to be noted down or investigated. The document can also include concrete

test or application usage ideas and details.

3. Execute the time boxed testing individually or in a pair. Try to achieve a limited

time session without interruptions, react to the functionality and output of the sys-

tem and note down all findings.

4. Review and evaluate the defects while analyzing the test coverage areas. Try to

learn from the testing process and consider what could be tested the next time.

5. Perform debriefing by compiling the test results and comparing them with the

charter written in the beginning of the process. Find out the need for any further

testing or supplementary tests.

Table 12. The advantages and disadvantages of grey exploratory testing. [32.]

Advantages Disadvantages

 Rigorous, structured and easily taught

and managed.

 Intellectual approach helps to improve

the productivity and discover defects

that might be ignored by other testing

methods.

 Testing does not demand any require-

ment- or specification documents and

can be performed in a short time.

 Generates new ideas and testing

methods during the testing process.

 Highly dependent on the tester and

their imagination and cognitive skills.

 Not suitable for longer or more official

testing processes or projects.

 Defined by the tester’s knowledge of

the tested application and domain.

 Some defects are likely to be missed

since the testing is rarely thorough.

34

3.5 Software testing levels, -types and techniques

3.5.1 Testing levels

The practical software testing process is commonly divided into three main levels of unit

testing, integration testing and system testing with the typical addition of acceptance

testing level. These levels are used to group the smaller parts of the complete testing

process into larger sections based on the specificity of the tests or their time of addition

in the software development lifecycle. The chosen SDLC and its characterized phases

like setting the prerequisites, project design, analysis, development, testing, and deploy-

ment are all tied together and undergo the process of the software testing levels. [34;

35.]

Unit testing focuses on verifying the functionality of smaller components or modules of

the software. Each unit is isolated and used to perform tests to make sure that it fulfills

the given requirements and its initial purpose. The tests are often the first or an early part

of the complete software testing cycle and the development process. Unit tests are usu-

ally written by the developers during or after working on the software component in ques-

tion. They are typically performed on the class level and commonly utilize at least con-

structors and destructors. Other common unit testing methods include code reviews,

code coverage analysis as well as other techniques such as static code-, metrics- and

data-flow analysis. The strength of unit testing lies in detecting and combatting the pos-

sible errors in the early development phases or during the development, and without

having to return to the foundations of the code in the later phases or close to the software

completion. [34; 35.]

The second testing level is called integration testing. It intends to test and combine dis-

tinct parts of the software and their interfaces to confirm the functionality of the unit

groups or modules and their communication and interaction together. The testing can be

commonly split into top-down and bottom-up integration methods from which the testers

choose the desired option. The recommended bottom-up integration tests so called mod-

ules consisting of high-level sequence of smaller units in more intricate scenarios by

utilizing the results of the completed unit tests. The other way is to follow the top-down

method that is used to test and study the modules in complexity order, starting from the

more complex modules and moving to the simpler ones. Integration tests are usually

35

larger and more complex than unit tests and therefore also produce larger traces that

make the fault localization and detection harder. [34; 35.]

After testing the different modules of the software, it is time to move into system testing.

Like the name suggests the goal is to test all the software components, modules, and

interfaces as a whole system to find whether the complete software fulfills the specified

requirements. The aim is to perform the testing in an environment that reassembles the

end user or customer environment as well as possible. The testing team makes sure that

the complete system runs fluently in the desired operating system and confirms that it

meets the initial business requirements. System testing usually includes performance-,

reliability-, security- and load testing. [34; 35.]

The final level of the four common testing levels is called acceptance testing. Now that

the software should already be in a well-tested and verified state, it is time to determine

whether it satisfies the end-user requirements and specifications and is ready for deploy-

ment. The tests are often conducted on a user system and done by following pre-written

test cases and scenarios that range from simple cosmetic or other minor mistakes to

bugs that may lead into major problems or malfunctions. There are often numerous con-

tractual and legal reasons that require that the acceptance testing is carried out depend-

ing on the scale and the usage of the software product. [34; 35.]

3.5.2 Testing types and techniques

Multiple different concrete software testing techniques can be applied on different testing

levels and depending on the type and needs of the project. These types and techniques

are commonly split into two main categories of functional and non-functional testing. [36.]

Table 11. Illustrates a comparison between the two categories

Functional testing refers to the kind of testing techniques that make sure that the software

functionality performs according to the requirement specifications. The goal is to test the

user interfaces, databases, APIs, software security, client – server applications and the

application as a whole and with the appropriate input and then compare the received

results with the predicted results. The testing can be manual or automated and is mainly

performed as black box testing and therefore the source code does not need to be visible

to the testers. Common functional types techniques include smoke testing, integration

36

testing, unit testing, regression testing, sanity testing, acceptance testing as well as glob-

alization, localization, and interoperability techniques. [36.]

On contrary to its opposite, non-functional testing focuses on the less practical sides of

the software with the idea of explicitly making sure that the application is complete by

the standards that the functional testing does not cover. Non-functional testing plays a

big role in terms of customer satisfaction and therefore concentrates heavily on usability,

reliability, and the overall performance of the software, with the baseline of efficient and

smooth running under any given condition. As non-functional testing can often be found

quite cumbersome and deals with aspects like accuracy, correctness, durability, stability

and especially time, it is often heavily automated instead of performed manually. Typical

non-functional testing techniques consist of usability testing, performance testing, load

testing, compliance testing, stress testing, portability testing, volume testing, recovery

testing, reliability testing and scalability testing. [36.]

Table 13. A comparison between functional and non-functional testing categories. [36.]

Criterion Functional testing Non-functional testing

Target area
following the customer require-

ments

Fulfilling the customer expecta-

tions

Requirements

Functional requirements are

clear and easy to specify and

are achieved using the func-

tional specification

Non-functional requirements are

difficult to specify and are

achieved using performance spec-

ifications

Purpose
Validation of the correct soft-

ware behavior

Validation of the performance, us-

ability and reliability

Implementation
Executed before non-func-

tional testing

Executed after the functional test-

ing

Functionality
Illustrates what the software

product does

Illustrates how the software prod-

uct works

Testing form
Straightforward and commonly

performed manually

Complicated to execute manually

and typically automated.

Example Validation of the login process

The estimated time it takes for a

dashboard to load

37

3.6 Automated testing

In order to make the process of software testing as fast, easy, reliable and efficient, the

interest in the usage and development of automated testing has gained a lot of attention

in the recent years. Instead of manually executing the tests by using human testing re-

sources, the tests are performed automatically with the help of different test automation

software tools. The common tasks of the test automation consist of executing different

test case suites, inserting test data into the system under test, analyzing and evaluating

the test results and comparing them with the expected results as well as producing com-

prehensive test reports. Setting up the automation environment can often be difficult and

time consuming and usually requires noticeable investments of both money and other

resources. The essential goal of is to be able to automatically execute the test suites

repeatedly and without human intervention while providing and recording the tests re-

sults. Test automation has become an important part of the software development- and

testing cycles and acts as a significant addition alongside manual testing. [37.]

There are multiple types of automation testing that include the automation unit tests, API

testing, UI based testing, smoke testing, integration testing, regression testing, security

testing, acceptance testing, data driven testing and many other use cases. [37.]

4 Project tools, requirements, and execution

4.1 Requirements and the goal

The initial goal of the project was to enforce and create a new DevOps platform based

continuous integration and internal release solutions with a heavy focus on test automa-

tion. The project already had a platform for the system as the old source code and work

history had been transferred over from an older system.

The plan was to start with a stable automated system for inhouse software releases by

utilizing custom build- and release pipelines with the addition of needed software agents,

servers, and other tools. Another important addition to the system was going to be the

utilization of test automation as well as the use of other verification methods and report-

ing tools. The idea was to start the test automation by verifying the functionality of the

38

software installation packages and begin the creation of the automated testing platform

and the custom libraries that would allow further development and expansion for broader

testing purposes. Most of the testing would be performed in a Windows environment and

on an already existing instrument simulator made for the analyzer project.

The analyzer project itself is developed under strict IVD regulations and follows a very

particular verification and validation process to make sure the product is safe and reliable

to be used with real patient samples and data. This means that the actions performed by

the test automation will mostly perform integration pre-testing that will help to detect and

track down problems in an early phase of the of development of a feature as well as help

to improve the quality of the software by running regression and performance tests. The

testing platform and the tests suites could be verified and validated separately at a later

time in order to incorporate the automated testing as part of the official testing plan and

requirements.

4.2 Servers, services, and other tools

The complete environment for the continuous integration, automated testing and releas-

ing of the analyzer software consists of the Azure DevOps Services infrastructure and

related Microsoft-hosted agents running in cloud as well as two on premise servers which

one of them is virtual and the other physical.

The hosting and configuration of the cloud services are mainly done by Microsoft as the

service provider. The only needed manual configuration is related to the Microsoft-hosted

agents and is mainly limited to deciding the type and amount of the agents as well as

adding possible user-defined capabilities and defining how they work in parallel. Other

small related things that can be changed are the retention times for the builds and re-

leases as well as the build formats etc.

The creation of the installation package is done on Windows Server 2008 operation sys-

tem based virtual build server located on-site and by using InstallShield. InstallShield has

become one of the industry standards for creating software packages and installers for

mainly Windows based server and desktop systems. The InstallShield project is highly

configurable and customizable and includes multiple features regarding the easy instal-

lation of the developed software on the target systems. These features include for

39

example. Database services, prerequisite handling, version tracking, software patching

and upgrading support etc. The IS project on the build server consists of custom config-

urations and set procedures how the installation packages are constructed. The creation

of the installation package is started by running a specific build batch script and by gath-

ering the software components from the build artifact that was built and created in the

Azure DevOps Services cloud and then transferred to the build server. The InstallShield

project and the build script also create multiple log files regarding the installation package

creation. After the software version specific build script is ran successfully and the crea-

tion of the installation package is complete, it is transferred to the test server through the

company network file share.

The test server is a physical on-premise desktop pc that is running a windows 10 oper-

ating system. The purpose of the server is to run automated integration- and smoke tests

on the software installation package and the analyzer simulator software as well as re-

lease the tested package to its respectable destination as a part of the DevOps pipelines.

When the release pipeline reaches the testing phase and the installation package is

transferred from the built server, the self-hosted software agent begins running the tests

on the server. After the functionality and integrity of the installation package have been

tested, the server agent starts the release process and transfers the package to the re-

lease destination based on the given conditions. If the testing is unsuccessful or there

are any failed tests, the pipeline process is stopped, and the results are reported to mul-

tiple destinations. In addition to running the tests during continuous integration pipelines,

the server is also used for performing additional automated nightly integration tests.

The test server environment is kept as clean and simple as possible to save space, avoid

clutter and to keep the performance as good as possible. There are however a few utility

requirements on top of installed software agent, the test environment, and the tests pack-

ages. Most of the performed tests will be using the graphical user interfaces of either

Windows or the instrument simulator and will therefore need a preferably uninterrupted

interactive session. This is achieved with the correct service user account rights to over-

write the normal company user policies such as setting the server to a no sleep state

and configuring the auto logon feature to make sure the server is ready when needed.

Other requirements include disabling the user access control in order to disable security

pop ups that cannot be handled by the automation, disabling Windows auto updates,

enabling the Microsoft Message Queue and installing the analyzer software require-

ments such as .NET service package, SQL Server for the databases and the USB CAN

40

driver for the simulator. The software agent listening and executing jobs are displayed in

figure 11.

Figure 11. The self-hosted software agent listening and performing jobs on the test server.

4.3 Azure DevOps

The Azure DevOps Services by Microsoft was chosen to be the platform for the project

as it was the direct successor to the previous solution called Visual Studio Team Services

which was also formerly used as the main development service of the analyzer project

in question. The Azure DevOps platform was introduced by Microsoft in 2018 to offer a

uniform and comprehensive solution to serve the software industry in all scales and

forms. The main functionalities of Azure DevOps include extensive work management

and Agile tools, version control and repository system, continuous integration and con-

tinuous deployment pipeline management as well as different testing, monitoring and

marketplace extendibility. The DevOps service is divided into cloud- and local solutions

that are also designed to work together. The analyzer project uses the cloud solution for

its versatility and easy accessibility. [38.]

4.3.1 Version control

Azure DevOps offers a versatile version control solution in the form of Azure Repos that

consists of a set of version control and management tools suitable for businesses and

software projects of any size. The solution supports both Git distributed version control

system and the centralized Team Foundation Version Control by Microsoft. The Git op-

tion is often chosen due to its reliability, ease of use and provided offline working func-

tionality. Azure Repos provides standard Git as the default option but offers great

41

extendibility towards multiple Git clients and tools of choice. This also means a great

connectivity and integration with multiple different development environments. All

branching and pull request functionality together with Git API and semantic code search

concepts are built in and conveniently available through the Azure DevOps services.

[39.]

All the source code related to the Instrument control software of the analyzer project was

previously located in VSTS source control repositories and was transferred over to the

Azure Repos upon the release of the Azure DevOps services. Most of the development

is done in .NET environment using Visual studio as the development environment with

direct connection to the Azure Repos.

4.3.2 Software agents

Azure DevOps provides two kinds of software agents that run and orchestrate pipeline

or other automated jobs on either on self-hosted machines and servers or Microsoft-

hosted virtual machines. The Microsoft-hosted agents are used to run tasks directly on

Microsoft virtual machines or containers and therefore the updates and other mainte-

nance of the agents are done automatically and do not require additional attention from

the user. When a pipeline is run and a set to run on Microsoft-hosted agents, a free and

suitable account is selected from the agent pool and then discarded after performing the

given job. The self-hosted agents however are more customizable and require more work

to set up, configure and maintain. They can be installed on multiple operating systems

and can also be ran on containerized environments. The capabilities and demands as

well as the amount of both agent types can defined by the user. [40.]

42

The DevOps solution for the analyzer project utilizes a pool of multiple Microsoft-hosted

agents for building the software in the cloud and two self-hosted agents on the build and

the release server to handle the creation of the installation package and the automated

testing of the analyzer software. The installation and configuration of a self-hosted ac-

count on the test server running Windows 10 as the operating system follows the next

steps. The configuration screen of a self-hosted Azure agent is displayed in figure 12.

1. Add the agent to the desired agent pool in the Azure DevOps project settings

while making sure that the user has the correct rights to configure and manage

the agent and is able to generate a personalized access token to ensure the

connection between the agent machine and the Azure services.’

2. Download the agent package making sure that the correct target operating sys-

tem and architecture are selected (64-bit Windows in this case).

3. Unpack and install the agent using the config.cmd file provided in the installation

package. Provide the needed information such as the organization Azure

DevOps Services URL and the corresponding PAT of the Microsoft account that

was used to create the agent.

4. Configure the remaining options and set or install the needed capabilities based

on the usage of the agent. Select whether the agent will be as a service or as in

this case interactively, since the test server and the agent need to perform Graph-

ical User Interface related tasks such as run some GUI tests. Install AzureRM

modules to enable the Azure resource manager capabilities. Rest of the needed

capabilities can be set and installed in the agent setting found in the Azure

DevOps agent settings and by restarting the agent. The agent can then run by

using the run.cmd file and should start automatically upon the machine or server

restart.

43

Figure 12. Azure pipeline self-hosted windows agent configuration screen.

4.3.3 Continuous integration and deployment pipelines

Azure DevOps Services offers a multi-purpose cloud-based pipeline functionality for dif-

ferent continuous integration and continuous delivery needs. The pipelines support mul-

tiple different programming languages and offer options for building, testing, deploying,

releasing, and delivering the software project. They are also very well integrated with

other Azure services and support multiple deployment targets such as container regis-

tries, cloud solutions and physical- or virtual targets as well as different package formats

like npm, Maven, NuGet or any other desired package management repository. [41.]

The pipelines mostly consist of different stages that include multiple tasks or jobs that

are run by either the Microsoft-hosted or self-hosted agents. The stages are triggered by

different triggers such as completed pull requests, finished builds, scheduled runs, con-

tinuous deployment or release triggers or any other custom pipeline trigger. Depending

on the type of the pipeline, the sources for the pipeline objects can either be the source

44

code of the project that is going to be built, packaged etc. or an software artifact or an-

other type of package that the pipeline actions will be performed on. The source code

can be fetched directly from Azure Repos or any applicable version control system such

as GitHub, and the artifacts from the built-in directory or any other provided source. The

tasks and jobs inside the stages consist of different operations related or performed di-

rectly on the pipeline objects. The tasks can be either built-in or custom, and the func-

tionality can include activities such as executing scripts or a piece of code, performing

building, packaging or publishing actions, running unit tests, handling files or completing

some monitoring or reporting operations. More ready-made jobs, tasks and integrations

can be found from the provided Azure marketplace. Each pipeline also has the possibility

to store and alter variables that can also be retained over the separate pipeline runs and

stored as parts of variable groups. The custom variables can be used in combination

with built-in variables to store information such as folder paths or version numbers. [41.]

The Continuous integration, testing and deployment of the analyzer project are divided

into two types of pipelines. First the build pipeline that handles the collection of the source

files from the Azure Repos, restoring the related NuGet packages, building the software,

running the unit tests, copying all the required software components and publishing the

build artifact. The build pipeline is triggered when a pull request is created or when it is

completed and the code is pushed into the repository. Figure 13. displays the structure

and the order of the tasks in the analyzer project build pipeline.

45

Figure 13. The structure and the order of the tasks in the build pipeline. (Some of the file copying
tasks have been excluded from the image for more clarity).

The second pipeline is called the release pipeline and is triggered after a pull request in

a respective branch is completed or an individual software installation package is

needed. The release pipeline is split into three stages and is responsible for retrieving

the build artifact, transferring it over to the build server, handling some prerequisites and

triggering the InstallShield build. After a successful building of the software install pack-

age, the pipeline operates the needed files and starts the automated testing process on

the test server as well as uploads and publishes the test results. If the automated tests

are successful, the pipeline checks for different release conditions and publishes the

tested installation package in the respectable location. The complete process consisting

of three phases of the release pipeline are displayed in figures 14, 15 and 16.

46

Figure 14. The structure and the order of the tasks in the first phase (build phase) of the release
pipeline.

Figure 15. The structure and the order of the tasks in the third and final phase (release phase) of
the release pipeline.

47

Figure 16. The structure and the order of the tasks in the seconds phase (test phase) of the
release pipeline.

48

Both pipelines use multiple variables to define file paths and transfer information such

as unique software version numbers between the servers and pipeline runs. Each ver-

sion of the analyzer software has its own corresponding build and release pipeline. The

pipelines can also be run manually at any time and in the case of the release pipeline,

the test phase can be skipped in order to obtain an untested build without waiting for the

automated tests to complete. The structure and a performed run of an example release

pipeline is displayed in figure 17.

Figure 17. The structure and the order of the phases of the release pipeline, starting from the
software artifact and continuing to the reorderable stages.

4.3.4 Azure portal, reporting and other features

The Microsoft Azure environment offers multiple other tools, services and integration

options through the Azure Portal. Some useful options include virtual machines, data-

base- and storage services, monitoring and container services. Most of the utilities pro-

vide either a built-in or third-party support for pipeline tasks or the Azure DevOps service

directly.

The analyzer project uses the cloud based Azure Blob object storage for publishing and

storing the automated testing results for the pipeline and nightly tests as well as the

software build logs and reports. The documents are stored into the project blob storage

container and separated into virtual folders and further into blobs that are easily acces-

sible through pipeline runs and shared inside the project team for smooth troubleshooting

or monitoring. The Azure Blob Storage is designed and optimized for the storage of large

number of unstructured data items that do not conform to any distinct definition or data

model. Therefore, the storage system is optimal for performing actions on multiple types

of data items such as storing items for distributed use, presenting documents for direct

browser use, writing to log files, storing data for analysis or backup and restore situations

or even streaming media files. The blob data objects can be accessed through

49

HTTP/HTTPS connection by either clients or applications via Azure CLI, Azure REST

API, Azure PowerShell or Azure Storage client library and they support multiple different

programming languages. [42.] An example of the contents of a virtual Azure Blob storage

folder can found in figure 18.

Figure 18. The analyzer project test automation result files inside an Azure Blob storage virtual
folder.

Another way to have the test results conveniently available right after the tests have been

performed is to use the Azure test services and publish the results directly to the cloud

service. The job takes the generated universal XUnit file containing the test results from

the test server and uses the information to store and display some of the test data directly

on the pipeline runs. This step and file information are also used to define whether the

tests have passed, and the pipeline can continue to the next phase or if there were any

errors that need to be reported. Figure 19. Displays an example of a XUnit based test

summary displayed in Azure DevOps.

Figure 19. An example of the generated test summary based on the XUnit test report file infor-
mation.

50

4.4 Automated testing and Robot Framework

One of the biggest improvements alongside the DevOps tools and pipelines is the be-

ginning and addition of the test automation functionality. It was important to consider and

choose suitable and optimal tools for the test automation of the analyzer project, espe-

cially when starting from scratch and designing the baseline of the environment. The

main attributes to be fulfilled were considered to be: easy to start with, easily expandable,

simple enough to be operated with minimal knowledge, technically customizable and

suitable for the project, compatible with the Azure DevOps environment, able to generate

reports for further investigation, preferably open sourced with minimal costs and the pos-

sibility to verify and validate the environment later in its life cycle. Based on further eval-

uation and previous experience, the main tool for the project was chosen to be Robot

Framework.

Robot Framework is an open source automation framework designed mainly for test au-

tomation and robotic process automation. The supportive funding and leading of the de-

velopment are mainly done by the Robot Framework Foundation which is a consortium

formed by multiple different supporting companies. The framework has gained a lot of

attention in the past few years and is constantly growing together with its user base which

ranges from individual hobbyists to large corporations. The source code with its official

documentation are globally hosted on one central repository and being open source

means its usage is completely license and cost free. Robot Framework is originally writ-

ten in Python but is application and operation system independent and can be developed

and extended in Java and .NET environments. [43.]

The main strengths of the tool include easy and open extensibility and usage, possibility

and flexibility to be integrated with practically any other system or tool, easy and under-

standable human-readable keyword syntax, separately developed built-in and custom

libraries and tools written in multiple programming languages, good documentation and

knowledgeable open source user base, built-in and easy to read logs and reports, as

well as its nearly endless use cases. These assets were also found to fulfill and support

the needs of the testing environment for the analyzer project very well. [43.] The high-

level architecture of Robot framework is displayer in figure 20.

51

Figure 20. High-level architecture of Robot Framework. [44.]

4.4.1 Environment and prerequisites

There are minimal requirements for the usage of Robot Framework, with the most obvi-

ous one being the installation of either Python 2 or Python 3, with the optional addition

of the needed interpreters for Java and .NET combability. For the easy installation of the

additional Robot Framework libraries as well as other Python tools, it is also recom-

mended to install the Python Package Installer (pip). The easiest way to install Robot

Framework itself is to use pip, however it can also be installed using a manual download,

a standalone Java archive or directly from the source code. Python needs to be added

to the Windows PATH variable in order to use the installers and operate Robot Frame-

work itself. [44.] Figure 21. Introduces the needed command line commands for installing

pip for Python and Robot Framework itself.

52

python -m pip install robotframework // Installing pip for python

pip install robotframework // Installing Robot Framework using pip

$ robot --version // Verifying the installation of RF

Figure 21. The needed commands for installing pip and Robot Framework. [44.]

The test execution can be done either by running the test files directly from the provided

robot script command line functionality or by including multiple test files into a directory

that is run as a complete package. The test execution commands are able to consume

multiple arguments and tags that define some of the main test properties such as output

file paths, output types, timestamps and fail conditions. Starting the test runs opens a

separate window for following the test flow which can also be piped directly into a text

file if needed. The correct setup of the PATH variable is required to execute the tests

using the command line. [43.] The different ways of executing Robot Framework tests

from the command line are displayed in figure 22.

robot example_tests.robot // Executing a single robot test file

python -m robot example_tests.robot // Executing the robot module di-

rectly with Python

python path/to/robot/ example_tests.robot // Executing the robot di-

rectory

robot --outputdir path/to/output --xunit xunitOutput --timestampout-

puts --exitonfailure example_tests.robot > path/to/outputtext-

file/test_output.txt // Executing tests with optional arguments

Figure 22. Different ways to execute the test suites or directories. [44.]

The automated tests for the analyzer project are performed in a Windows environment

and most of them utilize the analyzer software simulator that provides the functionality

and the graphical user interface of the analyzer without a physical instrument. The tests

are executed by running the corresponding robot directories and performed by the soft-

ware agent on the test server. The test structure and code are located in their own re-

pository in Azure DevOps Repositories and have their own integration pipeline for up-

dating the test folders.

53

4.4.2 Test structure

Robot Framework follows a hierarchical file structure when forming the test framework

and data. The high-level test structure is built so that the test cases are constructed in

test case files that automatically form the tests suites that correspond to the test file

structure. Test directories are formed by combining multiple test case files or other

nested directories and can also contain a special initialization file that is used to configure

the test suites inside the directories. Robot Framework also introduces multiple additional

files to support the functionality of the test suites. These files include test libraries that

contain a collection of lower level keywords for building test cases, resource files with

higher level keywords and custom variables, as well as designated variable files that

introduce additional ways to create and manage variables. The files mostly follow the

Robot Framework syntax with the exception of the test libraries and variable files that

are usually created using traditional programming or scripting languages such as python.

[44.]

The Robot Framework test file structure is divided into multiple different data sections.

The file starts with the settings section that is used to define which test libraries or re-

source- and variable files are imported as well as mark down any metadata used in the

test suites. The metadata can contain comments or documentation, setting up the suite

setup or teardown along with applying the possible test template. The variables section

is a local alternative for the more inclusive variable files and is used to define the varia-

bles used in the scope of the test file. The test cases segment is used to construct the

individual test cases that will be run as a part of the test file. The test cases are created

using the built-in or user defined keywords set in either the imported test libraries or the

test file itself. The most extensive data section includes the Robot Framework keywords

that contain the concrete test operations that manipulate and utilize the test data and are

used to form the test cases. The individual tests cases can also be nested and used in

other test cases as well as tagged in order to be run separately. The data sections are

identified and distinguished from each other by using the triple asterisk header format

shown in the figure 23. [44.]

54

The test structure supports a few different file formats to bring some diversity into de-

signing the test environment and to making sure that the users can choose their preferred

format. The most common approach is to use the space separated format that follows

the concept of separating the data components such as the keywords and their argu-

ments with two or more spaces. Another option is to use the pipe separated format where

the pipe character acts as the separator. The third option is the reStructuredText format

that is mostly used when the common Robot Framework data is embedded into code

blocks and when mixing different types of documents with the test data. Robot Frame-

work ignores certain data, sections and objects such as empty rows and all data that

does not meet the structure specifications, in order to make the structuring and formatting

simple and easy to read. [44.]

The high-level test environment of the analyzer project is divided into multiple lower level

subcategories that form the complete folder structure. The configuration folder contains

the global variables such as file paths and other configuration values. The libraries folder

that is further divided into python based custom libraries, Robot Framework keyword

libraries, other scripts that support the test functionality and the simulator specific con-

figuration files. The test suites folder that includes all of the tests suites, separated by

their test type or the area in the tested software. The top-level directory also contains all

other configuration and requirement files as well as the script files that are used to run

the correct test suite categories based on the different pipeline triggers.

55

Figure 23. The test structure of an example smoke test suite

4.4.3 Keywords and syntax

The basis for the Robot Framework testing are the human readable and re-usable key-

words that act as the construction material for the test cases and further test suites. The

keywords can be split in two categories that include the library keywords that derive from

the imported libraries and the user keywords that are created directly in the test suites

or as a separate keyword libraries. [44.]

56

The user-defined keywords are thought of one of the most compelling features of Robot

Framework and introduce the ability to combine other keywords to create new higher-

level ones. The keywords include information and operations from the standard and

build-in libraries as well as any other actions introduced by any user-defined keywords

or libraries. They follow the same Robot Framework syntax as the test cases and offer

basic functionality and setting such as separate documentation, keyword tagging, argu-

ments that take information inside keywords, return values to send data out of the key-

words, keyword teardown to specify what happens after the keyword is run, and the

possibility to set a timeout for the keywords. Some of the features are demonstrated in

figure 24. [44.]

The analyzer project testing utilizes user-defined keywords that are split into GUI-key-

words that control the functionality of the graphical user interface part of the simulator,

CMD-keywords that control the command line extension for the simulator as well as com-

bined keywords that incorporate the keywords from the previous two libraries along with

other functionality separate from the simulator software, such as the package installer

software. Most of these keywords utilize functionality from the custom Robot Framework-

and Python libraries that implement the needed automation frameworks, with the wide

application of the standard- and built-in Robot Framework libraries. An example of a

user-defined keyword is displayed in figure 24.

Figure 24. A user-defined keyword that performs the login functionality.

4.4.4 Libraries and tools

The Robot Framework keyword libraries are another powerful feature that allow the easy

and direct extendibility on top of the normal user-defined keyword functionality. The

framework comes with multiple readymade libraries that can be split into three main cat-

egories. The standard libraries include universal tools such as BuiltIn, OperatingSystem,

DateTime and Screenshot libraries that are distributed together with the core framework

and therefore making them directly available as normal keywords. External libraries

57

however must be installed separately but still provide a lot of ready-made and directly

available keywords and utilities created by other open source contributors. The third op-

tion is to create custom libraries if the desired functionality is not found from the other

available choices. The libraries tend to be very specific and the lower level keywords that

they introduce are usually implemented using more conventional programming lan-

guages like Python or Java and can therefore utilize all the functionality and extensions

provided by them as well as directly combine them with the Robot Framework utilities.

[44.]

The custom libraries are implemented with the help of the three different provided Appli-

cation Programming Interfaces, and the remote library interface if any other programming

languages are needed. The simplest way is to use the static API to implement a module

or a class that has the methods that map directly to keyword names inside it. The meth-

ods are also able to use the same functionality such as arguments, return values and

failure reporting, as the direct robot keywords. Another option is to use the dynamic API

to create libraries that implement a method to resolve the names of the keywords they

implement, in combination with another method that executes the named keywords with

the given arguments. This also allows the dynamic establishing of the needed keywords

and their execution during the runtime. The third option is to use the hybrid API which

combines the functionality of the two other APIs and allows the identification of keywords

to be done dynamically while still implementing direct method classes. [44.]

In order to utilize the libraries, they must be imported and taken into use by using the

library setting. The standard libraries can be imported just by using their names, but the

custom libraries require the specification of the library location such as a file path. Im-

porting the libraries is demonstrated in the figure 25. [44.]

Figure 25. The importing of variable files, resource files and libraries.

58

The analyzer project uses multiple custom libraries implemented with Python to achieve

the automation functionalities required by the simulator software. These libraries mostly

correspond to the ones on the Robot Framework side and contain the GUI controller

class that includes the methods for automating the simulator software graphical user

interface, the CMDController class that handles the usage of the simulator command line

functionality, AutomationCommands class that contains all other automation related

methods such as Windows automation and database related operations. An example of

the custom Python library keyword is displayed in figure 26.

Figure 26. A custom Python keyword from the AutomationCommands custom library.

4.4.5 Test results and output

Robot framework generates multiple different customizable result files in the desired file

location after the test execution. The output is folder an its contents are by default created

to the relative test suite location where the tests are ran from but can be directed to

specific locations by using the output directory flag and defining either the absolute or

relative path. Customization of the test reports allows changes such as title editing,

timestamping and changing the report designs and colors. [44.]

The first generated result file is called the output file and it contains all the test execution

and result information in XML format. The file is machine readable and is also used to

generate the other result files that can be further combined and post processed. The

second result file is the log file that consists of specific details about the tests that were

run. The file has a hierarchical structure that includes information about the test suites,

tests cases and keywords in a HTML format. The log file provides a way to investigate

the results in higher detail and are especially useful when targeting and investigating the

reason why a test failed. The third report file type is the report file that contains an anal-

ysis of the test results. The results are separated by the test suites, test tags and the

executed test cases, and provide a good overall picture of the test execution status in

59

easy to read HTML format. On top of the three main test result files, it is possible to

include an additional XUnit file that can be used as input data for compatible external

tools, in order to generate different test reports and statistics. An example of the log result

file is demonstrated in the figure 27. [44.]

The analyzer project environment generates separate result files for the continuous in-

tegration software installation smoke tests and the nightly simulator integration tests. All

of the result files are stored both locally on the tests server and in the respectable release

folder destinations located in the company network. The files are also uploaded into Az-

ure Blob Storage containers during the pipeline runs and are retained there for the dura-

tion of two weeks. Additionally, the XUnit result file is published by the Azure pipeline

task and used to form and display test report directly in the Azure DevOps Services cloud

environment.

60

Figure 27. An example of an installation smoke test log result file.

4.4.6 Automation and other tools

The test automation of the analyzer software utilizes a few different libraries to fulfil the

Windows GUI automation and the other testing needs.

The main tool and addition to Robot Framework in terms of the project is the Python

based Windows automation framework called Pywinauto. It Is composed of a set of dif-

ferent python modules that make it possible to automate and simulate GUI operations

61

such as mouse and keyboard actions. The tool is installed and imported as a part of the

Python modules and requires the following packages to be installed on the test system:

PyWin32 that provides multiple Windows APIs to be used with Python, Comtypes that

allows the COM interface functionality, and the Six combability library to provide smooth-

ing between the Python versions. After the modules are available the tool itself can be

downloaded, unpacked and imported into the custom libraries. The library uses either of

the two Windows accessibility technologies called the Win32 API and the MS UI Auto-

mation to connect its backend. The automated application process and the graphical

interface or operating window are connected to the backend and used to locate the au-

tomation elements based on their attributes such as names, values, classes, automation

IDs or other control types. The attributes of the tested elements can be found using a

GUI inspection tool such as inspect.exe or directly from the source code. After the suc-

cessful locating the elements, multiple actions that operate or simulate the element’s

functionality can be performed and automated. The tool is used to access and automate

most of the elements used in the software simulator integration tests as well as the in-

stallation smoke tests in the analyzer test environment. The library is imported into the

custom libraries where the Python methods utilize its capabilities and then execute the

formed keywords using Robot Framework as shown in figure 28. [45.]

Figure 28. A user-defined Python keyword utilizing Pywinauto.

The secondary automation tool used in the test environment is a third-party external Ro-

bot Framework library called WhiteLibrary. It acts as a wrapper for the White automation

framework and provides similar functionality as Pywinauto but in .NET environment. The

keywords are directly available in Robot Framework by just downloading and importing

the library, but do not offer as much customization and extendibility as Pywinauto and

are therefore used only for simple automation tasks such as handling Windows based

dialog windows. An example of the WhiteLibary keyword is displayed in figure 29. [46.]

62

Figure 29. An example of a user-defined keyword utilizing the WhiteLibrary.

Along with the automation features needed in the testing, there are some additional test

focuses and useful utilities that help the test structure and execution. The instrument

software is heavily in relation with relational databases and stores a lot of related data

into SQL databases. Therefore, the custom python libraries also utilize the database

connections to perform various actions by running predefined SQL scripts that can be

used to for example set up, initialize and modify the databases for the simulator usage.

This makes the integration testing faster and easier since the automation does not have

to wait for the simulated actions to happen in real time and can skip some parts of the

laborious setup and execution. Apart from database operations, the test libraries include

some additional file handling tasks that are used to transfer and operate instrument soft-

ware related configuration files such as medical assays and other dependency files.

Some of the database related functionality is demonstrated in figure 30.

Figure 30. A user-defined Python keyword utilizing the database functionality

5 Results, improvements and conclusion

The research and investigation towards DevOps and its concepts such as continuous

integration, as well as the study on different software testing and project management

models, processes and approaches helped to come up and end with a solid continuous

integration and test automation platform and basis for extendibility towards the final goal

of the official validation of the test automation process. The study also helped to under-

stand the software testing in bigger picture as well as in the role of a software engineer.

63

The source code is stored into a robust location from where it can be easily and contin-

uously unit tested, built and packaged into an installer which is then automatically tested

and released for further usage, testing and delivery. The separate and nightly automated

integration testing was able to be started and is ready to be extended with new tests and

functionality created by either developers or the testers, in order to support the rigorous

testing practices of the IVD field.

5.1 Alternative tools

The tools and platform used in the project were mostly selected based on the compati-

bility, efficiency and accessibility factors but there are multiple other DevOps, version

control, continuous integration, continuous delivery and test automation solutions avail-

able on the market to consider.

Alternative options for DevOps and integrations tools include Jenkins for its easy availa-

bility, open source model and extendibility, Bamboo that includes many pre-built func-

tionalities and the integration with Jira and Bitbucket, as well as GitHub actions for the

new innovations and the direct GitHub platform that has became the industry standard

on the version control side. Other good options to consider are TeamCity, GoCD, GitLab,

Circle CI and many others from the continuously growing tool selection. [47.]

As for test automation, the considerable options in the case of Windows UI automation

would be CodedUI with the seamless integration to Microsoft tool stacks and Visual stu-

dio services, TestComplete for its easy usage and wide range of supported technologies,

and Ranorex for its long history and solid performance. There are obviously more notable

tool options such as Selenium, and especially for the more common use case on web

testing. Most of these tools need very specific configuration and customization to be

suitable for every kind of systems under test and some of them are stand alone and do

not provide the needed customization options or are solely based on automation tasks.

[48.]

64

5.2 Future development ideas

As the concrete idea for the project was to plan and implement the start for the DevOps

properties, Continuous integration and test automation, there are many clear improve-

ments as well as some future development ideas to implemented.

One of the biggest improvements would be the addition of cloud based virtual machines,

which would make the availability and distributing the test runs a lot easier and lower the

execution times significantly, than with a single test server. Another option would be to

implement a test coordinator that would spread the automated tests to multiple local vir-

tual machines and gather the test results from them. Similar thing could be implemented

with containers, although the containers not being able to access the UI would cause a

problem with the GUI tests. All in all, any additional automation and robustness could be

further developed as the project related things progress further. Whether it would be

added Cloud or DevOps services or even some robotic process automation implemented

with the constantly growing Robot Framework.

65

References

1 Agile 101. [online] Accessed 30 August 2019. Available from:
https://www.agilealliance.org/agile101/

2 The Agile Manifesto. [online] Accessed 30 August 2019. Available from:
https://www.agilealliance.org/agile101/the-agile-manifesto/

3 7 Guiding principles of Lean development. [online] Accessed 2 September 2019.
Available from: https://leankit.com/learn/lean/principles-of-lean-development/

4 Lean software development. [online] Accessed 2 September 2019. Available
from: https://en.wikipedia.org/wiki/Lean_software_development

5 Ernest Mueller. 2010. What is DevOps? [online] Accessed 6 September 2019.
Available from: https://theagileadmin.com/what-is-d evops/

6 DevOps: Breaking the Development-Operations barrier. [online] Accessed 7 Sep-
tember 2019. Available from: https://www.atlassian.com/devops

7 Floris Erich, Chintan Amrit, M. Daneva. 2017. A Qualitative Study of DevOps Us-
age in Practice. [online] Accessed 10 September 2019. Available from:
https://www.researchgate.net/publication/316879884_A_Qualita-
tive_Study_of_DevOps_Usage_in_Practice

8 Mark Sigler. 2018. A Healthy DevOps Toolchain. [online] Accessed 14 Septem-
ber 2019. Available from: https://electric-cloud.com/blog/healthy-devops-tool-
chain/

9 Brett Johnson. 2019. Understanding a DevOps Toolchain: Use Cases and Fun-
damentals. [online] Accessed 14 September 2019. Available from:
https://www.networkcomputing.com/networking/understanding-devops-toolchain-
use-cases-and-fundamentals

10 DevOps Toolchain. [online] Accessed 14 September 2019. Available from:
https://en.wikipedia.org/wiki/DevOps_toolchain

11 Martin Fowler. 2006. Continuous Integration. [online] Accessed 4 November
2019. Available from: https://martinfowler.com/articles/continuousIntegration.html

12 Anu Upadhyay. Centralized vs Distributed Version Control: Which One Should
We Choose? [online] Accessed 6 November 2019. Available from:
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-
one-should-we-choose/

https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/the-agile-manifesto/
https://leankit.com/learn/lean/principles-of-lean-development/
https://en.wikipedia.org/wiki/Lean_software_development
https://theagileadmin.com/what-is-d%20evops/
https://www.atlassian.com/devops
https://www.researchgate.net/publication/316879884_A_Qualitative_Study_of_DevOps_Usage_in_Practice
https://www.researchgate.net/publication/316879884_A_Qualitative_Study_of_DevOps_Usage_in_Practice
https://electric-cloud.com/blog/healthy-devops-toolchain/
https://electric-cloud.com/blog/healthy-devops-toolchain/
https://www.networkcomputing.com/networking/understanding-devops-toolchain-use-cases-and-fundamentals
https://www.networkcomputing.com/networking/understanding-devops-toolchain-use-cases-and-fundamentals
https://en.wikipedia.org/wiki/DevOps_toolchain
https://martinfowler.com/articles/continuousIntegration.html
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/

66

13 Ravi Verma. Centralized vs Distributed Version Control Systems [CVCS vs
DVCS]. [online] Accessed 6 November 2019. Available from:
https://scmquest.com/centralized-vs-distributed-version-control-systems/

14 Vince Power. 2019. What is a Continuous Integration and Delivery Pipeline and
Why Is It Important? [online] Accessed 12 November 2019. Available from:
https://codefresh.io/continuous-integration/continuous-integration-delivery-pipe-
line-important/

15 Samarpit Tuli. 2018. Learn How to Set Up a CI/CD Pipeline from Scratch. [online]
Accessed 15 November 2019. Available from: https://dzone.com/articles/learn-
how-to-setup-a-cicd-pipeline-from-scratch

16 Continuous integration vs. continuous delivery vs. continuous deployment [online]
Accessed 17 November 2019. available from: https://www.atlassian.com/continu-
ous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

17 Raj Kumar. 2015. What Is Software Testing – Definitions, Types, Methods, Ap-
proaches. [online] Accessed 6 February 2020. Available from: https://www.soft-
waretestingmaterial.com/software-testing/

18 Deb Sayantini. 2019. What are the Types of Software Testing Models? [online]
Accessed 6 February 2020. Available from: https://www.edureka.co/blog/soft-
ware-testing-models/

19 SDLC – Waterfall Model [online] Accessed 8 February 2020. Available from:
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm

20 SDLC – V-Model [online] Accessed 9 February 2020. Available from:
https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm

21 SDLC – Agile Model [online] Accessed 10 February 2020. Available from:
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm

22 SDLC – Iterative Model [online] Accessed 12 February 2020. Available from:
https://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm

23 SDLC – Spiral Model [online] Accessed 14 February 2020. Available from:
https://www.tutorialspoint.com/sdlc/sdlc_spiral_model.htm

24 8 Phases of Software Testing Life Cycle (STLC). 2020 [online] Accessed 15 Feb-
ruary 2020. Available from: https://www.softwaretestinghelp.com/what-is-soft-
ware-testing-life-cycle-stlc/

25 Test Artifacts. 2020 [online] Accessed 2 March 2020. Available from:
https://www.professionalqa.com/test-artifacts

https://scmquest.com/centralized-vs-distributed-version-control-systems/
https://codefresh.io/continuous-integration/continuous-integration-delivery-pipeline-important/
https://codefresh.io/continuous-integration/continuous-integration-delivery-pipeline-important/
https://dzone.com/articles/learn-how-to-setup-a-cicd-pipeline-from-scratch
https://dzone.com/articles/learn-how-to-setup-a-cicd-pipeline-from-scratch
https://www.softwaretestingmaterial.com/software-testing/
https://www.softwaretestingmaterial.com/software-testing/
https://www.edureka.co/blog/software-testing-models/
https://www.edureka.co/blog/software-testing-models/
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_spiral_model.htm
https://www.softwaretestinghelp.com/what-is-software-testing-life-cycle-stlc/
https://www.softwaretestinghelp.com/what-is-software-testing-life-cycle-stlc/
https://www.professionalqa.com/test-artifacts

67

26 Black Box Testing Tools [online] Accessed 4 March 2020. Available from:
https://www.ranorex.com/black-box-testing-tools/

27 Black Box Testing [online] Accessed 6 March 2020. Available from: http://soft-
waretestingfundamentals.com/black-box-testing/

28 Black Box Testing: An In-Depth Tutorial with Examples and Techniques. 2020
[online] Accessed 6 March 2020. Available from: https://www.softwaretest-
inghelp.com/black-box-testing/

29 White Box Testing [online] Accessed 7 March 2020. Available from: http://soft-
waretestingfundamentals.com/white-box-testing

30 White Box Testing: A complete Guide with Techniques, Examples, & Tools. 2020
[online] Accessed 8 March 2020. Available from: https://www.softwaretest-
inghelp.com/white-box-testing-techniques-with-example/

31 Grey Box Testing [online] Accessed 10 March 2020. Available from:
https://www.tutorialspoint.com/software_testing_dictionary/grey_box_testing.htm

32 What is Exploratory Testing? Techniques with Examples. [online] Accessed 16
March 2020. Available from: https://www.guru99.com/exploratory-testing.html

33 Software testing [online] Accessed 18 March 2020. Available from: https://en.wik-
ipedia.org/wiki/Software_testing

34 Levels of Testing in Software Testing [online] Accessed 19 March 2020. Available
from: https://www.guru99.com/levels-of-testing.html

35 Differences Between the Different Levels & Types of Testing [online] Accessed
22 March 2020. Available from: https://reqtest.com/testing-blog/different-levels-of-
testing/

36 Functional Testing Vs Non-Functional Testing: What’s the Difference? [online]
Accessed 23 March 2020. Available from: https://www.guru99.com/functional-
testing-vs-non-functional-testing.html

37 Automation Testing Tutorial: What is Automated Testing? [online] Accessed 8
April 2020. Available from: https://www.guru99.com/automation-testing.html

38 Azure DevOps [online] Accessed 23 April 2020. Available from: https://azure.mi-
crosoft.com/en-in/services/devops/

39 What is Azure Repos [online] Accessed 28 April 2020. Available from:
https://docs.microsoft.com/en-in/azure/devops/repos/get-started/what-is-re-
pos?view=azure-devops

https://www.ranorex.com/black-box-testing-tools/
http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/black-box-testing/
https://www.softwaretestinghelp.com/black-box-testing/
https://www.softwaretestinghelp.com/black-box-testing/
http://softwaretestingfundamentals.com/white-box-testing
http://softwaretestingfundamentals.com/white-box-testing
https://www.softwaretestinghelp.com/white-box-testing-techniques-with-example/
https://www.softwaretestinghelp.com/white-box-testing-techniques-with-example/
https://www.tutorialspoint.com/software_testing_dictionary/grey_box_testing.htm
https://www.guru99.com/exploratory-testing.html
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://www.guru99.com/levels-of-testing.html
https://reqtest.com/testing-blog/different-levels-of-testing/
https://reqtest.com/testing-blog/different-levels-of-testing/
https://www.guru99.com/functional-testing-vs-non-functional-testing.html
https://www.guru99.com/functional-testing-vs-non-functional-testing.html
https://www.guru99.com/automation-testing.html
https://azure.microsoft.com/en-in/services/devops/
https://azure.microsoft.com/en-in/services/devops/
https://docs.microsoft.com/en-in/azure/devops/repos/get-started/what-is-repos?view=azure-devops
https://docs.microsoft.com/en-in/azure/devops/repos/get-started/what-is-repos?view=azure-devops

68

40 Azure Pipelines agents [online] Accessed 14 August 2020. Available from:
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=az-
ure-devops&tabs=browser

41 What is Azure Pipelines [online] Accessed 15 August 2020. Available from:
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-az-
ure-pipelines?view=azure-devops

42 Introduction to Azure Blob storage [online] Accessed 18 August 2020.Available
from: https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-intro-
duction

43 Robot Framework [online] Accessed 22 September 2020. Available from:
https://robotframework.org/

44 Robot Framework User Guide [online] Accessed 22 September 2020. Available
from: https://robotframework.org/robotframework/latest/RobotFrameworkUser-
Guide.html

45 Pywinauto contents [online] Accessed 13 October 2020. Available from:
https://pywinauto.readthedocs.io/en/latest/contents.html

46 Roboframework-whitelibrary [online] Accessed 16 October 2020. Available from:
https://github.com/Omenia/robotframework-whitelibrary

47 20 Best Continuous Integration (CI) Tools in 2020 [online] Accessed 22 October
2020. Available from: https://www.guru99.com/top-20-continuous-integration-
tools.html

48 12 Best Automation Tools for Desktop Apps in 2020 [online] Accessed 23 Octo-
ber 2020. Available from: https://www.logigear.com/blog/test-automation/12-best-
automation-tools-for-desktop-apps-in-2020/#section8

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=browser
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=browser
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://robotframework.org/
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://pywinauto.readthedocs.io/en/latest/contents.html
https://github.com/Omenia/robotframework-whitelibrary
https://www.guru99.com/top-20-continuous-integration-tools.html
https://www.guru99.com/top-20-continuous-integration-tools.html

